Глава 7 Физика Вселенной

ИЗМЕРЕНИЕ РАССТОЯНИЙ ДО ЗВЕЗД

В настоящее время почти невозможно провести границу между астрономией и физикой. До тех пор, пока астрономы, вроде как географы, ограничивались описанием звездного неба, предмет астрономии мало привлекал внимание физиков. Однако картина радикально изменилась за последние десятилетия, в особенности после того, как начали проводиться наблюдения звездного неба со спутников и с Луны.

Если земная атмосфера не мешает, то удается принять все сигналы, приходящие к нам со всех уголков Вселенной. Это и потоки различных частиц, и электромагнитное излучение практически всего спектра — от гамма-лучей до радиоволн. Колоссально возросли возможности наблюдения звездного неба и в видимом свете.

Изучение потоков частиц и электромагнитного спектра безусловно относится к физике. Если добавить еще к этому, что изучение космоса сталкивает нас со множеством явлений, которым пока что не удается дать однозначного истолкования, если учесть, что мы можем и должны быть готовыми к тому, что физика Вселенной может привести к открытию новых законов природы, то становится ясным, почему исследователями звездного мира сейчас являются физики — физики по образованию и по методу мышления.

Мы начнем наш разговор о Вселенной с классической астрономической проблемы. Как измерить расстояния от Земли до небесных тел? Сейчас расстояния до Солнца и планет измеряются с очень большой точностью с помощью радиолокаторов. Среднее расстояние до Солнца равно 149 597 800±2000 км.

Но астрономы сумели промерить расстояния внутри планетной системы, а также до ближайших звезд (находящихся от Земли на расстоянии до 300 световых лет) и без помощи радара, пользуясь нехитрым в принципе методом, называемым триангуляцией.

Вдали от нас находится высокая башня. Добраться до нее трудновато. Ну, скажем, отделяют нас от башни непроходимые болота. Наведем зрительную трубу на башню, фиксируем это направление. Теперь отъедем на несколько километров по прямой линии, перпендикулярной к направлению на башню, и повторим наше наблюдение. Разумеется, теперь по отношению к далекому пейзажу башня будет видна под другим углом. Угол смещения называется параллаксом; расстояние, на которое мы отъехали от первой точки наблюдения, называется базисом. Параллакс измерен, базис известен. Строим прямоугольный треугольник и находим расстояние до башни. Вот этим методом и пользуются астрономы, определяя параллакс, наблюдая за светилом из двух обсерваторий, расположенных по прямой на расстоянии, равном радиусу Земли. При помощи сначала нехитрых приспособлений, а затем телескопов астрономы измеряли углы между направлениями на отдельные звезды (рис. 7.1). И обратили внимание на то, что можно отыскать группу звезд, которая движется по небу как одно целое. С каких позиций ни наблюдай, углы между направлениями остаются теми же самыми.



Но среди этих звезд зачастую находили какую-нибудь одну, которая явно смещалась по отношению к своим соседям. Принимая одну из «неподвижных» звезд как бы за точку отсчета, можно измерить угловое смещение звезды, менявшей свое расположение по отношению к неизменному созвездию. Этот угол смещения имеет смысл параллакса.

Еще в XVII веке, после изобретения Галилеем телескопа, астрономы измерили параллаксы планет, наблюдая их смещения по отношению к «неподвижным» звездам. Тогда подсчитали, что Земля отстоит от Солнца на расстоянии 140 млн. км. Совсем неплохая точность!

Для невооруженного глаза взаимное расположение звезд остается всегда неизменным. Но при помощи фотографии звездного неба с разных позиций можно обнаружить параллактическое смещение звезд. Если сделать две фотографии какого-либо участка звездного неба из одной и той же обсерватории с промежутком времени полгода, то расстояние между точками наблюдения будет равно почти 300 млн. км.

Измерения расстояний до звезд с помощью радара невозможны. Поэтому схема измерения, которую иллюстрирует рис. 7.1, вполне современна.

Такого рода снимки приводят нас к заключению, что есть звезды, которые заметно перемещаются по отношению к другим звездам. Было бы крайне нелогично допустить, что существуют звезды подвижные и звезды неподвижные. Напрашивается вывод, что те звезды, взаимное расположение которых сохранилось неизменным, находятся много дальше, чем блуждающая звезда. Как бы то ни было, мы получаем возможность с помощью хороших инструментов измерить параллаксы многих звезд. Измерения параллакса с точностью до одной сотой секунды дуги были проведены для многих звезд. Оказалось, что ближайшие из них находятся на расстояниях, больших одного парсека.

Один парсек есть расстояние, дающее угловое смещение в одну секунду, если за базис взять средний радиус земной орбиты. Легко подсчитать» что один парсек равен 30,26 триллиона километров.

Для измерения расстояний часто пользуются световыми годами. Один световой год — путь, который пройдет свет за год. Один парсек равен 3,26 светового года.

