В конце XIX века ученые верили, что в физике все открыто. Однако именно в ближайшие десятилетия были созданы и общая теория относительности, и квантовая механика. Но и эти прозрения не исчерпали таинственной сущности физики. Прежние проблемы разрешились, и появились десятки других. С каждым новым открытием ученые приближаются все к новым загадкам, феноменам, которые не поддаются объяснению. Непонятное подстерегает нас и в космической дали, и в глубинах материи, и в повседневной жизни. Только за последнее десятилетие были сделаны два важных открытия: обнаружены топ-кварки и определена масса нейтрино. А сколько еще предстоит открыть! Похоже, что XXI век вновь будет «веком физики».
Внешний мир представляет собой нечто не зависящее от нас, абсолютное, чему противостоим мы, а поиски законов, относящихся к этому абсолютному, представляются мне самой прекрасной задачей в жизни ученого.
Мы плохо представляем себе положение дел в физике в канун великого открытия Эйнштейна. Тогда казалось, что после XIX века — века открытий, века Максвелла и Фарадея, Ома и Гельмгольца — в этой науке почти не осталось тайн. Профессия физика превращалась на глазах современников в нечто рутинное.
Знаете ли вы, что знаменитый современник Эйнштейна, Макс Планк, мог бы и не стать физиком? Он подумывал о карьере музыканта или классического филолога, хотя, в конце концов, выбрал физику, вопреки советам знакомых, в том числе декана факультета физики Мюнхенского университета Филиппа фон Жолли. Тот считал, что в этой науке почти все открыто и разве что осталось уточнить некоторые частности, например в области термодинамики.
Когда декан, вспоминал Макс Планк, «рассказывал мне об условиях и перспективах моей учебы, он изобразил мне физику как едва ли не полностью исчерпанную науку, которая теперь… близка, по-видимому, к тому, чтобы принять окончательную стабильную форму. Вероятно, в том или ином углу есть еще пылинка или пузырек, которые можно исследовать и классифицировать, но система как целое построена довольно прочно, и теоретическая физика заметно приближается к той степени законченности, какой, например, обладает геометрия уже в течение столетий».
Действительно, в канун XX века многие ученые были убеждены в том, что время главных открытий в физике прошло. Ее здание было почти достроено. Однако перспектива рутинной работы — «время открытий прошло!» — не смутило ни Планка, ни молодого Эйнштейна. Тупик физической науки оказался преддверием…
Вскоре Макс Планк защитит диссертацию, посвященную необратимости процессов теплопередачи, создаст классическую теорию теплового излучения, а затем и квантовую теорию, а его соратник и соперник Эйнштейн — общую теорию относительности.
Однако даже эти открытия не исчерпали таинственной сущности физики. Прежние проблемы разрешились, но появились десятки других. Сегодня никто из физиков не рискнет утверждать, что в их науке скоро не останется «белых пятен». С каждым новым открытием ученые приближаются — нет, не к завершению «строительства здания физической науки», — а к новым загадкам, феноменам, которые не поддаются объяснению. Непонятное подстерегает нас и в космической дали, и в глубинах материи, и в повседневной жизни.
Вот один из «крепких орешков», с которыми предстоит справиться физикам-теоретикам: природа темной материи и темной энергии — неизвестных видов материи, составляющих большую часть мироздания. Что скрывается за этими таинственными источниками гравитации — этим незримым каркасом, скрепляющим Вселенную, не дающим ей распасться? Этого никто пока не знает.
Другая загадка — вопиющая несовместимость двух столпов современной физики: квантовой механики и общей теории относительности. Причина кроется, прежде всего, в загадочной природе силы гравитации. Похоже, она разительно отличается от трех остальных видов физических взаимодействий: электромагнитного, сильного и слабого взаимодействий.
На протяжении десятилетий ученые вынуждены использовать Стандартную модель мироздания, созданную в 1961 году и описывающую элементарные частицы и их взаимодействия, использовать, понимая всю ее ограниченность, понимая, что она — лишь частный случай какой-то более общей модели, которая опишет все мироздание во всей его сложности и целостности. Она не дает ответа на целый ряд вопросов, возникающих перед учеными. Кроме того, она не отличается внутренней стройностью и симметрией, то бишь красотой, как того требует идеальная физическая теория.
