ЭЛЕКТРОНИКА

Измерение температуры датчиком DS1820

(thermo.karelia.ru)



Схема собрана на микроконтроллере[71] Atmel AT90S2313. На рисунках — принципиальная схема и внешний вид устройства. В качестве измерителя использован цифровой датчик фирмы Dallas Semiconductor — DS1820.





Датчик температуры DS1820 производства фирмы Dallas Semiconductors имеет малую погрешность измерений только в диапазоне от 0 до 70°. Для того, чтобы узнать, чему соответствуют его показания, скажем, при -30°, нужно построить градуировочную кривую. В документации, сопутствующей DS1820, приведен следующий график зависимости ошибки измерителя от реальной температуры.



Красная линия на нем отображает отклонение от истинного значения температуры для нашей партии датчиков. Для того чтобы программно скорректировать показания измерителей, нужно данную кривую выразить в математической форме, т. е. аппроксимировать ее полиномом. В данном случае был использован степенной ряд. Коэффициенты при степенях иксов были подобраны с помощью MS Excel (модуль "поиск решения"). На графике синяя линия соответствует полиному третьей степени, уравнение которого написано под ним. Таким образом, полученные данные с измерителя каждый раз поправляются на ту или иную величину с учетом именно этой формулы.



Тотклон. = -0.027 — 0.01889*Т + 0.0008159*Т2 - 0.00000749*Т3


Отнимая от значений измерителя величину поправки, получаем истинное значение температуры. Т. е.

Тистин. = ТТотклон., или

Тистин. = 0.027 + 1.01889*Т — 0.0008159*Т2 + 0.00000749*Т3

Источники стабильного тока и их применение

П. Иванов, С. Семушин


Независимо от конструктивного исполнения любой источник тока состоит из одних и тех же функциональных узлов (рис. 1). Это первичный источник питания, регулирующий элемент, датчик тока и нагрузка. В большинстве конструкций используется также цепь обратной связи, соединяющая датчик тока с регулирующим элементом. Ток в нагрузке устанавливается изменением параметров цепи обратной связи или датчика тока [1–3].

Если ток в цепи обратной связи достаточно мал, что обычно выполняется на практике, то через последовательно соединенные источники питания, датчик тока, регулирующий элемент и нагрузку протекает одинаковый ток. При этом условии практически любой вариант схемы получается перестановкой последовательно соединенных узлов и выбором точки заземления. Если же ток в цепи обратной связи соизмерим с током в основной цепи, необходимо учитывать появление погрешностей при установке нужного тока в нагрузке. Однако существуют схемные решения, в которых ток обратной связи протекает как через датчик тока, так и через нагрузку, что компенсирует возникновение ошибки.



Рис. 1. Функциональная схема источника тока


В качестве регулирующего элемента в практических схемах обычно применяют одиночные или чаще составные транзисторы, в качестве датчика тока — резистор или диод. При выборе точки заземления также исходят из практических соображений.

Для понимания работы источников тока рассмотрим типовые схемы, получаемые из общей функциональной схемы, показанной на рис. 1.

В качестве простейшего источника тока хорошо работает обычный транзистор с резистором в эмиттерной цепи (рис. 2,а). Сила тока в нагрузке определяется выражением

Iк = (UвхUбэ)/R1 (1)

где Iн — ток в нагрузке, Uвх — входное напряжение, Uбэ — падение напряжения на переходе база-эмиттер транзистора VT1, R1 — сопротивление датчика тока R1. Меняя величину Uвх, можно установить требуемый ток нагрузки. Обычно для задания входного напряжения с необходимой точностью используются источники опорного напряжения (ИОН) [1]. В этой схеме обратная связь по напряжению с выхода датчика тока R1 на вход регулирующего элемента VT1 в явном виде отсутствует.

Вследствие этого сила тока в нагрузке зависит как от сопротивления нагрузки, так и от температуры и параметров транзистора. Тем не менее, благодаря своей простоте это устройство часто применяется там, где не требуется высокой стабильности тока в нагрузке. Более стабильно работает устройство, схема которого показана на рис. 2,б, которое благодаря своей простоте и высокой повторяемости находит широчайшее применение в интегральной схемотехнике [2].



Рис. 2. Схема простых источников тока


Наиболее широко используемой схемой источника тока с применением операционного усилителя (ОУ) является классическая схема, приведенная на рис. 3.



Рис. 3. Схема с использованием ОУ


В этой схеме регулирующий элемент — транзистор VT1 — управляется ОУ DA1, который стремится уравнять напряжения на своих выводах — инвертирующем и неинвертирующем. При этом сила тока в нагрузке Rн определяется выражением

Iн = Uвх/R1 (2)

Для нормальной работы схемы напряжение на нагрузке Uн не должно превышать значения, определяемого выражением

Uн = IнRн < UпUкэ. насIR1

I = Iн (3)

где Uп — напряжение источника питания, Uкэ. нас — напряжение насыщения транзистора VT1, R1 — сопротивление датчика тока R1. В этой схеме ток в нагрузке Iн отличается от тока I в датчике тока R1 на величину ошибки, определяемую силами токов в цепи обратной связи, а именно: тока базы 16 транзистора VT1 и входного тока IвхОУ DA1:

ΔI = IвIвх. (4)

Очевидно, что величина ошибки установления требуемого тока в нагрузке тем меньше, чем меньше входной ток ОУ DA1 и чем больше коэффициент усиления транзистора VT1. По этой причине на практике в качестве регулирующего элемента обычно применяются составные транзисторы.