Параллактический метод применим до расстояний порядка сотен световых лет. А как измерить расстояния до более далеких звезд? Это оказывается уже совсем не простым делом, и уверенность в правильности приблизительных оценок (ручаться можно большей частью лишь за одну значащую цифру) получается сопоставлением результатов разных измерений.

Один из способов (а их много, и у нас нет возможности на них останавливаться) заключается в следующем. Если известно расстояние, до звезды R и видимая звездная величина m (мера освещенности, создаваемая звездой на Земле), то, пользуясь законом, согласно которому интенсивность изменяется обратно пропорционально квадрату расстояния от источника, можно вывести следующую формулу:

М = m — 5∙lg R + 5.

Здесь М есть так называемая абсолютная звездная величина. Это величина, которую имела бы звезда, если бы находилась от нас на некотором стандартном расстоянии, которое принимают равным 10 пк.

Мы с полным основанием полагаем, что эта формула справедлива и для далеких звезд. Но как ею воспользоваться для определения расстояния до звезды? Вот на этом-то самом интересном вопросе мы, к сожалению, и не можем остановиться подробнее: не хватает места в нашей маленькой книге. Оказывается, что для некоторой категории звезд удается построить график, который показывает как меняется отношение интенсивностей определенных пар линий звездного спектра в функции величины М. Ну, а интенсивности спектральных линий астрономы измерять умеют.

Для некоторых звезд, которые периодически меняют свой блеск (они принадлежат к классу так называемых цефеид), показано, что светимость, т. е. величина светового потока, заключенного в единице телесного угла (может относиться как к области спектра, так и к суммарному излучению), плавно возрастает с увеличением периода. Светимость, разумеется, строго связана с величиной М. Для этих переменных звезд их расстояние до наблюдателя устанавливается со значительной точностью.

А вот еще одна идея, которой можно воспользоваться для измерения «масштаба» Вселенной.

Звезды Вселенной не разбросаны во Вселенной как попало. На непредставимо огромных расстояниях от нас расположены различные звездные скопления? Они движутся по отношению к Солнечной системе самым разным образом. Это движение помогает нам определить расстояния до звездных скоплений. На помощь приходит эффект Доплера.

Формулы, которые мы рассматривали в 3-й книге, справедливы для любых колебаний. Поэтому частоты спектральных линий, наблюдаемые в спектре звезды, позволяют определить скорость ее движения в направлении от Земли или к ней. Так как с в формуле


есть скорость света 300 000 км/с, то понятно, что движение звезды должно быть достаточно быстрым, а спектрограф должен быть весьма высокого качества для того, чтобы мы обнаружили смещение спектральных линии.

Прошу заметить, что естествоиспытатель вполне уверен в том, что водород, находящийся в недрах звезды и заявляющий нам о своем присутствии в объекте, находящемся на невообразимо колоссальном расстоянии, — это такой же водород, как и тот, с которым мы имеем дело в земных условиях. Если бы звезда покоилась, то спектр водорода обязан был бы выглядеть совершенно так же, как спектр, который мы получаем от газоразрядной трубки (вот какова уверенность физика в единстве мира!). Но линии оказываются заметно сдвинутыми, и скорости галактик — это сотни, а то и десятки тысяч километров в секунду. Нет сомневающихся в приведенном объяснении. Да и как сомневаться? Ведь спектр водорода состоит из очень большого числа линий, и мы видим сдвиг не одной линии, а всех линий спектра в согласии с формулой Доплера.

Но вернемся к измерению звездных расстояний. Какую помощь может оказать нам знание скоростей движения звезд? Все просто… но, конечно, лишь в том случае, если мы заметим, что звезда за год сдвинулась (опять-таки по отношению к другим звездам, которые в данном измерении можно считать «неподвижными») на какое-то расстояние. Если дуговое перемещение звезды φ (перпендикулярно лучу света, который до нас доходит) известно, то, зная тангенциальную скорость, найдем расстояние до звезды R по формуле

Rφ/t = v

Вместо t надо подставить время, которое ушло на перемещение звезды.

Но позвольте, скажет читатель, ведь в формулу входит тангенциальная скорость, а направление движения звезды нам не известно. Совершенно справедливое возражение. Поэтому приходится поступать следующим образом. Отбирается большое число звезд с одинаковым периодом изменения светимости. Для всех этих звезд измеряют лучевую скорость. Она будет колебаться от нуля (если звезда движется перпендикулярно лучу) до максимума (если звезда движется вдоль луча). Полагая, что в среднем тангенциальные и лучевые скорости одинаковы, можно подставить в написанную выше формулу среднее значение измеренных нами скоростей.


РАСШИРЯЮЩАЯСЯ ВСЕЛЕННАЯ

В результате измерений расстояний, мы можем описать звездный мир следующим образом. Наблюдаемая Вселенная разбита на огромное число звездных скоплений, которые получили название галактик. Наша Солнечная система входит в Галактику, которую каждый видел на небе. Это Млечный Путь. Наша Галактика имеет форму диска, диаметр которого — около 100 тысяч световых лет. В Галактике что-нибудь около 1011 звезд разных типов. Солнце — одна из таких звезд, и находится наше светило на периферии Галактики. Звезды отдалены друг от друга на огромные расстояния. Расстояние между звездами в среднем в 10 миллионов раз превышает размер звезды. Для того чтобы добиться аналогичного разрежения в воздушном пространстве, надо было бы уменьшить плотность воздуха в 1018 раз.

