ГЛАВА 3

Примерно половину знаний о внешнем мире человек приобретает в возрасте до пяти лет. В последующие десять лет он узнает о мире почти все и свои дальнейшие познания о нем (за исключением специальных) пополняет очень медленно. Быть может, потому, что к этому времени он уже успевает приобрести взрослую привычку — узнавая что-либо новое, обязательно спрашивать: «А для чего это?» При знакомстве с квантовой физикой эта вредная привычка очень мешает, потому что на первых порах не ясны ни суть атомных явлений, ни их относительная важность в общей картине. В этой ситуации надо поступать подобно детям, которые учатся говорить. Вначале они слышат непонятные им звуки, затем бессмысленно перебирают и повторяют слова и, наконец, замечают, что между ними существуют логические связи. Постепенно они убеждаются, что сами по себе слова часто ничего не означают, но иногда обретают неожиданный смысл, если произнести их в определенном порядке. Конечно, пройдет немало времени, пока они научатся улавливать самые тонкие оттенки мыслей и настроений за простыми сочетаниями обыденных слов. По существу, только тогда дети и становятся взрослыми.

В этой главе мы узнаем довольно много новых фактов об атомах, волнах и квантах. Быть может, выбор фактов и та уверенность, с которой мы будем их толковать, покажутся вначале не очень обоснованными — как ребенку поступки взрослого человека. Но с этим ничего нельзя поделать. Узнавая впервые непривычную реальность атомной физики, все мы поневоле становимся похожими на детей, вступающих в новый для них мир. Без фактов — нет науки. И чтобы наилучшим образом усвоить их — станем на время детьми, которые всегда больше знают, чем понимают.

Конец прошлого и начало нашего века часто называют героическим периодом физики. Это было время, когда каждый год приносил неожиданные открытия, фундаментальность которых очевидна даже сейчас, более полувека спустя. Одно из таких открытий связано все с той же трубкой Крукса.

8 ноября 1895 г. в лаборатории университета в Вюрцбурге Вильгельм Конрад Рентген (1845—1923), изучая катодные лучи, обнаружил новое излучение, которое возникало в том месте анода, куда падал пучок электронов. Свойства этого излучения были пугающе необычны: оно без труда пронизывало человеческое тело и даже закрытые дверцы сейфов.

Одного этого открытия было бы достаточно, чтобы нарушить привычный рабочий распорядок многих лабораторий мира. Но эпоха открытий только начиналась. Несколько месяцев спустя, в марте 1896 г., Антуан Анри Беккерель (1852—1908) открыл новый тип излучения, еще более странный: оно возникало самопроизвольно в куске урановой руды. Последующие опыты показали, что оно состояло из электронов, гамма-квантов и положительно заряженных частиц, которые Резерфорд назвал α-частицами.

Некоторые вещества (например, ZnS) начинали светиться, если на них попадал пучок α-частиц. Это позволило все тому же Уильяму Круксу в 1903 г. изобрести спинтарископ — прибор, который позволял видеть вспышки от единичных α-частиц, попадавших на экран из сернистого цинка.

Теперь эти два открытия хорошо известны, но мы о них все-таки напомнили, ибо без них история атома была бы все-таки неполной.

ПЛАНЕТАРНЫЙ АТОМ

В начале века в физике бытовали самые разные и часто фантастические представления о строении атома. Например, ректор Мюнхенского университета Фердинанд Линдеман (ему принадлежит доказательство трансцендентности числа π) в 1905 г. утверждал, что «атом кислорода имеет форму кольца, а атом серы — форму лепешки». Продолжала жить и теория «вихревого атома» лорда Кельвина, согласно которой атом устроен подобно кольцам дыма, выпускаемым изо рта опытным курильщиком. (О ней Кирхгоф говорил: «Это прекрасная теория, потому что она исключает любую другую».)

Но большинство физиков склонялось к мысли, что прав Дж. Дж. Томсон: атом — это равномерно положительно заряженный шар диаметром 10-8 см, внутри которого плавают отрицательные электроны (или корпёсли, как писали в русских изданиях начала века), размеры которых 10-13 см. Сам Джи-Джи — как его называли ученики — относился к своей модели без энтузиазма, а часть физиков представляла себе атом совсем иначе.

Одни об этом говорили вслух. Среди них были Джонстон Стоней, предполагавший еще в 1891 г., что «электроны движутся вокруг атома, подобно спутникам планет»; Жан Перрен, пытавшийся в 1901 г. представить себе «нуклеарнопланетарную структуру атома»; японский физик Хантаро Нагаока, утверждавший в 1903 г., что «пространства внутри атома чрезвычайно громадны по сравнению с размерами самих, образующих его, электрических ядрышек, иными словами, атом представляет своего рода сложную астрономическую систему, подобную кольцу Сатурна». С этими утверждениями были согласны многие: сэр Оливер Лодж, французский физик Поль Ланжевен, норвежский ученый Карл Антон Бьеркнес — этот список можно продолжить.

Другие, как Петр Николаевич Лебедев, доверяли подобные мысли только своему дневнику: в 1887 г. ему казалось, что частота излучения атомов должна определяться частотой вращения электрона по орбите. А голос известного ученого-народника Николая Морозова не был слышен сквозь стены шлиссельбургской крепости.

Но ни один сторонник идеи планетарного атома не мог объяснить главного: устойчивости системы, состоящей из положительной сердцевины и электронов, которые вокруг нее вращаются.