Рис. 4. Схема с использованием ОУ



Рис. 5. Схема с плавающей нагрузкой


Аналогичными свойствами обладает источник тока, схема которого показана на рис. 4. Это устройство также описывается выражениями (2–4) и отличается лишь направлением тока. Основной недостаток здесь по сравнению с классической схемой заключается в дополнительном ограничении на минимальное и максимальное напряжения на нагрузке:

Uн.min > UпUвыхОУUбэ = UпUnOУ;

Uн.max < UnUкэ. насIR1, (5)

где Un — напряжение источника питания, UвыхОУ — максимальное выходное напряжение ОУ, UnOУ — напряжение питания ОУ.

Еще одним вариантом источника тока является схема с плавающей нагрузкой, приведенная на рис. 5. Сила тока в нагрузке здесь также определяется выражением (2). Так как нагрузка Rн включена последовательно с датчиком тока R1, то на ошибку устанавливаемого тока не влияет ток базы транзистора VT1 и она определяется лишь очень малым входным током ОУ DA1:

ΔI = Iвх (6)

Недостатком этой схемы, подобно схеме рис. 4, является ограничение на величину максимального напряжения на нагрузке, определяемую неравенством

Uн.max < UвыхОУUбэIR1 = UnOУIR1. (7)



Рис. 6. Схема с заземленной нагрузкой



Рис. 7. Схема с полевым транзистором


Кроме того, в ряде применений оказывается неудобным то обстоятельство, что оба вывода нагрузки оторваны и от земли и от шин питания.

На схему с плавающей нагрузкой очень похожа схема с заземленной нагрузкой (рис. 6). В этой схеме ток в нагрузке определяется выражением (2), а ошибка его установления — выражением (4). Наличие возможности заземления нагрузки является существенным преимуществом данного устройства. Максимальное напряжение на нагрузке ограничено неравенством

Uн. max < UвыхОУUбэ = UnOУ (8)

В качестве регулирующего элемента можно применить полевой транзистор. Это позволит уменьшить ошибку, связанную с входным током регулирующего элемента. Такая схема приведена на рис. 7. Здесь также ток в нагрузке определяется выражением (2), а ошибка установления его значения, определяемая входным током ОУ, — выражением (6). Существенный недостаток данной схемы связан с тем, что крутизна полевого транзистора примерно на порядок ниже крутизны биполярного транзистора. Это вынуждает значительно увеличивать управляющее напряжение на затворе регулирующего элемента VT1, которое, как было показано выше, ограничено выходным напряжением ОУ DA1. Кроме того, применение полевого транзистора существенно уменьшает коэффициент передачи в цепи обратной связи и ухудшает в целом температурную стабильность источника тока, что приводит к увеличению ошибки устанавливаемой силы тока нагрузки.



Рис. 8. Схема с переменным током в нагрузке


Сравнив описанные выше схемы с применением ОУ и имея в виду применение ОУ с малыми входными токами, приходим к выводу, что наиболее точно силу тока в нагрузке можно получить в схеме рис. 5. Во всех источниках тока, кроме схемы рис. 3, имеются жесткие ограничения, накладываемые на величину напряжения на нагрузке, связанные с максимальным выходным напряжением ОУ. В схеме рис. 3 можно получить любое требуемое напряжение на нагрузке путем соответствующего выбора напряжения питания нагрузки Un. При этом нужно учитывать лишь одно ограничение — максимально допустимое коллекторное напряжение транзистора VT1.

Во всех схемах источников тока с ОУ для обеспечения нормальной работы ОУ и для повышения точности установки выходного тока необходимо в качестве регулирующего элемента использовать супер-бета или составные транзисторы.

В ряде случаев требуется сформировать в нагрузке ток, переменный как по величине, так и по направлению. Для таких применений хорошо работает схема [4], приведенная на рис. 8. Эта схема, как и все предыдущие, может быть получена из общей функциональной схемы рис. 1 при условии, что два одинаковых источника тока — один для тока положительной полярности, а другой для отрицательной — работают на общий датчик тока (резистор R6) и общую нагрузку с комплексным сопротивлением Zн и имеют общую цепь обратной связи. В этой схеме выходной ток Iн в точности повторяет форму входного напряжения Uвх и определяется выражением

Iн = ((Uвх + Uн) — Uн)/R6 = Uвх/R6 (9)

При указанных на схеме номиналах источник тока преобразует входное напряжение от —10 до +10 В в ток от —10 до +10 мА. Для достижения высокой точности преобразования нужно использовать резисторы Rl — R6 с допуском не более 1 %. Недостатком приведенной схемы являются жесткие ограничения на величину выходного напряжения, связанные с максимальным выходным напряжением ОУ и определяемые неравенствами

Uвx + Uн < UвыхОУ = UnОУ;

Uвx + Uн < IнR6 + IнRн < UnUКЭнас = Un. (10)

При UnОУ = Un остается одно неравенство

Uвx+ Uн < Uп. (11)

В этой схеме можно использовать практически любые ОУ с соответствующими цепями коррекции. Следует только учитывать, что более высокая точность преобразования напряжения в ток получается при использовании ОУ с малыми входными токами и малыми напряжениями смещения. В качестве регулирующих транзисторов VT1 и VT2 можно взять любые маломощные транзисторы с максимальным коллекторным напряжением более 30 В и током коллектора 20…150 мА.