«Она очень причудлива; в ней слишком много Византийщины, чтобы она могла вместить всю истину мироздания», — так велеречиво отозвался о ней Крис Л. Смит, бывший генеральный директор CERN, Европейского центра физики элементарных частиц. Так, Стандартная модель, эта «Менделеевская таблица микромира», содержит около двух десятков натуральных констант, в том числе значения массы частиц. Все эти константы нельзя определить с помощью теоретических расчетов; их надо измерять экспериментальным путем. Но ведь ни одна теория, в которой есть столько априори задаваемых параметров, не может считаться фундаментальной.
Девять из этих констант характеризуют массу покоя шести кварков и трех лептонов. Но Стандартная модель не отвечает на вопрос, почему большинство элементарных частиц обладают массой. Неясно также, почему в природе существует несколько фундаментальных взаимодействий, резко отличных по образу действия и интенсивности. Кроме того, одно из них — гравитационное — доставляет ученым особые хлопоты: его никак не удается включить в общую модель. Приходится «искусственным путем» вводить особую частицу — гравитон, якобы передающую гравитационное взаимодействие.
Согласно Стандартной модели, существуют 12 вещественных частиц, фермионов, — шесть лептонов и шесть кварков. Однако весь видимый нами мир состоит фактически из четырех частиц: электронов и электронных нейтрино, которые в огромном количестве образуются при ядерных реакциях, а также Up- и Down-кварков, из которых сложены нейтроны и протоны, составные части атомных ядер. Стандартная модель физики не может объяснить, почему существует 12 фермионов, хотя Природа ограничилась лишь четырьмя.
Однако вопреки сомнениям и возражениям, Стандартная модель остается основой современной физики. За ее развитие и доказательство присуждены более двадцати Нобелевских премий. Эта модель предрекла существование W- и Z-бозонов, и впоследствии они были найдены.
«Вот уже давно физиков занимает вопрос, что находится по ту сторону Стандартной модели», — выразил общие чаяния нобелевский лауреат Герардт Хуфт из Утрехтского университета. Но все многочисленные попытки вывести единую формулу мироздания, в существовании которой многие убеждены хотя бы по соображениям эстетики, до сих пор не принесли результата.
Не поддаются строгому научному объяснению даже некоторые, на первый взгляд, простые феномены: например, турбулентность, последняя великая загадка классической физики. А ведь турбулентность играет важную роль при расчете воздушных потоков, возникающих возле крыла самолета или корпуса автомобиля.
Загадкой остается и внутренняя природа твердых тел, обусловливающая такие их неожиданные свойства, как магнетизм или сверхпроводимость. Внутри твердых тел наблюдаются настолько сложные и разнообразные процессы взаимодействия атомов и электронов, что описать их с помощью формул или составить их точную модель не представляется пока возможным.
Пока…
Ведь за минувшее десятилетие, например, получили объяснение некоторые физические феномены, которые долго представлялись загадочными.
Так, в начале 1990-х годов физики-экспериментаторы безуспешно пытались обнаружить топ-кварк — последнюю элементарную частицу, которая была предсказана Стандартной моделью мироздания и существование которой к тому времени не удавалось доказать.
Кварки — точечные частицы, скрывающиеся внутри протонов и нейтронов, — вызывают особый интерес у ученых. За их исследование вручено уже несколько Нобелевских премий, начиная с 1969 года, когда лауреатом этой премии стал американский физик Марри Гелл-Ман — человек, предположивший, что подобные частицы существуют.
Сорок лет назад, постулируя существование кварков, ученые, скорее, изобретали удобную теоретическую конструкцию, позволявшую, наконец, навести порядок в хаосе элементарных частиц, которых год от года становилось все больше. В начале шестидесятых годов число «кирпичиков мироздания» превысило две сотни, что и побудило некоторых физиков предположить, что эти частицы, в свою очередь, состоят из каких-то более мелких, воистину элементарных частиц. Природа не терпит лишней сложности.
Несколько лет гипотеза кварков не подтверждалась на практике. Лишь в 1968 году в США, в Стэнфордской лаборатории, при обстреле электронами неподвижных протонов, удалось показать, что разброс частиц не соответствует прежним представлениям о протоне как однородном объекте, не имеющем никакой внутренней структуры. Наоборот, картина разброса явно свидетельствовала, что внутри протона находятся какие-то другие частички. Это и были кварки.
В последующие годы ученые обнаружили пять разновидностей кварков и лишь топ-кварки скрывались от их внимания. Все сообщения об их открытии были ошибочны.
