Селезнева Т. Д., Мишин А. С., Барсуков В. Ю. Гистология. Полный курс за 3 дня

РАЗДЕЛ I. ОБЩАЯ ГИСТОЛОГИЯ

Тема 1. ИСТОРИЯ РАЗВИТИЯ ГИСТОЛОГИИ. РАЗВИТИЕ ГИСТОЛОГИИ В РОССИИ

В истории развития гистологии можно выделить три основных периода: домикроскопический, микроскопический и современный.

Домикроскопический период (с начала V в. до н. э. и по 1665 г.) связан с именами Аристотеля, Галена, Везалия и других великих ученых того времени. Данный период развития гистологии характеризуется попытками выделения в организмах животных и человека неоднородных тканей с использованием методов анатомического препарирования.

Микроскопический период – 1665 – 1950 гг. Начало этого периода связано с именем английского физика Р. Гука, который изобрел микроскоп и использовал его для систематического исследования различных, в том числе и биологических, объектов. Результаты своих исследований он опубликовал в книге «Монография». Р. Гук впервые ввел термин «клетка». В дальнейшем происходило непрерывное усовершенствование микроскопов и все более широкое их использование для изучения биологических тканей и органов. Особенное внимание при этом уделялось строению клетки. Среди выдающихся ученых того времени можно выделить М. Мальпиги, А. Левенгука, Н. Грю.

Я. Пуркинье описал наличие в животных клетках цитоплазмы и ядра, а несколько позже Р. Браун обнаружил ядро в растительных клетках. Ботаник М. Шлейден занимался исследованием происхождения клеток – цитокинезисом. В результате своих исследований Т. Шванн сформулировал клеточную теорию:

1) все растительные и животные организмы состоят из клеток;

2) все клетки развиваются по общему принципу – из цитобластомы;

3) каждая клетка обладает самостоятельной жизнедеятельностью, а жизнедеятельность организма является суммой деятельности клеток.

Р. Вирхов в 1858 г. уточнил, что развитие клеток осуществляется путем деления исходной клетки. Разработанная Т. Шванном теория актуальна до настоящего времени.

Современные положения клеточной теории:

1) клетка является наименьшей единицей живого;

2) клетки животных организмов сходны по своему строению;

3) размножение клеток происходит путем деления исходной клетки;

4) многоклеточные организмы представляют собой сложные ассоциации клеток и их производных, объединенные в системы тканей и органов и связанные между собой клеточными, гуморальными и нервными механизмами регуляции.

Дальнейшее совершенствование микроскопов позволило выявить в клетках более мелкие структуры:

1) пластинчатый комплекс (К. Гольджи – 1897 г.);

2) митохондрии (Э ван Бенда – 1897 г.);

3) центриоли ( Т. Бовери – 1895 г.);

4) эндоплазматическую сеть (К. Портер – 1945 г.);

5) лизосомы (К. Дюв – 1949 г.).

Были описаны механизмы деления растительных (И. Д. Чистяков, 1874 г.) и животных клеток (П. И. Перемежко, 1978 г.).

Современный этап развития гистологии начался с 1950 г., когда впервые электронный микроскоп был применен для изучения биологических объектов. Однако для современного этапа развития гистологии характерно внедрение не только электронной микроскопии, но и других методов: цито– и гистохимии, гисторадиографии и т. д. При этом обычно используется комплекс различных методов, позволяющих составить не только качественное представление об изучаемых структурах, но и получить тонкие количественные характеристики. Особенно широко в настоящее время применяются различные морфометрические методы, в том числе и автоматизированная обработка полученной информации с использованием персонального компьютера.

Гистологию в России развивали ученые медицинских факультетов российских вузов, где сформировались сильные гистологические школы:

1) Московская школа (А. И. Бабухин, И. Ф. Огнев). Основное направление деятельности – гистогенез мышечной и нервной ткани, гистофизиологические подходы к изучению органов чувств, особенно органа зрения;

2) Петербургская гистологическая школа при Медико-хирургической академии (К. Э. Бэр – эмбриолог, Н. М. Якубович, М. Д. Лавдовский – нейрогистолог и А. А. Максимов – автор унитарной теории кроветворения);

3) Петербургская гистологическая школа при университете (Ф. В. Овсянников – исследования органов чувств, А. С. Догель – нейрогистолог и др.);

4) Киевская гистологическая школа (П. И. Перемежко изучал деление клеток, развитие органов);

5) Казанская гистологическая школа – К. А. Арнштейн, А. С. Догель, А. Е. Смирнов, Т. А. Тимофеев, Б. И. Лаврентьев. Данная школа развивала нейрогистологическое направление.

Наиболее крупными учеными в области гистологии в России были А. А. Заварзин и Н. Г. Хлопин, занимавшиеся исследованием закономерностей развития тканей в филогенезе.

Тема 2. МЕТОДЫ ИССЛЕДОВАНИЯ В ГИСТОЛОГИИ. ПРИГОТОВЛЕНИЕ ГИСТОЛОГИЧЕСКОГО ПРЕПАРАТА

Основным методом исследования в гистологии является микроскопирование – изучение гистологических препаратов под микроскопом. В последнее время микроскопия сочетается с другими методами – гистохимией и гисторадиографией. Для микроскопии используют различные конструкции микроскопов, позволяющие изучать различные параметры гистологических препаратов.

Выделяются следующие виды микроскопии:

1) световая микроскопия (наиболее распространенный вид микроскопии, при этом разрешающая способность микроскопа составляет 0,2 мкм);

2) ультрафиолетовая микроскопия (разрешающая способность микроскопа составляет 0,1 мкм);

3) люминисцентная микроскопия (применяется для определения в исследуемом гистологическом препарате определенных химических структур);

4) фазово-контрастная микроскопия (применяется для обнаружения и изучения определенных структур в неокрашенных гистологических препаратах);

5) поляризационная микроскопия (используется в основном для изучения волокнистых структур);

6) микроскопия в темном поле применяется для изучения живых объектов;

7) микроскопия в падающем свете (предназначена для изучения толстых объектов);

8) электронная микроскопия (наиболее современный вид микроскопии, имеющий разрешающую способность 0,1 – 0,7 нм). Имеются две разновидности электронной микроскопии – просвечивающая (трансмиссионная) и сканирующая (или растворная) микроскопия, дающая отображение поверхностных ультраструктур.

Гистологические и цитохимические методы применяются для определения состава химических веществ и их количества в определенных структурах. Принцип метода заключается в химической реакции между реактивом и субстратом, содержащимся в исследуемом веществе. При этом образующиеся побочные продукты реакции можно обнаружить с помощью световой или люминисцентной микроскопии.

Метод гистоавторадиографии позволяет выявить состав химических веществ в исследуемых структурах и интенсивность обмена по включению радиоактивных изотопов. Данный метод чаще всего используется при экспериментах на животных.

Метод интерферонометрии позволяет определять сухую массу вещества в живых или фиксированных объектах.

Метод культуры клеток – это выращивание клеток в пробирках или в особых капсулах в организме и последующее изучение живых клеток под микроскопом.

Метод витального окрашивания – введение животным в кровь или в брюшную полость красителя (трепанового синего), который при жизни животного захватывается определенными клетками – макрофагами, а после забоя животного и приготовления препарата определяются и подсчитываются клетки, содержащие краситель.

Иммуноморфологические методы позволяют с помощью предварительно проведенных иммунных реакций (на основе взаимодействия антиген – антитело) определять субпопуляцию лимфоцитов, степень чужеродности клеток, проводить гистологическое типирование тканей и органов, т. е. определять их гистосовместимость для дальнейшей трасплантации.