Одним из применений источников тока является заряд аккумуляторных батарей. Такой источник должен обеспечивать ток, равный 0,1 от емкости заряжаемой батареи, и продолжительность зарядки 14…15 ч [5, 6]. Известны также способы заряда аккумуляторов асимметричным током [7, 8]. Однако, несмотря на ажиотаж, поднятый вокруг них в литературе, они пока не получили широкого распространения, так как там требуется индивидуальная зарядка каждого из аккумуляторов батареи и сложные методы контроля их степени заряженности по температуре, напряжению, давлению или другим признакам [8]. Это связано с тем, что физико-химические процессы, происходящие в аккумуляторе при зарядке его постоянным и асимметричным токами, различны.

Рассмотрим устройство для зарядки аккумуляторных батарей типа 7Д-0,115 (рис. 9).



Рис. 9. Схема устройства для зарядки аккумуляторных батарей 7Д-0.115


Схема позволяет заряжать батарею постоянным током 11,5 мА, а по окончании зарядки автоматически отключается. Кроме того, есть защита от короткого замыкания в нагрузке. Устройство представляет собой простейший источник тока (см. рис. 2,а) и включает дополнительно ИОН на светодиоде HL1 и автоматическую схему отключения тока по окончании зарядки, которая выполнена на стабилитроне VD1, компараторе напряжения на ОУ DA1 и ключе на транзисторе VT1. Сила зарядного тока (11,5 мА) устанавливается резистором R7 в соответствии с выражением

I = (UiUбэVT2UбэVT3)/R7 (12)

где Ui — напряжение на светодиоде VD2 при заряде батареи. В процессе зарядки напряжение U2 на неинвертирующем входе ОУ DA1 больше напряжения на инвертирующем входе. Выходное напряжение ОУ близко к напряжению питания, транзистор VT1 открыт и через светодиод течет ток около 10 мА. При зарядке батареи напряжение на ней растет, соответственно растет напряжение на инвертирующем входе ОУ DA1. Как только оно превысит напряжение на неинвертирующем входе, компаратор переключится в другое состояние, закроются транзисторы VT1, VT2, VT3, погаснет светодиод VD2 и прекратится зарядка аккумулятора. Предельное напряжение, при котором прекращается зарядка батареи, устанавливается резистором R2 согласно выражению

Uвых = U2((R8 + R9)/R9) (13)

Для батареи 7Д-0Д15 напряжение срабатывания компаратора устанавливается равным 7x 1,43 = 10 В. Во избежание неустойчивой работы компаратора в зоне нечувствительности можно установить резистор, показанный штриховой линией, сопротивлением 100 кОм.

Схема пригодна и для других типов аккумуляторов. В соответствии с необходимым током нужно лишь подобрать сопротивление резистора R7 согласно выражению (12) и, возможно, более мощный транзистор VT3.

Для целого ряда применений может оказаться полезным универсальный источник постоянного тока, изготовленный авторами. Его схема приведена на рис. 10. Устройство позволяет получать токи в нагрузке от 1 мА до 6 А, а при незначительном изменении параметров схемы, как будет показано далее, и до 9,999 А.

Устройство содержит следующие основные узлы: ИОН, мощный генератор выходного тока, прецизионный задающий узел, а также блок питания и контрольно-измерительные приборы. Мощный генератор выходного тока, формирующий ток в нагрузке, построен на базе высокоточного ОУ по классической схеме. Регулирующий элемент выполнен на транзисторах VT2 и VT3, включенных по схеме Дарлингтона.



Рис. 10. Схема универсального источника тока


ИОН выполнен на высокоточном ОУ DA1 и транзисторе VT1. Он представляет собой повторитель напряжения, выход которого нагружен на ряд одинаковых, последовательно соединенных прецизионных резисторов R4-R12. На вход повторителя приходит постоянное напряжение Uo, поступающее с выхода двухступенчатого параметрического стабилизатора напряжения на опорных диодах VD1 и VD3 серии Д818Е и КС515А через делитель на резисторах R1-R3. На каждом из 9 нагрузочных резисторов R4-R12 падает одинаковое напряжение, равное Uo/9. Таким образом, с выходов этого делителя можно снять десять опорных напряжений в диапазоне от 0 до Uo. Для повышения точности задания нагрузочные резисторы выбраны низкоомными с допуском 0,5…1,0 %. Выходные сигналы ИОН формируют в задающем узле напряжения управления мощным генератором выходного тока.

