Венецкий С.И.

Рассказы о металлах



ВЫ ПРОЧТЕТЕ:

о самом большом железном метеорите, упавшем на Землю, и об обитателях морского царства голотуриях, «коллекционирующих» ванадий;

о причинах гибели полярной экспедиции капитана Роберта Скотта и о секрете остроты самурайских мечей;

о том, как цирконий нашел свое призвание и как ниобий начал занижаться «валютными операциями»;

о грандиозном «мамонт-взрыве», поднявшем в воздух три с половиной миллиона тонн никелевых пород, и о запасах алюминия на Луне;

о тайне инков, которые скрывали сказочные сокровища своих изумрудных копей от испанских конкистадоров, и о древней восточной легенде, повествующей, как кровь богов превращалась в рубины;

о бронзовом Колоссе Родосском - одном из семи чудес света, и о титановой ракете - обелиске в честь покорения человеком космоса;

о литии, отпраздновавшем свой 150-летний юбилей, и о марганце, оказавшемся в зубах акулы;

о том, как был позолочен купол Исаакиевского собора и как в результате лесного пожара было открыто богатое свинцовое месторождение;

о муках, на которые был обречен богами жестокий Тантал, и о неисчислимых богатствах, хранящихся в голубых «сундуках» Нептуна,

и о многом-многом другом.

ОБ ЭТОЙ КНИГЕ

Много веков металлы верно служат человеку, помогая ему покорять стихию, овладевать тайнами природы, создавать замечательные машины и механизмы.

Богат и интересен мир металлов. Среди них встречаются старые друзья человека: медь, железо, свинец, ртуть, золото, серебро, олово. Эта дружба насчитывает уже тысячи лет. Но есть и такие металлы, знакомство с которыми состоялось лишь в последние десятилетия.

Свойства металлов чудесны и разнообразны. Ртуть, например, не замерзает даже на морозе, а вольфрам не боится самых жарких объятий пламени. Литий мог бы быть отличным пловцом: ведь он вдвое легче воды и при всем желании не сможет утонуть, а осмий - чемпион среди металловтяжеловесов - камнем пойдет ко дну. Серебро «с удовольствием» проводит электрический ток, а у титана явно «не лежит душа» к этому занятию: его электропроводность в 300 раз ниже, чем у серебра. Железо мы встречаем на каждом шагу, а гольмий содержится в земной коре в таких мизерных количествах, что даже крупицы этого металла стоят баснословно дорого: чистый гольмий в несколько сот раз дороже золота.

Но как ни различны свойства этих элементов, их роднит то, что все они принадлежат к одной большой семье металлов. О судьбах некоторых важнейших металлов, об их «планах на будущее» рассказывает эта книга.

Автор не ставил перед собой задачу сообщить читателю скольконибудь систематические сведения о каждом из описываемых металлов. История металлов насыщена множеством интересных фактов и занимательных эпизодов, подчас романтических, порой юмористических, а иногда и трагических. Познакомить читателя с ними - цель данной книги.

Эта книга - для любознательных. Автор надеется, что она заинтересует не только подростков, открывающих для себя мир науки, но и всех тех, кто, давно расставшись со школьной или студенческой скамьей, по-прежнему пользуется каждой возможностью, чтобы пополнить свои знания обо всем, что нас окружает.

H


Li

Be

B

С


Na

Mg

Al

Si

ЛЕГЧАЙШИЙ ИЗ ЛЕГКИХ

В расцвете сил. - Экскурс в прошлое столетие. - Целебные воды Карлсбада. - Что легче? - Вазелиновые ванны. - Летчики надевают жилеты. - Средство против подагры. - Нужда заставила. - Экспонат ВДНХ. - Ни мороз не страшен, ни жара. - В глубь Антарктиды. - Вечная смазка. - Вкусны ли стекла? - Голубое пламя. - «Первая скрипка». - Результаты бомбардировки. - Литий «глотает» нейтроны. - Двадцать Днепрогэсов. - Добрый старый керосин. - Литий против... лития. - Ядерный «клей». - Кристалл из Южной Дакоты. - «Сезам! Отворись!». - Подозрительное жаркое.


В 1967 году литий - элемент Периодической системы Д. И. Менделеева, стоящий в таблице первым среди металлов, отмечал 150-летие со дня открытия. Свой юбилей металл встретил в расцвете сил: деятельность его в современной технике интересна и многогранна. Тем не менее специалисты считают, что элемент отнюдь не раскрыл еще полностью свои возможности, и предсказывают ему большое будущее. Но давайте совершим экскурс в прошлое столетие - заглянем в тихую лабораторию шведского химика Арфведсона. Итак: Швеция, 1817 год.

...Вот уже который день ученый анализирует минерал петалит, найденный на руднике Уто близ Стокгольма. Снова и снова проверяет он результаты анализа, но каждый раз сумма всех компонентов оказывается равной 96%. Где же теряются 4%? А что, если...? Да, сомнений нет: в минерале содержится какой-то неизвестный доселе элемент. Арфведсон проводит опыт за опытом, и вот, наконец, цель достигнута: открыт новый щелочной металл. А поскольку, в отличие от своих близких «родственников» - калия и натрия, впервые обнаруженных в органических продуктах, новичок был найден в минерале, ученый решает назвать его литием («литеос» по-гречески - камень).

Вскоре Арфведсон находит элемент и в других минералах, а известный шведский химик Берцелиус обнаруживает его в минеральных водах Карлсбада и Мариенбада. Кстати, и в наши дни широкой известностью пользуются источники курорта Виши во Франции, которые благодаря присутствию солей лития обладают высокими бальнеологическими свойствами.

В 1855 году немецкому химику Бунзену и независимо от него английскому физику Матиссену электролизом расплавленного хлорида лития удалось получить чистый литий. Он оказался мягким серебристо-белым металлом, почти вдвое легче воды. В этом отношении литий не знает конкурентов среди металлов: алюминий тяжелее его в 5 раз, железо - в 15, свинец - в 20, а осмий - в 40 раз!

Даже при комнатной температуре литий энергично реагирует с азотом и кислородом воздуха. Попробуйте оставить кусочек лития в стеклянном сосуде с притертой пробкой. Металл поглотит весь имеющийся там воздух, в сосуде возникнет вакуум и атмосферное давление так крепко «припечатает» пробку, что вам вряд ли удастся ее вытащить. Поэтому хранить литий очень не просто. Если натрий, например, можно легко упрятать в керосин или бензин, то для лития такой способ неприемлем - он тут же всплывает и загорается. Чтобы сохранить литиевые прутки, их обычно вдавливают в ванну с вазелином или парафином, которые обволакивают металл и не позволяют ему проявлять свои реакционные наклонности.

Еще более активно литий соединяется с водородом. Небольшое количество металла может связать колоссальные объемы этого газа: в 1 килограмме гидрида лития содержится 2800 литров водорода! В годы второй мировой войны таблетки гидрида лития (соединение его с водородом) служили американским летчикам портативными источниками водорода, которыми они пользовались при авариях над морем: под действием воды таблетки моментально разлагались, наполняя водородом спасательные средства - надувные лодки, жилеты, сигнальные шары-антенны.

Чрезвычайно высокая способность соединений лития поглощать влагу обусловила их широкое применение для очистки воздуха на подводных лодках, в авиационных респираторах, в системах кондиционирования воздуха.

Первые попытки промышленного использования лития относятся к началу нашего века. До этого в течение почти ста лет его применяли главным образом в медицине как антиподагрическое средство.

Во время первой мировой войны Германия испытывала крайнюю нужду в олове, весьма необходимом промышленности. Поскольку своим оловянным сырьем страна не располагала, ученым пришлось срочно искать замену этому металлу. С помощью лития проблему удалось успешно решить: сплав свинца с литием («бан-металл») оказался отличным антифрикционным материалом. С этого момента техника не расстается с литиевыми сплавами. Известны сплавы лития с алюминием, бериллием, медью, цинком, серебром и другими элементами. Особенно широкие перспективы открываются перед сплавами лития с другим металлом-легковесом - магнием, обладающим к тому же ценными конструкционными свойствами: ведь такой сплав, если в нем содержится не более 50% магния, легче воды. Уже удалось выплавить некоторые сплавы подобного состава. К сожалению, они не устойчивы - легко окисляются на воздухе. Ученые работают сейчас над созданием композиции и технологии получения сплава, которые обеспечили бы ему долговечность. На Выставке достижений народного хозяйства в Москве уже экспонировался образец литий-магниевого сплава, не тускнеющего от времени.

Высокая реакционная способность лития, низкая температура плавления, малая плотность его соединений делают элемент прекрасным дегазатором, раскислителем и модификатором в черной и цветной металлургии.

В производстве алюминия литий успешно выступает в роли ускорителя процесса. Добавка его соединений к электролиту увеличивает производительность алюминиевого электролизера. При этом снижается необходимая температура ванны, сокращается расход электроэнергии.

Прежде электролит щелочных аккумуляторов состоял только из растворов едкого натра. При введении в него нескольких граммов гидроокиси лития срок службы аккумулятора возрастает втрое. Кроме того, значительно расширяется температурный диапазон его действия: он не разряжается даже при повышении температуры до 40°С и не замерзает при двадцатиградусных морозах. Безлитиевому электролиту эти испытания не под силу. Недавно в Японии разработана электрическая батарея нового типа, в которой одним из электродов служит литий. Запас энергии у этой батареи в 6 - 7 раз больше, чем у ее цинковых «предшественниц».

Некоторые органические соединения лития (стеарат, пальмиат и др.) сохраняют свои физические свойства в широком интервале температур. Это позволяет использовать их как основу для смазочных материалов, применяемых в военной технике. Смазка, в состав которой входит литий, помогает вездеходам, работающим в Антарктиде, совершать рейды в глубь континента, где морозы порой достигают - 60° С.

Литиевая смазка - надежный помощник автомобилистов. В этом уже убедились владельцы «Жигулей», не случайно называющие ее «вечной»: достаточно один раз в начале эксплуатации смазать ею некоторые трущиеся детали машины, и долгие годы - практически до конца «жизни» автомобиля - они не будут нуждаться в этой операции.

Один из героев фильма «Лимонадный Джо» - веселой пародии на голливудские боевики - выпивал «адскую смесь» и закусывал... стеклянными стаканами. По свидетельству очевидцев, этим же «блюдом» непрочь «полакомиться» индийские йоги, которые разгрызают граненый стакан на мелкие кусочки и проглатывают их с выражением такого удовольствия, будто в жизни не пробовали ничего вкусней. А вам не приходилось употреблять стекло в пищу? «Что за нелепый вопрос? Разумеется нет!» - так, вероятно, подумает каждый, кому доведется читать эти строки, - и ошибется. Оказывается, обычное стекло растворяется в воде. Конечно, не в такой степени, как, допустим, сахар, но все же растворяется. Точнейшие аналитические весы показывают, что вместе со стаканом горячего чая мы выпиваем около одной десятитысячной грамма стекла. Но если при варке стекла к нему добавить щепотку солей лантана, циркония и лития, его растворимость уменьшится в сотню раз. Оно станет весьма устойчивым даже по отношению к серной кислоте.

Роль лития в стекольном производстве не исчерпывается снижением растворимости стекла. Литиевые стекла характеризуются ценными оптическими свойствами, хорошей термостойкостью, высоким удельным сопротивлением, малыми диэлектрическими потерями. Литий, в частности, входит в состав стекол, из которых изготовляют телевизионные кинескопы. Если обычное оконное стекло обработать в расплаве солей лития, на нем образуется плотный защитный слой: стекло становится вдвое прочнее и устойчивее к повышенным температурам. Небольшие добавки этого элемента (0,5 - 1,5%) значительно снижают температуру варки стекла.

Издавна символом прозрачности служила капля росы. Но даже прозрачные, как роса, стекла уже не удовлетворяют современную технику: ей нужны оптические материалы, которые пропускали бы не только видимые глазом лучи света, но и невидимые, например ультрафиолетовые. При помощи обычных телескопов астрофизики не могут уловить излучения очень далеких галактик. Из всех известных оптике материалов самой высокой прозрачностью для ультрафиолетовых лучей обладает фтористый литий. Линзы из монокристаллов этого вещества позволяют исследователям значительно глубже проникать в тайны Вселенной.

Немаловажную роль играет литий в производстве специальных глазурей, эмалей, красок, высококачественного фарфора и фаянса. В текстильной промышленности одни соединения этого элемента служат для отбеливания и протравливания тканей, другие - для их окраски.

Соли лития окрашивают в яркий синезеленый цвет след трассирующих пуль и снарядов.

На пиротехнических способностях лития основан следующий фокус. Попытайтесь поджечь кусочек сахара спичкой - у вас ничего не выйдет: сахар начнет плавиться, но не загорится. Если же перед этим сахар натереть табачным пеплом, то он легко вспыхнет красивым голубым пламенем. Объясняется это тем, что в табаке, как и во многих других растениях, в довольно больших количествах содержится литий. При сгорании табачных листьев часть его соединений остается в пепле. Они-то и позволяют провести этот несложный химический фокус.