Действительно, на круговой орбите электрон движется ускоренно и, следовательно, по теории Максвелла — Лоренца, должен терять энергию на излучение. Это излучение настолько интенсивно, что уже через 10-11 с электрон обязан упасть на положительный центр притяжения. (Этот результат, полученный немецким ученым Шоттом в 1904 г., надолго станет решающим аргументом во всех спорах о структуре атома.)

Ничего похожего в природе не происходит: реальный атом не только устойчив, но и восстанавливает свою структуру после разрушений, как будто бы свидетельствуя тем самым в пользу модели Томсона. Однако в физике уже более двухсот лет принято правило: окончательный выбор между гипотезами вправе сделать только опыт. Такой опыт поставил в 1909 г. Эрнест Резерфорд (1871—1937) со своими «мальчиками», как он называл своих сотрудников.

Представьте себе крупного и шумного человека, который принужден сидеть в темной комнате и, глядя в микроскоп, считать на экране спинтарископа вспышки — сцинтилляции (от лат. scintilla — искра) α-частиц. Работа изнурительная: уже через две минуты глаза устают. Ему помогают опытный исследователь Ганс Гейгер (1882—1945) и двадцатилетний лаборант Эрнст Марсден (1889— 1970). Их прибор несложен: ампула с радием-С, испускающим α-частицы, диафрагма, которая выделяет из них узкий пучок и направляет его на экран из сернистого цинка, и микроскоп, через который наблюдают сцинтилляции α-частиц на экране. Место появления очередной сцинтилляции предугадать нельзя — они возникают беспорядочно, но так, что в целом на экране получается довольно резкое изображение щели диафрагмы.

Если на пути α-частиц поставить металлическую фольгу, то вместо резкого изображения щели на экране возникает размытая полоса. Она лишь немного шире изображения щели, получаемого в первом случае: частицы отклоняются от прямолинейного пути в среднем всего на 2°, однако несложный расчет показывает: чтобы объяснить даже такие небольшие отклонения, нужно допустить, что в атомах фольги могут возникать огромные электрические поля напряженностью свыше 200 кВ/см. В положительном шаре атома Томсона таких напряженностей быть не может. Столкновения с электронами — также не в счет: ведь по сравнению с ними α-частица, летящая со скоростью 20 км/с, все равно, что пушечное ядро рядом с горошиной. И все же пути α-частиц искривлялись. В поисках разгадки Резерфорд предложил Марсдену проверить: а не могут ли α-частицы отражаться от фольги назад? С точки зрения модели Томсона предположение совершенно бессмысленное: пушечное ядро не может отразиться от горошины. Прошло два года. За это время Гейгер и Марсден сосчитали более миллиона сцинтилляций и доказали, что назад отражается примерно одна α-частица из 8 тысяч.

7 марта 1911 г. Манчестерское философское общество — то самое, президентом которого был когда-то Джон Дальтон, — услышало доклад Резерфорда «Рассеяние α- и β-лучей и строение атома». В тот день слушатели узнали, что атом подобен Солнечной системе: он состоит из ядра и электронов, которые обращаются вокруг него на расстояниях примерно 10-8 см. Размеры ядра очень малы — всего 10-13—10-12 см, но в нем заключена практически вся масса атома. Заряд ядра положителен и численно равен примерно половине атомной массы элемента.

Сравнение с Солнечной системой не случайно: диаметр Солнца (1,4∙106 км) почти во столько же раз меньше размеров Солнечной системы (6∙109 км), во сколько размеры ядер (10-12 см) меньше диаметра атома (10-8 см).

Мы настолько свыклись с новыми понятиями, что, объясняя понятия электроники, ссылаемся на телевизор, а рассказывая о механике, приводим в пример паровоз. Поэтому сейчас нам трудно понять тогдашнее недоумение людей, по силе ума равных Резерфорду. Действительно, ведь все так прозрачно: просто α-частица отражается от ядер атомов. К этой картине мы привыкаем со школы. Но чтобы нарисовать ее в первый раз, необходима была выдающаяся научная смелость. Прежде чем эта картина попала в учебники, пришлось не только сосчитать свыше миллиона сцинтилляций: нужно было (как вспоминал в конце жизни Гейгер) «преодолеть такие трудности, смысл которых мы сейчас даже понять не в состоянии»; нужно было сначала в течение десяти (!) лет доказывать, что α-частицы — не что иное, как ядра атомов гелия. Обо всем этом постепенно забыли: результат был важнее и проще, чем путь, к нему приведший. О трудностях пути теперь можно было забыть: настало время думать о следствиях этого открытия.

Сообщение Резерфорда физики приняли сдержанно. Сам он в течение двух лет также не очень сильно настаивал на своей модели, хотя и был уверен в безошибочности опытов, которые к ней привели. Причина была все та же: если верить электродинамике, такая система существовать не может, поскольку электрон, вращающийся по ее законам, неизбежно и очень скоро упадет на ядро. Приходилось выбирать: либо электродинамика, либо планетарный атом. Физики молча выбрали первое. Молча, потому что опыты Резерфорда нельзя было ни забыть, ни опровергнуть. Физика атома зашла в тупик. И чтобы выйти из него, нужен был Нильс Бор.

СПЕКТРАЛЬНЫЕ СЕРИИ

Независимо от гипотез о строении атома ученые рано поняли, что знания о нем можно получить, изучая его линейчатый спектр (так музыкант по тону струны определяет ее длину, а по аккорду узнает инструмент). В физике всякое изучение в конечном итоге сводится к измерению. Поэтому прежде всего необходимо было научиться измерять длины волн как можно точнее, то есть еще пристальнее, чем Фраунгофер, исследовать структуру линейчатого спектра.

