Как быть? А помните, чему учит квантовая теория: возможны какие угодно большие неопределённости у энергии – правда, на достаточно малых интервальчиках времени. Как говорится, хорошего – понемножку. Но теоретики и этому были рады без ума. Ведь какая прелесть получилась! Если допускать, что основной закон не работает даже в течение короткого периода, и успевать за этот период обтяпывать свои делишки, то можно смело творить что угодно! Ну, и кинулись теоретики наперегонки – тоже творить, значит. И сотворили то, что называется виртуальными фотонами. Для которых «как бы не выполняется закон сохранения энергии» (это официальная формулировка!). Внимание, мистики и спириты! Чтобы не отвечать за это «как бы невыполнение закона сохранения энергии», теоретики постулировали, что виртуальные фотоны принципиально не поддаются детектированию. Этим виртуальные фотоны существенно отличаются от реальных: их «как бы нет»! А в остальном у них всё по науке: они должны переносить вполне реальные энергию и импульс! Это само собой, ведь взаимодействие между двумя электронами рассматривается как испускание виртуального фотона одним электроном и поглощение его другим. Главное, чтобы это проделывалось достаточно быстро – чтобы публика не успевала глазом моргнуть. Ну, а для облегчения публике привыкания к подобным чудесам, разработали схематические комиксы, которые по-научному называются «фейнмановские диаграммы». Тут достаточно научиться отличать волнистые линии от прямых – и сразу начинаешь чувствовать себя крутым специалистом по виртуальной реальности. Вишь, как эта реальность виртуальничает: и прямо тебе, и внахлёст, и стежками тебе, и петельками! И, главное, всё это – неопровержимо, поскольку виртуальная реальность, мол, не поддаётся детектированию! Такие весёлые картинки и самому рисовать можно – «твори, выдумывай, пробуй!» - надо лишь соблюдать единственное правило: при проведении прямой линии, рука не должна дрожать. Нарисуешь твёрдой рукой парочку таких картинок – и само собой приходит убеждение в том, что виртуальная реальность не менее реальна, чем реальность реальная! Студенты просто балдеют…

Втолкуй потом этим фанатам виртуальной реальности, что никакого поля нет! Вон, сегодня медицина совершенно официально говорит о синдроме пристрастия к виртуальной реальности. Медицинские светила дают рекомендации по уходу за больными: контакт с виртуальной реальностью позволять не более часа в день, вести побольше разговоров на разные отвлекающие темы, и т.д. Хватились, Склифософские! Прикиньте, как долго физики буквально вопили о том, что страдают этим самым синдромом – а медицина не приходила им на помощь! Но радует, что процесс наконец-то пошёл!

Тем из фанатов поля, кому трудно сразу представить, что никакого поля нет, можно попробовать справиться с этой задачей в два приёма: для начала освоиться с тем, что нет никаких фотонов. Как уже говорилось, эксперименты показывают следующее. Кванты световой энергии перебрасываются с атома на атом, практически, мгновенно – на расстояния, по крайней мере, в несколько метров. При таком перебросе не происходит передача импульса. Вам мало того, что «фотоны» не летят вообще и не летят со скоростью света в частности, а также не переносят импульс? Ладно, можем продолжить. «Фотоны» не испытывают ни гравитационных, ни квадратично-допплеровских сдвигов частоты – этим сдвигам подвержены лишь уровни энергии в веществе (см. «Фиговые листики…»). «Фотоны», далее, не испытывают и линейно-допплеровских сдвигов частоты: с этими сдвигами работает навигатор квантовых перебросов энергии, но на величине перебрасываемой порции энергии не сказывается то, что отдающий и принимающий атомы как-то там движутся. Наконец, совершенно не по делу к фотону пытаются прицепить ярлык полноценной талантливой частицы, которая способна полностью превращаться в частицы вещества, и обратно. По жизни эти таланты никогда не проявляются! В россказнях про то, как гамма-квант, имеющий достаточную энергию, лихо превращается в пару электрон-позитрон, кое-что умалчивается. А именно: гамма-квант должен попасть в тяжёлое ядро – откуда и вылетит та парочка. Без ядра сей фокус не получается… Вроде дипломированные специалисты – святая наука, мол, то да сё – а на мелком надувательстве ловятся. Что уж говорить про надувательство крупное – насчёт т.н. аннигиляции электрона с позитроном, которые, якобы, исчезают полностью, превращаясь в два кванта по 511 кэВ штука. Дурить нас изволите! Здесь получается один квант на 511 кэВ, а электрон и позитрон не исчезают полностью, а образуют сильно связанную пару – которая может вновь распасться, получив достаточную энергию. Нету у фотонов и частиц вещества взаимопревращаемости. Есть только сказочки о ней. О, на какие хитрости пускались экспериментаторы, чтобы выдавать эти сказочки за действительность (см. «Фиговые листики…»)!