Прецизионный задающий узел представляет собой сумматор, выполненный на высокоточном ОУ серии К140УД14А. Он обеспечивает суммирование опорных напряжений, снимаемых с делителя R4-R12 с весами 1/1, 1/10, 1/100, 1/1000. Это позволяет установить на выходе ОУ DA2 с помощью переключателей SA1-SA4 любое напряжение от 0 до 1,111 Uo в соответствии с выражением

U = K1∙(Uo/9) + K2∙(Uo/90) + K3∙(Uo/900) + K4∙(Uo/9000)

где К1, К2, К3, К4 — 0, 1, 2… 9 — коэффициенты, устанавливаемые переключателями SA1-SA4 соответственно. Таким образом, прецизионный задающий узел позволяет дискретно установить задающее напряжение с шагом Uo/9000. Для высокой точности суммирования резисторы сумматора должны иметь допуск 0,05…0,1 % и сопротивление значительно большее, чем у резисторов ИОН. Такое построение задающего узла обеспечивает простоту и высокую точность установки при минимальном количестве деталей. При подаче задающего напряжения на вход мощного генератора выходного тока ток в нагрузке устанавливается в соответствии с выражением (2).

Генератор выходного тока является классическим источником тока с усилителем мощности, выполненным на транзисторах VT2, VT3. Резистор R25 выполняет функции датчика тока ОУ DA3 и сравнивает задающее напряжение, поступающее на неинвертирующий вход, с напряжением обратной связи, приходящим на инвертирующий вход, стремясь их выровнять. Выравнивание осуществляется за счет воздействия на базу составного транзистора, который работает в линейном режиме. Изменения базового тока вызывают соответствующие изменения тока эмиттера и коллектора до тех пор, пока напряжение обратной связи, выделенное на R25 и строго пропорциональное току в силовой цепи, не сравняется с задающим напряжением.

Блок питания должен обеспечивать два напряжения: 17…20 В при токе 0,3…0,5 А и — 27…30 В при токе до 6 или 10 А.

Для контроля тока и напряжения на нагрузке используются стрелочные приборы РА1 и PV1. Ток полного отклонения вольтметра не должен превышать 100 мкА во избежание ошибки установления тока нагрузки, особенно на нижней границе диапазона.



Рис. 11. Печатная плата устройства по рис. 8



Рис. 12. Печатная плата устройства по рис. 9


В предложенной схеме желательно использовать высококачественную элементную базу, которая является залогом высокой точности и надежности устройства. Если же отказаться от задачи создания широкодиапазонного прибора, можно применить любые имеющиеся ОУ и резисторы. Транзисторы желательно использовать кремниевые, особенно если устройство будет эксплуатироваться преимущественно с большими токами или при повышенных температурах. Транзистор VT3 необходимо установить на радиаторе с площадью поверхности не менее 1000 см2. Резисторы R4-R12, R17 — типа С2-1, С2-13 или другие с допуском 0,5…1,0 %, а резисторы R13-R16 — С2-29В, С2-31 с допуском 0,05…0,1 %. Резистор R25 можно намотать нитрохромовым или константановым проводом диаметром 1,5…2,0 мм или использовать готовый типа С5-8, С5-16.



Рис. 13. Печатная плата устройства по рис. 10


Порядок настройки. Вначале нужно установить все переключатели в нулевое положение, подстроечные резисторы R2, R19 — в среднее положение. Подключить резистор нагрузки сопротивлением 100…300 Ом. Включить питание и установить резистором R2 напряжение на эмиттере VT1 около 4,5 В. Резистором R19 сбалансировать ОУ DA3, установив на его выводе 6 напряжение, равное нулю. Затем подключить нагрузочный резистор известного сопротивления около 10 Ом, установить переключатели в положение «1 А» и выставить этот ток в нагрузке резистором R2, контролируя ток и напряжение по приборам. Затем установить переключателями ток 1 мА, подключить нагрузочный резистор 1 кОм и уточнить силу тока в нагрузке резистором R19. После этого проверяется изменение тока по диапазону и в случае необходимости уточняется резисторами R2 и R18. Если нет ошибок в монтаже, настройка на этом заканчивается.

При работе с токами свыше 6 А для повышения надежности и улучшения эксплуатационных характеристик необходимо провести следующие изменения. Уменьшить сопротивление резистора R25 до 0,1–0,2 Ом, чтобы уменьшить падение напряжения на нем и, следовательно, рассеиваемую мощность. Его желательно изготовить из отрезка константанового провода, имеющего малый температурный коэффициент со противления. Подключить параллельно транзистору VT3 второй такой же, увеличив площадь радиатора до 2000 см2. При этом следует учесть все общие рекомендации по параллельному включению транзисторов. Суммарную емкость конденсаторов желательно увеличить до 16 000…22 000 мкФ. Кроме этого, необходимо установить резистор R1 сопротивлением 10 кОм и R3 сопротивлением 820 Ом, чтобы выставить напряжение на эмиттере VT1 равным 0,8–2,0 В.

Чертежи печатных плат источников тока, показанных на рис. 8, 9 и 10, приведены соответственно на рис. 11. 12 и 13.