Первый спектроскоп Кирхгофа был довольно примитивным: две половинки зрительной трубы, коробка из-под сигар и призма, сделанная, правда, самим Фраунгофером. Впоследствии этот спектроскоп был значительно улучшен, но все-таки со временем он должен был уступить место более совершенным приборам с дифракционной решеткой, которые особенно искусно научился делать Генри Роуланд (1848— 1901) — представитель тогда еще молодой американской науки. С помощью этого прибора в течение нескольких десятилетий трудами Карла Рунге (1856—1927), Генриха Кайзера (1853—1940) и особенно лаборатории Фридриха Пашена (1865—1940) в Тюбингене были точно измерены длины волн десятков тысяч спектральных линий различных элементов и аккуратно записаны в длинные таблицы. (К 1913 г. общее число работ по спектральному анализу перевалило за 50 тысяч.) В частности, оказалось, что знаменитая желтая линия D в спектре натрия состоит из двух очень близко расположенных линий: D1 =5895,9236 Å и D2 = 5889,9504 Å. (1 Å = 0,1 нм = 10-8 см — один ангстрем равен примерно диаметру атома.)

Но высшая задача любой науки не в том, чтобы накоплять факты, а в том, чтобы установить связи между явлениями и найти их общую причину. Всем было ясно, что в этих длинных таблицах заключена обширная информация о структуре атома. Но как ее оттуда извлечь? (Вероятно, такие же чувства испытывали египтологи до Шампольона, глядя на иероглифы.)

Первый шаг всегда труден и незаметен. Поэтому об Иоганне Якобе Бальмере (1825—1898), который впервые обнаружил какую-то систему в этом хаосе чисел, мы знаем очень мало. Известно, что родился он 1 мая 1825 г. в маленьком городке Лаузене Базельского кантона, там же окончил среднюю школу, а затем изучал математику в университетах Карлсруэ, Берлина и Базеля. В 1869 г. он стал доктором философии и приват-доцентом Базельского университета, но вскоре оставил профессорское кресло и предпочел преподавать физику в женской гимназии. Бальмеру было уже 60 лет, когда он вдруг заметил, что четыре спектральные линии в видимой части спектра водорода расположены не беспорядочно, а образуют серию, которую можно описать единой формулой

где λ — длина волны спектральной линии в ангстремах, k = 3, 4, 5, 6 — целые числа, а постоянная b= 3645,6 Å.

Это простое соотношение заслуживает пристального внимания. Дело в том, что оно точное, в чем каждый желающий может легко убедиться сам. Взгляните на таблицу, которую Бальмер составил в 1885 г.:

В первом столбце приведены названия спектральных линий, данные им Фраунгофером, во втором — длины волн этих линий, которые незадолго перед этим тщательно измерил шведский физик Ионас Андерс Ангстрем (1814—1874). (Единица длины ангстрем названа в его честь.) В третьем столбце представлены длины волн, вычисленные по формуле Бальмера при целых числах k, приведенных в четвертом столбце. Совпадение измеренных и вычисленных значений λ поразительное. Такие совпадения не могут быть случайными, и потому открытие Бальмера не затерялось в архивах, а привело к целой серии новых исследований.

Иногда Бальмера изображают чудаковатым школьным учителем, который от нечего делать делил и умножал различные числа, пока случайно не набрел на простые связи между ними. Это неверно. Он был глубоко образованным человеком, писал статьи по разным вопросам проективной геометрии и постоянно возвращался к самым сложным проблемам теории познания. Например, в 1868 г. он опубликовал работу, в которой пытался выяснить соотношение между научными исследованиями и системами мировой философии. Сам он с юношеских лет находился под влиянием пифагорейцев с их учением о гармонии и мистической роли целых чисел в природе. Как и древние, Бальмер был убежден, что тайну единства всех наблюдаемых явлений следует искать в различных комбинациях целых чисел. Поэтому, когда его внимание привлек набор четко ограниченных спектральных линий, он подошел к этому явлению природы с уже готовой меркой. Его ожидания оправдались: оказалось, что длины волн спектральных линий связаны между собой простыми рациональными соотношениями.

С открытия Бальмера начинается целая эпоха в науке об атоме. По существу, вся теория атома начинается с его формулы. Тогда этого еще не знали, но, вероятно, почувствовали. Уже в 1886 г. Рунге заметил, что формула Бальмера становится прозрачнее, если ее записать не для длины волны λ, а для частоты v = c/λ (здесь с — 3∙1010 см/с — скорость света в вакууме):

А в 1890 г. шведский физик Иоганн Роберт Ридберг (1854— 1919) предложил записывать формулу в том виде, который она сохранила до сих пор:

Здесь n и k — целые числа, а постоянная R = 109677,58 см-1 называется с тех пор постоянной Ридберга для атома водорода. Полагая в этой формуле n = 2, можно вычислить всю серию Бальмера, измеренную впоследствии вплоть до k ≈ 50.

Тогда же возникла мысль записывать частоту в виде разности двух величин — термов Тn и Тk:

Пока что в такой записи не видно глубокого смысла, да и особых преимуществ тоже. Однако в 1908 г. молодой, рано умерший швейцарский ученый Вальтер Ритц (1878—1909) объяснил преимущества такой формы записи. Продолжая работы Ридберга, он сформулировал так называемый комбинационный принцип: частоту произвольной линии в спектре

любого атома можно представить как разность двух термов Тn и Tk:

vnk=Tn — Tk

даже в том случае, когда отдельный терм Тn уже нельзя записать в таком простом виде, как для атома водорода.