Метод дифференциального центрифугирования – изучение отдельных органелл или даже их фрагментов, выделенных из клетки. Для этого кусочек исследуемого органа растирают, заливают физиологическим раствором, а затем разгоняют в центрифуге при различных оборотах (от 2 до 150 тыс. в 1 мин). В результате центрифугирования получают интересующие фракции, которые затем изучают различными методами.

Методы морфометрии – количественные методы. Они позволяют определять размеры и объемы ядра – кариометрия, клеток – цитометрия, органелл – электронная морфометрия, а также определять число клеток различных популяций и субпопуляций. Данные методы широко используются в научных исследованиях.

Различные экспериментальные методы – пищевая и водная нагрузка, физические методы (УВЧ, СВЧ, лазеры, магниты). Они применяются для изучения реакции интересующих структур на то или иное воздействие и сочетаются с методами морфометрии, цито– и гистохимии. Данные методы также применяются в научных исследованиях.

Таким образом, основным и наиболее распространенным методом изучения в гистологии является микроскопия. Приготовление гистологического препарата включает в себя следующие этапы.

1. Взятие материала – кусочка ткани или органа. При заборе материала необходимо выполнять следующие правила:

1) забор материала должен проводиться как можно раньше после смерти или забоя животного, при возможности от живого объекта, чтобы как можно лучше сохранить структуру исследуемых клеток;

2) забор материала должен проводиться острым инструментом, чтобы не травмировать ткани;

3) толщина кусочка не должна превышать 5 мм, чтобы фиксирующий раствор смог проникнуть на всю глубину ткани;

4) обязательно необходимо произвести маркировку кусочка, при этом указываются наименование органа, номер животного или фамилия человека, дата забора.

2. Фиксация материала. Данный этап проводится для того, чтобы остановить обменные процессы в клетке и сохранить ее от распада. Для этого взятый на исследование кусочек ткани погружают в фиксирующий раствор. Раствор может быть простым (спирт или формалин) и сложным (раствор Карнуа, фиксатор Цинкера). Фиксатор вызывает денатурацию белков и сохраняет структуру клеток в состоянии, близком к прижизненному. Фиксацию можно проводить также путем замораживания – охлаждением жидким азотом или струей углекислого газа.

3. Заливка кусочков ткани в уплотняющие среды (парафин, смолы) – или замораживание. Данный этап необходим для того, чтобы в последующем из исследуемой ткани можно было изготовить тонкий срез.

4. Приготовление срезов на микротоме или ультрамикротоме с помощью специальных ножей. После этого срезы для световой микроскопии приклеиваются на предметные стекла, а для электронной – монтируются на специальные сеточки.

5. Окраска срезов или их контрастирование (для электронной микроскопии). Перед окраской срезов необходимо удалить уплотняющую среду – выполнить депарафирование. С помощью окраски достигается контрастность изучаемых структур. Красители можно подразделить на основные, кислые и нейтральные. Наиболее широко применяются основные красители (гематоксилин) и кислые (эозин). Часто используются и сложные красители.

6. Просветление срезов в ксилоле и толуоле. Их заключают в смолы (бальзам и полистирол) и закрывают покровным стеклом.

После данных процедур препарат можно исследовать под световым микроскопом. Помещенные под стекло срезы для светового микроскопа могут долго храниться и многократно использоваться. Для электронной микроскопии каждый срез используется только 1 раз, при этом он фотографируется, и изучение структур ткани производится по электронограмме.

Если ткань имеет жидкую консистенцию (например, кровь, костный мозг), то препарат изготавливают в виде мазка на предметном стекле, который затем также фиксируется, окрашивается и изучается.

Из ломких паренхиматозных органов изготавливают препараты в виде отпечатка органа, проводят разлом данного органа, затем к месту разлома прикладывают предметное стекло, на которое приклеиваются свободные клетки. После этого препарат фиксируется и изучается.

Из некоторых органов (например, брыжейки, мягкой мозговой оболочки) или из рыхлой волокнистой соединительной ткани изготавливают пленочные препараты путем растягивания или раздавления между двумя стеклами с последующей фиксацией и заливкой в смолы.

Тема 3. ВВЕДЕНИЕ В КУРС ГИСТОЛОГИИ

Гистология – наука о строении, развитии и жизнедеятельности тканей живых организмов. Следовательно, гистология изучает один из уровней организации живой материи – тканевый.

Различают следующие уровни организации живой материи:

1) клеточный;

2) тканевый;

3) структурно-функциональные единицы органа;

4) органный;

5) системный;

6) организменный;

7) популяционный и другие уровни.

Гистология рассматривается как дисциплина, включающая в себя четыре основных раздела:

1) цитологию, она изучающую строение клетки;

2) эмбриологию, изучающую формирование клеток и тканей во время внутриутробного развития;

3) общую гистологию – изучает структуру, функциональные, клеточные элементы различных тканей;

4) частную (или макроскопическую) гистологию, изучающую структуры определенных органов и их систем.

Таким образом, в гистологии имеется несколько разделов, изучающих определенные уровни организации живой материи, начиная с клеточного и заканчивая органным и системным, составляющим организм.

Гистология относится к морфологическим наукам. В отличие от анатомии, изучающей строение органов на макроскопическом уровне, гистология изучает строение органов и тканей на микроскопическом и электронно-микроскопическом уровне. При этом подход к изучению различных элементов производится с учетом выполняемой ими функции. Такой метод изучения структур живой материи называется гистофизиологическим, и гистология нередко именуется гистофизиологией. При изучении живой материи на клеточном, тканевом и органном уровнях рассматриваются не только форма, размеры и расположение интересующих структур, но методами цито– и гистохимии определяется химический состав веществ, образующих данные структуры. Изучаемые структуры также рассматриваются с учетом их развития как во внутриутробном периоде, так и на протяжении начального онтогенеза. Именно с этим связана необходимость включения в гистологию эмбриологии.

Основным объектом гистологии в системе медицинского образования является организм здорового человека, и потому данная учебная дисциплина именуется как гистология человека.

Главной задачей гистологии как учебного предмета является изложение знаний о микроскопическом и ультрамикроскопическом (электронно-микроскопическом) строении клеток, тканей органов и систем здорового человека в неразрывной связи с их развитием и выполняемыми функциями. Это необходимо для дальнейшего изучения физиологии человека, патологической анатомии, патологической физиологии и фармакологии. Знание этих дисциплин формирует клиническое мышление.

Задачей гистологии как науки является выяснение закономерностей строения различных тканей и органов для понимания протекающих в них физиологических процессов и возможности управления этими процессами.

Тема 4. МОРФОЛОГИЯ И ФУНКЦИИ ЦИТОПЛАЗМЫ И ОРГАНЕЛЛ КЛЕТКИ

Цитология – наука о строении, развитии и жизнедеятельности клеток. Следовательно, цитология изучает закономерности структурно-функциональной организации первого (клеточного) уровня организации живой материи. Клетка является наименьшей единицей живой материи, обладающей самостоятельной жизнедеятельностью и способностью к самовоспроизведению. Субклеточные образования (ядро, митохондрии и другие органеллы) хотя и являются живыми структурами, но не обладают самостоятельной жизнедеятельностью.

Клетка – это ограниченная активной мембраной, упорядоченная, структурированная система биополимеров, образующих ядро и цитоплазму, участвующих в единой совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом.

Клетка – это живая система, состоящая из цитоплазмы и ядра и являющаяся основой строения, развития и жизнедеятельности всех животных организмов.