Литература

1. Хоровиц П., Хилл У. Искусство схемотехники. —М.: Мир, 1983, т. 1, 598 с.

2. Шило В. Л. Линейные интегральные схемы. — М: Сов. радио, 1979, 366 с.

3. Семушин С. Г. Источники тока и их применение. — Радио, 1978, № 1, № 2.

4. Кельвин Ших. Биполярный преобразователь напряжения в ток. — Электроника, 1979, № 10, с. 66–67.

5. Electronics & Wireless World, July, 1985, p. 60–63.

6. Кромпгон Т. Вторичные источники тока. —М.: Мир, 1985, 304 с.

7. Electronics & Wireless World, July, 1985, p. 36–39.

8. Теньковцев В. В., Центер Б. И. Основы теории и эксплуатации герметичных кадмий-никелевых аккумуляторов. — Л.: Энергоатомиздат, 1985.

9. Хун Трунг Хунг. Автоматическое зарядное устройство для Ni-Cd аккумуляторов. — Электроника, 1982, № 14, с. 62–63.

Электронно-оптический индикатор

В. Жаворонков, С. Жаворонков


В последнее время арсенал технических средств, используемых для научных исследований, пополнился новым классом приборов — электронно-оптическими преобразователями. Эти приборы стали весьма универсальным инструментом исследований в самых различных областях науки и техники.

Индикатор, описываемый ниже, предназначен для визуализации пространственной картины слабого свечения объектов в видимой и ближней инфракрасной областях спектра. Прибор может быть использован, например, при исследованиях оптических и фотоэлектрических свойств полупроводников светодиодов, характера поведения микроплазмы при динамическом пробое р-n перехода лавинных фотодиодов, процесса развития электронных лавин и стримеров в газовом разряде, изучения люминисценции и т. д.

Основные параметры индикатора: спектральный диапазон чувствительности входного фотокатода 400–900 нм; эффективный коэффициент усиления яркости регистрирующей системы около 1000; средняя разрешающая способность по рабочему полю 15 штрихов на миллиметр; диаметр рабочей части входного фотокатода 18 мм; размер рабочего поля на выходном экране 30 мм; электронно-оптическое увеличение до 1,5; оптические искажения, вносимые усилителем яркости, не более 5 % в пределах рабочего поля выходного экрана; потребляемая мощность около 1 Вт; габариты 820х200x280 мм, масса не более 5 кг.

Электрическая схема прибора изображена на рисунке. В состав прибора входят оптический блок индикации и высоковольтные преобразователи напряжения. Усилитель яркости выполнен на основе трехкамерного электронно-оптического преобразователя типа У-72М с электростатической фокусировкой электронного изображения. Этот преобразователь имеет многощелочной входной фотокатод и выходной люминисцентный экран желто-зеленого свечения.



Принципиальная схема электронно-оптического индикатора


Принцип работы преобразователя основан на усилении тока и одновременном покаскадном преобразовании электронного изображения в световое усилительными элементами «люминофор-фотокатод». Изображение излучающего объекта 1 проецируется линзовой системой 2 (например, объективом «Юпитер-3» или «Вега М-1») на фотокатод с2 с увеличением в 50-100 раз или в масштабе 1:1. Усиленное по яркости и преобразованное в видимую область спектра изображение регистрируется с выходного экрана 4 фотокамерой 5 («Зенит В», «Нарцисс» и т. п.) или наблюдается визуально. Качество изображения на экране индикатора определяется характеристиками применяемых объективов — разрешающей способностью, оптическими искажениями.

Блок питания прибора представляет собой два транзисторных преобразователя напряжения с умножителями и выпрямителями. Оба работают в режиме прерывистой генерации, что обеспечивает большую экономичность. Блок питания обеспечивает высокое напряжение — 15 кВ и +30 кВ. Получение необходимого для каждой камеры ускоряющего напряжения достигается делением напряжения делителем, составленным из резисторов R7-R14.

Фокусировка изображения на выходном экране прибора достигается установкой определенного потенциала на подфокусирующих электродах относительно катодов (в каждой камере) подбором резисторов R7, R9 и R13.

Для защиты от сильных входных лучистых потоков предусмотрены ограничительные резисторы тока R10, R12, R15 и R19.

Предложенная схема раздельного питания с общей заземленной точкой позволяет регулировать коэффициент усиления яркости в широких пределах, не изменяя других оптических параметров индикатора.


Конструкция и детали.

Ферритовые магнитопроводы трансформаторов Тр1 и Тр2 использованы от промышленного трансформатора ТВС-110 П2. Высоковольтные обмотки II трансформатора Тр1 и III трансформатора Тр2 содержат по 6000 витков провода ПЭВТЛ-2 0,09 и намотаны на многосекционном каркасе из фторопласта (девять секций шириной по 2 мм). В высоковольтной катушке ввод каждой секции изолирован от обмотки фторопластовой лентой толщиной 100 мкм. Выход обмоток выполнен высоковольтным фторопластовым проводом. Катушки после намотки нужно пропитать парафином.