На первый взгляд в этом нет никакого выигрыша: просто от набора частот мы перешли к набору термов. Однако это не так: попытайтесь прочесть книгу, в которой отсутствуют промежутки между словами, и вы сразу почувствуете разницу. Особенно если эта книга на неизвестном языке. Кроме того, чисел стало значительно меньше: чтобы определить частоты 50 линий водорода, которые были известны в начале века, достаточно знать десяток термов.

Неожиданно в хаосе чисел обнаружилась система. Беспорядочный набор линий распался на серии. В непонятной книге чисел стали различать отдельные слова. В простейшем случае — атома водорода — удалось разглядеть даже буквы, из которых они составлены. Однако смысл слов и происхождение букв по-прежнему оставались неизвестными: иероглифы спектральных линий еще не заговорили, хотя и не казались теперь столь загадочными. Стремление осмыслить структуру спектра и в самом деле напоминало попытки почти вслепую расшифровать незнакомый текст. Утомительная работа длилась больше четверти века, и отсутствие общей идеи отталкивало от нее глубокие умы. Необходимо было найти ключ к шифру.

Это сделал Нильс Бор в 1913 г.

ФОТОНЫ

Излучение возникает в результате процессов, происходящих в атоме, однако за его пределами существует независимо. Иногда оно состоит из волн одинаковой длины — такое излучение называют монохроматическим. Линейчатый спектр атома состоит из набора монохроматических волн, и наборы эти различны для разных атомов.

До сих пор нас большей частью интересовала только одна характеристика волн — их частота. Однако излучение — сложное явление, и его свойства нельзя свести только к частоте. Солнечный луч прозрачен, но вполне материален, он даже имеет массу: каждую секунду на квадратный метр освещенной поверхности Земли падает 7,3∙10-12 г света.

Действие излучения легче всего сопоставлять с морскими волнами, набегающими на берег: после работ Христиана Гюйгенса (1629—1695) и Огюстена Жана Френеля (1788—1827) такая аналогия стала бесспорной. Каждый год приносил этому новые доказательства в явлениях интерференции и дифракции света. В 1873 г. Джемс Клерк Максвелл (1831 — 1879) теоретически предсказал, что свет, падая на поверхность тел, должен оказывать на них давление (также в полном согласии с нашей аналогией). Световое давление — очень тонкий эффект, но Петр Николаевич Лебедев (1866— 1912) в 1899 г. все-таки обнаружил его экспериментально. Казалось, теперь волновая природа света доказана настолько надежно, что всякие дальнейшие опыты для ее проверки не имеют смысла. «Со времен Юнга и Френеля мы знаем, что свет — это волновое движение... Сомневаться в этих фактах больше невозможно; опровергать эти взгляды непостижимо для физика. С точки зрения рода человеческого волновая теория является очевидностью», — писал в 1889 г. Генрих Рудольф Герц (1857—1894), трудами которого была экспериментально доказана волновая природа электромагнитного излучения и тем самым — справедливость уравнений Максвелла.

К счастью, опыты в физике ставят не только для проверки теорий. В 1887 г., за два года до того, как Генрих Герц написал приведенные строки, он сам же обнаружил явление, которое можно объяснить только корпускулярной природой излучения. Суть этого явления, которое впоследствии назовут фотоэффектом, пересказать довольно просто.

Если свет ртутной лампы (теперь мы такие лампы называем кварцевыми) направить на металл натрий, то с его поверхности полетят электроны. В конце века большая часть физиков уже ясно сознавала, что атом сложен, и потому само по себе это явление особенно никого не удивило. Довольно быстро все согласились с тем, что электроны в опыте Герца вылетают из атомов натрия под действием излучения кварцевой лампы. Странно и непонятно было другое — законы этого явления. Установлены они были Александром Григорьевичем Столетовым (1839—1896) и Филиппом Ленардом (1862—1947) на рубеже XX века. Эти ученые измеряли число выбитых электронов и их энергию в зависимости от интенсивности и частоты падающего излучения.

Мы уже знаем, что лучи, возникающие внутри атомов, различаются между собой не только длиной волны λ (или, что то же, частотой ν = c/λ), но также интенсивностью. Это ясно видно на спектрограммах: некоторые линии там значительно ярче других, например в желтом дублете натрия линия D2 вдвое ярче линии D1. Наш предыдущий опыт и знания о волнах подсказывают нам, что действие волн тем заметнее, чем больше их амплитуда, то есть увеличивая амплитуду световых волн, мы тем самым повышаем их интенсивность. Интенсивность излучения можно поднять и по-другому, а именно, увеличивая число излучающих атомов. Поэтому если вместо одной ртутной лампы взять две, три, десять, то интенсивность излучения возрастет во столько же раз. Естественно было бы ожидать, что и энергия выбитых электронов вырастет в такой же пропорции.

Но энергия электронов оставалась прежней, менялось лишь их число. Такова первая несообразность, которая ожидала ученых в конце опытов. Зато энергия электронов зависела от частоты падающего излучения, и притом сильно. Кварцевая лампа излучает фиолетовые и ультрафиолетовые лучи. Оказалось, что если вместо них на поверхность натрия направить пучок красных лучей, то электроны не вылетят вообще, как бы много ламп мы ни взяли.