Но все, о чем мы пока рассказали, - это лишь второстепенные, побочные занятия лития. Есть у него дела и посерьезней.

Ученые установили, что ядра изотопа лития-6 могут быть легко разрушены нейтронами. Поглощая нейтрон, ядро лития становится неустойчивым и распадается, в результате чего образуются два новых атома: легкого инертного газа гелия и редчайшего сверхтяжелого водорода - трития. При очень высоких температурах атомы трития и другого изотопа водорода - дейтерия объединяются. Этот процесс сопровождается выделением колоссального количества энергии, называемой обычно термоядерной.

Особенно энергично термоядерные реакции протекают при бомбардировке нейтронами соединения изотопа лития-6 с дейтерием - дейтерида лития. Это вещество служит ядерным горючим в литиевых реакторах, которые обладают рядом преимуществ по сравнению с урановыми: литий значительно доступней и дешевле урана, при реакции не образуется радиоактивных продуктов деления, процесс легче регулируется.

Относительно высокая способность лития-6 захватывать медленные нейтроны легла в основу использования его в качестве регулятора интенсивности реакций, протекающих и в урановых реакторах. Благодаря этому свойству изотоп нашел применение также в защитных экранах против радиации, в атомных батареях с большим сроком службы. Не исключено, что в скором времени литий-6 станет работать поглотителем медленных нейтронов на атомных летательных аппаратах.

Подобно некоторым другим щелочным металлам, литий применяют как теплоноситель в ядерных установках. Здесь можно использовать его менее дефицитный изотоп - литий-7 (в природном литии на его долю приходится около 93%). Этот изотоп, в отличие от своего более легкого «брата», не может служить сырьем для производства трития и поэтому не представляет интереса для термоядерной техники. Но с ролью теплоносителя он справляется вполне успешно. В этом ему помогают высокая теплоемкость и теплопроводность, большой температурный интервал жидкого состояния (180 - 1336°С), незначительная вязкость, малая плотность.

В последнее время серьезные права на литий начинает предъявлять ракетная техника. Много энергии необходимо затратить, чтобы преодолеть силы земного тяготения и вырваться в космические просторы. Ракета, которая вывела на орбиту корабль-спутник с первым в мире космонавтом Юрием Гагариным, имела шесть двигателей общей мощностью 20 миллионов лошадиных сил! Это мощность двадцати таких гидроэлектростанций, как Днепрогэс.

Естественно, что выбор ракетного топлива представляет собой проблему исключительной важности. Пока наиболее эффективным горючим считается керосин (да-да, добрый старый керосин!), окисляемый жидким кислородом. Теплотворность этого топлива составляет 2300 килокалорий на килограмм. (Для сравнения укажем, что при взрыве 1 килограмма нитроглицерина - одного из сильнейших взрывчатых веществ - выделяется лишь 1480 килокалорий тепла.)

Отличные перспективы может иметь применение металлического горючего. Теорию и методику использования металлов в качестве топлива для ракетных двигателей впервые разработали еще несколько десятилетий назад замечательные советские ученые Ю. В. Кондратюк и Ф. А. Цандер. Одним из наиболее подходящих для этой цели металлов является литий. При сгорании 1 килограмма этого металла выделяется 10270 килокалорий! Большей теплотворностью может похвастать лишь бериллий. В США опубликованы патенты на твердое ракетное топливо, содержащее 51 - 68% металлического лития.

Любопытно, что в процессе работы ракетных двигателей литий выступает против... лития. Являясь компонентом горючего, он позволяет развивать колоссальные температуры, а обладающие высокой термостойкостью и жароупорностью литиевые керамические материалы (например, ступалит), используемые как покрытия сопел и камер сгорания, предохраняют их от разрушительного действия лития-горючего.

В наши дни техника располагает большим количеством разнообразных синтетических материалов - полимеров, с успехом заменяющих сталь, латунь, стекло. Но у технологов подчас возникают большие трудности, когда при изготовлении некоторых изделий им необходимо соединить полимеры между собой или с другими материалами. Так, новый фторсодержащий полимер тефлон - идеальное антикоррозийное покрытие - до последнего времени не находил практического применения из-за того, что плохо склеивался с металлом.

Недавно советскими учеными была разработана оригинальная технология ядерной сварки полимеров с различными материалами. На свариваемые поверхности наносят небольшие количества соёдинений лития или бора, которые и служат своеобразным «ядерным клеем». При облучении этих слоев нейтронами возникают ядерные реакции, сопровождающиеся значительным выделением энергии, благодаря чему на очень короткое время (менее десятимиллиардной доли секунды) в материалах появляются микроучастки с температурой в сотни и даже тысячи градусов. Но и за эти мгновения молекулы пограничных слоев успевают перемешаться, а иногда и образовывать между собой новые химические связи - происходит ядерная сварка.

Как правило, элементы, располагающиеся в левом верхнем углу таблицы Д. И. Менделеева, широко распространены в природе. Но, в отличие от большинства своих соседей - натрия, калия, магния, кальция, алюминия, которыми богата наша планета, литий - сравнительно редкий элемент. На его долю приходится лишь 0,0065% земной коры. В природе встречается около 20 минералов, содержащих этот ценный элемент. Основное природное соединение лития - сподумен. Кристаллы этого минерала, по форме напоминающие железнодорожные шпалы или стволы деревьев, порой достигают гигантских размеров: в Южной Дакоте (США) был найден кристалл длиной более 15 метров; вес его измерялся десятками тонн. В американских месторождениях были обнаружены очень красивые изумрудно-зеленые и розово-фиолетовые разновидности сподумена - полудрагоценные минералы гидденит и кунцит.

Большое значение как сырье для производства лития могут иметь гранитные пегматиты, запасы которых практически неисчерпаемы. Подсчитано, что в одном кубическом километре гранита заключено 112 тысяч тонн лития - это в 30 раз больше, чем добывается сегодня во всех капиталистических странах. Бок о бок с литием в гранитных кладовых хранятся ниобий, тантал, цирконий, торий, уран, неодим, цезий, церий, празеодим и многие другие редкие элементы. Но как заставить гранит поделиться с человеком своими богатствами?

Сегодня ученые заняты поисками, и безусловно им удастся создать такие методы, которые, подобно сказочным словам «Сезам! Отворись!», позволят людям раскрыть гранитные кладовые.

Заканчивая рассказ о литии, поведаем об одной забавной истории, в которой этот элемент сыграл весьма важную роль. В 1891 году выпускник Гарвардского университета Роберт Вуд (впоследствии знаменитый американский физик) приехал в Балтимор, чтобы заниматься химией у известного профессора А. Ремсена. Поселившись в университетском пансионе, Вуд вскоре прослышал от живших там студентов, что хозяйка, якобы, частенько готовит утреннее жаркое из... остатков вчерашнего обеда, собранных с тарелок. Но как это доказать?

Вуд, большой любитель находить для любой задачи оригинальное и вместе с тем простое решение, не изменил себе и на этот раз. В один из дней, когда на обед был подан бифштекс, Роб (как называли ученого в те времена), оставив на тарелке несколько больших кусков мяса, посыпал их хлористым литием - совершенно безвредным веществом, похожим по виду и вкусу на обыкновенную поваренную соль. На следующий день кусочки жареного мяса, поданного студентам на завтрак, были «преданы сожжению» перед щелью спектроскопа. Красная линия спектра, присущая литию, поставила точку над i: чрезмерно «экономная» хозяйка пансиона была разоблачена. А сам Вуд много лет спустя с удовольствием вспоминал о своем «следственном» эксперименте.

H


Li

Be

B

С


Na

Mg

Al

Si

МЕТАЛЛ КОСМИЧЕСКОГО ВЕКА

Сказки превращаются в быль. - Изумрудные копи царицы Клеопатры. - Хобби римского императора. - «Он зелен, чист, весел и нежен...» - Сокровища мексиканских могил. - Тайна инков. - Внезапная ревизия. - Уникальный камень возвращается в Россию. - «Зеленое утро и кровавый вечер». - Джильда ищет бериллий. - «Раненый» экспонат. - Сенсационное сообщение Воклена. - «Возмутитель, спокойствия». - Тяжкое обвинение. - «Приговор» пересмотрен. - В космос! - Странный заказ. - Взрыва не будет. - Союз легчайших. - Важное открытие. - Нейтроны замедляют бег. - Звук бьет рекорды. - Атомная «игла».


Бериллий - один из самых замечательных элементов, огромного теоретического и практического значения.

...Овладение воздухом, смелые полеты самолетов и стратостатов невозможны без легких металлов; и мы уже предвидим, что в помощь современным металлам авиации - алюминию и магнию - придет и бериллий.

И тогда наши самолеты будут летать со скоростью в тысячи километров в час.

За бериллием будущее!

Геохимики, ищите новые месторождения. Химики, научитесь отделять этот легкий металл от его спутника - алюминия. Технологи, сделайте легчайшие сплавы, не тонущие в воде, твердые, как сталь, упругие, как резина, прочные, как платина, и вечные, как самоцвет...

Может быть, сейчас эти слова кажутся сказкой. Но как много сказок на наших глазах превратилось в быль, влилось в наш простой домашний обиход, а мы забываем, что еще 20 лет тому назад наши радио и звуковое кино звучали фантастической сказкой».

Так писал несколько десятилетий назад крупнейший советский ученый академик А. Е. Ферсман, уже тогда сумевший по достоинству оценить значение бериллия.

Да, бериллий - это металл будущего. И в то же время в Периодической системе найдется немного элементов, история которых, подобно истории бериллия, уходит в далекое-далекое прошлое.

...Свыше двух тысячелетий назад в безводной пустыне Нубии, где находились знаменитые изумрудные копи царицы Клеопатры, рабы добывали чудесные кристаллы зеленого камня. Караваны верблюдов доставляли изумруды к берегам Красного моря, а оттуда они попадали во дворцы властителей стран Европы, Ближнего и Дальнего Востока - византийских императоров, персидских шахов, китайских богдыханов, индийских раджей.

Великолепным блеском, чистотой окраски, красотой игры - то густозеленый, почти темный, то сверкающий ослепительной зеленью - изумруд во все времена пленял человека. Римский император Нерон любил смотреть через большой кристалл изумруда на бои гладиаторов. «Он зелен, чист, весел и нежен, как трава весенняя...» - писал об изумруде А. И. Куприн.

С открытием Америки в историю зеленого камня была вписана новая страница. В могилах и храмах Мексики, Перу, Колумбии испанцы обнаружили громадные количества крупных темно-зеленых изумрудов. За несколько лет испанцы разграбили эти сказочные богатства. Найти же место, где добывался чудесный самоцвет, им долго не удавалось. И только в середине XVI столетия завоеватели Америки сумели, наконец, овладеть тайной инков и проникнуть к сокровищам изумрудных копей Колумбии.

Редкий по красоте колумбийский изумруд царил в ювелирном деле до XIX века. В 1831 году уральский смолокур Максим Кожевников, собирая валежник в лесу близ небольшой речушки Токовой, нашел первый русский изумруд. Крупные ярко-зеленые изумруды Урала быстро получили признание ювелиров всего мира.

В 1834 году на одном из уральских приисков был найден громадный красивый изумруд весом 2 килограмма 226 граммов. Будучи не в силах расстаться со сказочным камнем, «командир» Екатеринбургской гранильной фабрики Каковин не стал афишировать это событие, а постарался понадежнее спрятать изумруд. Но, видимо, слухи об уникальной находке дошли до Петербурга. Во всяком случае оттуда неожиданно нагрянула ревизия. Камень нашли и увезли в столицу, а «командира» посадили в тюрьму, где он покончил жизнь самоубийством.(Следует отметить, что последние работы историков говорят о непричастности Каковина к попыткам утаить изумруд).

В Петербурге камень также не попал в государственную казну. Сначала он «погостил» у графа Перовского, затем перекочевал к князю Кочубею. В 1905 году, после разгрома имения Кочубеев, изумруд оказался в Вене, где его за большие деньги приобрело русское правительство. Сейчас чудо-камень украшает коллекцию Минералогического музея Академии наук СССР в Москве.

Изумруд - один из многих минералов бериллия. Голубовато-зеленый, цвета морской воды аквамарин и вишнево-розовый воробьевит, винножелтый гелиодор и желтовато-зеленый берилл, чистейшей воды фенакит и нежный синий эвклаз, прозрачный зеленый хризоберилл и его удивительная разновидность александрит - густо-зеленый днем и малиновый при искусственном освещении («зеленое утро и кровавый вечер» - образно описал его Н. С. Лесков) - вот лишь некоторые, но, пожалуй, наиболее именитые представители семейства бериллиевых самоцветов.