Что же касается взаимного расположения галактик, то здесь картина иная. Средние расстояния между галактиками всего лишь в несколько раз больше размеров самих галактик.

Астрофизики, могут сообщить очень много деталей о характере взаимного движения звезд, принадлежащих одной галактике. На этом мы останавливаться не будем. Однако даже в книге, излагающей азбуку физики, мы не можем пройти мимо одного исключительно важного наблюдения. Достоверно установлено по изучению эффекта Доплера в спектрах, принадлежащих звездам разных галактик, что галактики разбегаются «от нас». При этом было показано, что скорость удаления галактики прямо пропорциональна расстоянию ее «от нас». Самые далекие видимые галактики движутся со скоростями, приближающимися к половине скорости света.

Почему я поставил в кавычки слова «от нас»? Да по той причине, что в этом утверждении кроется явно нечто несуразное. Подобная позиция могла бы удовлетворить лишь человека, верующего в то, что господь бог сотворил Землю и разместил вокруг нее звезды. Такая картина была принята в древние времена Аристотелем и господствовала в средние века. Вселенная имела границы, за которыми простиралось царство бога — эмпиреи.

Для современного человека совершенно неприемлема мысль о Вселенной, имеющей границы. Если есть граница, то сразу же следует вопрос: а что находится за ней? Так что нужно обойтись без представления о границе Вселенной. С другой стороны, никак нельзя поверить, что Земля или Солнце являются особыми телами во Вселенной. Это явно противоречит всем сведениям, добытым астрофизиками. Но ведь галактики разбегаются «от нас»! Как можно примирить с этим фактом наши требования к модели Вселенной? Хотим, чтобы у нее не было границ; желаем, чтобы она была более или менее однородна; требуем, чтобы картина Вселенной с точки зрения обитателя любой звезды была одной и той же.

Интеллектуальная необходимость в существовании такой модели привела Эйнштейна к следующему фундаментальному заключению. Геометрия Евклида, которой мы с успехом пользуемся в обыденной жизни, несправедлива, когда речь идет о непредставимо колоссальных расстояниях, с которыми мы сталкиваемся при изучении звездного мира. Отказ от геометрии Евклида означает отказ от наглядных моделей Вселенной. Ну что же, не в первый раз нам расставаться с возможностью наглядно представить себе окружающий нас мир.

Простившись с геометрией Евклида, мы можем предложить модель Вселенной, которая одновременно является замкнутой и в то же время не имеет ни границ, ни центра. В такой модели все точки пространства будут равноправными.

На первый взгляд может показаться, что Эйнштейн требует от нас очень большой жертвы. Мы так привыкли, что две параллельные линии никогда не пересекаются, что сумма квадратов катетов равна квадрату гипотенузы. Привыкли… Но, позвольте, вспомните уроки географии. На глобусе, изображающем земной шар, линии широт параллельны. А на географической карте? Вы вправе спросить, на карте какого типа. Ибо географические карты строятся различными способами. Если изобразить земной шар в виде двух полушарий, то параллели перестанут быть параллельными. Если прибегнуть к так называемой прямоугольной проекции, то расстояния между широтами перестанут быть равными. Какая уж тут геометрия Евклида!

Если желаете, то можете убедиться, что теорема Пифагора потерпела крах. На карте важнейших авиалиний я изобразил треугольник (рис. 7.2) Москва-Кейптаун-Лондон. Выбрал его потому, что случайно он на карте в точности прямоугольный. Значит, сумма квадратов катетов должна равняться квадрату гипотенузы. Как бы не так. Считайте: расстояния Москва-Лондон 2490 км, Москва-Кейптаун 10130 км и Лондон-Кейптаун 9660 км. Не работает теорема, не годится наша геометрия для географической карты.



Законы геометрии на плоскости, изображающей земной шар, отличаются от «обычных».

Рассматривая географическую карту полушарий, мы видим, что у нее есть «края». Но ведь это иллюзия. На самом деле, двигаясь по поверхности земного шара, мы никогда не доберемся до несуществующего «края Земли».

Существует анекдот. Маленький сын Эйнштейна спрашивает отца: «Папа, почему ты так знаменит?» Отец отвечает: «Мне повезло, я первый обратил внимание на то, что жук, ползая по глобусу, может обогнуть его по экватору и вернуться в исходную точку». Конечно, в такой форме открытия нет. Но перенести это соображение на трехмерное пространство Вселенной; утверждать, что она конечна и замкнута наподобие двумерной поверхности, ограничивающей глобус; сделать из этого вывод, что все точки Вселенной совершенно равноправны в том же смысле, что и все точки поверхности глобуса, — разумеется, это требует исключительной интеллектуальной смелости.