Основные компоненты клетки:

1) ядро;

2) цитоплазма.

По соотношению ядра и цитоплазмы (ядерно-цитоплазматическому отношению) клетки подразделяются на:

1) клетки ядерного типа (объем ядра преобладает над объемом цитоплазмы);

2) клетки цитоплазматического типа (цитоплазма преобладает над ядром).

По форме клетки бывают круглыми (клетки крови), плоскими, кубическими или призматическими (клетки разного эпителия), веретенообразными (гладкомышечные клетки), отростчатыми (нервные клетки) и др. Большинство клеток содержат одно ядро, однако в одной клетке может быть 2, 3 и более ядер (многоядерные клетки). В организме имеются структуры (симпласты, синцитий), содержащие несколько десятков или даже сотен ядер. Однако эти структуры образуются или в результате слияния отдельных клеток (симпласты), или в результате неполного деления клеток (синцитий). Морфология этих структур будет рассмотрена при изучении тканей.

Структурные компоненты цитоплазмы животной клетки:

1) плазмолемма (цитолемма);

2) гиалоплазма;

3) органеллы;

4) включения.

Плазмолемму, окружающую цитоплазму, нередко рассматривают как одну из органелл цитоплазмы.

Плазмолемма (цитолемма)

Плазмолемма – оболочка животной клетки, отграничивающая ее внутреннюю среду и обеспечивающая взаимодействие клетки с внеклеточной средой.

Функции плазмолеммы:

1) разграничительная (барьерная);

2) рецепторная;

3) антигенная;

4) транспортная;

5) образование межклеточных контактов.

Химический состав веществ плазмолеммы: белки, липиды, углеводы.

Строение плазмолеммы:

1) двойной слой липидных молекул, составляющий основу плазмолеммы, в которую местами включены молекулы белков;

2) надмембранный слой;

3) подмембранный слой, имеющийся в некоторых клетках.

В каждой липидной молекуле различают две части:

1) гидрофильную головку;

2) гидрофобные хвосты.

Гидрофобные хвосты липидных молекул связываются друг с другом и образуют билипидный слой. Гидрофильные головки соприкасаются с внешней и внутренней средой.

Белковые молекулы встроены в билипидный слой мембраны локально и не образуют сплошного слоя. По выполняемой функции белки плазмолеммы подразделяются на:

1) структурные;

2) транспортные;

3) белки-рецепторы;

4) белки-ферменты;

5) антигенные детерминанты.

Находящиеся на внешней поверхности плазмолеммы белки и гидрофильные головки липидов обычно связаны с цепочками углеводов и образуют сложные полимерные молекулы. Именно эти макромолекулы и составляют надмембранный слой – гликокаликс. Значительная часть поверхностных гликопротеидов и гликолипидов выполняет в норме рецепторные функции: воспринимает гормоны и другие биологически активные вещества. Такие клеточные рецепторы передают воспринимаемые сигналы на внутриклеточные ферментные системы, усиливая или угнетая обмен веществ, и тем самым оказывают влияние на функции клеток.

Различают следующие способы транспорта веществ:

1) способ диффузии веществ (ионов, некоторых низкомолекулярных веществ) через плазмолемму без затраты энергии;

2) активный транспорт веществ (аминокислот, нуклеотидов и др.) с помощью белков-переносчиков с затратой энергии;

3) везикулярный транспорт (производится посредством везикул (пузырьков)). Подразделяется на эндоцитоз – транспорт веществ в клетку, экзоцитоз – транспорт веществ из клетки.

В свою очередь, эндоцитоз подразделяется на:

1) фагоцитоз – захват и перемещение в клетку;

2) пиноцитоз – перенос воды и небольших молекул.

Процесс фагоцитоза подразделяется на несколько фаз:

1) адгезию (прилипание) объекта к цитолемме фагоцитирующей клетки;

2) поглощение объекта путем образования вначале углубления инвагинации, а затем передвижения ее в гиалоплазму.

В тех тканях, в которых клетки или их отростки плотно прилежат друг к другу (эпителиальная, гладкомышечная и др.), между плазмолеммами контактирующих клеток формируются связи – межклеточные контакты.

Типы межклеточных контактов:

1) простой контакт – 15 – 20 нм (связь осуществляется за счет соприкосновения макромолекул гликокаликсов). Простые контакты занимают наиболее обширные участки соприкасающихся клеток. При помощи простых контактов осуществляется слабая связь – адгезия, не препятствующая транспортированию веществ в межклеточные пространства. Разновидностью простого контакта является контакт типа замка, когда плазмолеммы соседних клеток вместе с участками цитоплазмы как бы впячиваются друг в друга, чем достигается увеличение площади соприкасающихся поверхностей и более прочная механическая связь;

2) десмосомный контакт – 0,5 мкм. Десмосомные контакты (или пятна сцепления) представляют собой небольшие участки взаимодействия между клетками. Каждый такой участок имеет трехслойное строение и состоит из двух полудесмосом – электронноплотных участков, расположенных в цитоплазме в местах контакта клеток, и скопления электронноплотного материала в межмембранном пространстве – 15 – 20 нм. Количество десмосомных контактов у одной клетки может достигать 2000. Функциональная роль десмосом – обеспечение механического контакта между клетками;

3) плотный контакт. Данный контакт называют также замыкательными пластинками. Они локализуются в органах (желудке, кишечнике), в которых эпителий отграничивает агрессивное содержимое данных органов, например желудочный сок, содержащий соляную кислоту. Плотные контакты находятся только между апикальными частями клеток, охватывая по всему периметру каждую клетку. В этих участках межмембранные пространства отсутствуют, а билипидные мембраны соседних клеток сливаются в единую билипидную мембрану. В прилежащих участках цитоплазмы соприкасающихся клеток отмечают скопление электронноплотного материала. Функциональная роль плотных контактов – прочная механическая связь клеток, препятствие транспорту веществ по межклеточным пространствам;

4) щелевидный контакт (или нексусы) – 0,5 – 3 мкм (обе мембраны пронизаны в поперечном направлении белковыми молекулами (или коннексонами), содержащими гидрофильные каналы, через которые осуществляется обмен ионами и микромолекулами соседних клеток, чем и обеспечивается их функциональная связь). Данные контакты представляют собой ограниченные участки контактов соседних клеток. Примером щелевидных контактов (нексусов) служат контакты кардиомиоцитов, при этом через них происходит распространение биопотенциалов и содружественное сокращение сердечной мускулатуры;

5) синаптический контакт (или синапс) – специфические контакты между нервными клетками (межнейронные синапсы) или между нервными и мышечными клетками (мионевральные синапсы). Функциональная роль синапсов – передача нервного импульса или волны возбуждения (торможения) с одной клетки на другую или с нервной клетки на мышечную.

Гиалоплазма

Гиалоплазма (или матрикс цитоплазмы) составляет внутреннюю среду клетки. Состоит из воды и различных биополимеро в (белков, нуклеиновых кислот, полисахаридов, липидов), из которых основную часть составляют белки различной химической и функциональной специфичности. В гиалоплазме содержатся также аминокислоты, моносахара, нуклеотиды и другие низкомолекулярные вещества.

Биополимеры образуют с водой коллоидную среду, которая в зависимости от условий может быть плотной (в форме геля) или более жидкой (в форме золя), как во всей цитоплазме, так и в отдельных ее участках. В гиалоплазме локализуются и взаимодействуют между собой и средой гиалоплазмы различные органеллы и включения. При этом расположение их чаще всего специфично для определенных типов клеток. Через билипидную мембрану гиалоплазма взаимодействует с внеклеточной средой. Следовательно, гиалоплазма является динамической средой и играет важную роль в функционировании отдельных органелл и жизнедеятельности клеток в целом.