Ну, и что же остаётся у фотона от полноценной частицы? Только служебное удостоверение, да? В котором для лопухов прописано, что предъявитель сего является одной из четырёх фундаментальных, абсолютно стабильных частиц? Прописями для лопухов не сваяешь физических свойств, любезные! Все, кажется, согласны с тем, что верховным судьёй в подобных разборках является Его Величество Эксперимент? Так извольте принять его вердикт: фотонов нет. А теперь вспомните, чему учит квантовая теория: поле – это, мол, набор фотонов. Нет фотонов – нет и поля. Понимаете?

«Но не могут же заряды действовать друг на друга непосредственно!» - кричат нам. Конечно, не могут. Иначе до смешного бы доходило. Особенно если верить тому, что одноимённые заряды отталкиваются друг от друга. Вот, смотрите: свободный электрон. Считается, что его заряд как-то там размазан по его объёму. Правда-правда: есть целое экспериментальное направление в физике элементарных частиц – определение форм-факторов, т.е. функций, описывающих распределение заряда в объёме частицы. Ну, вот: размазан заряд по объёму электрона – значит, на каждый кусочек электрона приходится какой-то зарядик. Если эти зарядики расталкиваются – причём, со страшной силой! – то пришлось бы допускать наличие контр-воздействия, которое сдерживает электрон от того, чтобы он взорвался. Мало того, что при таком допущении подмачивалась бы репутация электрона как элементарной частицы. Энергии разрывающих и сдерживающих электрон воздействий были бы чудовищны, на порядки превышая энергию, соответствующую его массе покоя. Но тогда выходило бы, что при аннигиляции эта чудовищная энергия исчезает бесследно. Тут даже виртуальные фотоны ничем не смогли бы помочь!

А может, всё гораздо проще? Частица обладает электрическим зарядом, если в ней имеются квантовые пульсации на определённой частоте, которую предложили называть электронной. Потому что у электронов эта частота – именно такая (около 1.24×1020 Гц). Разноимённость электрических зарядов обусловлена противофазностью квантовых пульсаций на электронной частоте. Таким образом, электрический заряд не является энергетической характеристикой, и заряды вовсе не действуют друг на друга. Наличие у частицы электронной частоты – это всего лишь маркер для пакета программ, который обеспечивает работу того, что называется электромагнитными взаимодействиями. Имеет частица такой маркер – значит, этот пакет программ на неё действует, управляя превращениями её энергий. У свободных заряженных частиц управляются превращения между их собственными и кинетическими энергиями. Алгоритм примерно таков: двигайтесь так, чтобы нейтрализовывать нарушения равновесных распределений зарядов. Грубо говоря, вот вам и вся электродинамика свободных зарядов! Никакого поля, никаких волн. То, что кажется нам волной – это просто последовательные подвижки зарядов: с запаздываниями, обусловленными быстродействием того самого пакета программ. Это быстродействие и определяет величину «скорости электромагнитных волн в пустоте».