Отсюда такое заключение. Если мы, земляне, наблюдаем, что все галактики от нас разбегаются, то и житель планеты любой звезды будет видеть ту же картину. Он придет к тем же заключениям о характере движения звездного мира и измерит те же самые скорости галактик, что и обитатель Земли.

Модель Вселенной, предложенная Эйнштейном в 1917 г., является естественным следствием разработанной им так называемой общей теории относительности (ту часть теории, которую мы изложили в гл. 4, называют специальной).

Однако Эйнштейн не предполагал, что замкнутая Вселенная может изменять свои размеры. Это показал в 1922–1924 гг. советский ученый Александр Александрович Фридман (1888–1925). Оказалось, что теория требует либо расширения Вселенной, либо чередующихся расширений и сжатий. Во всяком случае она не может быть статической. Мы имеем право принять любую из этих двух точек зрения, т. е. либо предположить, что мы живем сейчас в эпоху расширения Вселенной, которой предшествовали чередовавшиеся сжатия и расширения, либо допустить, что Вселенная некое время тому назад (его можно рассчитать, оно оказывается равным нескольким десяткам миллиардов лет) представляла собой «космическое яйцо», которое взорвалось и с тех пор расширяется.

Надо отчетливо понимать, что вариант начального взрыва вовсе не связан с принятием сотворения мира. Может быть попытки заглянуть слишком далеко вперед и назад, а также на слишком большие расстояния неправомерны в рамках существующих теорий.

Рассмотрим в соответствии со схемой, представляющейся сейчас разумной, такой простой пример. Измеряем красное смещение спектральных линий излучения, приходящего к нам от далеких галактик. Пользуясь формулой Доплера, оцениваем скорости движения галактик. Чем дальше от нас галактики, тем быстрее они движутся. Телескоп сообщает скорости разбегания все более и более далеких галактик: десять тысяч километров в секунду, сто тысяч километров… Однако этому возрастанию значений скорости должен наступить предел. Ведь если галактика движется от нас со скоростью света, то мы ее в принципе не можем увидеть: частота света, вычисляемая по формуле Доплера, обратится… в нуль. От такой галактики свет до нас не доходит.

Каковы же максимальные расстояния, которые мы сумеем измерить, когда в нашем распоряжении окажутся сверхзамечательные приборы? Конечно, оценка может быть сугубо приблизительной. Во всяком случае жаловаться на то, что мы не можем заглянуть достаточно далеко, уж никак не приходится: число о котором идет речь, измеряется миллиардами световых лет!

Что же касается еще больших расстояний, то разговор о них, вероятно, лишен содержания. Можно сказать и так: в рамках сегодняшних представлений разговор о расстояниях, больших миллиардов световых лет, лишен физического смысла, поскольку нельзя предложить способ измерения.

Дело обстоит здесь вполне аналогично той ситуации, которая возникла с траекторией электрона: ее никак нельзя измерить просто потому, что представление о ней не имеет смысла.


ОБЩАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ

Специальная теория относительности привела к необходимости ввести поправки в законы механики для тел, движущихся со скоростями, близкими к скорости света. Общая теория относительности вносит поправки в привычные представления о пространстве, когда речь идет об огромных расстояниях. Именно поэтому разговор об этой теории уместен в главе, посвященной физике Вселенной.

Общая теория относительности покоится на следующем принципе: нет таких экспериментов, с помощью которых можно было бы отличить движение тел под действием поля тяготения от движения в соответствующим образом подобранной неинерциальной системе отсчета.

Рассмотрим несколько простейших примеров. Мы находимся в лифте, который падает вниз с ускорением а. Выпустим из руки шарик и сообразим, какой характер будет иметь его падение. Как только шарик будет выпущен, начнется, с точки зрения инерциального наблюдателя, свободное падение с ускорением g. Так как лифт падает с ускорением то ускорение по отношению к полу лифта будет (g — а). Наблюдатель, находящийся в лифте, может описать движение падающего тела при помощи ускорения g' = ga. Иначе говоря, наблюдатель в лифте может не говорить об ускоренном движении лифта, «изменив» ускорение поля тяжести в своей системе.

Теперь сравним два лифта. Один из них неподвижно висит над Землей, а другой движется в межпланетной пустоте с ускорением а по отношению к звездам. Все тела в неподвижном над Землей лифте обладают способностью свободно падать с ускорением g. Но такой же способностью обладают тела внутри межпланетного лифта. Они будут «падать» с ускорением — а на «дно» лифта.

Выходит, что действие поля тяжести и проявления ускоренного движения неотличимы.

Поведение тела в ускоренно движущейся системе координат равнозначно поведению тела в присутствии эквивалентного поля тяжести. Однако эта эквивалентность может быть полной, если мы ограничим себя наблюдениями на небольших участках пространства. Действительно, представим себе «лифт» с линейными размерами пола в тысячи километров. Если такой лифт неподвижно висит над земным шаром, то явления в нем будут происходить иначе, чем в том случае, когда лифт будет двигаться с ускорением а по отношению к неподвижным звездам. Это ясно из рис. 7.3: в одном случае тела падают косо на дно лифта, в другом случае — отвесно.