Органеллы

Органеллы – постоянные структурные элементы цитоплазмы клетки, имеющие специфическое строение и выполняющие определенные функции.

Классификация органелл:

1) общие органеллы, присущие всем клеткам и обеспечивающие различные стороны жизнедеятельности клетки;

2) специальные органеллы, имеющиеся в цитоплазме только определенных клеток и выполняющие специфические функции этих клеток.

В свою очередь, общие органеллы подразделяются на мембранные и немембранные.

Специальные органеллы подразделяются на:

1) цитоплазматические (миофибриллы, нейрофибриллы, тонофибриллы);

2) органеллы клеточной поверхности (реснички, жгутики).

К мембранным органеллам относятся:

1) митохондрии;

2) эндоплазматическая сеть;

3) пластинчатый комплекс;

4) лизосомы;

5) пероксисомы.

К немембранным органеллам относятся:

1) рибосомы;

2) клеточный центр;

3) микротрубочки;

4) микрофибриллы;

5) микрофиламенты.

Принцип строения мембранных органелл

Мембранные органеллы представляют собой замкнутые и изолированные участки (компартменты) в гиалоплазме, имеющие свою внутреннюю структуру. Стенка их состоит из билипидной мембраны и белков подобно плазмолемме. Однако билипидные мембраны органелл имеют особенности: толщина билипидных мембран органелл меньше, чем плазмолеммы (7 нм против 10 нм), мембранные отличаются по количеству и по содержанию белков, встроенных в них.

Однако, несмотря на различия, мембраны органелл имеют одинаковый принцип строения, поэтому они обладают способностью взаимодействовать друг с другом, встраиваться, сливаться, разъединяться, отшнуровываться.

Общий принцип строения мембран органелл можно объяснить тем, что все они образуются в эндоплазматической сети, а затем происходит их функциональная перестройка в комплексе Гольджи.

Митохондрии

Митохондрии – наиболее обособленные структурные элементы цитоплазмы клетки, обладающие в значительной степени самостоятельной жизнедеятельностью.

Существует мнение, что в прошлом митохондрии были самостоятельными живыми организмами, после чего внедрились в цитоплазму клеток, где ведут сапрофитное существование. Доказательством этого может являться наличие у митохондрий генетического аппарата (митохондриальной ДНК) и синтетического аппарата (митохондриальных рибосом).

Форма митохондрий может быть овальной, округлой, вытянутой и даже разветвленной, но преобладает овально-вытянутая. Стенка митохондрий образована двумя билипидными мембранами, разделенными пространством в 10 – 20 нм. При этом внешняя мембрана охватывает по периферии всю митохондрию в виде мешка и отграничивает ее от гиалоплазмы. Внутренняя мембрана отграничивает внутреннюю среду митохондрии, при этом она образует внутри митохондрии складки – кристы. Внутренняя среда митохондрии (митохондриальный матрикс) имеет тонкозернистое строение и содержит гранулы (митохондриальные ДНК и рибосомы).

Функция митохондрий – образование энергии в виде АТФ.

Источником образования энергии в митохондриях является пировиноградная кислота (пируват), которая образуется из белков, жиров и углеводов в гиалоплазме. Окисление пирувата происходит в митохондриальном матриксе, а на кристах митохондрий осуществляется перенос электронов, фосфорилирование АДФ и образование АТФ. Образующаяся в митохондриях АТФ является единственной формой энергии, которая используется клеткой для выполнения различных процессов.

Эндоплазматическая сеть

Эндоплазматическая сеть (ЭПС) в разных клетках может быть представлена в форме уплощенных цистерн, канальцев или отдельных везикул. Стенка состоит из билипидной мембраны.

Различают две разновидности ЭПС:

1) зернистую (гранулярную, или шероховатую);

2) незернистую (или гладкую). На наружной поверхности мембран зернистой ЭПС содержатся прикрепленные рибосомы.

В цитоплазме при электронно-микроскопическом исследовании можно обнаружить два вида ЭПС, однако один из них преобладает, что и определяет функциональную специфичность клетки. Эти две разновидности ЭПС не являются самостоятельными и обособленными формами, так как при более детальном исследовании можно обнаружить переход одной разновидности в другую.

Функции зернистой ЭПС:

1) синтез белков, предназначенных для выведения из клетки (на экспорт);

2) отделение (сегрегация) синтезированного продукта от гиалоплазмы;

3) конденсация и модификация синтезированного белка;

4) транспорт синтезированных продуктов в цистерны пластинчатого комплекса;

5) синтез компонентов билипидных мембран.

Функции гладкой ЭПС:

1) участие в синтезе гликогена;

2) синтез липидов;

3) дезинтоксикационная функция (нейтрализация токсических веществ посредством соединения их с другими веществами).

Пластинчатый комплекс Гольджи

Пластинчатый комплекс называют транспортным аппаратом клетки.

Пластинчатый комплекс Гольджи (сетчатый аппарат) представлен скоплением уплощенных цистерн и небольших везикул, ограниченных билипидной мембраной. Пластинчатый комплекс подразделяется на субъединицы – диктиосомы. Каждая диктиосома представляет собой стопку уплощенных цистерн, по периферии которых локализуются мелкие пузырьки. При этом в каждой уплощенной цистерне периферическая часть несколько расширена, а центральная сужена. В диктиосоме различают два полюса: цисполюс (направленный основанием к ядру) и трансполюс (направленный в сторону цитолеммы). Установлено, что к цисполюсу подходят транспортные вакуоли, несущие в комплекс Гольджи продукты, синтезированные в ЭПС. От трансполюса отшнуровываются пузырьки, несущие секрет к плазмолемме для его высвобождения из клетки. Часть мелких пузырьков, заполненных белками-ферментами, остается в цитоплазме и носит название лизосом.

Функция пластинчатого комплекса:

1) транспортная (выводит из клетки синтезированные в ней продукты);

2) конденсация и модификация веществ, синтезированных в зернистой ЭПС;

3) образование лизосом (совместно с зернистой ЭПС);

4) участие в обмене углеводов;

5) синтез молекул, образующих гликокаликс цитолеммы;

6) синтез, накопление, выведение муцинов (слизи);

7) модификация мембран, синтезированных в ЭПС и превращение их в мембраны плазмолеммы.

Лизосомы

Лизосомы – наиболее мелкие органеллы цитоплазмы, представляют собой тельца, ограниченные билипидной мембраной и содержащие электронноплотный матрикс, состоящий из набора гидролитических белков-ферментов (более тридцати видов гидролаз), способных расщеплять любые полимерные соединения (белки, жиры, углеводы), их комплексы на мономерные фрагменты.

Функция лизосом – обеспечение внутриклеточного пищеварения, т. е. расщепление как экзогенных, так и эндогенных биополимерных веществ.

Классификация лизосом:

1) первичные лизосомы – электронно-плотные тельца;

2) вторичные лизосомы – фаголизосомы, в том числе аутофаголизосомы;

3) третичные лизосомы или остаточные тельца.

Истинными лизосомами называют мелкие электронноплотные тельца, образующиеся в пластинчатом комплексе. Пищеварительная функция лизосом начинается только после слияния с фагосомой (фагоцитируемое вещество, окруженное билипидной мембраной) и образования фаголизосомы, в которой смешиваются фагоцитируемый материал и лизосомальные ферменты. После этого начинается расщепление биополимерных соединений фагоцитированного материала на мономеры – аминокислоты, сахара. Эти молекулы свободно проникают через мембрану фаголизосомы в гиалоплазму и затем утилизируются клеткой – идут на образование энергии или построение новых внутриклеточных макромолекулярных соединений.