Так, весной 1994 года на пресс-конференции, организованной сотрудниками Национальной лаборатории имени Э. Ферми в Чикаго, было объявлено, что «топ-кварк — последний, недостающий кирпичик материи — открыт». Эксперимент проводился на «Теватроне» — в то время самом мощном в мире ускорителе элементарных частиц. Длина его кольца составляет 6,3 километра.
Впрочем, руководитель «Теватрона» признал, что обнаружить сам топ-кварк не удалось. «Мы располагаем лишь косвенными свидетельствами того, что он существует». Потребовались дальнейшие эксперименты, чтобы развеять сомнения. Лишь год спустя, в марте 1995 года, из Чикаго пришло сообщение, что во время нового эксперимента на «Теватроне» там все-таки обнаружен топ-кварк.
Масса топ-кварка составила 174 гигаэлектронвольт (миллиардов электронвольт). Он почти вдвое тяжелее ближайшей элементарной частицы — Z-бозона. Почему масса топ-кварка так велика? Стандартная модель не может этого объяснить.
Итак, стали известны шесть разновидностей кварков, получивших название Up («верхний»), Down («нижний»), Strange («странный»), Charm («очарованный»), Bottom («красивый») и Тор («истинный»), а также шесть соответствующих антикварков. «Верхний» и «нижний» кварки — самые легкие; они входят в состав ядер атомов обычного вещества. Более массивные кварки возникали на ранней стадии существования Вселенной, а сегодня их получают во время экспериментов, проводимых на ускорителях.
Различные комбинации кварков позволяют описать все частицы, участвующие в сильных взаимодействиях. С ними много неясного — так, до сих пор не удалось хотя бы отделить один кварк от другого. Они не разъединяются, какую бы огромную энергию мы ни прилагали, потому что сила их взаимного притяжения неимоверно увеличивается по мере того, как растет расстояние между ними. Кварки неизменно образуют тройственные союзы, порождая барионы — протоны и нейтроны, — или двойственные союзы, порождая мезоны: пионы и каоны.
По словам помощника директора Объединенного института ядерных исследований Павла Боголюбова, «если кварки попытаться растащить в стороны, то при этом выделится энергия, на несколько порядков превосходящая ядерную». Энергия пары кварков при попытке ее разъять возрастает настолько, что когда-нибудь достигнет величины, при которой произойдет превращение энергии в массу. Из пустоты возникнет пара «кварк-антикварк». Было два кварка, станет четыре. Вместо одной пары — две пары. Можно заново попытаться разделить кварки — не выйдет. «Кварки находятся в тюрьме, — шутят физики, — убежать из которой никогда не удастся».
По современным научным представлениям, кварки существовали отдельно друг от друга лишь на самой ранней стадии развития Вселенной, когда ее плотность и температура были невероятно велики. В принципе, в лаборатории можно воспроизвести подобные условия. Это, например, на доли мгновения удалось в 2003 году сотрудникам Брукхэйвенской национальной лаборатории (США).
Да, кварки остаются крайне загадочными частицами. Их исследование принесет еще много' неожиданностей. Даже внутренняя структура протона теперь не представляется такой уж простой, как прежде. Внутри протона, как говорят физики, «бурлящее месиво из кварков, антикварков и глюонов, которые непрестанно возникают из ничего и через крохотные доли секунды вновь исчезают. Кварки беспрерывно обмениваются глюонами, и это так называемое сильное взаимодействие скрепляет атомные ядра, не дает им распасться. Чем пристальнее мы вглядываемся в протон, тем больше частиц мы там обнаруживаем!» Так что о протоне можно сказать, что он состоит из трех стабильных кварков, если только… игнорировать эти частицы, исчезающие почти мгновенно.
Лет тридцать назад физики предположили, что могли бы существовать частицы, состоящие даже из четырех или пяти кварков. Подобная идея не противоречит Стандартной модели мироздания. Лишь в 1997 году российские физики Дмитрий Дьяконов, Виктор Петров и Максим Пляков сумели рассчитать, как должна выглядеть система из пяти кварков.
А уже в начале нашего века — новый шаг вперед. В 2003 году сразу несколько групп ученых, в том числе сотрудники российского Института теоретической и экспериментальной физики, обнаружили пентакварки — особые частицы, состоящие из пяти кварков.