В последнее время в печати довольно часто стали появляться сообщения о поиске полезных ископаемых с помощью... собак. Умение наших четвероногих друзей находить что-либо по запаху известно с древности. Но каковы их «геологические способности»? Какие минералы могут отыскать лохматые «рудознатцы»? «Ответить на этот вопрос нам помогла коллекция Минералогического музея Академии наук СССР, - рассказывает доктор биологических наук Г. А. Васильев - инициатор нового направления в разведке спрятанных в земле природных кладов. - Особенно эффективным оказался опыт с металлическим бериллием: понюхав его, собака по кличке Джильда затем из множества минералов выбрала изумруд, аквамарин, воробьевит, фенакит, бертрандит, т. е. все то и только то, что содержит бериллий. Разложив все бериллийсодержащие минералы среди других образцов и дав их выбрать собаке, мы снова просили собаку искать. Тогда Джильда шла по музею, ложилась грудью на витрину, где находился огромный изумруд, и лаяла».

Из всех бериллиевых минералов промышленное значение имеет лишь берилл. В природе встречаются кристаллы-гиганты берилла: вес их достигает десятков, сотен и даже тысяч килограммов. Длина наиболее крупного из найденных кристаллов - около 9 метров.

В Горном музее в Ленинграде есть интересный экспонат - полутораметровый кристалл берилла. В блокадную зиму 1942 года вражеский снаряд пробил крышу здания и разорвался в главном зале. Осколки серьезно повредили кристалл, и казалось, что ему уже не найдется места в экспозиции музея. Но несколько лет назад после кропотливой ювелирной работы художников-реставраторов камень был восстановлен в первоначальном виде. Сейчас о пережитой им операции напоминают лишь два поржавевших снарядных осколка, вмурованных в пластину из органического стекла, да пояснительная табличка, рассказывающая об этом экспонате.

Не удивительно, что бериллиевые камни-самоцветы издавна привлекали внимание не только любителей драгоценностей, но и химиков.

В XVIII веке, когда науке еще не был известен элемент, находящийся сейчас в Периодической системе под номером 4, многие ученые пытались анализировать берилл, однако никто не смог обнаружить содержащийся в нем новый металл. Он словно прятался за спину алюминия и его соединений - свойства этих элементов были поразительно схожими. Но различия все же были. И первым, кому удалось их заметить, был французский химик Луи Никола Воклен. 26 плювиоза VI года революционного календаря

(т. е. 15 февраля 1798 года) на заседании французской Академии наук Воклен сделал сенсационное сообщение о том, что в берилле и изумруде содержится новая «земля», отличная по своим свойствам от глинозема, или окиси алюминия.

Открытый элемент Воклен предложил назвать «глицинием» из-за сладковатого привкуса его солей (по-гречески «гликос» - сладкий). Сейчас это название сохранилось лишь во Франции, а в других странах за элементом закрепилось имя «бериллий», которое было предложено известными химиками М. Клапротом и А. Экебергом.

Сходство бериллия и алюминия доставило немало хлопот создателю Периодической системы элементов Д. И. Менделееву. Дело в том, что в середине XIX века бериллий именно из-за этого сходства считался трехвалентным металлом с атомным весом 13,5 и, следовательно, должен был занимать в таблице место между углеродом и азотом. Это вносило явную путаницу в закономерное изменение свойств элементов и ставило под сомнение правильность Периодического закона. Менделеев, убежденный в своей правоте, считал, что атомный вес бериллия определен неверно, что элемент должен быть не трехвалентным, а двухвалентным с магнезиальными свойствами. На основании этого он поместил бериллий во вторую группу, исправив его атомный вес на 9. Вскоре это вынуждены были подтвердить шведские химики Л. Нильсон и О. Петерсон, которые ранее были твердо убеждены в трехвалентности бериллия. Их тщательные исследования показали, что атомный вес этого элемента равен 9,1. Так, благодаря бериллию - «возмутителю спокойствия» в Периодической системе - восторжествовал один из важнейших химических законов.

Судьба этого элемента во многом сходна с судьбами его собратьев-металлов. В свободном виде он был выделен в 1828 году Ф. Вёлером и А. Бюсси, но лишь спустя семь десятилетий француз П. Лебо электролизом расплавленных солей смог получить чистый металлический бериллий. Не мудрено, что еще в начале нашего века химические справочники безапеляционно обвиняли бериллий в «тунеядстве»: «Практического применения не имеет».

Бурное развитие науки и техники, которым ознаменовался XX век, заставило химиков пересмотреть этот явно несправедливый приговор. Изуче, ие чистого бериллия показало, что он обладает’-многими ценными свойствами.

Один из самых легких металлов, бериллий характеризуется в то же время значительной прочностью, большей чем у конструкционных сталей. Наряду с этим он отличается значительно более высокой температурой плавления, чем магний и алюминий. Такое удачное сочетание свойств делает бериллий сегодня одним из основных авиационных материалов. Детали самолета, изготовленные из бериллия, в полтора раза легче, чем алюминиевые.

Отличная теплопроводность, высокая теплоемкость и жаропрочность дают возможность использовать бериллий и его соединения в космической технике в качестве теплозащитного материала. По сообщениям американской печати, из бериллия были выполнены носовой корпус и днище кабины космического корабля «Фрэндшип-7», на котором Джон Глен совершил свой орбитальный полет.

Бериллиевые детали, сохраняющие высокую точность и стабильность размеров, используются в гироскопах - приборах, входящих в систему ориентации и стабилизации ракет, космических кораблей и искусственных спутников земли.

Для космической техники перспективно еще одно свойство бериллия: при его горении выделяется огромное количество тепла - 15 ООО килокалорий на 1 килограмм. Поэтому он может служить компонентом высокоэнергетического ракетного горючего в полетах на Луну и другие небесные тела.

Широкое применение в авиации находят сплавы меди с бериллием - бериллиевые бронзы. Из них изготавливают многие изделия, от которых требуются большая прочность, хорошая сопротивляемость усталости и коррозии, сохранение упругости в значительном интервале температур, высокая электро- и теплопроводность. Подсчитано, что в современном тяжелом самолете свыше тысячи деталей сделано из этих сплавов. Благодаря своим упругим свойствам бериллиевая бронза служит прекрасным пружинным материалом. Пружины из такой бронзы практически не знают усталости: они способны выдерживать до 20 миллионов циклов нагрузки!

Кстати, именно с пружинами связан любопытный эпизод из истории второй мировой войны. Гитлеровская промышленность была отрезана от основных источников бериллиевого сырья. Мировая добыча этого ценного стратегического металла практически полностью находилась в руках США. И немцы пошли на хитрость. Они решили использовать нейтральную

Швейцарию для контрабандного ввоза бериллиевой бронзы: американские фирмы получили от швейцарских «часовщиков» заказ на такое ее количество, которого хватило бы на часовые пружины всему миру лет на пятьсот вперед.

Хитрость, правда, была разгадана, и этот заказ остался невыполненным. Но все же время от времени в новейших марках скорострельных авиационных пулеметов, поступавших на вооружение фашистской армии, появлялись пружины из бериллиевой бронзы.

Усталость - одно из «профессиональных заболеваний» многих металлов и сплавов, которые, не выдерживая переменных нагрузок, постепенно разрушаются. Добавка же в сталь даже небольшого количества бериллия «как рукой снимает» усталость. Если автомобильные рессоры из обычной углеродистой стали ломались уже после 800 - 850 тысяч толчков, то после введения в сталь «витамина Ве» рессоры выдерживали 14 миллионов толчков, не обнаруживая и следов усталости.

В отличие от стали, бериллиевая бронза не искрится при ударе о камень или металл, поэтому ее широко используют для изготовления инструмента, применяемого на взрывоопасных работах - в шахтах, на пороховых заводах, нефтебазах.

Бериллий существенно влияет на свойства магния. Так, присадка лишь 0,01% бериллия предотвращает возгорание магниевых сплавов при плавке и разливке (т. е. примерно при 700°С). Резко уменьшается при этом и коррозия сплавов - как на воздухе, так и в воде.

Большое будущее принадлежит, по-видимому, сплавам бериллия с литием. Союз этих двух легчайших металлов приведет, быть может, к созданию сплавов, не тонущих в воде.

Бериллий является и отличным раскислителем стали, правда, к сожалению, пока еще слишком дорогим (цена 1 килограмма бериллия в США составляет сейчас около 150 долларов, что значительно превышает стоимость тантала, ниобия, циркония, не говоря уже о таком сравнительно недорогом металле, как серебро).

Металлурги нашли бериллию еще одно важное применение. Насыщение этим металлом поверхности стальных изделий - «бериллизация» - значительно повышает их твердость, прочность, износостойкость.

Весьма благосклонны к бериллию рентгенотехники - ведь он лучше всех других устойчивых на воздухе металлов пропускает рентгеновские лучи. Сейчас из него во всем мире делают «окна» для рентгеновских трубок. Пропускная способность таких «окон» в 17 раз выше, чем алюминиевых, применявшихся ранее для этой цели.

Бериллий сыграл заметную роль в развитии учения о строении атома и его ядра. Еще в начале 30-х годов немецкие физики В. Боте и Г. Беккер, бомбардируя бериллий альфа-частицами, обнаружили так называемой «бериллиевое излучение» - очень слабое, но обладающее значительной проникающей силой: лучи проходили через слой свинца толщиной несколько сантиметров. Природу этого излучения установил в 1932 году англичанин Д. Чэдвик. Оказалось, что оно представляет собой поток электрически нейтральных частиц, масса которых примерно равна массе протона. Новые частицы были названы нейтронами.

Отсутствие электрического заряда позволяет нейтронам легко внедряться в ядра атомов других элементов. Это свойство сделало нейтрон эффективнейшим «снарядом» атомной артиллерии. Сейчас нейтронные пушки широко применяются для осуществления ядерных реакций.

Изучение атомной структуры бериллия показало, что для него характерно малое сечение захвата нейтронов и большая величина их рассеяния. Благодаря этому бериллий рассеивает нейтроны, изменяет направление их движения и замедляет их скорость до таких значений, при которых цепные реакции протекают более эффективно. Из всех твердых материалов бериллий считается лучшим замедлителем нейтронов. Прекрасно справляется он с ролью отражателя нейтронов, возвращает их в активную зону реактора, противодействует их утечке. Ему присуща также высокая радиационная стойкость, сохраняющаяся при очень больших температурах.

Все эти замечательные свойства делают бериллий одним из самых необходимых элементов атомной техники.

Несомненный интерес для науки представляет «звукопропускная» способность этого металла. В воздухе скорость звука составляет 330 метров в секунду, в воде - 145 метров в секунду. В бериллии же звук побивает все рекорды, преодолевая за секунду 12500 метров.

Многими ценными свойствами обладает окись бериллия. Высокая огнеупорность (температура плавления 2570°С), значительная химическая стойкость и большая теплопроводность позволяют использовать этот материал для футеровки индукционных печей, изготовления тиглей для плавки различных металлов и сплавов. Так, для выплавки бериллия в вакууме применяют тигли только из окиси бериллия, которая с ним абсолютно не взаимодействует. Этот окисел служит основным материалом для оболочек тепловыделяющих элементов (твэлов) атомных реакторов.

Теплоизоляционные свойства окиси бериллия, возможно, будут использованы и при исследовании глубинных слоев нашей планеты. Существует проект взятия проб из мантии Земли с глубин до 32 километров с помощью так называемой «атомной иглы», представляющей собой миниатюрный атомный реактор, который заключен в теплоизолирующий футляр из окиси бериллия.

...Сбылись пророческие слова замечательного ученого и мечтателя А. Е. Ферсмана. Совсем немного времени понадобилось бериллию, чтобы оправдать возлагаемые на него надежды. Из малоизвестного редкого элемента он превратился сегодня в один из важнейших металлов XX века.

H


Li

Be

B

С


Na

Mg

Al

Si

БОРЕЦ С УСТАЛОСТЬЮ

Проблемы алхимиков. - Истина в воде. - Вместо «философского камня». - Обошлось без фейерверка. - В пламени спички. - Водобоязнь. - В нижних слоях мантии. - «Горная кожа». - Какой способ лучше? - Нептун может спать спокойно. - Каждый вносит свой пай. - В тяжелых условиях. - На металлургическом поприще. - Ждать не придется. - «Спокойно, снимаю!» - Есть д%ла поважней. - В яичной скорлупе. - Ешьте персики. - Грозит инфаркт. - «Вам сына или дочь?» - По примеру коров. - Новый огнеупор. - Вклад Гриньяра. - Лучшая роль - впереди.


Одной из основных проблем, над которой бились «научные работники» средневековых алхимических лабораторий, были поиски пресловутого

«философского камня». С его помощью они надеялись найти тайну получения золота из «неблагородных» металлов.

Поиски велись в различных направлениях. Одни предлагали использовать для этой цели свинец, который требовалось нагреть до получения «красного льва» (т. е. до расплавления), а затем кипятить в кислом виноградном спирте. Другие считали, что самым подходящим сырьем для производства «философского камня» является моча животных. Третьи утверждали, что истина - в воде.