«Если излучение — волновой процесс (а это строго доказано), такого не может быть»,— утверждали одни.

«Но ведь это происходит!» — возражали другие.

Если бы несколько прибрежных утесов неожиданно обрушились на ваших глазах, почти наверное вы бы стали искать внешние причины такой катастрофы. Конечно, волны моря постепенно размывают берег, и время от времени утесы рушатся, но все знают, как редко это бывает. Однако если, обернувшись к морю, вы обнаружите там военный корабль, который ведет по берегу пальбу из орудий главного калибра, то вы сразу догадаетесь, что причина внезапных разрушений — не волны, а снаряды, хотя их энергия и меньше, чем общая энергия морских волн. Но энергия волн равномерно распределена по всему побережью, и нужны века, чтобы мы увидели результаты их ежедневной работы. По сравнению с этой работой энергия снаряда ничтожна, зато она сосредоточена в малом объеме и выделяется мгновенно. Если к тому же снаряд достаточно велик, он разрушит утес. Последнее важно: действительно, все свойства снаряда, кроме размеров, присущи и пуле, однако сокрушить скалу ей не под силу.

Примерно так рассуждал Эйнштейн, когда предложил свое объяснение явления фотоэффекта. Он знал об открытии и сомнениях Планка, но для Эйнштейна с его непредвзятой манерой мышления гипотеза о квантах света не казалась столь ужасной, как самому Планку. Поэтому он был первый, кто не только поверил в нее, но и применил для объяснения новых опытов. Эйнштейн утверждал: свет не только испускается квантами, как того требовала гипотеза Планка, но и распространяется так же — квантами. (Кстати, сам термин «квант» принадлежит ему же: Планк говорил об «элементах энергии»). Поэтому свет, падающий на поверхность металла, подобен не морским волнам, а артиллерийским снарядам. Причем каждый такой снаряд-квант (в 1926 г. Дж. Льюис назовет их фотонами) может выбить из атома только один электрон.

Согласно Планку, энергия кванта равна hv. По мысли Эйнштейна, какая-то часть ее (назовем ее Р) расходуется на то, чтобы вырвать электрон из атома, а остальная часть — на то, чтобы разогнать его до скорости υ, то есть сообщить ему кинетическую энергию T = mυ2/2. Оба эти утверждения можно коротко записать в виде простого уравнения

Стоит принять эту гипотезу — и явление фотоэффекта проясняется. Действительно, пока снаряды малы (красный свет), они не могут выбить электрон из атома (hv), как бы много мы их ни посылали. Если же мы начнем увеличивать их величину (то есть частоту излучения, фиолетовый свет), то в конце концов их энергия станет достаточной для выбивания электронов (hv> Р). Но по-прежнему энергия каждого «снаряда-кванта» будет зависеть только от их величины (то есть от их частоты ν), а не от их числа.

Шестнадцать лет спустя классическую простоту уравнения Эйнштейна Шведская академия наук отметит Нобелевской премией. Но в 1905 г., когда уравнение было написано впервые, на него ополчились все, даже Планк. Он высоко ценил Эйнштейна, искренне хотел ему помочь и потому, убеждая прусское министерство просвещения пригласить его на работу в Берлин, просил «не слишком сильно ставить ему в упрек» гипотезу относительно явлений фотоэффекта.

Планка можно понять: совсем недавно вопреки общепринятым традициям (и даже своему желанию) он ввел в физику квант действия h. Лишь постепенно пришло к нему осознание неизбежности этого шага. Даже в 1909 г. он признавался Эйнштейну: «Я еще плохо верю в реальность световых квант». Однако дело было сделано: «...Планк посадил в ухо физикам блоху»,— говорил Эйнштейн двадцать лет спустя, и она не давала им покоя, хотя они и пытались ее не замечать. Во всяком случае, Планк постарался ввести квант действия так, чтобы не пострадала волновая оптика — здание чрезвычайной красоты, созданное в течение двух столетий. Поэтому, согласно Планку, свет только испускается квантами, но распространяется по-прежнему, как волна: лишь в этом случае удавалось сохранить все результаты волновой оптики.

А Эйнштейн поступал так, как будто до него вообще не существовало физики, или по крайней мере как человек, ничего не знающий об истинной природе света. Здесь сказалась замечательная особенность Эйнштейна: в совершенстве владея логикой, он больше доверял интуиции и фактам, причем случайных фактов в физике для него не существовало. Поэтому в явлениях фотоэффекта он видел не досадное исключение из правил волновой оптики, а сигнал природы о существовании еще неизвестных, но глубоких законов. Так уж случилось, что исторически сначала были изучены волновые свойства света. Только в явлениях фотоэффекта физики впервые столкнулись с его корпускулярными свойствами. У большинства из них инерция мышления была настолько велика, что они отказались этому верить. «Не может быть!» — повторяли они подобно фермеру, впервые в жизни увидевшему жирафа.

Эйнштейн, конечно, знал историю оптики не хуже других. Но его независимый ум равнодушно относился к ее солидному авторитету. Все прежние заслуги оптики для него не имели значения, если они не могли объяснить единственный, но бесспорный опыт. Он глубоко, религиозно, верил в единство природы, и один такой опыт значил для него не меньше, чем вся история оптики. А его честность не позволила ему пройти мимо неугодного факта.