Низковольтная обмотка I трансформатора Тр1 имеет 10 витков провода ПЭВ-2 0,51 с отводом от середины и намотана на каркасе из оргстекла. Обмотки I и II трансформатора Тр 2 содержат соответственно 5 витков провода ПЭВ-2 0,51 и 15 витков провода ПЭВ-2 0,31 и намотаны на каркасе из оргстекла одна поверх другой.

Изоляцией между обмотками служит полиэтиленовая пленка.

Высоковольтные умножители напряжения (Д1-Д7, С4-С10 и Д8-Д10, С13-С15) вместе с резисторами R15 и R19 залиты парафином. Делитель напряжения из резисторов R7-R14 залит эпоксидным компаундом. Все соединения к точкам с высоким потенциалом выполнены фторопластовым проводом МГТФ 0,12.

Контакты к катодам и подфокусирующим электродам представляют собой латунные колпачки с оболочкой из фторопласта.

В конструкции применены следующие детали: резисторы R8, R11 и R14 — КЭВ-0,5, подстроечные резисторы R1 и RI6 — ППБ-2, остальные резисторы — МЛТ-0,5, электролитические конденсаторы — К50-6 или К53-1, конденсаторы С4-C10, С13-С15 — ПОВ. Измерительные приборы ИП1 и ИП2 — микроамперметры М592 с током полного отклонения 300 мкА.

Транзисторы T1 и Т2 должны быть подобраны с близкими параметрами.


Налаживание.

Правильно собранный блок питания налаживания не требует.

Вольтметры ИП1 и ИП2 градуируют в киловольтах. Изменяя напряжение питания резисторами R1 и R16, устанавливают рабочие напряжения.

Изменением ускоряющего напряжения на первой камере резистором R16 регулируют усиление прибора.

Настройка собственно электронно-оптического преобразователя сводится к подбору фокусирующих резисторов R7, R9 и R13 для получения оптимальной фокусировки на экране. Потенциал на подфокусирующих электродах относительно катодов в каждой камере составляет ± (3-120) В. Размещение резисторов R7, R9 и R13 должно допускать возможность переключения выводов, если на соответствующий подфокусирующий электрод нужно подать отрицательный потенциал относительно катода в процессе настройки прибора.

Испытания разработанного прибора показали, что он прост и удобен в обращении. Его применение позволяет на 2–4 порядка повысить чувствительность оптической регистрации слабосветящихся объектов.

В настоящее время прибор используется в исследовательской практике в области физики твердого тела и физики газового разряда.

Описанная конструкция может быть также использована для усиления яркости осциллограмм однократных сигналов с экрана скоростных осциллографов сверхвысокочастотного диапазона.

Индикатор может найти применение и в медицинских либо биологических исследованиях, например, для изучения биологических объектов в сочетании с оптическим микроскопом, в астрономических наблюдениях слабых звезд, а также в школьных и вузовских учебных экспериментах по физике.

Индикаторы магнитных полей

В. Ринский


Во многих электротехнических и радиоэлектронных устройствах используются магниты и электромагниты различного назначения. Постоянные магниты применяются в динамических микрофонах и головках прямого излучения, электроизмерительных приборах магнитоэлектрической системы, микроэлектродвигателях, поляризованных реле и др. Переменные и пульсирующие магнитные поля создаются трансформаторами, дросселями, электромагнитными стабилизаторами напряжения, электродвигателями и реле переменного тока.

В практической деятельности людей, связанных с конструированием, эксплуатацией и ремонтом радиоаппаратуры, могут встречаться двоякого рода задачи по обнаружению и оценке значения магнитных полей. Это, во-первых, проверка магнитов, от которых зависит работоспособность радиоэлектронной аппаратуры. Например, качество записи и воспроизведения звука магнитофоном зависит от исправности магнитов электродинамического микрофона и динамических головок, чувствительность магнитоэлектрического прибора определяется магнитной индукцией в зазоре его измерительного механизма, в телевизоре цветного изображения статическое сведение лучей и чистота цветов обеспечиваются с помощью нескольких постоянных магнитов и т. д.

Во-вторых, при конструировании и эксплуатации радиоэлектронных устройств нередко требуется выявление и учет влияния магнитных полей рассеяния, нарушающих нормальную работу отдельных элементов и аппаратуры в целом. Например, магнитное поле динамической головки может существенно снизить чувствительность радиоприемника с магнитной антенной, переменные поля трансформаторов питания искажают изображения в телевизорах и осциллографах, наводят фон переменного тока в усилителях и магнитофонах. В ряде случаев приходится прибегать к специальным мерам для ослабления помех, вызванных магнитными наводками: экранировать трансформаторы и дроссели, осциллографические электронно-лучевые трубки, цветные кинескопы, фотоэлектронные умножители, применять компенсационные элементы, антифонные катушки и т. п.

Промышленные приборы для измерения значений магнитных полей относительно мало распространены. В связи с этим на практике могут оказаться полезными описываемые здесь простые индикаторы магнитных полей.