Аналогично проявляется и быстродействие навигатора квантовых перебросов энергии: поиск атома-получателя производится со скоростью света, а потом – раз! – и делается мгновенный переброс порции энергии с атома на атом. Конечно, такие процессы никак не вытекают из свойств самих атомов, и поэтому они должны быть обусловлены каким-то дополнительным управлением. «Ага, чем-то сверхъестественным, - подсказывают нам академики. – Так сверхъестественного не бывает! Всё, что бывает, оно естественно. А что сверх того – с тем обращайтесь к психиатрам!» Минуточку, давайте уточним, кому следует обращаться к психиатрам. Словечко «сверхъестественное» - многозначное. Сверхъестественное – в смысле, что не действует на физические приборы? Так это как раз характерная особенность вашего «поля». Типичная сверхъестественность! Которой, по-вашему, не бывает. А, может, вы имели в виду сверхъестественное – в смысле, лишняя сущность, по которой бритва Оккама плачет? Ой-ой-ой! Да в вашей теории поля – которого нет – лишние сущности приходится штабелями складывать. Тут бритвы мало, тут бульдозер нужен! А, может, имелось в виду сверхъестественное – в смысле, чересчур сложное для понимания? Ладно вам прибедняться-то! Помните, мы иллюстрировали квантовый пульсатор мигающим пикселем на экране монитора? Развиваем эту аналогию: два пикселя мигают в разных местах экрана. И вот (по команде «Оп!») производится следующее: частота миганий одного пикселя уменьшается на некоторую величину, а частота миганий другого – на такую же величину увеличивается. Вот вам и модель квантового переброса энергии. Школьникам понятная! Для сравнения: что такое, например, «оператор рождения фотона» - школьники не понимают категорически. Скажем вам по секрету: психиатры тоже этого не понимают! Только не пытайтесь им объяснять – иначе вам же хуже будет.

После всего сказанного, имеются ли у кого ещё свидетельства в защиту идеи о том, что световая энергия может пронизывать пространство, имея независимое существование от излучателей и приёмников? «Имеются, имеются!» - вопиют академики. И рассказывают трогательную историю. Пусть, мол, в десяти световых годах от нас сгенерировали мощную вспышку света, после чего излучатель сразу уничтожили… а приёмник мы еле успели построить к концу десятого года – но световой сигнал всё же приняли! Где же, мол, находилась световая энергия все эти десять лет, когда излучателя уже нет, а приёмника ещё нет? Отвечаем. Ясно, где она находилась – скакала с атома на атом в межзвёздном пространстве, продвигаясь к строящемуся приёмнику. «Тогда, - торжественно восклицают академики, - предельная интенсивность пропускаемого света определялась бы концентрацией атомов, по которым он «скачет»! Чем меньше была бы концентрация, тем хуже пропускался бы свет! А это не так: в лабораториях мы пропускаем сквозь сверхвысокий вакуум лазерные интенсивности!» Конечно, пропускаете. Только заметьте: в лабораториях. Где длина участка со сверхвысоким вакуумом – копеечная. Где свет может «скакать» со входного окошка прямо на выходное. А вот на космических просторах – всё совсем по-другому. Там малая концентрация вещества действительно служит ограничителем пропускной способности. Есть мнение, что постоянство «солнечной постоянной», т.е. мощности солнечного излучения, обусловлено отнюдь не стабильностью работы Солнца-излучателя (какая там стабильность? Вы взгляните на то, что там творится!), а как раз малостью концентрации межпланетного вещества, пропускающего солнечное излучение на пределе своих возможностей. Была бы эта концентрация на порядок больше – Солнышко нас сожгло бы. Не верите? А знаете, что получалось, когда большая комета проходила между Солнцем и Землёй? Хвост кометы, направленный от Солнца, формировал створ с повышенной концентрацией вещества, через который Солнце припекало Землю сильнее, чем обычно. Где-то от этого приключались незапланированные засухи, а где-то, наоборот, наводнения… а через это – голод, эпидемии, войны… Но нынешняя наука полагает, что тянущийся из глубины веков ужас перед кометами, как предвестниками катаклизмов – это не более чем глупые суеверия. Выдуманные тёмными народными массами от нечего делать… А скажи-ка, нынешняя наука: почему провалилась такая интересная затея – поражать лазерными лучами космические объекты? Есть же опытные образцы газодинамических лазеров, которые прожигают броню и сшибают крылатые ракеты. Правда – вблизи поверхности Земли. А в открытом космосе ничего подобного не получается. С чего бы? Вакуум там вполне хорошего качества. Бери да пропускай сквозь него «лазерные интенсивности»! Ан нет. Лазер, который сквозь воздух прожигает металл, в космосе едва справляется со смехотворной задачей – выведением из строя светочувствительных элементов у спутника-шпиона. Только, дорогой читатель, смотрите – это военная тайна! Если её разгласить, то что же будет с мультиками, киношками и компьютерными игрушками, которые фабрикуют по тематике «звёздных войн»? Спрос на них резко упадёт! К такому удару мировая экономика не готова!