Таким образом, принцип эквивалентности справедлив для тех объемов пространства, в которых поле можно считать однородным.

Принцип эквивалентности поля тяготения с нужным образом подобранной локальной системой отсчета приводит к важному выводу: поле тяготения связано с кривизной пространства и искажением хода времени.

Два наблюдателя заняты измерением расстояния и промежутков времени. Их интересуют события, происходящие на вращающемся диске. Один наблюдатель находится на диске, а другой неподвижен (по отношению к звездам). Впрочем, работает только тот исследователь, который является, так сказать, жителем диска. Неподвижный наблюдатель лишь следит за работой своего коллеги.

Первый опыт заключается в измерении радиального расстояния, т. е. расстояния между двумя предметами, установленными на одном и том же радиусе диска на разных расстояниях от центра. Измерение производится обычным способом, а именно: между концами интересующего исследователей отрезка укладывается сколько-то раз стандартная линейка. С точки зрения обоих исследователей, длина линейки, расположенной перпендикулярно направлению движения, одна и та же. Поэтому между нашими двумя исследователями не возникнут разногласия по поводу длины радиального отрезка.

Теперь житель диска приступает ко второму опыту. Он желает измерить длину окружности. Линейку приходится укладывать вдоль движения. Конечно, надо учитывать кривизну окружности. Поэтому измерение следует проводить при помощи небольшой линейки, так, чтобы длину касательного отрезка можно было приравнять длине дуги. Наблюдатели не станут спорить о том, сколько раз уложилась линейка по длине окружности. Но тем не менее их мнения по поводу длины окружности разойдутся. Ведь неподвижный наблюдатель будет считать, что линейка сократилась, поскольку в этом втором опыте она расположена вдоль движения.

Итак, радиус окружности для обоих наблюдателей один и тот же, а длина окружности разная. Неподвижный наблюдатель приходит к выводу, что формула длины окружности 2π∙r неверна. Для меня, скажет неподвижный наблюдатель, длина окружности меньше, чем 2π∙r.

Этот пример показывает вам, как теория относительности приходит к отказу от евклидовой геометрии, или (это то же самое, сказанное другими словами) к представлению об искривлении пространства.

Аналогичные «безобразия» произойдут и с часами. Часы, закрепленные на разных расстояниях от оси вращения, идут с различной скоростью. Все они будут идти медленнее, чем неподвижные часы. При этом замедление тем больше, чем дальше от центра диска находятся часы. Неподвижный наблюдатель скажет, что пользоваться часами и линейками, если живешь на диске, можно лишь в том случае, если находишься на определенном расстоянии от центра. Пространство и время обладают локальными особенностями.

Теперь вспомним о принципе эквивалентности. Раз такие локальные особенности времени и пространства проявляются на вращающемся диске, значит, так же протекают явления и в поле тяготения. С диском дело обстоит так же, как и с лифтом, изображенным на рис. 7.3. Ускоренное движение неотличимо от движения в поле тяготения, направленного в сторону, обратную ускорению.

Таким образом, локальное искривление пространства и времени равносильно наличию поля тяготения.

Замкнутость Вселенной, о которой шла речь в предыдущем параграфе, несомненно может рассматриваться как подтверждение общей теории относительности. Однако читатель должен иметь в виду, что гипотеза о замкнутости Вселенной не является на сегодня единственно возможной.

Имеется возможность из хитроумных уравнений общей теории относительности вывести строгим математическим рассуждением ряд количественных следствий. Эйнштейн показал, что, во-первых, проходя вблизи Солнца, лучи света должны отклоняться. Луч, идущий в непосредственной близости от Солнца, должен отклониться на 1,75". Измерения дали величину 1,70. Во-вторых, орбита планеты Меркурий (вернее, ее перигелий) должна поворачиваться в своей плоскости. Расчет показывает, что это перемещение должно быть равно за столетие 43". Именно такое число и дают наблюдения. И еще одно предсказание, которое было подтверждено опытом: фотон тратит энергию (а значит, меняется частота света), преодолевая силы тяготения.

Общая теория относительности является одним из величайших завоеваний человеческого мышления. Ее создание сыграло огромную роль в развитии взглядов на Вселенную и революционизировало физику.


ЗВЕЗДЫ РАЗНОГО ВОЗРАСТА

Физика Вселенной находится в стадии бурного развития. Ее никак нельзя назвать завершенной областью науки, как, скажем, механику малых скоростей или термодинамику. Поэтому не исключено, что при исследовании звезд будут открыты новые законы природы. Пока такого не произошло. Как бы то ни было, картина Вселенной, которую время от времени набрасывает тот или иной физик в популярной статье, все время терпит изменения. Так что и то, что я рассказываю в этой главе, возможно, будет пересмотрено через десяток-другой лет.