В конце XVIII века один из английских алхимиков, по-видимому, сторонник третьего направления, выпаривая воду, вытекающую из земли вблизи города Эпсом, получил вместо «философского камня» соль, обладающую горьким вкусом и слабительным действием. Спустя несколько лет выяснилось, что при взаимодействии с «постоянной щелочью» (так в те времена называли соду и поташ) эта соль образует белый легкий рыхлый порошок. Точно такой же порошок получался при прокаливании минерала, найденного в окрестностях греческого города Магнезии. За это сходство эпсомская соль была названа белой магнезией.

В 1808 году молодой английский ученый Гемфри Дэви, анализируя белую магнезию, получил новый элемент, который он назвал магнием. Торжества по случаю открытия нового элемента не сопровождались фейерверком, поскольку в те времена еще не было известно, что новорожденный обладает отличными пиротехническими свойствами.

Магний - очень легкий серебристо-белый металл. Он почти в 5 раз легче меди, в 4,5 раза легче железа; даже «крылатый» алюминий в 1,5 раза тяжелее магния. Температура плавления магния сравнительно невысока - всего 650°С, но в обычных условиях расплавить магний довольно трудно: нагретый на воздухе до 550°С, он вспыхивает и мгновенно сгорает ослепительно ярким пламенем (это свойство магния широко используют в пиротехнике). Чтобы поджечь этот металл, достаточно поднести к нему зажженную спичку, а в атмосфере хлора он загорается даже при комнатной температуре. При горении магния выделяется большое количество ультрафиолетовых лучей и тепла: 4 грамма этого «топлива» хватит, чтобы вскипятить стакан ледяной воды.

На воздухе магний быстро тускнеет, так как покрывается окисной пленкой. Эта пленка служит надежным панцирем, предохраняющим металл от дальнейшего окисления.

Магний весьма агрессивен: он легко отнимает кислород и хлор у большинства элементов.

Будучи устойчивым против воздействия некоторых кислот, соды, едких щелочей, бензина, керосина, минеральных масел, магний бессилен против морской воды и вынужден растворяться в ней. Он почти не реагирует с холодной водой, но энергично вытесняет водород из горячей.

Земная кора богата магнием (более 2,3%). Лишь шесть его «коллег» по таблице Менделеева находятся в природе в больших количествах. Как полагают ученые, особенно велико содержание этого элемента в нижних слоях земной мантии. Магний входит в состав почти 200 известных минералов. Среди них есть совсем не обычный: его легко сложить, как носовой платок, в него можно завернуть что-либо, как в бумагу, наконец, его нетрудно разорвать пальцами в клочки/

Уникальный образец такого минерала был найден лет двадцать назад на Дальнем Востоке. При проходке шахты в месторождении полиметаллических руд рабочие обнаружили небольшую пещеру и в ней - свисающую с потолка серовато-белую «занавесь», как бы сложенную вдвое. На ощупь эта «занавесь», имевшая метра полтора в длину и около метра в ширину, напоминала замшу - была так же мягка и эластична. Поражала и необыкновенная легкость «ткани».

Интересную находку направили в Москву. Химический анализ показал, что она состоит в основном из алюмосиликата магния и представляет собой палыгорскит - минерал группы асбеста, впервые обнаруженный в 20-х годах нашего века в Палыгорском месторождении на Урале академиком А. Е. Ферсманом. За необычные свойства минерал чаще называют «горной кожей». Дальневосточный образец, который хранится в Минералогическом музее Академии наук СССР, примечателен тем, что «горная кожа» таких больших размеров найдена впервые в мире.

Наибольшее промышленное значение как магниевое сырье имеют магнезит, доломит и карналлит.

Существуют два способа производства магния - электротермический и электролитический. В первом случае металл получают непосредственно из окиси, действуя на нее каким-либо восстановителем - углем, алюминием и т. д. Этот способ довольно прост по своей идее и в последнее время находит все более широкое применение. Однако пока основным промышленным способом получения магния является электролитический, представляющий собой электролиз расплавленных магниевых солей, главным образом хлористых. Таким путем можно получать очень чистый металл, содержащий свыше 99,99% магния.

Не только земная кора богата магнием - практически неисчерпаемые и постоянно пополняющиеся запасы его хранят голубые кладовые океанов и морей. Достаточно сказать, что лишь в 1 кубическом метре морской воды содержится около 4 килограммов магния. Всего же в водах океанов и морей растворено свыше 6·1016 тонн этого элемента.

Даже далекие от математики люди, видимо, могут представить, сколь грандиозна эта величина. Впрочем, для большей наглядности приведем следующий пример: с начала нашего летоисчисления человечество прожило лишь немногим более 60 миллиардов (6·1010) секунд. Если бы с первых дней нашей эры люди начали добывать магний из морской воды, то для того, чтобы к настоящему времени исчерпать все водные запасы этого элемента, пришлось бы каждую секунду извлекать по миллиону тонн магния!

Но пока Нептун может быть спокоен за свои богатства: даже во время второй мировой войны, когда производство магния было максимальным, из морской воды получали всего 80 тысяч тонн магния в год (а не в секунду!). Технология извлечения его довольно проста. Морскую воду смешивают в огромных баках с известковым молоком, приготовляемым из морских раковин. В результате образуется так называемое «магнезиальное молоко», которое затем превращается в хлорид магния. В дальнейшем магний отделяют от хлора электролизом. Недавно японская фирма «Курита когио» спроектировала завод по комплексному использованию морской воды. По проектным данным, при переработке 4 миллионов литров воды будет получено 108 тонн поваренной соли, 2,2 тонны глауберовой соли, 16,7 тонны хлора и 15,9 тонны магния. Кроме того, завод даст 3 миллиона литров питьевой воды и большое количество рассола для производства каустической соды.

Источником магния может быть и вода соленых озер, содержащая хлористый магний (так называемая рапа). У нас в стране такие «склады» магния есть в Крыму (Сакское и Сасык-Ивашское озера), в Поволжье (озеро Эльтон) и других районах.

Итак, вы уже знаете, что представляет собой магний и как осуществляется его добыча. Ну, а для каких же целей служит этот элемент и его соединения?

Легкость могла бы сделать этот металл прекрасным конструкционным материалом. Но, увы, чистый магний - мягок и непрочен. Поэтому конструкторы вынуждены использовать сплавы магния с другими металлами. Особенно широко применяют сплавы магния с алюминием, цинком и марганцем. Каждый из компонентов этого содружества вносит свой «пай» в общие свойства: алюминий и цинк увеличивают прочность сплава, марганец повышает его антикоррозионные свойства. Ну, а магний? Магний придает сплаву легкость - детали из магниевого сплава на 20 - 30% легче алюминиевых и на 50 - 75% легче чугунных и стальных. Сплавы этого элемента все чаще «приглашаются на работу» в автомобилестроение, текстильную промышленность, полиграфию.

У магниевых сплавов есть много друзей, которые повышают их жаростойкость и пластичность, снижают их окисляемость. Это, например, литий, бериллий, кальций, церий, кадмий, титан. Но есть, к сожалению, и враги - железо, кремний, никель; они ухудшают механические свойства сплавов, уменьшают сопротивляемость их коррозии.

Широкое применение магниевые сплавы находят в самолетостроении. Еще в 1935 году в СССР был построен самолет «Серго Орджоникидзе», почти на 80% состоящий из магниевых сплавов. Самолет успешно выдержал все испытания и длительное время эксплуатировался в тяжелых условиях.

Ракеты, ядерные реакторы, детали моторов, баки для бензина и масла, корпуса вагонов, автобусов, легковых машин, колеса, маслопомпы, отбойные молотки, пневмобуры, фото- и киноаппараты, бинокли - вот далеко не полный перечень приборов, узлов и деталей, где используют магниевые сплавы.

Немаловажную роль играет магний в металлургии. Его применяют как восстановитель в производстве ряда металлов (ванадия, хрома, титана, циркония). Магний, введенный в расплавленный чугун, модифицирует его, т. е. улучшает его структуру и повышает механические свойства. Отливки из модифицированного чугуна с успехом заменяют стальные поковки.

. Кроме того, магний помогает раскислять сталь и сплавы (уменьшает содержание в них кислорода, являющегося вредной примесью).

Как известно, обычные радиолампы начинают нормально работать лишь после того, как нагреваются до 800°С. Каждый раз, когда вы включаете радиоприемник или телевизор, приходится некоторое время ждать, прежде чем польются звуки музыки или замерцает голубой экран. Чтобы устранить этот недостаток радиоламп, польские ученые предложили покрывать катоды окисью магния: новые лампы приступают к работе тотчас же после включения.

Свойство магния (в виде порошка, проволоки или ленты) гореть белым ослепительным пламенем широко используют в военной технике - для изготовления осветительных и сигнальных ракет, трассирующих пуль и снарядов, зажигательных бомб. До недавнего времени с этим элементом были хорошо знакомы фотографы: «Спокойно! Снимаю!» - и яркая вспышка магниевого порошка озаряла лица желавших запечатлеть себя для потомства. Сейчас в этой роли магний уже не выступает - мощные электрические лампы вынудили его подать в отставку.

Но вряд ли это печалит магний: у него есть дела и поважней. Ведь он участвует в грандиозной работе аккумуляции солнечной энергии. Магний входит в состав хлорофилла - великого чародея, который поглощает солнечную энергию и с ее помощью превращает углекислый газ и воду в сложные органические вещества (сахар, крахмал и др.), необходимые для питания человека и животных. Процесс образования органических веществ, называемый фотосинтезом (от греческого слова «фотос» - свет), сопровождается выделением из листьев кислорода/ Без хлорофилла не было бы жизни, а без магния не было бы хлорофилла - ведь в его составе 2% этого элемента. А много ли это? Судите сами: общее количество магния только в хлорофилле растений составляет около 100 миллиардов тонн] Помимо растений, магний входит в состав практически всех живых организмов. Если вы весите 60 килограммов, то примерно 25 граммов из них - это магний!

Несколько лет назад ученые Миннесотского университета в США избрали объектом научного исследования яичную скорлупу. Им удалось установить, что скорлупа тем прочнее, чем больше она содержит магния. Значит, изменяя состав корма для несушек, можно повысить ее прочность. О том, сколь важен этот вывод для сельского хозяйства, можно судить хотя бы по таким цифрам: только в штате Миннесота ежегодные потери из-за боя яиц превышают миллион долларов. Уж тут никто не скажет, что эта работа ученых «яйца выеденного не стоит».

. Магний широко используют в медицине: мы уже упоминали об

«английской соли» - магниевой соли серной кислоты (сернокислая магнезия), которая служит надежным слабительным. Чистую окись магния (жженая магнезия) применяют при повышенной кислотности желудочного сока, изжоге, отравлении кислотами. Перекись магния - известнее дезинфицирующее средство при желудочных расстройствах/

Статистика утверждает, что у жителей районов с более теплым климатом спазмы кровеносных сосудов встречаются реже, чем у северян. Известно, что внутривенные и внутримышечные вливания растворов некоторых солей магния снимают спазмы и судороги. Накопить в организме необходимый запас этих солей помогают фрукты и овощи (особенно богаты магнием абрикосы, персики и цветная капуста). В Азии, например, где пищевой рацион богаче магнием, атеросклероз и другие сердечные заболевания встречаются реже, чем в Европе или США.

Опыты, проведенные венгерскими учеными на животных, подтвердили, что недостаток магния в организме повышает предрасположенность к инфарктам. Одним собакам давали пищу, богатую солями этого элемента, другим - бедную. В конце эксперимента животные, в рационе которых было мало магния, «заработали» инфаркт миокарда.

У нервных, легко возбудимых людей нарушения работы сердечных мышц наблюдаются значительно чаще, чем у спокойных. Это объясняется тем, что в момент раздражения магний, содержащийся в организме, «сгорает».

Французские биологи считают, что этот элемент поможет медикам и в борьбе с таким серьезным недугом XX века, как переутомление. Исследования показали, что[в крови уставших людей содержится меньше магния, чем у людей полных сил, а даже самые ничтожные отклонения «магниевой кривой» от нормы не проходят бесследно.

Недавно биологи Франции установили также любопытное влияние ряда элементов на пол потомства. Оказывается, i избыток калия в пище матери приводит к тому, что у нее рождаются преимущественно дети мужского пола. Если же ее пища насыщена кальцием и магнием, то в потомстве преобладает женский пол] Возможно, уже вскоре для будущих матерей врачи разработают специальные меню, гарантирующие рождение мальчика или девочки - «по заказу». Но прежде нужно будет уточнить, распространяется ли подмеченное влияние этих элементов на человека: ведь описанные наблюдения относятся к... коровам.

Область применения магниевых соединений не исчерпывается медициной. Так, окись магния используют в резиновой промышленности, в производстве цементов, огнеупорного кирпича. Недавно, например, одна из канадских фирм разработала технологию получения нового огнеупорного материала «ньюкона», стойкого к воздействию шлаков, обладающего высокой прочностью и малой пористостью; основным компонентом нового огнеупора служит окись магния высокой чистоты.. Перекись магния применяют для отбелки тканей/(«новозон»). Сернокислый магний используют в текстильной и бумажной промышленности как протраву при крашении, водный раствор хлорида магния - для приготовления магнезиального цемента, ксилолита и других синтетических материалов. Карбонат магния (углекислый магций) находит применение в производстве теплоизоляционных материалов.