Первыми эту частицу получили японские исследователи, пусть она и просуществовала всего 10-20 (десять в минус двадцатой степени) секунды. Во время эксперимента в исследовательском центре под Осакой Такаси Накано и его коллеги бомбардировали энергетичными гамма-лучами твердый углеродный блок. При столкновении кванта гамма-лучей с нейтроном углеродного ядра появлялся заряженный К-мезон, но нейтрон при этом сохранялся. Последующий анализ продуктов реакции показал, что нейтрон сливался с положительно заряженным К-мезоном, причем на мгновение возникала частица, содержавшая пять кварков. Она состояла из двух Down-, двух Up- и одного aнтиStrange-кваркаa. Ее масса равнялась 1,54гигаэлектронвольт, что соответствовало теоретическим предсказаниям.
Подтвердилось открытие сразу. Американский исследователь Кен Хикс и его коллеги, бомбардируя гамма-лучами ядра дейтерия, также обнаружили следы пентакварка. После двухмесячных расчетов ученые пришли к выводу, что в общей сложности в проведенном опыте нейтроны 50 раз сталкивались с К-мезонами, образуя пентакварки. Масса необычной частицы, по Хиксу, составила 1,543 гигаэлектронвольт.
Итак, в 2003 году все сомнения в существовании пентакварка отпали. «Зоопарк» частиц пополнился новым экзотическим обитателем. Впрочем, вряд ли стоит рассчитывать на получение стабильной формы пентакварка. Найти ее можно разве что в центре черной дыры.
В 2007 году вступит в строй Large Hadron Collider (LHC) — новый коллайдер Европейского центра физики элементарных частиц, Большой адронный коллайдер. На этом гигантском кольцевом ускорителе протяженностью 27 километров протоны будут сталкиваться с антипротонами, разогнавшись почти до световой скорости. В момент такого соударения высвобождается энергия порядка 14 тысяч гигаэлектронвольт и возникает состояние, наблюдавшееся через 10-12 (десять в минус двенадцатой степени) секунды после Большого Взрыва. Ежесекундно здесь можно будет производить до миллиарда столкновений.
С вводом в эксплуатацию нового коллайдера мы заглянем вглубь материи дальше, чем когда-либо. Очевидно, он произведет революцию в физике элементарных частиц. Возможно, предстоящие эксперименты пошатнут наши представления о фундаментальных основах мира и покажут, что кварки — вовсе не элементарные частицы и что они состоят из каких-то более крохотных частиц, иногда называемых «прекварками». В таком случае в XXI веке повторятся те же события, что пережила физика XX века, когда обнаружилось, что якобы неделимые нейтроны и протоны состоят из еще более элементарных частиц — кварков. Дробление материи на составные части продолжится. Может быть, «в материи, как в русской матрешке, — пишет обозреватель немецкого журнала «Bild der Wissenschaft», — мы будем находить все более миниатюрные “куклы” — и так будет продолжаться до бесконечности?»
Пока известно, что кварки и лептоны ведут себя как точечные частицы вплоть до расстояний порядка 10-17 (десять в минус семнадцатой степени) сантиметра. Но что лежит по ту сторону этой границы вплоть до расстояния Планка, равного 10-13 (десять в минус тридцать третьей степени) сантиметра? Физики называют эту область Микрокосма «Великой пустыней». Но разве может там простираться «пустыня», если вспомнить, как изобилуют элементарными частицами все остальные области Природы?
На рубеже нового века благополучно разрешилась и загадка солнечных нейтрино. Ученые долго не могли понять, почему на Земле регистрируют значительно меньше нейтрино, нежели предсказывала расчетная модель.
Еще в 1920 — 1930-е годы физики и астрономы предложили модель термоядерной реакции превращения водорода в гелий, протекающей внутри Солнца; из этой реакции наше светило черпает энергию. Расчеты, проделанные в шестидесятые годы, показали, что около двух процентов энергии уносят нейтрино. Покинув Солнце, эти «призрачные частицы» — их называют так потому, что они почти не взаимодействуют с другими частицами, — устремляются в космическое пространство. Миллиарды нейтрино в любое мгновение пролетают сквозь наши тела, но мы их не замечаем. По расчетам астрофизиков, каждый квадратный сантиметр земной поверхности ежесекундно пронизывают 5 миллионов подобных частиц. Нейтрино — самая распространенная частица на нашей планете и… самая неприметная.
В то же время экспериментальные данные свидетельствовали, что до Земли долетает почти вдвое меньше нейтрино, чем следовало из расчетов. Например, это показал российско-американский эксперимент SAGE, проведенный в 1992 году в Баксанской лаборатории на Кавказе.
Значит, либо неверна была модель процессов, протекавших в недрах Солнца, либо природа нейтрино была иной, например, у них могла быть совсем крохотная масса — в Стандартной модели она равнялась нулю.