В науке по-настоящему опасны только неверные опыты: опытам принято верить. Но любую гипотезу — какой бы привлекательной она ни была — всегда тщательно проверяют. Даже если она окажется ложной, опыты, которые ее опровергли, часто приводят к результатам более ценным, чем сама гипотеза. Проверили и гипотезу Эйнштейна — она оказалась истинной.

В 1911 г. Милликен, экспериментально проверяя уравнение Эйнштейна, определил из него значение постоянной Планка h. Она совпала с тем значением, которое получил Планк из теории теплового излучения. А вскоре поставили опыт, идея которого в точности аналогична картине разрушения утесов на берегу моря. И снова оказался прав Эйнштейн, а не признанный авторитет волновой оптики.

Конечно, Эйнштейн не отрицал, что волновая оптика все-таки существует. И не оспаривал опытов, доказавших волновую природу света. Просто он довел возникшее противоречие до логического конца и предоставил разрешать его следующему поколению физиков. В 1909 г., выступая в Зальцбурге на собрании Общества немецких естествоиспытателей, он высказывал надежду, что «следующая фаза развития теоретической физики даст нам теорию света, которая будет в каком-то смысле слиянием волновой теории с теорией истечения». Двадцать лет спустя его предвидение сбылось.

Несмотря на единодушные протесты современников, мысль о квантах света не погибла и вскоре дала могучие всходы. Это произошло в 1913 г., когда в лабораторию Резерфорда в Манчестере пришел застенчивый и неторопливый датчанин Нильс Бор.

ПОБЕДА АТОМИСТИКИ

20 мая 1904 г. в Манчестере, где провел лучшие годы своей ученой деятельности Джон Дальтон, с торжественностью, к которой обязывают традиции англичан и значительность события, был отмечен столетний юбилей атомной теории материи.

Победа ее пришла не сразу: даже после работ Дальтона многие долгое время смотрели на атомистику просто как на «любопытную гипотезу, допустимую с точки зрения нашей познавательной способности». Единодушие, с которым философы прошлого века отрицали существование атомов, пошатнуло и у физиков веру в их реальность. Например, Артур Шопенгауэр (1788—1860) отзывался об атомах не иначе, как о «выдумке невежественных аптекарей», а философ и физик Эрнст Мах (1838—1916) называл всех атомистов «общиной верующих» и каждого, кто пытался обратить его в эту веру, прерывал вопросом: «А вы хотя бы один из них видели?» Только в 1910 г., увидав однажды сцинтилляции α-частиц на экране спинтарископа, он сдержанно и с достоинством признал: «Теперь я верю в существование атомов». Маха можно понять: человеку трудно вообразить себе нечто, далее принципиально неделимое. И все же в начале века идея атома победила окончательно: разум человека вновь оказался способным понять даже то, чего он не в состоянии представить. И случилось это гораздо раньше, чем через 300 лет, как предсказывал Людвиг Больцман (1844—1906), трагически погибший в своем одиночестве, так и не дождавшись понимания современников.

Но победа эта все-таки немного запоздала: после работ Томсона и Резерфорда понятие «атом» потеряло свой прежний смысл. Стало ясно, что атом — это не самая простая частица вещества, хотя его и нельзя расщепить средствами химии. «К сожалению, законы природы становятся вполне понятными только тогда, когда они уже неверны»,— говорил Эйнштейн. Это не означает, конечно, что однажды открытые законы вдруг теряют все свое значение. В истории атома — независимо от дальнейших успехов науки — доказательство его реальности (даже в старом смысле ατομος — «неразрезаемый») навсегда останется одной из самых важных ее побед.

Окончательное утверждение атомистики также связано с именем Эйнштейна: в том же 1905 г. независимо от польского физика Мариана Смолуховского (1872—1917) он дал математическое описание броуновского движения. Эту теорию подтвердил экспериментально Жан Перрен, который в 1909 г. по совету Ланжевена предпринял систематические и тщательные исследования броуновского движения. И до Перрена многие физики были убеждены, что истинная причина этих движений — толчки молекул жидкости, которые сами невидимы даже в лучший микроскоп. Но удивительные по изяществу опыты Перрена не просто доказали справедливость этих утверждений — из них следовало нечто большее: непонятное движение частиц в жидкости есть точная модель истинного движения невидимых молекул, увеличенная в несколько тысяч раз. Поэтому, изучая броуновское движение частиц, мы тем самым получаем наглядную картину движений невидимых молекул. (Точно так же, как знание свойств радиоволн дает нам представление о волнах света и даже о рентгеновских лучах.) После этих работ гипотезу об атомах признали все, даже ее знаменитый противник Вильгельм Оствальд (1853—1932). А в 1909 г. тот же Резерфорд, который доказал сложную структуру атома, вместе с Ройдсом дал и наиболее убедительное доказательство атомистической структуры вещества. Вот как это произошло.

Уже давно было замечено, что в минералах, содержащих радиоактивные вещества — торий, уран, радий,— скапливается гелий. Измерили даже, что из 1 г радия в состоянии радиоактивного равновесия выделяется 0,46 мм3 гелия в день, то есть 5,32∙10-9 см3/с. После установления природы α-частиц ничего чудесного в этом факте не было. Но Резерфорд и Ройдс на этом не остановились: они сосчитали число α-частиц, которое вылетает в секунду из 1 г радия. Оно оказалось большим, но вполне определенным: 13,6∙1010 с-1. Все эти α-частицы, вылетевшие за секунду, захватив по два электрона, превращаются в атомы гелия и занимают объем 5,32∙10-9 см3. Следовательно, число атомов в 1 см3

Но ведь это и есть та самая постоянная Лошмидта, которую он вычислил на основании молекулярно-кинетической гипотезы! Действительно, один моль гелия (как и любого одноатомного газа при 0°C и атмосферном давлении) занимает объем 22,4 л и содержит 6,02·1023 атомов, то есть

Совпадение убедительное.