Индикаторы постоянного поля

В индикаторе, собранном по схеме рис. 1,а, магниточувствительным элементом (датчиком) является геркон SFI с подвижным экраном, позволяющим частично ослаблять магнитное поле Н. Геркон присоединен гибкими проводниками с вилкой ХТ1 на концах к индикаторной лампе накаливания HL1 и батарее питания GB1. Под воздействием магнитного поля контакты геркона замыкаются, и лампа загорается. Можно также присоединить проводники от геркона к авометру любого типа, включенному как омметр на пределе QX1000. В этом случае действие магнитного поля будет вызывать отклонение стрелки авометра.

Возможный вариант конструкции датчика такого индикатора показан на рис. 1,б. Геркон 5 с припаянными к его выводам соединительными проводниками 1 заключен в пластмассовую трубку 4 (например, от ненужной авторучки), по которой с небольшим трением перемещается экран 2. Экраном служит тонкостенная трубка подходящего диаметра из магнитомягкой стали (например, корпус конденсатора КБГ-М), в которой сделано окно 3 соответственно размерам геркона Порог срабатывания геркона и чувствительность к полю зависят от положения экрана, что позволяет снабдить индикатор простейшей шкалой 3, оцифрованной в относительных единицах Индикатор реагирует на поля, создаваемые динамическими головками прямого излучения, электроизмерительными приборами магнитоэлектрической системы и т. п, на расстоянии нескольких сантиметров.

Индикатор по схеме рис. 1,в, состоит из датчика поля — катушки L1 с магнитопроводом-концентратором и микроамперметра РА1 (авометра) или вольтметра PU1 (рис 1,г) на наименьшем пределе измерения. Датчик (рис. 1,д) представляет собой стержень из магнито-мягкого материала сечением 0,5..1,5 см2 и длиной 10.15 см с каркасом, на котором намотано внавал 10 000 — 15 000 витков провода ПЭВ-1 0,05.. 0,1. Можно использовать катушку с сердечником от реле РКН или РПН, удалив якорь и контактные пружины.

При перемещении (повороте) датчика относительно силовых линий магнитного поля возникающая в катушке ЭДС индукции вызывает кратковременный бросок стрелки авометра. Большей напряженности поля соответствует и большее отклонение стрелки.



Рис. 1. Индикаторы постоянного поля


Индикатор низкочастотных полей

Индикатор по схеме на рис. 2,а отличается от предыдущего включением в цепь датчика L1 полупроводникового диода VD1. Индикатор обнаруживает поля рассеяния трансформаторов питания, электродвигателей и т. п. на расстоянии до 10 см и более. Еще чувствительнее устройство со звуковым индикатором (рис. 2,б) — головными телефонами BF1 ТОН-2, ТОН-2А или другими высокоомными. Как известно, звукоотдача телефонов на низких частотах невелика, а чувствительность слуха — понижена. Однако наличие в цепи датчика диода VD1 приводит к появлению гармоник основной частоты, что улучшает слышимость и, следовательно, чувствительность индикатора к полям технической частоты (50 Гц). Это позволяет с успехом использовать его для обнаружения и оценки полей рассеяния катушек и даже одиночных проводников, по которым протекают токи силой около нескольких ампер, например в цепях питания нитей накала радиоламп. Возможно также использование индикатора для обнаружения скрытой в стенах электро- или радиопроводки.



Рис. 2. Индикаторы низкочастотных полей


В предельно упрощенном устройстве, выполненном по схеме на рис. 2,в, один из излучателей высокоомного головного телефона BF1.1, снятый с оголовья и освобожденный от амбушюра и мембраны, используется в качестве датчика переменного магнитного поля, а другой излучатель (BF1.2) является звуковым индикатором. Диод VD1 присоединен к штепсельной вилке ХТ.1 телефонов Чувствительность этого индикатора меньше чем предыдущего.


ИНДИКАТОРЫ ПОЛЕЙ УЛЬТРАЗВУКОВОЙ ЧАСТОТЫ

Индикатор магнитного поля ультразвуковой частоты может быть выполнен по схеме рис. 2,а, если применить в нем катушку L1 с ферритовым сердечником. Катушка должна содержать несколько десятков или сотен витков, намотанных на стержне диаметром 8-10 и длиной 100…200 мм из феррита марки М400НН или М600НН. Возможно также использование Г-образных или П-образных сердечников.

В телевизорах магнитные поля ультразвуковой частоты (15-625 Гц) создаются выходными трансформаторами строчной развертки, строчными катушками отклоняющей системы, катушками регуляторов линейности и размера строк, а в телевизорах цветного изображения — катушками блока динамического сведения лучей кинескопа. Ориентировочная оценка исправности таких деталей возможна путем сравнения их полей рассеяния с аналогичными в заведомо исправных телевизорах. Для этого пригоден индикатор, смонтированный по схеме на рис. 3,а. Он содержит датчик — катушку L1 с ферритовым сердечником, который служит магнитопроводом-концентратором, и миниатюрную лампу накаливания HL2. Можно использовать и менее чувствительную лампу накаливания, включив ее по схеме рис 3,б. В этом случае катушка-датчик L1, конденсатор С1 и лампа HL1 образуют последовательный колебательный контур, в котором возникает резонанс напряжений на частоте строчной развертки.