Ну, и под занавес мы ещё успеем увидеть, до чего дошли учёные мужи, вооружённые квантовой теорией, в физике атомного ядра. Исходили-то из того, что протоны, имея положительные заряды, должны кулоновски отталкиваться друг от друга. Ядерные силы, мол, гораздо сильнее, но зато они короткодействующие: протоны сцепляются, лишь касаясь друг друга бочками. Значит, чтобы протонам сблизиться до касания бочками, они сначала должны пересилить отталкивание – преодолеть т.н. кулоновский барьер. Чтобы такое происходило в естественных природных условиях, протоны должны весьма нехило соударяться – имея энергии, соответствующие температурам в десятки миллионов градусов. Где же в природе бывают такие температуры? «А в звёздах! – догадались учёные мужи. – Там-то атомные ядра и слипаются!» Но позже выяснились кошмарные вещи: в Солнце ядра, скорее, разлипаются, поскольку к Солнцу падают самые разные атомы, а вылетают из Солнца – протоны! Как-то это не стыкуется с версией о том, что на Солнце идут термоядерные реакции! «Ничего, ничего! – не растерялись учёные мужи. – В лабораторных условиях у нас всё получится! Ведь протоны можно разогнать до нужной энергии на ускорителе. Щас как обстреляем мишень протонами – то-то они на её ядра поналипнут!» Ну, и чего? Вышло опять какое-то конфузище: при малых энергиях протоны просто рассеивались на ядрах, а при энергиях поболе они вызывали ядерные реакции – даже если протон и «прилипал» к ядру, такое ядро долго не жило. Бывали, впрочем, исключения; например, таким образом из лития получался изотоп бериллия, но эта реакция имела резонансный характер – она происходила лишь при одной определённой энергии налетавшего протона. В общем, лабораторный опыт с полной определённостью подтверждал: откуда берутся составные ядра – науке было совершенно непонятно.

«А чё нам мучиться над тем, откуда они берутся? – зашептали учёные мужи. – Делать нам больше нечего, что ли? Будем исходить из того, что они уже откуда-то взялись. Вот сообразим, на чём они держатся – и все дела!» Сказано – сделано. Получите, мол, мезонную теорию ядерных сил! Без обману: всё по последней «кванта-механической» моде! Короче: нуклоны – протоны и нейтроны – притягиваются друг к другу потому, что, дескать, обмениваются друг с другом пи-мезонами. Да не простыми, а виртуальными. Что виртуальными – это принципиально, это сразу развеивает разные недоумения. Например, недоумение первое: откуда пи-мезоны берутся в нуклонах? Да ниоткуда не берутся! Их же «как бы нет»! Или, вон, недоумение второе: перебрасывание друг другу массивных частиц может породить лишь силы отталкивания, но не притяжения! Ха-ха! Это в классической механике так; а в микромире, мол, возможны любые чудеса – даже притяжение вбок! Постойте, постойте! Виртуальные пи-мезоны, по-вашему, могут переносить из нуклона в нуклон реальный заряд, превращая нейтрон в протон, или наоборот. Нейтрон, как известно, может превратиться в протон, но ведь освобождается при этом электрон, а не пи-мезон, масса которого на два порядка больше разности масс нейтрона и протона! Ха-ха! А на что же, мол, принцип неопределённости, согласно которому закон сохранения энергии может «как бы нарушаться»? Исходя из «нарушения», соответствующего массе пи-мезона, получили ограничение на время его жизни в ядре: не более 10-23 с. За это время он едва успевал бы преодолеть «радиус действия ядерных сил», двигаясь со скоростью света. На соплях, но успевал бы! Вот на этом-то, мол, ядра и держатся!