К 1912 г. насчитывалось уже более десяти способов определения постоянной Авогадро и от ее значения зависело объяснение многочисленных и на первый взгляд не связанных между собой явлений, таких, как броуновское движение и голубой цвет неба, вязкость газов и спектр абсолютно черного тела, радиоактивность и законы электролиза. Число ΝA оказалось очень большим, и, чтобы продемонстрировать его огромность, лорд Кельвин предлагал провести мысленный эксперимент: стакан воды с каким-то образом помеченными атомами вылить в океан и, хорошо перемешав его, вновь зачерпнуть воды из океана на другом краю Земли — в стакане окажется 200 меченых молекул воды (в действительности еще больше: около тысячи). Как и количество людей на Земле, число Авогадро не может быть дробным. Более того, это число мы знаем сейчас значительно точнее, чем численность жителей Земли: NА = 6,022136·1023.

«Если бы в результате какой-то мировой катастрофы все накопленные научные знания вдруг оказались бы уничтоженными и к грядущим поколениям живых существ перешла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы наибольшую информацию? Я считаю, что это — атомная гипотеза (можете называть ее не гипотезой, а фактом — это ничего не меняет): все тела состоят из атомов — маленьких телец, которые находятся в беспрерывном движении, притягиваются на небольшом расстоянии, но отталкиваются, если одно из них плотнее прижать к другому.

В одной этой фразе содержится невероятное количество информации о мире, стоит лишь приложить к ней немного воображения и чуть соображения».

Эти слова принадлежат Ричарду Фейнману, нашему современнику, лауреату Нобелевской премии 1965 г. И хотя они почти дословно повторяют Демокрита, понятия и образы, которые мы с этими словами связываем теперь, совсем другие: за 25 столетий об атоме узнали много нового. Это было непросто — просты только результаты науки.

ВОКРУГ КВАНТА

Неразрезаемый атом

На фоне успехов новейшего знания старые аргументы в пользу существования атомов прочно забыты и представляют теперь только исторический интерес. Однако вспомнить некоторые из них небезынтересно.

Прежде всего верующие в атомы задавали своим противникам простой вопрос: «Каким образом одно и то же количество вещества, если оно не построено из атомов, может занимать разные объемы, как мы это наблюдаем, например, при сжатии и расширении газов?» Далее они приводили доказательства малости атомов и огромности их числа, например: кристаллик красителя индиго может окрасить тонну воды. Вспоминали случай, когда один гран (0,062 г) мускуса наполнял большую комнату запахом в течение 20 лет и при этом остался без видимых изменений.

Развитие точных наук подорвало доверие к рассуждениям, даже правдоподобным,— их заменили количественные оценки.

Уже Ньютон оценил толщину мыльных пленок и показал, что она в 50 раз меньше длины световой волны и составляет 10-6 см=100 Å. Вслед за ним многие (включая и лорда Кельвина) неоднократно обращались к изучению мыльных пузырей, и в начале нашего века было доказано, что толщина самой тонкой мыльной пленки всего в 2 раза превышает размеры молекулы.

С тех пор как Бенджамен Франклин вылил ложку масла на поверхность пруда вблизи Лондона, его опыт многократно повторяли в различных вариантах. В частности, Рэлей приготовлял масляные пленки толщиной до 16 Å, а Рентгену в 1890 г. удалось довести толщину таких пленок до 5 Å, что всего в 5 раз превышает диаметр атома водорода.

Фарадей изготовлял из золота листки толщиной до 10-6 см, а осаждением из раствора на стекле получал золотые пленки толщиной 10-7 см, то есть в 10 раз тоньше средних оболочек мыльных пузырей. Такие пленки золота прозрачны, а их толщина всего в 10 раз превышает диаметры атомов.

Среди других попыток определить размеры атомов следует упомянуть несправедливо забытую работу Томаса Юнга (1773—1829): еще в 1805 г., изучая явления капиллярности и поверхностного натяжения жидкостей, он пришел к выводу, что размеры атомов не превышают 10-8 см.

Дифракционная решетка

Неизвестно, как обернулась бы история атома, если бы физики не изобрели дифракционную решетку. Фраунгофер в своих опытах использовал ее уже в 1822 г., Ангстрем сделал главным инструментом своих исследований, и, наконец, Роуланд придал ей почти современную форму. Принцип действия решетки основан на явлении дифракции, то есть способности волн огибать препятствие, если оно сравнимо с их длиной. Волны различной длины осуществляют это по-разному, что позволяет разделить их и точно измерить. Благодаря этому прибору в спектроскопии достигнуты точности измерений, удивительные даже для физики. Уже в начале века удавалось разделить две линии в видимом спектре, если их длины волн отличались друг от друга хотя бы на 10-3 Å (сейчас точность повышена до 10-4 Å).

Представьте себе, что вы захотели измерить длину экватора с точностью до метра. Ясно, что в этой попытке нет нужды, да и особого смысла тоже — просто потому, что результат такого измерения будет зависеть от каждого муравейника на пути. Но в спектроскопии подобные усилия представляют не только спортивный интерес, и дальнейшая история атома убедительно это доказала — вопреки недоверию и насмешкам, которыми они подчас сопровождались. Один из примеров — судьба эталона метра.