Некоторые соединения не могут быть расщеплены ферментами лизосомы и поэтому выводятся из клетки в неизмененном виде при помощи экзоцитоза (процесс обратный фагоцитозу). Вещества липидной природы практически не расщепляются ферментами, а накапливаются и уплотняются в фаголизосоме. Данные образования были названы третичными лизосомами (или остаточными тельцами).

В процессе фагоцитоза и экзоцитоза осуществляется рециркуляция мембран в клетке: при фагоцитозе часть плазмолеммы отшнуровывается и образует оболочку фагосомы, при экзоцитозе эта оболочка вновь встраивается в плазмолемму.

Поврежденные, измененные или устаревшие собственные органеллы клетки утилизируются ею по механизму внутриклеточного фагоцитоза с помощью лизосом. Вначале эти органеллы окружаются билипидной мембраной, и образуется вакуоль – аутофагосома. Затем с ней сливается одна или несколько лизосом, и образуется аутофаголизосома, в которой осуществляеся гидролитическое расщепление биополимерных веществ, как и в фаголизосоме.

Лизосомы содержатся во всех клетках, однако в неравном количестве. Специализированные клетки – макрофаги – содержат в цитоплазме большое количество первичных и вторичных лизосом. Они выполняют защитную функцию в тканях, поглощают значительное число экзогенных веществ – бактерий, вирусов, других чужеродных агентов и продуктов распада собственных тканей.

Пероксисомы

Пероксисомы – микротельца цитоплазмы (0,1 – 1,5 мкм), сходные по строению с лизосомами, однако отличаются от них тем, что в их матриксе содержатся кристаллоподобные структуры, а среди белков-ферментов содержится каталаза, разрушающая перекись водорода, образующуюся при окислении аминокислот.

Рибосомы

Рибосомы – аппараты синтеза белка и полипептидных молекул.

По локализации подразделяются на:

1) свободные, (находятся в гиалоплазме);

2) несвободные (или прикрепленные), – которые связаны с мембранами ЭПС.

Каждая рибосома состоит из малой и большой субъединиц. Каждая субъединица рибосомы состоит из рибосомальной РНК и белка – рибонуклеопротеида. Образуются субъединицы в ядрышке, а сборка в единую рибосому осуществляется в цитоплазме. Для синтеза белка отдельные рибосомы с помощью матричной (информационной) РНК объединяются в цепочки рибосом – полисомы. Свободные и прикрепленные рибосомы, помимо отличия в их локализация, характеризуются определенной функциональной специфичностью: свободные рибосомы синтезируют белки.

Клеточный центр

Клеточный центр – цитоцентр, центросома. В неделящейся клетке клеточный центр состоит из двух основных структурных компонентов:

1) диплосомы;

2) центросферы.

Диплосома состоит из двух центриолей (материнской и дочерней), расположенных под прямым углом друг к другу. Каждая центриоль состоит из микротрубочек, образующих полый цилиндр, диаметром 0,2 мкм, длиной 0,3 – 0,5 мкм. Микротрубочки объединяются в триплеты (по три трубочки), образуя всего девять триплетов. Центросфера – бесструктурный участок гиалоплазмы вокруг диплосомы, от которого радиарно отходят микротрубочки (по типу лучистой сферы).

Функции цитоцентра:

1) образование веретена деления в профазе митоза;

2) участие в формировании микротрубочек клеточного каркаса;

3) выполнение роли базисных телец ресничек в реснитчатых эпителиальных клетках центриоли.

Положение центриолей в некоторых эпителиальных клетках определяет их полярную дифференцированность.

Микротрубочки

Микротрубочки – полые цилиндры (внешний диаметр – 24 мм, внутренний – 15 им), являются самостоятельными органеллами, образуя цитоскелет. Они также могут входить в состав других органелл – центриолей, ресничек, жгутиков. Стенка микротрубочек состоит из глобулярного белка тубулина, который образован отдельными округлыми образованиями глобулы диаметром 5 нм. Глобулы могут находиться в гиалоплазме в свободном состоянии или соединяться между собой, в результате чего формируются микротрубочки. Они могут затем вновь распадаться на глобулы. Таким образом формируются и затем распадаются микротрубочки веретена деления в разные фазы митоза. Однако в составе центриолей, ресничек и жгутиков микротрубочки являются устойчивыми образованиями. Большая часть микротрубочек участвует в формировании внутриклеточного каркаса, который поддерживает форму клетки, обусловливая определенное положение органелл в цитоплазме, а также предопределяет направление внутриклеточных перемещений. Белки-тубулины не обладают способностью к сокращению, следовательно, и микротрубочки не сокращаются. В составе ресничек и жгутиков происходит взаимодействие микротрубочек между собой, их скольжение друг относительно друга, что обеспечивает движение этих органелл.

Микрофибриллы

Микрофибриллы (промежуточные филаменты) представляют собой тонкие неветвящиеся нити.

В основном микрофибриллы локализуются в кортикальном, (подмембранном) слое цитоплазмы. Они состоят из белка, который в различных по классу клетках имеет определенную структуру (в эпителиальных клетках – это белок кератин, в мышечных клетках – десмин).

Функциональная роль микрофибрилл – участвовать наряду с микротрубочками в формировании клеточного каркаса, выполняя опорную функцию.

Микротрубочки могут объединяться в пучки и образовывать тонофибриллы, которые рассматриваются как самостоятельные органеллы и выполняют опорную функцию.

Микрофиламенты

Микрофиламенты – еще более тонкие нитчатые структуры (5 – 7 нм), состоящие из сократительных белков (актина, миозина, тропомиозина).

Микрофиламенты локализуются в основном в кортикальном слое цитоплазмы.

В совокупности микрофиламенты составляют сократительный аппарат клетки, обеспечивающий различные виды движений: перемещение органелл, ток гиалоплазмы, изменение клеточной поверхности, образование псевдоподии и перемещение клетки.

Скопление микрофиламентов в мышечных волокнах образует специальные органеллы мышечной ткани – миофибриллы.

Включения

Включения – непостоянные структурные компоненты цитоплазмы. Классификация включений:

1) трофические;

2) секреторные;

3) экскреторные;

4) пигментные.

В процессе жизнедеятельности клеток могут накапливаться случайные включения – медикаментозные, частички различных веществ.

Трофические включения – лецитин в яйцеклетках, гликоген или липиды в различных клетках.

Секреторные включения – это секреторные гранулы в секретирующих клетках (например, зимогенные гранулы в ацинозных клетках поджелудочной железы, секреторные гранулы в различных эндокринных клетках).

Экскреторные включения – это вещества, которые необходимо удалить из клетки (например, гранулы мочевой кислоты в эпителии почечных канальцев).

Пигментные включения – меланин, гемоглобин, липофусцин, билирубин. Эти включения придают клетке, которая их содержит, определенную окраску: меланин окрашивает клетку в черный или коричневый цвет, гемоглобин – в желто-красный, билирубин – в желтый. Пигментные клетки содержатся только в определенных типах клеток: меланин – в меланоцитах, гемоглобин – в эритроцитах. Липофусцин, в отличие от других указанных пигментов, может содержаться во многих типах клеток. Наличие липофусцина в клетках (особенно в значительном количестве) говорит о старении и функциональной неполноценности.