Рис. 3. Индикаторы магнитного поля ультразвуковой частоты (а, б) и конструкция датчика (в)


Конструкция такого индикатора показана на Рис. 3,в. Катушка 3 содержит 50 витков провода ПЭВ-1 0,23…0,31, намотанных в один слой на бумажной гильзе 2, которая может перемещаться вдоль стержня 1 диаметром 10 и длиной 200 мм из феррита марки М400НН или М600НН. Стержень закреплен в картонной или пластмассовой (но не металлической!) трубке 4 длиной 200…300 мм, на которой может быть также конденсатор 5 МБМ или БМ. Трубка вставлена в пластмассовую или деревянную ручку 6 (например, от ненужного электропаяльника). В отверстии ручки укреплена лампа накаливания 7. Оптимальное положение гильзы 2 находят, приставив стержень 1 торцом к магнитопроводу выходного трансформатора строчной развертки работающего телевизора, по максимальной яркости свечения лампы 7, после чего фиксируют гильзу лаком или клеем. При оценке с помощью индикатора неисправностей в телевизорах следует учесть, что поле рассеяния строчного трансформатора ослабевает при наличии междувитковых замыканий в регуляторах размера и линейности строк или в строчных отклоняющих катушках и особенно — при пробое конденсатора вольтодобавки. В случае же замыкания в обмотках самого трансформатора его поле рассеяния вообще не обнаруживается. При наличии короткозамкнутых витков в строчных отклоняющих катушках их поле ослабевает, а если расколот ферритовый сердечник отклоняющей системы — оно может возрасти в месте расположения трещины.


Индикаторы полей радиочастоты

Индикатор магнитной составляющей поля радиочастоты (рис. 4) представляет собой ненастраиваемый широкополосный приемник прямого усиления с катушкой L1 (магнитной антенной WA1) на диапазоны ДВ и СВ и катушкой L2 диапазона КВ, которые соединены, соответственно, с детекторами на диодах VD1 и VD2. Кроме основной функции диоды также являются разделительными, устраняя взаимное влияние катушек L1 и L2. Постоянная составляющая тока детекторов усиливается транзисторами VT1 и VT2. При этом сопротивление участка коллектор — эмиттер транзистора VT2 оказывается зависящим от напряженности поля, что позволяет выполнить индикатор в виде приставки к авометру PR1, включенному на пределе измерения QX1000. При измерении необходимо соблюдать указанную на схеме полярность напряжения на гнездах ХТ2 авометра, которую легко определить, подключив к ним любой полупроводниковый диод.

Диоды VD1 и VD2 (Д2Б-Д2Ж) — любые точечные германиевые (но не кремниевые!). Дело в том, что контактная разность потенциалов, возникающая на границе р-n перехода в легированном германии, значительно меньше чем в кремнии. Поэтому прямой ток в несколько миллиампер протекает через германиевый диод уже при напряжении 0,2…0,3 В, а через кремниевый — лишь при 0,8…0,9 В. Следовательно, индикатор с германиевыми диодами более чувствителен.

Это свойство присуще не только полупроводниковым диодам, но также и р-п переходам транзисторов. Поэтому для повышения чувствительности индикатора кремниевый транзистор VT1 можно заменить германиевым, например серий МП37-МП38.



Рис. 4. Индикатор поля радиочастоты


Данные катушек LI и L2 выбирают в зависимости от требуемого диапазона радиочастот. Катушка L1 может состоять из 100… 150 витков однослойной намотки проводом ПЭВ-1 0,23…0,31, продолжением которой служат две-три секции по 100…150 витков провода ПЭВ-1 0,12… 0,18, намотанные внавал в том же направлений на стержне диаметром 8…10 и длиной 100…200 мм из феррита марки М400НН или М600НН. Такое выполнение магнитной антенны уменьшает собственную распределенную емкость катушки L1, что способствует расширению полосы пропускания входной цепи индикатора. Катушка L2 может содержать 20…40 витков провода ПЭВ-1 0,64…0,8, намотанных однослойно на картонном или пластмассовом каркасе диаметром 10…20 мм. Приведенные числа витков катушек являются ориентировочными и корректируются в зависимости от размеров применяемых ферритовых стержней и каркасов. Лучше всего это делать, поместив индикатор в поле рамки, соединенной с выходом генератора радиочастоты (аналогично известному методу регулировки приемников с магнитными антеннами). При отсутствии генератора индикатор налаживают, связывая его с катушками контура гетеродина вспомогательного радиоприемника на соответствующих диапазонах.


Литература

Волин М.П. Паразитные процессы в радиоэлектронной аппаратуре. —М.: Советское радио, 1972.

Луканин В. Волномерная приставка к авометру. — Радио, 1972, № 9.

Ринский В. Индикатор магнитных полей рассеяния. — Радио, 1968, № 4.

Ринский В. Магнитометр. — Радио, 1970, N 9.

Рязанцев Г. и др. Герконы. — Радио, 1970, № 9.

Сергеев В.Г., Шихин А. Я. Магнитоизмерительные приборы и установки. — М.: Энергоиз да т, 1982

Чечурина Е Н. Приборы для измерения магнитных величин. — М.: Энергия, 1969.

Загрузка...