И, наконец, еще одно обширное поле деятельности магния - органическая химия. В порошкообразном виде магний используют для обезвоживания таких важных органических веществ, как спирт и. анилин. Велико значение и магнийорганических соединений (в них атом магния непосредственно связан с атомом углерода). Эти вещества, в частности алкилмагнийгалогениды (реактив Гриньяра), в состав которых входят и галогены (хлор, бром или иод), широко применяют в синтетической химии. Насколько важна роль этих соединений, можно судить хотя бы по тому, что в 1912 году французский химик Виктор Гриньяр за создание алкилмагнийгалогенидов и разработку синтеза органических соединений был удостоен Нобелевской премии.

...Итак, деятельность магния в природе и народном хозяйстве весьма многогранна. Но, вероятно, рано еще говорить об этом элементе: «Все, что мог, он уже совершил». Совсем недавно, например, магниевые сплавы побывали на Луне, где они в виде некоторых деталей бурового автомата станции «Луна-24» участвовали в «добыче» лунного грунта. К грунтозаборному роботу предъявлялись жесткие требования. Во-первых, этот механизм должен быть легким: ведь при таком длительном путешествии для каждого лишнего килограмма веса дополнительно понадобилось бы большое количество горючего. Во-вторых, детали робота просто «обязаны» быть прочными: нет смысла посылать их в столь ответственную «командировку», если нет уверенности, что они не подведут в трудную минуту. А ведь рабочие минуты на Луне могли оказаться действительно чрезвычайно трудными.

Конструкторы бурового грунтозаборного автомата решили применить сверхлегкие и в то же время прочные титановые и магниевые сплавы. Прежде чем отправить их в полет, ученые устроили грунтозаборному устройству суровые испытания на Земле. Оно было проверено при бурении разнообразных, в том числе и весьма твердых горных пород, причем экзамен проходил сначала в обычных климатических условиях, а затем в большой барокамере - в глубоком вакууме при высоких и низких температурах, имитирующих условия Луны, где дневной «зной» (до + 110°С) сменяется ночной «прохладой» (до - 120°С). Испытания прошли успешно, а вскоре столь же успешно завершился и полет автоматической станции: лунный грунт был доставлен на Землю.

Be

B

C

N


Mg

Al

Si

P


Ca

Sc

Ti

V

«СЕРЕБРО» ИЗ ГЛИНЫ

Тиберий устраняет «опасность». - Эксперименты затягиваются. - Роскошный камзол монарха. - Сенсация Парижской выставки. - Банкет в императорском дворце. - Дерзновенный проект Наполеона III. - Обновка кирасиров. - «Везде алюминий и алюминий». - Менделеев получает подарок. - Жалоба жителей Ла-Гласьера. - Загадка китайской гробницы. - Прозорливость инженера. - Поиски «компаньонов». - Вильм не верит своим глазам. - «Этажерки» сходят со сцены. - Музейная ценность. - Экспонат меняет паспорт. - «Эхо-I» отражает радиосигналы. - «Алюминаут» погружается в пучину. - «Русская тройка». - Полвека спустя. - Чудесная ткань. - Одеяло в портсигаре. - На Марсе и Луне. - Алюминий из... мусора.


Древний историк Плиний Старший рассказывает об интересном событии, которое произошло почти два тысячелетия назад. Однажды к римскому императору Тиберию пришел незнакомец. В дар императору он преподнес изготовленную им чашу из блестящего, как серебро, но чрезвычайно легкого металла. Мастер поведал, что этот никому не известный металл он сумел получить из глинистой земли. Должно быть, чувство благодарности редко обременяло Тиберия, да и правителем он был недальновидным. Боясь, что новый металл с его прекрасными свойствами обесценит хранившиеся в казне золото и серебро, он отрубил изобретателю голову, а его мастерскую разрушил, чтобы никому не повадно было заниматься производством «опасного» металла.

Быль это или легенда - трудно сказать. Но так или иначе «опасность» миновала и, к сожалению, надолго. Лишь в XVI веке, т. е. спустя примерно полторы тысячи лет, в историю алюминия была вписана новая страница. Это сделал талантливый немецкий врач и естествоиспытатель Парацельс Филипп Ауреол Теофраст Бомбаст фон Гогенгейм.

Исследуя различные вещества и минералы, в том числе квасцы, Парацельс установил, что они «есть соль некоторой квасцовой земли», в состав которой входит окись неизвестного металла, впоследствии названная глиноземом.

Квасцы, заинтересовавшие Парацельса, были известны с давних времен. По свидетельству греческого историка Геродота, жившего в V веке до н. э., древние народы применяли при крашении тканей для закрепления их цвета минеральную породу, которую они называли «алюмен», т. е. «вяжущая». Этой породой и были квасцы.

Примерно к VIII - IX векам относятся первые упоминания об изготовлении квасцов в Древней Руси, где их также использовали для окраски тканей и приготовления сафьяновых кож. В средние века в Европе уже действовало несколько заводов для производства квасцов.

В 1754 году немецкий химик Маргграф сумел выделить «квасцовую землю», о которой 200 лет до этого писал Парацельс. Прошло еще несколько десятков лет, прежде чем англичанин Дэви попытался получить металл, скрывающийся в квасцах. В 1807 году ему удалось электролизом щелочей открыть натрий и калий, но разложить с помощью электрического тока глинозем он так и не сумел. Подобные же попытки предпринял спустя несколько лет швед Берцелиус, но и его работы не увенчались успехом. Несмотря на это, ученые все же решили дать «неподдающемуся» металлу имя: сначала Берцелиус назвал его алюмием, а затем Дэви изменил алюмий на алюминий.

Первым, кому удалось, подобно неизвестному мастеру Древнего Рима, получить металлический алюминий, был датский ученый Эрстед. В 1825 году в одном из химических журналов он опубликовал свою статью, в которой писал, что в результате проведенных им опытов образовался «кусок металла, с цветом и блеском, несколько похожим на олово». Однако журнал этот был не очень известен, и сообщение Эрстеда осталось почти незамеченным в научном мире. Да и сам ученый, поглощенный работами по электромагнетизму, не придавал своему открытию большого значения.

Спустя два года в Копенгаген к Эрстеду приехал молодой, но уже известный немецкий химик Вёлер. Эрстед сообщил ему, что не намерен продолжать опыты по получению алюминия. Вернувшись в Германию, Вёлер немедленно занялся этой проблемой, весьма заинтересовавшей его, и уже в конце 1827 года опубликовал свой метод получения нового металла. Правда, метод Вёлера позволял выделять алюминий лишь в виде зерен величиной не более булавочной головки, но ученый продолжал эксперименты до тех пор, пока не сумел, наконец, разработать способ получения алюминия в виде компактной массы. На это ему потребовалось ...18 лет.

К тому времени новый металл уже успел завоевать популярность и, поскольку получали его в мизерных количествах, цены на него превышали цены на золото, да и достать его было делом не простым.

Немудрено, что когда один из европейских монархов приобрел в личное пользование камзол с алюминиевыми пуговицами, он начал свысока посматривать на других правителей, которым такая роскошь была не по карману. Тем же не оставалось ничего другого, как только завидовать счастливому обладателю редчайших пуговиц и с тихоч, грустью дожидаться лучших времен.

К их великой радости ждать пришлось недолго: уже в 1855 году на Всемирной выставке в Париже было представлено «серебро из глины», которое произвело большую сенсацию. Это были пластины и слитки алюминия, полученные французским ученым и промышленником Сент-Клер Девилем.

Появлению этих экспонатов предшествовали следующие события. Императором Франции в то время был Наполеон III - «маленький племянник великого дяди», как называли его тогда. Большой любитель пустить пыль в глаза, он устроил однажды банкет, на котором члены монаршей семьи и наиболее почетные гости были удостоены чести есть алюминиевыми ложками и вилками. Гостям же попроще пришлось пользоваться обычными (для императорских банкетов, разумеется) золотыми и серебряными приборами. Конечно, было обидно до слез, и кусок не лез в горло, но что поделаешь, если даже император не мог тогда обеспечить каждого гостя алюминием по потребности.

Вскоре в голове Наполеона III созрел дерзновенный проект, который сулил славу и почет, но, главное, должен был заставить государей других стран позеленеть от зависти: император решил снабдить солдат своей армии доспехами из алюминия. Он предоставил Сент-Клер Девилю крупные средства, чтобы тот изыскал способ получения алюминия в больших количествах. Девиль, положив в основу своих экспериментов метод Вёлера, сумел разработать соответствующую технологию, но металл, полученный им, продолжал оставаться весьма дорогим.

Именно поэтому французским солдатам так и не довелось примерить обещанные доспехи, но о своей личной охране император позаботился: его кирасиры начали щеголять в новеньких алюминиевых кирасах.

К этому периоду и относится появление «серебра Девиля» в качестве экспоната на Всемирной выставке. Быть может, ее устроители и отнесли алюминий к металлам широкого потребления, но, увы, от этого он не стал доступнее. Правда, уже тогда передовые люди понимали, что пуговицы и кирасы - лишь незначительный эпизод в деятельности алюминия. Впервые увидев алюминиевые изделия, Н. Г. Чернышевский с восторгом сказал: «Этому металлу суждено великое будущее! Перед вами, друзья, металл социализма». В его романе «Что делать?», вышедшем в 1863 году, есть такие строки: «...Какая легкая архитектура этого внутреннего дома, какие маленькие простенки между окнами, - окна огромные, широкие, во всю вышину этажей... Но какие эти полы и потолки? Из чего эти двери и рамы окон? Что это такое? Серебро? Платина?... Ах, знаю теперь, Саша показывал мне такую дощечку, она была легка, как стекло, и теперь уже есть такие серьги, броши; да, Саша говорил, что рано или поздно алюминий заменит собой дерево, может быть и камень. Но как же все это богато. Везде алюминий и алюминий... Вот в этом зале половина пола открыта, тут и видно, что он из алюминия...».

Но в тот период, когда писались эти пророческие строки, алюминий по-прежнему оставался главным образом ювелирным металлом. Интересно, что даже в 1889 году, когда Д. И. Менделеев находился в Лондоне, ему в знак признания его выдающихся заслуг в развитии химии был преподнесен ценный подарок - весы, сделанные из золота и алюминия.

Сент-Клер Девиль развил бурную деятельность. В местечке Ла-Гласьер он построил первый в мире алюминиевый завод. Однако в процессе плавки завод выделял много вредных газов, которые загрязняли атмосферу Ла-Гласьера. Местные жители, дорожившие своим здоровьем, не пожелали жертвовать им ради технического прогресса и обратились с жалобой к правительству. Завод пришлось перенести сначала в предместье Парижа Нантер, а позднее на юг Франции.

К этому времени для многих ученых уже стало ясно, что, несмотря на все старания Девиля, его метод не имеет перспектив. Химики разных стран продолжали поиски. В 1865 году известный русский ученый Н. Н. Бекетов предложил интересный способ, который быстро нашел применение на алюминиевых заводах Франции (в Руане) и Германии (в Гмелингене, близ Бремена).

Важной вехой в истории алюминия стал 1886 год, когда независимо друг от друга американский студент Холл и французский инженер Эру разработали электролитический способ производства этого металла. Идея была не нова: еще в 1854 году немецкий ученый Бунзен высказал мысль о получении алюминия электролизом его солей. Но прошло более тридцати лет, прежде чем эта мысль получила практическое воплощение. Поскольку электролитический способ требовал большого количества энергии, первый в Европе завод для производства алюминия электролизом был построен в Нейгаузене (Швейцария) близ Рейнского водопада - дешевого источника тока.

И сегодня, спустя без малого сто лет, без электролиза немыслимо получение алюминия. Именно это обстоятельство и заставляет ученых ломать голову над весьма загадочным фактом. В Китае есть гробница известного полководца Чжоу-Чжу, умершего в начале III века. Сравнительно недавно некоторые элементы орнамента этой гробницы были подвергнуты спектральному анализу. Результат оказался настолько неожиданным, что анализ пришлось несколько раз повторить. И каждый раз беспристрастный спектр неопровержимо свидетельствовал о том, что сплав, из которого древние мастера выполнили орнамент, содержит 85% алюминия. Но каким же образом удалось получить в III веке этот металл? Ведь с электричеством человек тогда был знаком разве что по молниям, а они вряд ли «соглашались» принять участие в электролитическом процессе. Значит, остается предположить, что в те далекие времена существовал какой-то другой способ получения алюминия, к сожалению, затерявшийся в веках.

В конце 80-х годов прошлого столетия в «биографию» алюминия была вписана еще одна очень важная страница: работавший в России австрийский химик К. И. Байер создал и успешно применил в заводских условиях оригинальную технологию получения глинозема - основного промышленного сырья для производства алюминия. Способ Байера, быстро получивший признание во всем мире, сохранил свое большое значение до наших дней.