Тема 5. МОРФОЛОГИЯ И ФУНКЦИИ ЯДРА. РЕПРОДУКЦИЯ КЛЕТОК

В организме человека содержатся только эукариотические (ядерные) типы клеток. Безъядерные структуры (эритроциты, тромбоциты, роговые чешуйки) являются вторичными образованиями, так как они образуются из ядерных клеток в результате их специфической дифференцировки.

Большинство клеток содержит одно ядро, лишь редко встречаются двухядерные и многоядерные клетки. Форма ядра чаще всего округлая (сферическая) или овальная. В зернистых лейкоцитах ядро подразделяется на сегменты. Локализуется ядро обычно в центре клетки, но в клетках эпителиальной ткани может быть сдвинуто к базальному полюсу.

Структурные элементы ядра четко выражены только в определенный период клеточного цикла – в интерфазу. В период деления клетки (митоза или мейоза) происходят выраженные изменения структур клеток: одни исчезают, другие значительно преобразуются.

Структурные элементы ядра

Структурные элементы ядра, перечисленные ниже, бывают хорошо выражены только в интерфазе:

1) хроматин;

2) ядрышко;

3) кариоплазма;

4) кариолемма.

Хроматин представляет собой вещество, хорошо воспринимающее краситель (хромос), откуда и произошло его название. Хроматин состоит из хроматиновых фибрилл толщиной 20 – 25 км, которые могут располагаться в ядре рыхло или компактно.

На этом основании можно выделить эухроматин – рыхлый (или деконденсированный) хроматин, слабо окрашиваемый основными красителями, и гетерохроматин – компактный (или конденсированный) хроматин, хорошо окрашиваемый основными красителями.

При подготовке клетки к делению в ядре происходит спирализация хроматиновых фибрилл и превращение хроматина в хромосомы. После деления в ядрах дочерних клеток происходит деспирализация хроматиновых фибрилл, и хромосомы снова преобразуются в хроматин. Таким образом, хроматин и хромосомы являются различными состояниями одного и того же вещества.

По химическому строению хроматин состоит из:

1) дезоксирибонуклеиновой кислоты (ДНК) – 40%;

2) белков – около 60%;

3) рибонуклеиновой кислоты (РНК) – 1%.

Ядерные белки представлены двумя формами:

1) щелочными (гистоновыми) белками – 80 – 85%;

2) кислыми белками – 15 – 20%.

Гистоновые белки связаны с ДНК и образуют дезоксинуклеопротеид, представляющий собой хроматиновые фибриллы, отчетливо видимые при электронной микроскопии. На определенных участках хроматиновых фибрилл осуществляется транскрипция с ДНК на различные РНК, с помощью чего в последующем происходит синтез белковых молекул. Процессы траскрипции в ядре осуществляются только на свободных хромосомных фибриллах, т. е. на эухроматине. В конденсированном хроматине эти процессы не осуществляются, поэтому гетерохроматин называют неактивным хроматином.

Соотношение эухроматина и гетерохроматина является показателем синтетической активности клетки. На хроматиновых фибриллах в S-периоде интерфазы осуществляется редупликация ДНК. Эти процессы могут протекать также и в гетерохроматине, но значительно дольше.

Ядрышко – сферическое образование (1 – 5 мкм в диаметре), хорошо воспринимающее основные красители и располагающееся среди хроматина. В одном ядре может содержаться от 1 до 4 и даже более ядрышек. В молодых и часто делящихся клетках размер ядрышек и их количество увеличены. Ядрышко не является самостоятельной структурой. Оно формируется только в интерфазе, в определенных участках некоторых хромосом – ядрышковых организаторах, в которых содержатся гены, кодирующие молекулу рибосомальной РНК. В области ядрышкового анализатора осуществляется транскрипция с ДНК. В ядрышке происходит соединение рибосомальной РНК с белком и образование субъединицы рибосомы.

Микроскопически в ядрышке различают:

1) фибриллярный компонент (локализуется в центральной части ядрышка и представляет собой нити рибонуклеопротеида (РНП));

2) гранулярный компонент (локализуется в периферической части ядрышка и представляет собой скопление субъединиц рибосом).

В профазе митоза, когда происходит спирализация хроматиновых фибрилл и образование хромосом, процессы транскрипции РНК и синтеза субъединицы рибосом прекращаются, ядрышко исчезает. По окончании митоза в ядрах вновь образованных клеток происходит деконденсация хромосом, появляется ядрышко.

Кариоплазма (нуклеоплазма или ядерный сок), состоит из воды, белков и белковых комплексов (нуклеопротеидов, гликопротеидов), аминокислот, нуклеотидов, сахаров. Под световым микроскопом кариоплазма бесструктурна, однако при электронной микроскопии в ней можно обнаружить мелкие гранулы (15 нм), состоящие из рибонуклеопротеидов. Белки кариоплазмы являются в основном белками-ферментами, в том числе ферментами гликолиза, осуществляющими расщепление углеводов с образованием АТФ.

Негистоновые белки (кислые) образуют в ядре структурную сеть (ядерный белковый матрикс), которая вместе с ядерной оболочкой принимает участие в создании внутренней среды.

При участии кариоплазмы осуществляется обмен веществ в ядре, взаимодействие ядра и цитоплазмы.

Кариолемма – ядерная оболочка, которая отделяет содержимое ядра от цитоплазмы (барьерная функция), в то же время обеспечивает регулируемый обмен веществ между ядром и цитоплазмой. Ядерная оболочка принимает участие в фиксации хроматина.

Кариолемма состоит из двух билипидных мембран, внешней и внутренней ядерных мембран, разделенных перинуклеарным пространством шириной 20 – 100 нм. В кариолемме имеются поры диаметром 80 – 90 нм. В области пор внешняя и внутренняя ядерные мембраны переходят друг в друга, а перинуклеарное пространство оказывается замкнутым. Просвет поры закрывается специальным структурным образованием – комплексом поры, который состоит из фибриллярного и гранулярного компонентов. Гранулярный компонент представлен белковыми гранулами диаметром 25 нм, располагающимися по краю поры в 3 ряда. От каждой гранулы отходят фибриллы и соединяются в центральной грануле, располагающейся в центре поры. Комплекс поры играет роль диафрагмы, регулирующей ее проницаемость. Размеры поры стабильные для данного типа клетки, но число пор может меняться при ее дифференцировке. В ядрах сперматозоидов поры отсутствуют. На наружной поверхности ядерной мембраны могут локализоваться прикрепленные рибосомы. Кроме того, наружная ядерная мембрана может продолжаться в каналы ЭПС.

Функции ядер соматических клеток:

1) хранение генетической информации, закодированной в молекулах ДНК;

2) репарация (восстановление) молекул ДНК после их повреждения с помощью специальных репаративных ферментов;

3) редупликация (удвоение) ДНК в синтетическом периоде интерфазы;

4) передача генетической информации дочерним клеткам во время митоза;

5) реализация генетической информации, закодированной в ДНК, для синтеза белка и небелковых молекул: образование аппарата белкового синтеза (информационной, рибосомальной и транспортных РНК).

Функции ядер половых клеток:

1) хранение генетической информации;

2) передача генетической информации при слиянии женских и мужских половых клеток.

Клеточный (жизненный) цикл

Клеточный (или жизненный) цикл клетки – время существования клетки от деления до следующего деления или от деления до смерти. Для разных типов клеток клеточный цикл различен.