Эта склизкая версия не давала ответов даже на простейшие вопросы. Если ядерные силы одинаковы между любой парой нуклонов (протон-протон, протон-нейтрон, нейтрон-нейтрон) – то почему не бывает нуклонных комплексов из одних протонов или одних нейтронов? И зачем вообще нужны нейтроны в ядре? Да не просто нужны: почему, чем больше в ядре протонов, тем всё большее число избыточных нейтронов требуется, чтобы ядро было стабильно? И так далее – почему, да зачем, да с какой стати… Простейших вопросов было столько, что мезонная теория так и не добралась до главного вопроса, на который должна отвечать теория ядерных сил: откуда у связанных нуклонов берётся дефект масс? Тот самый, не понимая природы которого, сделали атомную бомбу!

Ободрённые этим оглушительным успехом, затеяли ещё одно доброе дело – так называемый управляемый, так называемый термоядерный, и так называемый синтез. Печальный опыт, полученный при попытках синтеза ядер на ускорителях, академиков ничуть не смущал. «Мировые энергетические проблемы будут решены, - втолковывали они публике, - если мы научимся разогревать сверхлёгкие ядра до десятков миллионов градусов. При этом ядра смогут преодолевать кулоновский барьер. И начнут слипаться, как миленькие – с выделением огромной энергии!» Дяденьки, а зачем вам для этого нужны десятки миллионов градусов? Возьмите простейшую реакцию синтеза лёгких ядер – слияние протона и нейтрона. Эта реакция шла бы с выделением огромной энергии даже при комнатной температуре, поскольку здесь реагентам не надо преодолевать кулоновский барьер. Вот же оно, решение мировых энергетических проблем! Может, у вас трудности с добычей протонов и нейтронов в промышленных масштабах? Ну, сделали бы для начала небольшой протон-нейтронный обогреватель. И подарили бы его президенту. Вот ужо он был бы рад! Ни у кого, дескать, нет, а у него – есть! К тому же – удобно, безопасно, экологически чисто! Да ещё и безотходно: тяжёлую водичку, которая капала бы из этого обогревателя, президент мог бы собирать в специально подставленную бутылочку и загонять по сходной цене руководителю атомной энергетики – там эта водичка, говорят, до сих пор пользуется бешеным спросом… Но, увы! Использовать реакцию слияния протона с нейтроном академикам неинтересно – дело в том, что она у них почему-то не идёт. Вот реакции при десятках миллионов градусов – это то, что надо! Это и интересно, и перспективно!

Сегодня можно с определённостью сказать, что позитивная роль, которую сыграла мезонная теория, заключалась не в том, что она хоть что-нибудь прояснила в физике ядра, а в том, что она послужила хорошей основой для более навороченной версии: квантовой хромодинамики. Там обмен нуклонов виртуальными пи-мезонами оставили в полной сохранности – как жалкий частный случай из богатейшего набора кипучих процессов в ядре. Спрятав подальше бритву Оккама, чтобы она не отсвечивала, завели разговоры о составных частях нуклонов, т.н. кварках, имеющих дробный электрический заряд. Это – нечто! Помните, мы говорили, что электрический заряд – это наличие квантовых пульсаций на электронной частоте? Есть эта частота – есть заряд, а нету этой частоты – нет и заряда. Дробных зарядов не бывает! Ну, ладно, а как же эти чудики, с дробными зарядами, удерживаются вместе? Да по старому доброму образу и подобию: благодаря обмену т.н. глюонами. Сразу виден полёт теоретической мысли! Ой, а чтобы было веселей, кваркам и глюонам столько новых квантовых параметров приписали – вы не представляете! Дескать, и верхние они бывают, и нижние, и цвета у них есть, и очарование, и даже ароматы! «Фу, фу, фу, нижним кварком пахнет!»