В эти годы производство алюминия резко возросло и, как следствие, значительно снизились цены на этот металл, еще не так давно считавшийся драгоценным. Если в 1854 году 1 килограмм алюминия стоил 1200 рублей, то уже к концу XIX века цена на него упала до 1 рубля. Разумеется, для ювелиров он уже не представлял никакого интереса, зато сразу приковал к себе внимание промышленного мира находившегося в преддверии больших событий: начинало бурно развиваться машиностроение, становилась на ноги автомобильная промышленность и, что особенно важно, вот-вот должна была сделать первые шаги авиация, где алюминию предстояло сыграть важнейшую роль.

В 1893 году в Москве вышла книга инженера Н. Жукова «Алюминий и его металлургия», в которой автор писал: «Алюминий призван занять выдающееся место в технике и заместить собой, если не все, то многие из обыденных металлов...» Для такого утверждения имелись основания: ведь уже тогда были известны замечательные свойства «серебра из глины». [Алюминий один из самых легких металлов: он в 3 с лишним раза легче меди и в 2,9 раза легче железа. По теплопроводности и электропроводности он уступает лишь серебру, золоту и меди. В обычных условиях этот металл обладает достаточной химической стойкостью. Высокая пластичность алюминия позволяет прокатывать его в фольгу толщиной до 3 микрон, вытягивать в тончайшую, как паутина, проволоку: при длине 1000 метров она весит всего 27 граммов и умещается в спичечной коробке. И лишь его прочностные характеристики оставляют желать лучшего] Это обстоятельство и побудило ученых задуматься над тем, как сделать алюминий прочнее, сохранив все его полезные качества.

Издавна было известно, что прочность многих сплавов зачастую гораздо выше, чем чистых металлов, входящих в их состав. Вот почему металлурги и занялись поисками тех «компаньонов», которые, вступив в союз с алюминием, помогли бы ему «окрепнуть». Вскоре пришел успех. Как не раз бывало в истории науки, едва ли не решающую роль при этом сыграли случайные обстоятельства. Впрочем, расскажем все по порядку.

Однажды (это было в начале XX века) немецкий химик Вильм приготовил сплав, в который, помимо алюминия, входили различные добавки: медь, магний, марганец. Прочность этого сплава была выше, чем у чистого алюминия, но Вильм чувствовал, что сплав можно еще более упрочнить, подвергнув его закалке. Ученый нагрел несколько образцов сплава примерно до 600°С, а затем опустил их в воду. Закалка заметно повысила прочность сплава, но, поскольку результаты испытаний различных образцов оказались неоднородными, Вильм усомнился в исправности прибора и точности измерений.

Несколько дней исследователь тщательно выверял прибор. Забытые им на время образцы лежали без дела на столе, и к тому моменту, когда прибор был вновь готов к работе, они оказались уже не только закаленными, но и запыленными. Вильм продолжил испытания и не поверил своим глазам: прибор показывал, что прочность образцов возросла чуть ли не вдвое.

Вновь и вновь повторял ученый свои опыты и каждый раз убеждался, что его сплав после закалки продолжает в течение 5 - 7 дней становиться все прочнее и прочнее. Так было открыто интереснейшее явление - естественное старение алюминиевых сплавов после закалки.

Сам Вильм не знал, что происходит с металлом в процессе старения, но, подобрав опытным путем оптимальный состав сплава и режим термической обработанной получил патент и вскоре продал его одной немецкой фирме, которая в 1911 году выпустила первую партию нового сплава, названного дюралюминием (Дюрен - город, где было начато промышленное производство сплава). Позже этот сплав стали называть дуралюмином.

В 1919 году появились первые самолеты из дуралюмина. С тех пор алюминий навсегда связал свою судьбу с авиацией. Он по праву заслужил репутацию «крылатого металла», превратив примитивные деревянные «этажерки» в гигантские воздушные лайнеры. Но в те годы его еще не хватало, и многие самолеты, главным образом легких типов, продолжали изготовлять из дерева.

В нашей стране производством алюминиевых сплавов занимался тогда лишь Кольчугинский завод по обработке цветных металлов, который выпускал в небольших количествах кольчугалюминий - сплав, по составу и свойствам сходный с дуралюмином. На повестку дня стал вопрос о создании мощной алюминиевой промышленности.

В начале 1929 года в Ленинграде на заводе «Красный Выборжец» были проведены опыты по получению алюминия. Руководил ими II. П. Федотьев - замечательный ученый, с именем которого связаны многие страницы истории «крылатого металла».

27 марта 1929 года удалось получить первые 8 килограммов металла. «Этот момент, - писал впоследствии П. П. Федотьев, - можно считать возникновением производства алюминия в СССР на волховской энергии и целиком из материалов собственного приготовления».

В ленинградской печати отмечалось тогда, что «первый слиток алюминия, представляющий музейную ценность, должен быть сохранен как памятник одного из крупнейших достижений советской техники». Образцы алюминия, полученного в дальнейшем на «Красном Выборжце», и изделия из него были преподнесены от трудящихся Ленинграда V Всесоюзному съезду Советов.

Успешное проведение этих опытов позволило приступить к сооружению Волховского и Днепровского алюминиевых заводов. В 1932 году вступил в строй первый из них, а спустя год - второй.

В эти же годы значительные природные запасы алюминиевых руд были обнаружены на Урале. Любопытна предыстория этого открытия. В 1931 году молодой геолог Н. А. Каржавин в музее одного из уральских рудников обратил внимание на экспонат, считавшийся железной рудой с низким содержанием железа. Геолога поразило сходство этого образца с бокситами - глинистой горной породой, богатой алюминием. Подвергнув минерал анализу, он убедился, что «бедная железная руда» является отличнейшим алюминиевым сырьем. Там, где был найден этот образец, начались геологические поиски, которые вскоре увенчались успехом.

На базе найденных месторождений был построен Уральский алюминиевый завод, а спустя несколько лет (уже в годы войны) - Богословский, который выдал свою первую продукцию в исторический День Победы - 9 мая 1945 года.

Сейчас в нашей стране уже многие предприятия выпускают «крылатый металл», но нужда в нем продолжает расти. Конечно, по-прежнему основной потребитель алюминия - авиация. Алюминий занимает первое место среди металлов, применяемых в самолето- и ракетостроении. От 2/3 до 3/4 сухого веса пассажирского самолета и от 1/20 до 1/2 сухого веса ракеты - вот его доля в летающих конструкциях.

Из алюминиевых сплавов была изготовлена оболочка первого советского искусственного спутника Земли. Оболочка корпусов американских ракет «Авангард» и «Титан», применявшихся для запуска на орбиту первых американских спутников, а позднее и космических кораблей, также была выполнена из сплавов алюминия. Из них делают различные детали космической аппаратуры - кронштейны, крепления, шасси, футляры и корпуса для многих инструментов и приборов.

В 1960 году в США запустили спутник «Эхо-1», предназначенный для отражения радиосигналов. Это был огромный, диаметром около 30 метров шар, представляющий собой пластическую пленку, покрытую тончайшим слоем алюминия. Несмотря на столь внушительные габариты, этот спутник весил всего 62 килограмма.

Фольга из чистейшего алюминия служила флуоресцирующим экраном, установленным на одном из спутников для исследования испускаемых Солнцем заряженных частиц. Когда американские космонавты Нейл Армстронг и Эдвин Олдрин высадились на Луну, они расстелили на ее поверхности лист такой же фольги и в течение двух часов подвергали фольгу воздействию газов, излучаемых Солнцем. Покидая Луну, космонавты захватили с собой эту фольгу и образцы лунных пород, которые они упаковали в специальные алюминиевые коробки.

Алюминий принимает участие в овладении не только космическими высотами, но и морскими безднами. Несколько лет назад в США была создана океанографическая подводная лодка «Алюминаут», которая может погружаться на глубину 4600 метров. Новый сверхглубинный корабль построен не из стали, как обычно принято, а из алюминия.

Во Франции спущен на воду громадный океанский лайнер водоизмещением свыше 50 тысяч тонн, длиной 315 метров, способный принять на борт две тысячи пассажиров. Корпус, трубы, шлюпки и даже мебель этого колосса выполнены из алюминия.

Область применения алюминия постоянно расширяется. В послевоенные годы в США был составлен список изготовляемых из него изделий. В списке оказалось примерно две тысячи наименований!

Важный потребитель этого металла - электротехническая промышленность. Провода высоковольтных линий передач, обмотки моторов и трансформаторов, кабели, цоколи ламп, конденсаторы и многие другие изделия делают из алюминия.

Желанный гость он и на транспорте. Сейчас в нашей стране ведутся работы по созданию железнодорожного суперэкспресса. «Русская тройка» - так поэтично назван этот поезд - своими формами напоминает фюзеляж современного самолета. Да и помчится он со скоростью взлетающего «Ту». Конструкторы предложили изготовить кузов экспресса из алюминия. Опытный кузов уже прошел испытания: его сжимали с силой в 200 тонн, подвергали сильнейшей вибрационной тряске и другим «экзекуциям», но металл все выдержал. Недалек тот день, когда «Русская тройка» стремительно понесется по нашим необъятным просторам.

Алюминий обладает высокой коррозионной стойкостью. Этим он обязан тончайшей, толщиной 0,0001 миллиметра пленке, которая возникает на его поверхности и служит в дальнейшем броней, защищающей металл от кислорода. Не будь этой пленки-брони, алюминий вспыхивал бы даже на воздухе и сгорал ослепительным пламенем. Спасительный панцирь позволяет алюминиевым деталям служить десятки лет даже в такой вредной для «здоровья» металлов отрасли, как химическая промышленность.

Ученые установили, что алюминий обладает еще одним ценным свойством: он не разрушает витамины. Поэтому из него изготовляют аппаратуру для маслобойной, сахарной, кондитерской, пивоваренной промышленности. Прочные позиции завоевал этот металл и в строительстве. Еще в 1890 году в одном из американских городов алюминий был впервые применен при постройке жилого дома. Спустя полстолетия все алюминиевые детали находились в прекрасном состоянии. Первая алюминиевая крыша, поставленная в 1897 году, стоит без ремонта по сей день.

На территории Московского Кремля из алюминия и пластмасс сооружен величественный Дворец съездов. В 1958 году на Всемирной выставке в Брюсселе из стекла и алюминия был построен поражавший красотой павильон Советского Союза. Бельгийские газеты называли его «Дворцом социализма». Мосты, здания, гидротехнические объекты, ангары - везде находит применение чудесный легкий металл.

Металлурги широко используют алюминий для удаления из стали кислорода. В качестве основного компонента алюминиевая крупка входит в состав термитных смесей, применяемых при алюминотермических -процессах получения многих сплавов.

Алюминий можно встретить и в коллекциях филателистов: в 1955 году в Венгрии была выпущена необычная почтовая марка, отпечатанная на алюминиевой фольге толщиной 0,009 миллиметра. Позднее такие марки Появились и в других странах.

Уже создана алюминированная (покрытая тончайшим слоем алюминия) ткань, которая обладает замечательным свойством: она «умеет» и согревать, и охлаждать. Занавеси на окнах из этой ткани, если их повесить металлом наружу, пропустят световые лучи, но отразят тепловые - в жаркий летний день в комнате будет прохладно. Зимой же занавеси следует перевернуть: тогда они будут возвращать тепло в помещение. В плаще из такой ткани можно не бояться ни жары и ни холода. Чтобы спастись от палящих солнечных лучей, плащ нужно будет носить металлом наружу. Если же на улице похолодает - выверните его наизнанку, и металл возвратит тепло вашему телу. Чехословацкая промышленность начала выпускать очень удобные алюминированные одеяла, которые одинаково хороши и в теплых, и в прохладных помещениях. К тому же весят они всего 55 граммов и в свернутом виде легко умещаются в футляре размером не более обычного портсигара.

Можно не сомневаться, что геологи, туристы, рыбаки - словом, все те, кого опаляет солнце и овевают ветры, по достоинству оценят куртки и палатки из такой ткани. В жарких краях большим спросом будут пользоваться «алюминиевые» тюбетейки, панамы, халаты, зонтики. Металлизированная одежда сделает профессию сталевара менее горячей. Поможет она и пожарным в их тяжелой борьбе с огнем.

В последнее время ученые и инженеры большое внимание уделяют созданию совершенно новых материалов - пенометаллов. Уже разработана технология получения пеноалюминия - первенца в этом замечательном семействе. Новый материал поразительно легок: 1 кубический сантиметр некоторых видов пеноалюминия весит всего 0,19 грамма. Пробка, всегда служившая эталоном легкости, не в состоянии конкурировать с этим материалом: она на 25 - 30% тяжелее. Вслед за пеноалюминием будут созданы пенобериллий, пенотитан и многие другие удивительные материалы.

...Известный писатель-фантаст Герберт Уэллс в своем романе «Война миров», созданном на рубеже XIX и XX веков, описывает машину, с помощью которой марсиане производили алюминий: «От заката солнца до появления звезд эта ловкая машина изготовила не менее сотни полос алюминия непосредственно из глины».