В организме млекопитающих и человека различают следующие типы клеток, локализующиеся в разных тканях и органах:

1) часто делящиеся клетки (малодифференцированные клетки эпителия кишечника, базальные клетки);

2) редко делящиеся клетки (клетки печени – гепатоциты);

3) неделящиеся клетки (нервные клетки центральной нервной системы, меланоциты и др.).

Жизненный цикл у этих клеточных типов различен.

Жизненный цикл у часто делящихся клеток – время их существования от начала деления до следующего деления. Жизненный цикл таких клеток нередко называют митотическим циклом.

Такой клеточный цикл подразделяется на два основных периода:

1) митоз (или период деления);

2) интерфазу (промежуток жизни клетки между двумя делениями).

Выделяют два основных способа размножения (репродукции) клеток.

1. Митоз (кариокенез) – непрямое деление клеток, присущее в основном соматическим клеткам.

2. Мейоз (редукционное деление) характерен только для половых клеток.

Имеются описания и третьего способа деления клеток – амитоза (или прямого деления), которое осуществляется путем перетяжки ядра и цитоплазмы с образованием двух дочерних клеток или одной двухядерной. Однако в настоящее время считают, что амитоз характерен для старых и дегенерирующих клеток и является отражением патологии клетки.

Указанные два способа деления клеток подразделяются на фазы или периоды.

Митоз подразделяется на четыре фазы:

1) профазу;

2) метафазу;

3) анафазу;

4) телофазу.

Профаза характеризуется морфологическими изменениями ядра и цитоплазмы.

В ядре происходят следующие преобразования:

1) конденсация хроматина и образование хромосом, состоящих из двух хроматид;

2) исчезновение ядрышка;

3) распад кариолеммы на отдельные пузырьки.

В цитоплазме происходят следующие изменения:

1) редупликация (удвоение) центриолей и расхождение их к противоположным полюсам клетки;

2) формирование из микротрубочек веретена деления;

3) редукция зернистой ЭПС и также уменьшение числа свободных и прикрепленных рибосом.

В метафазе происходит следующее:

1) образование метафазной пластинки (или материнской звезды);

2) неполное обособление сестринских хроматид друг от друга.

Для анафазы характерно:

1) полное расхождение хроматид и образование двух равноценных дипольных наборов хромосом;

2) расхождение хромосомных наборов к полюсам митотического веретена и расхождение самих полюсов.

Для телофазы характерны:

1) деконденсация хромосом каждого хромосомного набора;

2) формирование из пузырьков ядерной оболочки;

3) цитотомия, (перетяжка двухядерной клетки на две дочерние самостоятельные клетки);

4) появление ядрышек в дочерних клетках.

Интерфазу подразделяют на три периода:

1) I – J1 (или пресинтетический период);

2) II – S (или синтетический);

3) III – J2 (или постсинтетический период).

В пресинтетическом периоде в клетке происходят следующие процессы:

1) усиленное формирование синтетического аппарата клетки – увеличение числа рибосом и различных видов РНК (транспортной, информационной, рибосомальной);

2) усиление синтеза белка, необходимого для роста клетки;

3) подготовка клетки к синтетическому периоду – синтез ферментов, необходимых для образования новых молекул ДНК.

Для синтетического периода характерно удвоение (редупликация) ДНК, что приводит к удвоению плоидности диплоидных ядер и является обязательным условием для последующего митотического деления клетки.

Постсинтетический период характеризуется усиленным синтезом информационной РНК и всех клеточных белков, особенно тубулинов, необходимых для формирования веретена деления.

Клетки некоторых тканей (например, гепатоциты) по выходе из митоза вступают в так называемый J0-период, во время которого они выполняют свои многочисленные функции в течение ряда лет, при этом не вступая в синтетический период. Только при определенных обстоятельствах (при повреждении или удалении части печени) они вступают в нормальный клеточный цикл (или в синтетический период), синтезируя ДНК, а затем митотически делятся. Жизненный цикл таких редко делящихся клеток можно представить следующим образом:

1) митоз;

2) J1-период;

3) J0-период;

4) S-период;

5) J2-период.

Большинство клеток нервной ткани, особенно нейроны центральной нервной системы, по выходе из митоза еще в эмбриональном периоде в дальнейшем не делятся.

Жизненный цикл таких клеток состоит из следующих периодов:

1) митоза – I период;

2) роста – II период;

3) длительного функционирования – III период;

4) старения – IV период;

5) смерти – V период.

На протяжении длительного жизненного цикла такие клетки постоянно регенерируют по внутриклеточному типу: белковые и липидные молекулы, входящие в состав разнообразных клеточных структур, постепенно заменяются новыми, т. е. клетки постепенно обновляются. На протяжении жизненного цикла в цитоплазме неделящихся клеток накапливаются различные, прежде всего липидные включения, в частности липофусцин, рассматриваемый в настоящее время как пигмент старения.

Мейоз – способ деления клеток, при котором происходит уменьшение числа хромосом в дочерних клетках в 2 раза, характерен для половых клеток. В данном способе деления отсутствует редупликация ДНК.

Кроме митоза и мейоза, выделяется также эндорепродукция, не приводящая к увеличению количества клеток, но способствующая увеличению количества работающих структур и усилению функциональной способности клетки.

Для данного способа характерно, что после митоза клетки сначала вступают в J1-, а затем в S-период. Однако такие клетки после удвоения ДНК не вступают в J2-период, а затем в митоз. В результате этого количество ДНК становится увеличенным вдвое – клетка превращается в полиплоидную. Полиплоидные клетки могут вновь вступать в S-период, в результате чего они увеличивают свою плоидность.

В полиплоидных клетках увеличивается размер ядра и цитоплазмы, клетки становятся гипетрофированными. Некоторые полиплоидные клетки после редупликации ДНК вступают в митоз, однако он не заканчивается цитотомией, так как такие клетки становятся двухъядерными.

Таким образом, при эндорепродукции не происходит увеличения числа клеток, но увеличивается количество ДНК и органелл, следовательно, и функциональная способность полиплоидной клетки.

Способностью к эндорепродукции обладают не все клетки. Наиболее характерна эндорепродукция для печеночных клеток, особенно с увеличением возраста (например, в старости 80% гепатоцитов человека являются полиплоидными), а также для ацинозных клеток поджелудочной железы и эпителия мочевого пузыря.

Реакция клеток на внешнее воздействие

Данная морфология клеток не является стабильной и постоянной. При воздействии на организм различных неблагоприятных факторов внешней среды в строении клетки происходят различные изменения. В зависимости от факторов воздействия изменение клеточных структур происходит неодинаково в клетках разных органов и тканей. При этом изменения клеточных структур могут быть приспособительными и обратимыми или дезадаптивными, необратимыми (патологическими). Определить границу между обратимыми и необратимыми изменениями не всегда возможно, так как адаптивные могут перейти в дезадаптивные при дальнейшем действии фактора внешней среды.

Изменения в ядре при действии факторов внешней среды:

1) набухание ядра и смещение его на периферию клетки;

2) расширение перинуклеарного пространства;

3) образование инвагинаций кариолеммы (впячивание внутрь ядра отдельных участков его оболочки);

4) конденсация хроматина;

5) пикноз (сморщивание ядра и уплотнение (коагуляция хроматина));

6) кариорексис (распад ядра на фрагменты);

7) кариолизис (растворение ядра).

Изменения в цитоплазме:

1) уплотнение, а затем набухание митохондрий;

2) дегрануляция зернистой ЭПС (слущивание рибосом и фрагментация канальцев на отдельные вакуоли);

3) расширение цистерн и распад на вакуоли пластинчатого комплекса Гольджи;

4) набухание лизосом и активация их гидролаз;

5) увеличение числа аутофагосом;

6) распад веретена деления и развитие патологического митоза в процессе митоза.