Понимаете, квантовую хромодинамику строили, свято соблюдая основной принцип теорфизики: «В тех теориях, что уже приняты, никаких глупостей нет. Поэтому новая теория ни в коем случае не должна отвергать старую: она должна включать её в себя, как частный случай». Понятно, что, при таких порядочках, квантовая хромодинамика нисколько не почистила мезонную теорию ядерных сил – наоборот, ещё своих блох добавила. Самой жирной и зловредной из них оказалась т.н. проблема конфайнмента. Казалось бы: если нуклоны состоят из кварков и глюонов, то возможно разбить нуклоны на эти составляющие. И получить, понимаете ли, кварк-глюонную плазму – чтобы подтвердить квантовую хромодинамику! Ну, и бросились экспериментаторы дробить нуклоны. Били-били – не разбили. Причём, воздействовали на них энергиями, в массовом эквиваленте на многие порядки превышавшими массы самих нуклонов. А нуклоны всё не разбивались – до того сильно, мол, кварки в них связаны. Для тех, кто привык к термину «дефект масс», поясняем: дефект масс здесь оказывается на многие порядки больше самих масс! До сих пор учёные мужи делают вид, что они здесь ещё чего-то недопоняли. Говорят – нужно ещё сильнее по нуклонам вдарить. Столкнуть их лбами, да покрепче! Тогда, глядишь, они и расколются! Даёшь Большой адронный коллайдер! И, чтобы публика-дура не усомнилась в исключительной серьёзности этой затеи, организовали публичную дискуссию – в популярном жанре клоунады. «Слышал, Бим, учёные строят огромный, как его, кол-лайдер!» - «Да и нехай себе строят, Бом!» - «Вот и я говорю, что нехай. А ты не боишься, Бим, что, когда они его запустят, у них там ка-а-к вспыхнет! Вдруг оно, это самое, всех нас сожжёт? Ведь жалко будет!» - куксится Бом и пускает две струи, изображающие слёзы. - «Что ты, что ты, - суетится Бим. – Я полагаю, что нет никаких оснований для опасений! На вот, возьми платочек!» - «Спасибо, Бим… теперь мне ни капельки не страшно! Пожелаем этим учёным удачи?» - «А как же, Бом? Чай, им приятно будет!»

Казалось бы, куда ещё приятнее? – ведь эти учёные уже заявили, что квантовая хромодинамика подтверждается на опыте с точностью аж до 10-19! Но тут они, конечно, переборщили. Нет физической величины, которая измеряется с такой сумасшедшей точностью. Точнее всех физических величин измеряется частота – и, на сегодня, рекордная точность её измерения имеет порядок 10-16. Откуда же там, у подтверждателей квантовой хромодинамики, могла взяться цифра 10-19? Понятно, откуда. Это был вовсе не результат измерения, а результат «оптимизации многих параметров». Проще говоря, это был результат математической подгонки. Которую можно выполнить с двойной точностью, и даже с тройной – дисковое пространство всё стерпит… А мы поначалу недоумевали: зачем это специалисты по коллайдерам скрывают от нас экспериментальные подробности и кормят научную общественность только конечными продуктами – сенсационными результатами своих исследований? Из которых самый простенький – это, якобы, рождение струй тяжёлых частиц в результате хорошо поставленного соударения одного электрона с одним позитроном! Причём, никто там электроны с позитронами поодиночке не соударял – схлёстывали пучки тех и других, да весьма неслабые. А где тогда доказательства, что тяжёлые частицы получались всего из одной пары электрон-позитрон? Спрашиваешь об этом специалистов, а они в ответ: «Всё, что законами не запрещено – то и разрешено!» Ну, чисто криминальная психология!

Потому-то, когда иные учёные заводят разговоры о том, что «пора соединить науку с нравственностью», нам вспоминается недоумённый вопрос сатирика Жванецкого: «Как это можно – сначала наладить выпуск продукции, а потом начинать борьбу за её качество?»


По материалам сайта «Наброски для новой физики», http://newfiz.narod.ru


Загрузка...