Один из американских исследователей космоса в те годы, когда наше знакомство с Луной было лишь визуальным, предложил любопытную гипотезу. Ученый считал, что на каждом гектаре лунной поверхности можно встретить до 200 тонн чистого алюминия. Он высказывал соображение, что Луна является как бы гигантским природным заводом, в котором так называемый «солнечный ветер» (поток излучаемых Солнцем протонов) превращает руды железа, магния, алюминия в чистые металлы. Пока эта гипотеза не подтвердилась, тем не менее, как показал анализ образцов лунного грунта, доставленных американскими космонавтами и советскими автоматическими станциями, содержание в нем окиси алюминия довольно высокое - примерно 15%.

Стало быть, можно считать, что на Марсе и на Луне «алюминиевая проблема» решена. А как обстоит дело на Земле? Что ж, пожалуй, и здесь все благополучно. Хотя на нашей планете нет пока машин, подобных марсианским, и на поверхности Земли алюминий не валяется тоннами, все же землянам жаловаться грех: природа щедро позаботилась о том, чтобы люди не испытывали нужды в этом чудесном металле. По содержанию в земной коре алюминий уступает лишь кислороду и кремнию, значительно превосходя все металлы.

Природа богата, но человек должен быть бережливым хозяином ее даров. Существует немало проектов и уже действующих установок по извлечению ценных компонентов из отходов, поступающих на городские свалки. В установках, в частности, предусмотрено оригинальное электромагнитное устройство для «добычи» из мусора алюминия. Но ведь магнитное поле не действует на алюминий? Как же с его помощью удается извлечь этот металл? Оказывается, если возбудить в алюминиевом предмете переменный ток, перемещая его в соответствующем электрическом поле, то металл на какое-то время намагничивается. В этом состоянии он и попадает в «руки» магнитов.

Итак, алюминиевым сырьем мы обеспечены. Создать же оригинальные агрегаты, усовершенствовать способы получения «крылатого металла», найти ему новые области применения - это забота инженеров и ученых.

Be

B

C

N


Mg

Al

Si

P


Ca

Sc

Ti

V

СЫН ЗЕМЛИ

Ракета застывает в небе. - «Меняли ли Вы фамилию?» - В честь сыновей Геи. - Титаническая задача. - Ошибка за ошибкой. - Еще один шаг. - К Хантеру приходит успех. - Ложка дегтя. - На вторых ролях. - Ирония здесь неуместна. - Освобождение из плена. - «Черная птица». - Прогнозы специалистов. - Парадокс? - Нелепая точка зрения. - Коррозия не страшна. - Тысячу лет спустя. - В океанских пучинах. - Монумент в Женеве. - Порок излечим. - Вот так редкий! - Рудник в Море Спокойствия. - В объятиях кислорода. - Тяжелые испытания. - Тайны удается раскрыть.


18 августа 1964 года в предрассветный час на проспекте Мира в Москве -LO стартовала космическая ракета. Этому звездному кораблю не суждено было достичь Луны или Венеры, однако судьба, уготованная ему, не менее почетна: навеки застыв в московском небе, серебристый обелиск должен пронести через столетия память о первом пути, проложенном советским человеком в космическом пространстве.

Авторы проекта долго не могли выбрать облицовочный материал для этого величественного монумента. Сначала обелиск запроектировали в стекле, потом в пластмассе, затем в нержавеющей стали. Но все эти варианты были забракованы самими авторами. После долгих экспериментов решено было остановиться на отполированных до блеска титановых листах.

Почему же именно на титан была возложена столь почетная миссия - рассказать потомкам о подвиге наших современников?

Титан не случайно называют вечным материалом. Но прежде, чем говорить о свойствах, познакомимся с биографией этого металла.

Если бы титану пришлось заполнять анкету, то в графе «Меняли ли Вы фамилию?» он вынужден был бы указать, что до 1795 года назывался «менаккином». Именно так назвал в 1791 году английский химик и минералог Вильям Грегор новый элемент, который был открыт им в минерале менакканите. Но, видимо, это имя пришлось элементу не по вкусу и при первой же возможности (а она представилась в 1795 году, когда немецкий химик Мартин Клапрот вторично открыл элемент - на этот раз в минерале рутиле), он сменил его на красивое, ко многому обязывающее имя «титан». Это название заимствовано из древнегреческой мифологии: титанами именовались сыновья Геи - богини Земли.

Спустя два года выяснилось, что Грегор и Клапрот открыли один и тот же элемент, за которым с тех пор и утвердилось гордое имя - титан.

Открыть элемент - это еще не значит выделить его в чистом виде. И Грегору, и Клапроту удалось получить только химическое соединение титана с кислородом (двуокись титана) - белый кристаллический порошок. Выделение титана из его соединений оказалось поистине титанической задачей. Решить ее пытались многие известные химики прошлого века, но всех их ждала неудача.

Одно время казалось, что поиски английского ученого Волластона увенчались успехом. Исследуя в 1823 году кристаллы, обнаруженные в металлургических шлаках завода «Мертир-Тидвиль», он пришел к заключению, что кристаллическое вещество - не что иное, как чистый титан. Спустя 33 года немецкий химик Вёлер установил, что эти кристаллы представляют собой соединение титана с азотом и углеродом, а отнюдь не свободный титан, как ошибочно считал Волластон.

Много лет полагали, что впервые металлический титан был получен в 1825 году знаменитым шведским ученым Берцелиусом при восстановлении фтортитаната калия металлическим натрием. Однако сегодня, сравнивая свойства титана и продукта, полученного Берцелиусом, можно утверждать, что президент шведской Академии наук ошибался, ибо чистый титан быстро растворяется в плавиковой кислоте (в отличие от многих других кислот), а «титан» Берцелиуса успешно сопротивлялся ее действию.

Лишь в 1875 году русский ученый Д. К. Кириллов сумел получить металлический титан.

Результаты этих работ Д. К. Кириллов опубликовал в брошюре «Исследования над титаном».

Но в условиях царской России этот замечательный труд никого не заинтересовал и поэтому остался незамеченным.

В 1887 году довольно чистый продукт - около 95% титана - получили соотечественники Берцелиуса Нильсон и Петерсон, восстанавливавшие четыреххлористый титан металлическим натрием в стальной герметичной бомбе.

Следующий шаг на пути к чистому титану сделал в 1895 году французский химик Анри Муассан, который восстанавливал двуокись титана углеродом в дуговой печи и затем подвергал полученный металл двукратной рафинировке. Его титан содержал всего 2% примесей.

Наконец, в 1910 году американский химик Хантер, усовершенствовав способ Нильсона и Петерсона, сумел получить несколько граммов сравнительно чистого титана. Это событие вызвало широкие отклики в различных странах. Именно поэтому многие до сих пор ошибочно приписывают Хантеру, а не Кириллову приоритет выделения титана в чистом виде.

Итак, чистый титан был получен. Но чистым он мог считаться с большой натяжкой, так как все же содержал несколько десятых долей процента примесей. Всего несколько десятых... Но «ложка дегтя портит бочку меда». Примеси делали титан хрупким, непрочным, не поддающимся механической обработке. О нем пошла дурная слава как о бесполезном металле, не пригодном ни для каких целей.

Разумеется, с такой характеристикой титан не мог и мечтать об ответственной работе. Приходилось довольствоваться второстепенными ролями.

Еще в 1908 году Розе и Бартран в США, а Фаруп в Норвегии предложили изготовлять белила не из соединений свинца, как делалось прежде, а из двуокиси титана. По своим качествам титановые белила значительно превосходили свинцовые. К тому же титановые белила не ядовиты (бич свинцовых белил), поскольку двуокись титана безвредна для человеческого организма. Медицине известен случай, когда некий гражданин проглотил за один раз почти пол килограмма двуокиси титана, и это не привело к печальным последствиям.

Со временем двуокись титана стали применять при окрашивании кож, тканей, в производстве стекла, фарфора, эмали, для изготовления искусственных бриллиантов.

Нашлась работа и для другого титанового соединения - четыреххлористого титана, впервые полученного французским химиком Дюма еще в 1826 году. Способность хлорида титана интенсивно образовывать маскирующие дымовые завесы широко использоралась в период первой мировой войны. В мирные же годы это соединение служит для окуривания растений во время весенних заморозков.

Но титан, как мы увидим далее, вправе был претендовать на более серьезную и интересную работу.

И вот, наконец, в 1925 году голландские ученые ван Аркель и де Бур разложением четыреххлористого титана на раскаленной вольфрамовой проволоке получили титан очень высокой чистоты. Вот тогда-то оказалось, что утверждение Хантера о хрупкости титана не выдерживает никакой критики, поскольку металл, полученный ван Аркелем и де Буром, обладал очень высокой пластичностью: его можно было ковать на холоде, как железо, прокатывать в листы, ленту, проволоку и даже тончайшую фольгу.

Теперь гордое имя, которое носил элемент, никому уже не казалось, как прежде, ироническим - перед ним открылась широкая дорога в мир техники.

Словно в благодарность за освобождение из плена примесей титан начал изумлять ученых своими чудесными свойствами. Выяснилось, например, что титан, который почти вдвое легче железа, оказался прочнее многих сталей.

По удельной прочности титан не имеет соперников среди промышленных металлов. Даже такой металл, как алюминий, уступил ряд позиций титану, который всего в полтора раза тяжелее алюминия, но зато в шесть раз прочнее. И что особенно важно, титан сохраняет свою прочность при высоких температурах (до 500°С, а при добавке легирующих элементов - до 650°С), в то время как прочность большинства алюминиевых сплавов резко падает уже при 300°С.

Титан - очень твердый металл: он в 12 раз тверже алюминия, в 4 раза - железа и меди. Чем выше предел текучести металла, тем лучше детали из него сопротивляются эксплуатационным нагрузкам, тем дольше они сохраняют свои формы и размеры. Предел текучести титана в 18 раз выше, чем у алюминия, и в 2,5 раза - чем у железа.

Неудивительно, что когда перед авиаконструкторами встал вопрос, какому металлу доверить преодоление звукового барьера, выбор пал на титан. В зарубежной печати появилось сообщение о создании в США сверхзвукового реактивного самолета «Черная птица», который способен развивать скорость более 3200 километров в час. Корпус новой машины изготовлен из титана. Из этого металла сделаны ответственные наружные части и первого в мире сверхзвукового пассажирского самолета ТУ-144: мотогондолы, элероны, рули поворота.

Из титана все чаще изготовляют и многие другие авиационные узлы и детали - от двигателя до болтов и гаек. Кстати, о болтах. По мнению американских специалистов, только в результате замены стальных болтов двигателя титановыми в одном из типов истребителя вес двигателя снижается чуть ли не на сто килограммов. Так как каждый из этих сбереженных килограммов уменьшает вес самолета на 10 килограммов (благодаря облегчению фюзеляжа), общая экономия в весе достигнет тонны. Можно представить себе, что значит снизить вес самолета на целую тонну, если уменьшение веса самолета гражданской авиации всего на 1 килограмм позволяет сэкономить до 400 рублей в год. По прогнозам специалистов, в ближайшие годы доля конструкций из титана и его сплавов в самолетах, скорость которых в 2 - 3 раза выше скорости звука, возрастет до 60 - 90%.

Не обойдется без него и космическая техника. Отличные эксплуатационные качества присущи, в частности, титановым бакам для хранения жидкого кислорода и водорода: при сверхнизких температурах титан не разрушается, как большинство металлов, а наоборот, становится еще прочнее.

По-видимому, титан будет основным конструкционным материалом объектов, монтируемых непосредственно в космосе. Как показали эксперименты, проведенные в 1969 году советскими космонавтами Георгием Шониным и Валерием Кубасовым, этот металл в условиях космического вакуума легко поддается сварке и резке.

К титану с почтением относятся конструкторы не только небесного оборудования. Одна иностранная фирма, например, изготовляет из него велосипедные рамы: такая рама весит чуть больше килограмма, а вес всего велосипеда при этом - менее 7 килограммов!

Титан привлек к себе внимание и химиков. На одном из заводов был проведен следующий эксперимент. Из чугуна, нержавеющей стали и титана изготовили три насоса для перекачки агрессивных жидкостей. Первый был «съеден» через трое суток, второй продержался 10 дней, а третий (титановый) и через полгода непрерывной работы оставался цел и невредим.

Несмотря на то, что титан еще очень и очень дорог, замена им более дешевых материалов во многих случаях оказывается экономически выгодной. Так, корпус реактора одного из химических аппаратов, изготовленный из нержавеющей стали, стоит 150 рублей, а из титанового сплава - 600 рублей. Но при этом стальной реактор служит лишь 6 месяцев, а титановый - 10 лет.

Прибавьте еще затраты на замену стальных реакторов, вынужденные простои оборудования и станет совершенно очевидно, что дорогой титан, как ни парадоксально это звучит, дешевле, чем дешевая сталь.

На выставке по применению титана в промышленности, организованной несколько лет назад в Лондоне, демонстрировался широкий ассортимент оборудования химических заводов, изготовленного из титана. Титановые сопла, проработав более двух месяцев в атмосфере горячих газов, содержащих двуокись серы, могли как ни в чем не бывало продолжать трудиться дальше; сопла из нержавеющей стали разрушались после нескольких часов работы.