Уже давно астрономы понимали, что звезды бывают разные. При помощи телескопа, спектрографа и интерферометра удается определить много физических величин, которые могут быть занесены в паспорт звезды.

Как можно полагать по аналогии с земными опытами (ср. с. 12), характер спектра определяет температуру поверхности звезды. С этой температурой однозначно связан, наблюдаемый цвет звезды. Если температура 3000–4000 К, то цвет красноватый, если 6000–7000 К — желтоватый. Бледно-голубые звезды имеют температуру свыше 10000—12000 К. Выйдя в космические просторы, физики нашли звезды, максимум излучения которых лежит в области рентгеновских и даже гамма-лучей. Это означает, что температуры звезд могут достигать и миллионов кельвинов.

Другой важной характеристикой звезды является суммарная энергия достигающего нас спектра. Это светимость звезды. Колоссальные различия в светимости могут быть связаны с размером и массой звезды, с ее удаленностью от нас и с ее температурой.

Что касается химического состава звезд, то они представляют собой в основном водородно-гелиевые плазмы. Солнце — достаточно типичная звезда. Его химический сослав определен более или менее точно из вида спектров и из теоретических расчетов энергии излучения. Водород составляет 70 %, гелий 29 %. На долю других элементов приходится около 1 %.

В атмосфере многих звезд были обнаружены сильные магнитные поля, в тысячи раз большие магнитного поля Земли. Рассказывает об этом все тот же спектральный анализ, поскольку спектральные линии расщепляются в магнитных полях.

Межзвездная среда разрежена до немыслимых пределов. В одном кубическом сантиметре космоса находится один атом. Вспомните, что в 1 см3 воздуха, которым мы дышим, находится 2,7∙1019 молекул. Приведенная цифра — средняя. Существуют области пространства, где плотность межзвездного газа существенно выше средней. Кроме газа мы встречаемся и с пылью, которая состоит из частичек размером 10-4—10-5 см.

Следует полагать, что звезды образуются из газово-пылевой среды. Под влиянием сил тяготения некое облако начинает стягиваться в шар. Через сотни тысяч лет оно сожмется, а температура звезды повысится и сделает звезду видимой на небосводе. Разумеется, это время сильно зависит от размеров и соответственно от массы сгущающегося облака.

С продолжением сжатия температура в недрах звезды растет и достигает такого значения, при котором начинается термоядерная реакция. Четыре ядра атомов водорода превращаются в ядро атома гелия. Напомним, что при этом 4,0339 а.е.м. четырех атомов водорода превращаются в 4,0038 а.е.м. гелия. Выделяется энергия, эквивалентная 0,0301 а.е.м.

Выгорание водорода, которое происходит в центре звезды, может продолжаться разное время в зависимости от ее массы. Для Солнца это время равно 10–20 млрд. лет. Таков период стабильного состояния звезды. Силы гравитационного притяжения уравновешиваются внутренним давлением горячих ядер, которое пытается раздуть звезду. Так что звезда — это нечто вроде баллона со сжатым газом. Только роль стенок сосуда берут на себя силы тяготения.

Когда запасы водородного горючего начнут приходить к концу, внутреннее давление ослабнет. Ядро звезды начнет сжиматься.

Что же произойдет дальше? — спрашиваем мы у теоретика. Проделав соответствующие расчеты, теоретик отвечает, что дальнейшая судьба звезды зависит от того, удастся ли ей или нет сбросить с себя внешнюю оболочку. Если такой процесс окажется возможным и масса звезды станет раза в два меньше Солнца, то тогда создадутся силы, способные противостоять гравитационным. Образуется маленькая звезда с высокой температурой поверхности. Ее называют белым карликом.

Ну, а дальше? Опять-таки судьба звезды определяется ее массой. Если белый карлик имеет массу меньше, чем полторы массы Солнца, то он будет медленно умирать и никаких драматических событий не произойдет. Радиус будет уменьшаться, температура падать. В конце концов карлик превратится в холодную звезду размером с Землю. Такова «гибель» большинства звезд.

Но если масса белого карлика, образовавшегося после того, как звезда с выгоревшим топливом сбросила с себя оболочку, больше полутора солнечных масс, то сжатие не остановится на стадии белого карлика. Электроны сольются с протонами, и образуется нейтронная звезда, размер которой будет измеряться лишь несколькими десятками километров. Нейтронная звезда, должна, по расчетам, иметь температуру порядка десятка миллионов кельвинов. Максимум ее излучения лежит в области рентгеновских лучей.

Мы рассказали, что должно произойти со звездой, если ей удастся сбросить с себя внешнюю оболочку. Но математические уравнения не диктуют необходимость этого раздевания. Если же небесное тело сохранит массу порядка массы Солнца, то гравитационное притяжение просто уничтожит звезду. На месте, где была звезда, останется черная дыра.

На какой же стадии сжатия должно произойти уничтожение звезды и почему место, где она находилась получило название черной дыры?