Изменения цитоплазмы могут быть обусловлены:

1) структурными изменениями плазмолеммы, что приводит к усилению ее проницаемости и гидратации гиалоплазмы;

2) нарушением обмена веществ, что приводит к снижению содержания АТФ;

3) снижением расщепления или увеличением синтеза включений (гликогена, липидов) и их избыточном накоплением.

После устранения неблагоприятных факторов внешней среды адаптивные изменения структур исчезают и морфология клетки полностью восстанавливается. При развитии неадаптивных изменений даже после устранения действия неблагоприятных факторов внешней среды изменения продолжают нарастать, и клетка погибает.

Тема 6. ОБЩАЯ ЭМБРИОЛОГИЯ

Определение и составные части эмбриологии

Эмбриология – наука о закономерностях развития животных организмов от момента оплодотворения до рождения (или вылупливания на яйца). Следовательно, эмбриология изучает внутриутробный период развития организма, т. е. часть онтогенеза.

Онтогенез – развитие организма от оплодотворения до смерти, подразделяется на два периода:

1) эмбриональный (эмбриогенез);

2) постэмбриональный (постнатальный).

Развитию любого организма предшествует прогенез.

Прогенез включает в себя:

1) гаметогенез – образование половых клеток (сперматогенез и овогенез);

2) оплодотворение.

Классификация яйцеклеток

В цитоплазме большинства яйцеклеток содержатся включения – лецитин и желток, содержание и распределение которых значительно отличаются у различных живых организмов.

По содержанию лецитина можно выделить:

1) алецитарные яйцеклетки (безжелтковые). К этой группе относятся яйцеклетки гельминтов;

2) олиголецитарные (маложелтковые). Характерно для яйцеклетки ланцетника;

3) полилецитарные (многожелтковые). Свойственно яйцеклеткам некоторых птиц и рыб.

По распределению лецитина в цитоплазме выделяют:

1) изолецитарные яйцеклетки. Лецитин распределяется в цитоплазме равномерно, что характерно для олиголецитарных яйцеклеток;

2) телолецитарные. Желток концентрируется на одном из полюсов яйцеклетки. Среди телолецитарных яйцеклеток выделяют умеренно телолецитарные (характерны для амфибий), резко телолецитарные (бывают у рыбы и птицы) и центролецитарные (у них желток локализуется в центре, что характерно для насекомых).

Предпосылкой онтогенеза является взаимодействие мужских и женских половых клеток, при этом происходит оплодотворение – процесс слияния женской и мужской половых клеток (сингамия), в результате которого образуется зигота.

Оплодотворение может быть внешним (у рыб и амфибий), при этом мужские и женские половые клетки выходят во внешнюю среду, где и происходит их слияние, и внутренним – (у птиц и млекопитающих), при этом сперматозоиды поступают в половые пути женского организма, в котором и происходит оплодотворение.

Внутреннее оплодотворение, в отличие от внешнего, представляет собой сложный многофазный процесс. После оплодотворения образуется зигота, развитие которой продолжается при внешнем оплодотворении в воде, у птиц – в яйце, а у млекопитающих и человека – в материнском организме (матке).

Периоды эмбриогенеза

Эмбриогенез по характеру процессов, происходящих в зародыше, подразделяется на три периода:

1) период дробления;

2) период гаструляции;

3) период гистогенеза (образования тканей), органогенеза (образования органов), системогенеза (образования функциональных систем организма).

Дробление. Продолжительность жизни нового организма в виде одной клетки (зиготы) продолжается у разных животных от нескольких минут до нескольких часов и даже дней, а затем начинается дробление. Дробление – процесс митотического деления зиготы на дочерние клетки (бластомеры). Дробление отличается от обычного митотического деления следующими особенностями:

1) бластомеры не достигают исходных размеров зиготы;

2) бластомеры не расходятся, хотя и представляют собой самостоятельные клетки.

Различают следующие типы дробления:

1) полное, неполное;

2) равномерное, неравномерное;

3) синхронное, асинхронное.

Яйцеклетки и образующиеся после их оплодотворения зиготы, содержащие небольшое количество лецитина (олиголецитальные), равномерно распространенного в цитоплазме (изолецитальные), делятся полностью на две дочерние клетки (бластомеры) равной величины, которые затем одновременно (синхронно) делятся снова на бластомеры. Такой тип дробления является полным, равномерным и синхронным.

Яйцеклетки и зиготы, содержащие умеренное количество желтка, также дробятся полностью, но образующиеся бластомеры имеют разную величину и дробятся неодновременно – дробление полное, неравномерное, асинхронное.

В результате дробления образуется вначале скопление бластомеров, и зародыш в таком виде носит название морулы. Затем между бластомерами накапливается жидкость, которая отодвигает бластомеры на периферию, а в центре образуется полость, заполненная жидкостью. В этой стадии развития зародыш носит название бластулы.

Бластула состоит из:

1) бластодермы – оболочки из бластомеров;

2) бластоцели – полости, заполненной жидкостью.

Бластула человека – бластоциста. После образования бластулы начинается второй этап эмбриогенеза – гаструляция.

Гаструляция – процесс образования зародышевых листков, образующихся посредством размножения и перемещения клеток. Процесс гаструляции у разных животных протекает неодинаково. Различают следующие способы гаструляции:

1) деламинацию (расщепление скопления бластомеров на пластинки);

2) иммиграцию (перемещение клеток внутрь развивающегося зародыша);

3) инвагинацию (впячивание пласта клеток внутрь зародыша);

4) эпиболию (обрастание медленно делящихся бластомеров быстро делящимися с образованием наружного пласта клеток).

В результате гаструляции в зародыше любого вида животного образуются три зародышевых листка:

1) эктодерма (наружный зародышевый листок);

2) энтодерма (внутренний зародышевый листок);

3) мезодерма (средний зародышевый листок).

Каждый зародышевый листок представляет собой обособленный пласт клеток. Между листками вначале имеются щелевидные пространства, в которые вскоре мигрируют отростчатые клетки, образующие в совокупности зародышевую мезенхиму (некоторые авторы рассматривают ее как четвертый зародышевый листок).

Зародышевая мезенхима образуется путем выселения клеток из всех трех зародышевых листков, главным образом из мезодермы. Зародыш, состоящий из трех зародышевых листков и мезенхимы, носит название гаструлы. Процесс гаструляции у зародышей разных животных существенно отличается как по способам, так и по времени. В образующихся после гаструляции зародышевых листках и мезенхиме содержатся презумптивные (предположительные) зачатки тканей. После этого начинается третий этап эмбриогенеза – гисто– и органогенез.

Гисто– и органогенез (или дифференцировка зародышевых листков) представляет собой процесс превращения зачатков тканей в ткани и органы, а затем и формирование функциональных систем организма.

В основе гисто– и органогенеза лежат следующие процессы: митотическое деление (пролиферация), индукция, детерминация, рост, миграция и дифференцировка клеток. В результате этих процессов вначале образуются осевые зачатки комплексов органов (хорда, нервная трубка, кишечная трубка, мезодермальные комплексы). Одновременно постепенно формируются различные ткани, а из сочетания тканей закладываются и развиваются анатомические органы, объединяющиеся в функциональные системы – пищеварительную, дыхательную, половую и др. На начальном этапе гисто– и органогенеза зародыш носит название эмбриона, который в дальнейшем превращается в плод.

Загрузка...