Успешно используют титан для изготовления деталей, работающих в атмосфере паров хлора, серной или азотной кислоты и других химических «агрессоров». Некоторые предприятия обзавелись даже громадными, высотой 120 метров, вентиляционными трубами из этого металла. Конечно, такая труба дороговата, но зато она простоит без ремонта добрую сотню лет - все затраты окупятся с лихвой.

Широкое применение получил титан при производстве твердых сплавов для режущих инструментов. Тончайшее покрытие из карбида титана значительно повышает режущие свойства инструмента, улучшает качество поверхности обработанных изделий.

Доброй славой пользуются превосходные хирургические инструменты из сплавов титана. Советский врач Юрий Сенкевич - участник интернациональной экспедиции под руководством известного норвежского путешественника Тура Хейердала взял с собой в дальнее плавание на папирусном судне «Ра» титановые хирургические инструменты.

Не так давно ученые создали удивительный сплав никеля с титаном - «нитинол», который обладает загадочным свойством «помнить» свое прошлое, а точнее говоря, принимать после деформации и соответствующей обработки свою прежнюю форму (об этом подробнее рассказано в очерке «Медный дьявол», посвященном никелю).

Еще в начале нашего века среди металлургов господствовало мнение, что титан - одна из самых вредных примесей железа. Понадобилось много лет, чтобы доказать нелепость подобной точки зрения. Сегодня металлургия - один из основных потребителей титана. Можно насчитать сотни марок сталей и сплавов, в состав которых в том или ином количестве входит этот элемент. В нержавеющие стали его вводят для предотвращения межкристаллитной коррозии. В жаростойких высокохромистых сплавах он уменьшает размер зерна, делая структуру металла однородной и мелкокристаллической. В других жаростойких сплавах титан служит упрочняющим элементом.

Высокое сродство титана к кислороду (к этому мы еще вернемся) позволяет использовать его для раскисления стали, т. е. для удаления из нее кислорода: по раскислительной способности титан примерно в 10 раз превосходит кремний - один из основных раскислителёй. Такова же роль титана и по отношению к азоту. Очистка стали от газов повышает ее механические свойства, улучшает коррозионную стойкость.

Одно из замечательных свойств титана - его необычная стойкость против коррозии - этого злейшего врага металлов. На пластинке из титана за 10 лет пребывания в морской воде не появилось и следа ржавчины (за такой срок от железной пластинки остались бы лишь воспоминания). Да что там какой-то десяток лет: расчеты показывают, что если бы этот эксперимент начался тысячу лет назад, например, когда проходило крещение Руси, то к нашему времени коррозия смогла бы проникнуть в глубь титана всего на 0,02 миллиметра. Не мудрено поэтому, что судостроители, гидростроители, конструкторы глубоководных аппаратов проявляют к титану не меньшую симпатию, чем авиаконструкторы и химики. Американская фирма «Дженерал электрик» создает проект обитаемых станций, которые смогут размещаться на глубинах до 3700 метров. Титановым сплавам в этом проекте отведена важная роль.

Высокая коррозионная стойкость титана - вот объяснение, почему создатели обелиска, увековечившего покорение человеком космического пространства, выбрали именно этот металл в качестве облицовочного материала. Сравнительно недавно титан оказался нужным еще для одного монументального сооружения. На конкурсе проектов памятников в честь 100-летнего юбилея организации Международного союза электросвязи, организованном ЮНЕСКО, первый приз (из 213 представленных проектов) получила работа советских архитекторов. Монумент, который предполагалось установить на площади Наций в Женеве, должен был представлять собой две бетонные раковины высотой 10,5 метра, облицованные пластинами полированного титана. Человек, проходящий между этими раковинами по специальной дорожке, услышит свой голос, шаги, шум города, увидит свое изображение в центре кругов, уходящих в бесконечность.

Важная характеристика титана - его немагнитность, что для многих отраслей техники представляет существенный интерес. Титан обладает большим электросопротивлением: если электропроводность серебра принять за 100, то электропроводность меди равна 94, алюминия 55, железа и ртути 2, а титана - всего 0,3. Это свойство металла широко используют в электротехнике.

Итак, титан является счастливым обладателем многих ценных свойств. Почему же до сих пор его применяют в промышленности не столь широко, как, например, сталь или алюминий?

Высокая цена - вот что в какой-то мере тормозило потребление титана. Собственно говоря, этот «порок» не врожденный, а обусловлен лишь чрезвычайной трудностью извлечения титана из руд. Если принять относительную стоимость титана в концентрате за 1, то после длинного и сложного технологического пути, который преодолевает титан в процессе превращения в готовую продукцию - тонкий лист, стоимость его возрастает в 500 - 600 раз. Но это - беда поправимая: производство нового металла непрерывно совершенствуется, и не за горами то время, когда он будет так же дешев, как алюминий, который еще в конце прошлого века конкурировал с драгоценными металлами. Недалек тот день, когда на прилавках магазинов можно будет встретить столовые и кухонные приборы из титана и его сплавов, - титан «шагает в массы».

До самого последнего времени титан совершенно необоснованно относили (а порой и сейчас относят) к редким металлам. В действительности же лишь очень немногие элементы распространены в природе больше, чем титан. Количество титана в земной коре в несколько раз превышает запасы таких металлов, как медь, цинк, свинец, золото, серебро, платина, хром, вольфрам, ртуть, молибден, висмут, сурьма, никель, олово, вместе взятых. Вот так редкий!

Впрочем, в известном смысле термин «редкий» имеет некоторое отношение к титану: ведь редкая горная порода не содержит этот элемент (из 800 исследованных горных пород титан был найден в 784!).

Известно около 70 минералов титана, в которых он находится в виде двуокиси или солей титановой кислоты. Наибольшее практическое значение имеют ильменит (который раньше назывался менакканитом), рутил, перовскит и сфен. «Компания» титановых минералов постоянно расширяется. Так, совсем недавно в Ловозерских тундрах (на Кольском полуострове) геологи нашли неизвестный ранее камень (точнее, песчинку - ведь вес находки составлял лишь десятую долю грамма), который был назван натиситом, поскольку его основными компонентами оказались натрий, титан и кремний (силиций). Богатые месторождения титановых руд имеются в СССР (Урал, Сибирь, Украина, Алтай, Хибины), США, Индии, Норвегии, Канаде, Австралии и других странах. Всего на земном шаре известно более 150 значительных рудных и рассыпных месторождений титана.

Еще до полетов американских космических кораблей «Аполлон» и советских автоматических станций «Луна», доставивших на Землю образцы лунных пород, некоторые ученые высказывали предположение, что лунный грунт содержит довольно большие количества окиси титана. Теперь вчерашняя гипотеза стала уже экспериментально подтвержденным фактом. Кто знает, может быть, в недалеком будущем газеты сообщат, что где-нибудь в районе Моря Спокойствия или Океана Бурь начал действовать первый на Луне титановый рудник.

Интересные данные доставили на Землю советские космонавты Петр Климук и Валентин Лебедев - экипаж космического корабля «Союз-13». Им удалось получить ультрафиолетовую спектрограмму одной из планетарных туманностей, к которым астрономы всегда проявляли повышенный интерес. Типичная туманность представляет собой газовое образование с горячей звездой в центре. Поскольку эти небесные объекты находятся на колоссальном расстоянии от нашей планеты, информация о них крайне скудна. За все годы изучения планетарных туманностей в них было обнаружено лишь 17 химических элементов, причем за последние четверть века никаких новостей в этом смысле из «дальних краев» не поступало. И вот приборы, находящиеся на борту «Союза-13», неопровержимо установили наличие в планетарной туманности еще двух элементов - алюминия и титана.

Итак, ни наша планета, ни ее ближайшая спутница, ни другие небесные тела не вправе сетовать на отсутствие титана. Но ведь нужно еще извлечь металл из руды и довести его до такого состояния, в котором он может быть использован в современной технике. А задача эта очень нелегкая.

Дело в том, что союз титана с кислородом (а именно в виде такого соединения элемент обычно и встречается в природе) является одним из самых прочных в химии.

Ни электрический ток, ни высокие температуры не в силах вырвать титан из объятий кислорода. Это заставило ученых искать окольные пути получения титана в свободном виде. В 1940 году американский ученый Кролль сумел разработать так называемый магниетермический способ промышленного производства титана. Сущность его заключается в следующем. Сначала двуокись титана с помощью хлора и углерода переводят в четыреххлористый титан. Справиться же с хлором, который теперь занимает место кислорода, уже значительно легче; эту задачу вполне успешно решает, например, такой элемент, как магний. В результате реакции четыреххлористого титана с магнием образуется губчатая масса, состоящая из титана, магния и хлористого магния. Для получения чистого компактного титана эту массу переплавляют в вакууме или в атмосфере инертного газа (чтобы в металл не попали азот и кислород воздуха).

В промышленности находит применение также натриетермический метод получения металлического титана, который в принципе мало отличается от магниетермического. Чтобы получить особо чистый титан, в настоящее время используют иодидный метод, предложенный уже известными нам ван Аркелем и де Буром.

Полученный из хлорида технически чистый титан превращают в иодид, который затем возгоняют в вакууме. На своем пути пары иодида встречают раскаленную (до 1400°С) титановую проволоку. Иодид при этом разлагается, и на проволоке оседает слой чистого титана. Вследствие дороговизны зтот метод еще не имеет промышленного применения. Такой титан используют в основном для лабораторных исследований.

Как вы уже убедились, свойства титана во многом зависят от степени его чистоты, поэтому разработка способов массового производства особо чистого титана является одной из важнейших проблем промышленности. Ведь из поистине огромных природных запасов титанового сырья в металл превращаются пока лишь тысячные доли процента. Несмотря на стремительный рост мощностей по производству титана, потребности в зтом замечательном металле явно превышают масштабы его добычи. Не случайно долгое время американское правительство запрещало фирмам, производящим титановый прокат, продавать его невоенным предприятиям.

Сделать титан более дешевым - зту задачу решают сегодня специализированные научно-исследовательские институты, число которых непрерывно растет. Несколько лет назад новый институт легких металлов был создан в Кливленде (США). Любопытно, что на церемонии открытия традиционная ленточка, натянутая перед входом в институт, была изготовлена из... титана. Чтобы ее перерезать, мзр города вместо ножниц вынужден был воспользоваться газовой горелкой и защитными очками.

В наши дни к титану приковано внимание тысяч ученых. В многочисленных лабораториях образцы этого металла ежедневно подвергаются жестоким «пыткам»: его рвут на части, гнут, «варят» в кислотах и щелочах, раскаляют, охлаждают до сверхнизких температур, воздействуют на него чудовищными нагрузками, током высокой частоты, ультразвуком.

И титан раскрывает человеку свои тайны...

Sc

Ti

V

Cr


Ga

Ge

As

Se


Y

Zr

Nb

Mo

« ВИТАМИН

Находка на месте катастрофы. - Идея воплощается в жизнь. - Богиня не отвечает на стук. - Удача Нильса Сёвстрема. - Ошибку дель Рио повторяет Вёлер. - Второе рождение ванадия. - «Я был настоящим ослом...» - Успешные опыты Генри Роско. - 50 тысяч рублей за 1 килограмм! - Руда с Венеры. - Секрет неутомимости стали. - Пушка поднимается в воздух. - Атака и оборона. - «Дипломаты» хитрят. - Чернильная радуга. - Свиньи довольны. - Морские коллекционеры. - Плантации на дне моря. - Дела давно минувших дней.


Если бы не было ванадия - не было бы автомобиля». Эти слова принадлежат автомобильному королю Генри Форду. В 1905 гбду Форд присутствовал на крупных автомобильных гонках. Как часто случается на подобных состязаниях, не обошлось без катастрофы. Спустя некоторое время Форд подошел к месту, где разыгралась трагедия, и подобрал там обломок детали одной из двух столкнувшихся машин - французской. Это была часть стержня клапана. Казалось бы, деталь как деталь, но искушенного в этих вопросах Форда поразила ее легкость и в то же время высокая твердость. Из лаборатории, куда был отправлен обломок для химического анализа, сообщили, что необычная сталь содержит ванадий.

Идея широко использовать такую сталь в производстве автомобилей всецело овладела Фордом. Еще бы: ведь если ее удастся воплотить в жизнь, автомобиль станет значительно легче; это позволит сэкономить много металла и машины можно будет продавать по более низкой цене. Значит, резко увеличится число покупателей, а следовательно, возрастут и его собственные прибыли. И Форд принялся за осуществление своей идеи. Немало трудностей пришлось ему преодолеть, прежде чем цель была достигнута. Когда через несколько лет после гонок, неожиданно сыгравших в истории автомобилестроения немаловажную роль, французский департамент торговли и промышленности провел испытания отдельных деталей новой фордовской машины, выяснилось, что американская сталь по всем показателям намного превосходит французскую.

Загрузка...