Вспомним следующую простую закономерность, на которой основаны запуски ракет, уходящих с Земли в космос (см. 1-ю книгу). Чтобы покинуть Землю, нужна скорость 11 км/с. Величина этой скорости определяется уравнением


Из формулы ясно, что по мере сжатия шара определенной массы скорость, с которой ракета может уйти в космос с такого небесного тела, будет все время расти. Но ведь предельная скорость равна 300 000 км/с! Если звездный шар заданной массы сожмется до шарика, радиус которого равен


то выбраться из такого шара становится невозможным.

Иными словами, в место, где была звезда, может прийти все, что угодно, в том числе световой луч или луч другого электромагнитного излучения, а выбраться из дыры не удастся. Согласитесь, что название «черная дыра» вполне уместно. Нетрудно прикинуть по написанной формуле, что черные дыры с массами от 3 до 50 солнечных масс будут иметь размеры от 60 до 1000 км.

Теперь я остановлюсь более или менее детально на поисках черных дыр. Конечно, читатель может сказать, что это частный вопрос, которому не следовало бы уделять внимание в маленькой книге, посвященной всей физике. Но мне представляется поучительным сам метод подхода к этому поиску. Талант естествоиспытателя и проявляется в том, чтобы найти способы косвенных доказательств справедливости модели, свойства которой не могут быть доказаны непосредственно.

Задача действительно кажется на первый взгляд неимоверно сложной, если не неразрешимой. Разглядеть черное пятнышко размером в 1000 км на неимоверно больших расстояниях не под силу самому хорошему приору.

Советский физик Я. Б. Зельдович более чем 20 лет назад предложил начать поиск черных дыр, исходя из идеи, что их присутствие на небе должно влиять на поведение находящихся поблизости видимых тел. Вместе со своими сотрудниками он начал систематический просмотр звездных каталогов с тем, чтобы найти видимую звезду, вращающуюся около черной дыры. Такая звезда должна выглядеть одиночкой, а ее вращение приведет к тому, что спектральные линии будут периодически смещаться в красную или синюю сторону в зависимости от того, движется ли звезда от нас или к нам.

В эту работу включились исследователи и других стран, и было найдено некоторое число вроде бы подходящих звезд. Из величины доплеровского смещения можно грубо оценить массу звезды, около которой происходит вращение видимого спутника. Были отобраны невидимые кандидаты, масса которых была в три раза больше массы Солнца. Таким образом, речь не могла идти ни о белых карликах, ни о нейтронных звездах.

И все же этого недостаточно для утверждения, что такая экзотическая система, как черная дыра, действительно существует. Оппоненты могли выставить серию других объяснений периодического доплеровского смещения.

Однако имеется одно явление, которое можно призвать на помощь. Дело в том, что черная дыра обладает способностью втягивать в себя газ из своего спутника. При падении в черную дыру этот газ должен сильно разогреваться и излучать рентгеновские лучи. Правда, такую же оттяжку газа производят и нейтронные звезды, и белые карлики. Но их, как сказано выше, мы можем отличить от черной дыры по величине массы.

Совсем недавно была найдена звезда, удовлетворяющая всем требованиям, которым должен подчиняться спутник черной дыры. За этим открытием, без сомнения, последуют новые эксперименты и детальные теоретические расчеты, цель которых — предсказать особенности рентгеновского спектра, исходящего из окружения черной дыры. Ближайшее будущее должно показать, насколько часто эти поразительные «тела» встречаются во Вселенной. Есть основания полагать, что возможно существование крупных черных дыр и черных мини-дыр с массой порядка 1016 г. Такие дыры размером меньше атомного ядра могут неожиданно погибнуть, возвратив заключенную в них энергию. А ее достаточно, для того, чтобы удовлетворить в течение многих лет все нужды Земли в энергии. Какая великолепная тема для авторов научно-фантастических романов!


РАДИОАСТРОНОМИЯ

На фотографии, которая приведена на рис. 7.4, изображена параболическая радиоантенна. Она фокусирует падающие на нее параллельные радиолучи. Лучи собираются в точке, где помещен специальный приемник. Далее сигнал усиливается радиотехническими способами. Параболическая антенна, показанная на рисунке, установлена в городе Эффельсберге (ФРГ). С помощью этой антенны стометрового диаметра ведут совместные исследования ученые многих стран, в том числе и советские.



Подобные антенны обладают поразительной чувствительностью. Поворачивая их так, чтобы ось зеркала смотрела в интересующем нас направлении, мы в состоянии уловить потоки энергии порядка 10-28 Вт с/м2. Фантастично, не правда ли?!

Радиоастрономия привела к фундаментальным открытиям в области физики Вселенной.

Радиотелескопы установлены на Луне и на некоторых спутниках. Таким образом, поглощение и отражение электромагнитных волн атмосферой перестает быть препятствием для наблюдателя. Пока что имеются два «окна» в электромагнитном спектре. Одно из этих окон пропускает видимый свет, а другое — радиоизлучение в пределах длин волн от 2 см (15 000 МГц) до 30 м (10 МГц).