В апреле 1996 года начались эксперименты на японском детекторе «Суперкамиоканде», содержавшем 50 миллионов литров сверхчистой воды. При столкновении нейтрино с атомами воды появлялись электроны, а, кроме того, наблюдались микровспышки. Их-то и можно было уловить с помощью фотоэлектронных умножителей, расставленных вокруг. Уже в первые месяцы работы эта установка зарегистрировала больше нейтрино, чем все остальные приборы за 25 лет наблюдений, и именное ее помощью в 1998 году была решена загадка дефицита нейтрино. У этой частицы, действительно, обнаружилась масса. Стало ясно, что на Солнце образуется «нужное» количество нейтрино, но приборы, очевидно, не могут заметить все их.
Теперь известно, что существуют три типа нейтрино: электронное, мюонное и тау-нейтрино. У них есть небольшая масса, поэтому они могут превращаться в нейтрино другого типа. В недрах Солнца образуются только электронные нейтрино. В экспериментах, проводившихся с начала 1960-х годов, ученые пытались регистрировать лишь нейтрино этого типа, но их неизменно оказывалось меньше, чем следовало из расчетов, ведь на пути к Земле они превращались в нейтрино другого типа. Эти превращения, называемые на научном языке «осцилляциями», приводят к тому, что на Земле обнаруживают меньше нейтрино, чем считалось. Большинство детекторов не могут одновременно регистрировать нейтрино всех трех типов, поэтому часть из них ускользает от наблюдения. «Нейтрино маскируются, — шутят ученые, — у них есть шапка-невидимка».
В 2002 году эксперимент, проведенный в Садберийской нейтринной обсерватории, расположенной глубоко под землей близ города Садбери в канадской провинции Онтарио, окончательно подтвердил описанные выше свойства нейтрино. Таким образом, модель строения Солнца верна, зато нейтрино выглядят иначе, чем представляли ученые.
Точное значение массы нейтрино еще предстоит определить. Пока удалось установить лишь разность масс электронного и других видов нейтрино. Она составляет примерно одну пятидесятимиллионную долю массы электрона. Вообще же, по оценкам физиков, масса электронного нейтрино не должна превышать 2,2 электрон-вольт.
Мы не знаем также, какова доля нейтрино в общей массе мироздания. Предположительно, это значение очень мало. Возможно, что существуют и неизвестные нам, более тяжелые разновидности нейтрино.
В XXI веке исследование нейтрино — этих загадочных частиц, прилетающих из Космоса, — поможет понять происхождение Вселенной и ее судьбу. Нейтрино возникают во время ядерных реакций, протекающих в недрах звезд. Именно эти частицы позволили заглянуть внутрь Солнца; они сообщают о взрывах сверхновых звезд и поведении черных дыр. С их помощью мы всматриваемся в те уголки Вселенной, куда не проникает свет. Возможно, именно исследование нейтрино поможет понять природу темной материи и суть загадочных гамма-вспышек.
Новый нейтринный телескоп — «Аманда» — сооружается сейчас в Антарктиде, на станции Амундсена-Скотта, то есть на Южном полюсе планеты. В Антарктиде идеальные условия для его строительства. Самый большой в мире нейтринный телескоп будет состоять примерно из пяти тысяч детекторов, погруженных в лед на глубину более двух километров. Его сооружение завершится в 2010 году. Ледяной панцирь, окружающий прибор, защитит его от помех — от постороннего излучения. Нацелен телескоп не в небо, а на огромный ледяной куб объемом один кубический километр, то есть он будет регистрировать нейтрино, прилетевшие… со стороны Северного полюса и беспрепятственно миновавшие толщу Земли в отличие от других частиц. Проникая в ледяной куб, нейтрино может столкнуться с каким-нибудь протоном. Так возникает другая элементарная частица — мюон. Ее энергия очень высока, поэтому при движении мюона сквозь толщу льда наблюдается слабое свечение — излучение Черенкова-Вавилова. Его и стремятся обнаружить охотники за нейтрино. Свечение мюона хорошо видно в толще льда; за ним можно следить с расстояния в сотни метров.
«За первыми открытиями следует период кропотливых планомерных исследований, — резюмировал журналист Александр Семенов, выступая на страницах журнала «Знание — сила». — Похоже, что самая неуловимая частичка хранит ключи от многих тайн природы и наступивший век может стать веком нейтринной астрономии».