Знаменитый платино-иридиевый стержень с двумя рисками, отлитый по решению Конвента и хранящийся под стеклянным колпаком в Международном бюро мер и весов в Севре близ Парижа, оказался неточным. Это подозревали давно: уже в 1829 г. Жак Бабине (1794—1872) предлагал за эталон длины принять длину волны какой-либо спектральной линии «как величину, абсолютно неизменную и независимую даже от космических переворотов». Его идею впервые осуществил Альберт Майкельсон (1852—1931) в 1892 г. Но только в 1960 г. был узаконен такой эталон метра: 1 650 763,73 длины волны красно-оранжевой линии изотопа криптона-86 в вакууме. (В 1983 г. принято новое определение метра, в основу которого положены прецизионные измерения скорости света.)

Что сделал Резерфорд?

В начале века мысли о планетарном строении атома не были такой редкостью, как это принято сейчас думать. Достаточно напомнить, что идею эту уже в 1896 г. (за год до открытия электрона!) использовали Лоренц и Лармор для объяснения открытого Зееманом расщепления спектральных линий в магнитном поле. Эти мысли открыто излагались даже на страницах учебников. В качестве иллюстрации приведем несколько выдержек из III тома курса электричества, изданного в 1907 г. профессором Парижского университета Г. Пелла: «...Атом не является неделимой частичкой материи. Испускание света, дающего спектральные линии, характерные для каждого рода атомов, указывает уже на разнородность атомов. Можно было бы предположить, что атом состоит из очень большого числа корпускул, которые притягиваются к какому-нибудь центру, как планеты притягиваются к Солнцу...

Чтобы атом был нейтрален, необходимо, чтобы положительный электрический заряд, который, как мы предположили, находится в центре атома, был равен по абсолютному значению сумме отрицательных зарядов корпускул, вращающихся вокруг него...

Словом, все световые, электрические, тепловые и механические явления можно объяснить, допустив существование двух различных материй: корпускулы, или отрицательного электрона, и положительного электрона, о котором нам почти ничего не известно. Центральный положительный заряд атома состоит из совокупности положительных электронов, число которых изменяется в зависимости от рода атома, но остается вполне определенным для каждого рода атомов...

Лишне было бы доказывать красоту этой теории, которая дает возможность объяснить все известные до сих пор явления и позволяет связать столько явлений и законов, не имевших, казалось, ничего общего между собой».

Год спустя знаменитый французский физик и математик Анри Пуанкаре (1854—1912) писал столь же определенно: «Все опыты над проводимостью газов... дают нам основание рассматривать атом как состоящий из положительно заряженного центра, по массе равного приблизительно самому атому, причем вокруг этого центра вращаются, тяготея к нему, электроны».

После этих цитат многие разочаруются: Резерфорд не придумал ничего нового. Это обычное и частое заблуждение происходит от непонимания различий между наукой и натурфилософией. В науке действует строгое правило: открыл тот, кто доказал. А доказать что бы то ни было в науке можно лишь с помощью опытов и чисел. Все прежние высказывания опирались на чистое умозрение и потому звучали примерно так: атом, вероятно, может иметь такую-то структуру. Только Резерфорд имел моральное право сказать: «Так есть. Я могу доказать это с числами в руках. И каждый, кто захочет, может проверить их, если повторит мои опыты».

«Сказать оно, конечно, все можно, а ты поди демонстрируй»,— любил повторять Менделеев. «Неважно, кто первый высказал идею: важно, кто взял на себя ответственность за ее реализацию»,— с солдатской прямолинейностью говорил Наполеон. Об этом различии между расплывчатой идеей и научным доказательством всегда следует помнить в спорах о приоритете, которые время от времени вспыхивают в истории науки. В таких случаях, как правило, создателями теорий считают не тех, кто их впервые высказал, а тех, чьи работы — в силу глубоких причин или случайных обстоятельств — оказали решающее влияние на последующее развитие науки. В этом есть несомненный элемент несправедливости. Но история не мыслит категориями человеческой морали: нравственность истории — ее точность и объективность, а ее задача — не успокоение обид, а установление истинной последовательности причин и следствий.

Световое давление

Гипотеза о световом давлении была известна уже во времена Кеплера, который выдвинул ее в 1619 г. для объяснения происхождения и формы хвостов комет. О величине светового давления не было известно ничего и, как всегда в таких случаях, о нем рассказывали баснословные истории. Например, Николай Гартзокер (одно время он был учителем Петра I) в 1696 г. передавал рассказ путешественников, по словам которых «течение вод Дуная значительно медленнее утром, когда лучи солнца противодействуют его движению, и ускоряется после полудня, когда лучи солнца помогают его течению».

В 1746 г. Леонард Эйлер вновь возвратился к мысли о давлении световых волн на освещаемые ими тела, однако эта мысль была отвергнута всеми авторитетными учеными того времени.

До конца прошлого века многочисленные попытки обнаружить световое давление экспериментально оканчивались полной неудачей. Причина этих неудач стала вполне ясной после теоретических работ Максвелла и успешных опытов Лебедева. Оказалось, что световое давление очень мало. Например, даже в ясный безоблачный день среднее давление солнечного света на 1 м2 не превышает веса пяти маковых зернышек (2·10-6 кгс/м2).

Загрузка...