Погода не влияет на радиоастрономические наблюдения. Радионебо «выглядит» совсем иначе, чем то, которым мы любуемся ночью.

Радиоизлучение космоса — не очень сильное, и его изучение стало возможным лишь благодаря феноменальным успехам радиотехники. Достаточно сказать, что радиоизлучение Солнца в миллионы раз меньше по мощности чем излучение в световом диапазоне.

И несмотря на это, без радиоспектроскопии мы не смогли бы установить много важных фактов. Так, большую роль в понимании процессов, протекающих во Вселенной, играет измерение остаточного излучения взрывов «сверхновых» звезд.

Нейтральный водород излучает сильную волну длиной 21 см. Измерение интенсивности этого радиоизлучения позволило набросать картину распределения в космосе межзвездного газа и проследить за движением газовых, облаков.

Найдено большое число радиогалактик и квазаров, которые находятся от нас на предельно больших наблюдаемых расстояниях. Достаточно сказать, что красное смещение излучения, приходящего от этих источников достигает значения — 3,5. Красное смещение определяется как отношение разности принятой и испущенной длин волн к величине испущенной длины волны. Так что разность в 3,5 раза больше, чем длина волны излучения.

Радиометоды позволили заглянуть на самую окраину Вселенной. Радиоастрономические исследования позволили разобраться в природе космических лучей, поступающих к нам из небесных просторов.


КОСМИЧЕСКИЕ ЛУЧИ

Исследования, которые сейчас можно с удобствами производить в космосе, доказывают, что на нашу Землю непрерывно падает поток ядерных частиц, движущихся со скоростями, практически равными скорости света. Их энергия лежит в пределах 108—1020 эВ. Энергия порядка 1020 эВ превосходит на восемь порядков энергии, которые можно создать в самых мощных ускорителях!

В основном первичные космические лучи состоят из протонов (около 90 %); кроме протонов в них присутствуют и более тяжелые ядра. Разумеется, сталкиваясь с другими молекулами, атомами, ядрами, космические лучи способны создать элементарные частицы всех типов. Но астрофизиков интересует первичное излучение. Как создаются потоки частиц, обладающих такой энергией? Где лежат источники этих частиц?

Достаточно давно было доказано, что не Солнце является основным источником космического излучения. Но если так, то ответственность за создание космических лучей нельзя переложить и на другие звезды, поскольку в принципе они ничем не отличаются от Солнцу. Кто же виноват?

В нашей Галактике существует Крабовидная туманность, которая образовалась в результате взрыва звезды в 1054 г. (не надо забывать, что ученые следят за звездным небом не одну тысячу лет). Опыт показывает, что она является источником радиоволн и источником космических частиц. Это совпадение дает разгадку огромной энергии космических протонов. Достаточно допустить, что электромагнитное поле, образовавшееся в результате взрыва звезды, играет роль синхротрона, и тогда огромная энергия, которая набирается частицей, путешествующей по спирали вокруг линий магнитной индукции на протяжении тысяч световых лет, может достигнуть тех фантастических цифр, которые мы привели.

Расчеты показывают, что, пролетев расстояние, равное поперечнику нашей Галактики, космическая частица не может набрать энергии больше чем 1019 эВ. Видимо, частицы с максимальной энергией приходят к нам из других галактик.

Разумеется, нет никакой необходимости полагать, что только взрывы звезд приводят к появлению космических частиц. Любые звездные источники радиоволн могут быть одновременно источниками космических лучей.

Существование космических лучей было обнаружено еще в начале нашего века. Установив электроскопы на воздушном шаре, исследователь замечал, что разрядка электроскопа на больших высотах идет значительно быстрее, чем если этот старинный прибор, оказавший физикам немало услуг, помещен на уровне моря.

Стало ясным, что всегда происходящий спад листочков электроскопа не является следствием несовершенства прибора, а есть результат действия каких-то внешних факторов.

В 20-х годах физики уже понимали, что ионизация воздуха, которая снимала заряд с электроскопа, несомненно внеземного происхождения. Милликен первый уверенно, высказал такое предположение и дал явлению его современное название: космическое излучение.

В 1927 г. советский ученый Д. В. Скобельцын первый получил фотографию следов космических лучей в ионизационной камере.

Обычными способами, которые мы описывали ранее, была определена энергия космических частиц. Она оказалась огромной.

Изучая природу космических лучей, физики сделали ряд замечательных открытий. В частности, существование позитрона было доказано именно этим путем. Так же точно и мезоны — частицы с массой, промежуточный между массами протона и электрона, — были впервые обнаружены в космических лучах.

Исследования космических лучей продолжают оставаться одним из увлекательных занятий физиков.

* * *

Незавершенность астрофизики делает трудным ее изложение в одной главе небольшой книги, цель которой — ввести читателя в круг основных фактов и идей физической науки. Я выбрал из физических проблем, касающихся Вселенной, лишь несколько вопросов, которые казались мне наиболее интересными.




* * *



* * *



Загрузка...