ПРЕДРАССУДКИ

В науке важно отказаться от глубоко укоренившихся, часто некритически повторяемых предрассудков.

Эйнштейн, Инфельд

Мимолётности

Некоторые из заблуждений, с которыми мы познакомились, наталкивают на сомнение: а стоит ли выставлять напоказ ошибки? Пожалуй, их нужно стыдиться, стремиться скорее преодолеть, а не афишировать…

Но учёные никогда не стыдились честных заблуждений. История знает удивительные случаи, когда исследователи пользовались своими и чужими заблуждениями как рабочей гипотезой. И делали это с успехом!

Декарт, французский философ и физик XVIII века, много думавший над разгадкой природы света, создал, как потом выяснилось, ошибочную теорию. В целом его учение о свете оказалось заблуждением, но тем не менее ему удалось, пользуясь своей точкой зрения, получить веками безуспешно разыскиваемый закон преломления световых лучей. Открытие встретили с одобрением, особенно потому, что Декарт не остановился лишь на формулах, а рассмотрел ряд их практических следствий.

Если свет сам подтверждает выводы Декарта — преломляется и отражается так, как тот предсказывал, то природа света понята правильно, не так ли? Логическая цепочка должна замкнуться. Верные предпосылки могут и не дать верных следствий, но верные следствия, казалось, нельзя сделать из неверных предпосылок.

С удивлением встретили современники признание самого Декарта в том, что, по его убеждению, исходные модели явления, которые он выбрал, не надежны, точнее — неверны! И тем не менее он уверен, что из них можно извлечь правильные и полезные следствия.

Полезные следствия! Вот одна из тех веских причин, которой руководствуются учёные, пользуясь сомнительной гипотезой.

Декарт не видел в таком пути познания ничего опасного и недозволенного. Он шёл на это сознательно, подражая, по его словам, астрономам, которые, несмотря на то что опираются на недостоверные, а часто даже ошибочные наблюдения, делают правильные заключения.

Сходную позицию занимал и такой гениальный физик, как Фарадей, отец учения об электричестве и магнетизме. Он зачастую сам не верил в полёты своей фантазии. Но не стыдясь делился с коллегами смелыми и не обоснованными предположениями о сути электромагнитных сил, рассматривая их как рабочие гипотезы, помогающие ему оттолкнуться в поисках.

«Сделал много ошибок, — писал он, — ибо даже мне самому мои представления кажутся лишь как бы отражением тех построений в голове исследователя, часто мимолётных, которые, однако, могут иметь свою временную ценность как руководящая нить для нашего мышления и исканий».

Этим приверженцам гипотез противостоит Ньютон. Кто не знает его кредо: «Гипотез я не измышляю»? Только опыт — верховный судья науки, считал британский оракул. И даже он сдался одной из удивительнейших «мимолётностей», которая ухитрилась просуществовать века.

Кариатида для звзвёзд

Пожалуй, самое древнее, самое стойкое заблуждение, возрождающееся вновь и вновь, это гипотеза эфира, мирового эфира, как его иногда называют.

Теперь подавляющее большинство учёных без колебаний скажет, что никакого эфира нет, что он, как и другие невесомые материи, изгнан из словаря науки.

Но есть ли более драматическая история, чем это изгнание, чем поиски вещества, заполняющего Вселенную?

Древние атомисты силой интуиции постигли то, к чему пришёл просвещённый XX век. Они говорили: в мире существуют лишь атомы и пустота.

Но Аристотелю понадобилось особое вещество для заполнения мирового пространства. И — таковы противоречия развития познания! — убеждённый материалист Аристотель заимствует у древнейшего из идеалистов — Пифагора представление об эфире, через который к нам якобы проникают лучи Солнца. Аристотель поступает с эфиром как художник: бросает эфир на созданную им картину мироздания как последний мазок, завершающий композицию. Он верил, что природа не терпит пустоты,

и заполнил ее эфиром. С тех пор эфир, межзвёздная среда, существовал в науке много столетий без особой в том нужды, больше для порядка. Но когда Ньютон создал свою теорию тяготения, появилась настоятельная необходимость выяснить, не существует ли среды, передающей силу тяготения? Ведь Ньютон лишь угадал математическую меру сил, с которыми одно небесное тело притягивается к другому. Как передаются силы тяготения, с помощью какого посредника — этого он не знал. Не мог он опереться и на предшественников.

Ещё студентом Ньютон прилежно изучал наследие древних и новейших учёных. Особое внимание в то время привлекали гипотезы об эфире и атомах, дремавшие столетия и снова ставшие модными в начале XVII века.

Декарт, материалист и мечтатель, отождествлял пространство с «тонкой материей». Эту материю он называл эфиром и наделял его свойствами, необходимыми для объяснения движения небесных тел, но свойства эти были совершенно нереальны.

Ньютон хорошо знал учение Декарта, поначалу увлекался им, но очень быстро разочаровался и порвал с ним. В противовес Декарту и его последователям — картезианцам, с лёгкостью придумывавшим новые гипотезы для объяснения новых фактов, Ньютон создал физику, основанную на опыте и математическом описании опытных фактов. Так он мог на основе известных опытных фактов предсказывать новые, ещё не известные.

Ему, как убеждённому естествоиспытателю, ставившему во главу науки эксперимент, была чужда идея дальнодействия — не мистика же, в самом деле, тот факт, что небесные тела притягивают друг друга, не за руки же они держатся! Должен быть конкретный, материальный носитель сил притяжения.

Придумать его — суровая необходимость, от неё невозможно было отделаться, отмахнуться… И все же Ньютон попытался быть верным себе и не строить гипотез относительно природы сил притяжения, странных сил, загадочным образом действующих на расстоянии.

Прежде чем продолжать, хочу заметить, что ни у кого, кроме физиков, не возникали дискуссии по поводу дальнодействия. В жизни мы не сталкиваемся с силами, проявляющими себя не непосредственно. Мы имеем дело только с такими силами, которые проявляются при соприкосновении. Например, движение передаётся толчком, тягой, давлением. Чайник с водой нагревается от огня. Огонь возникает от огнива. Колёса приводятся в действие паром или электричеством.

И хотя сила тяжести играет одну из главных ролей и в повседневной жизни, мы не задумываемся над её происхождением и сутью. Дело, наверно, в том, что она проявляется незаметно для нас. Это обычное, будничное явление. Неизменная сила тяготения не занимает наше воображение, не привлекает внимания. Вечно сопутствуя нашей жизни, она нами не осознана.

Другое дело — учёные. Эта тайна не могла их не мучить. Им требовалось конкретное решение — какая субстанция ответственна за передачу сил притяжения?

Ньютон заставил людей задуматься над проблемой, которая не решена до сих пор…

Но как он сам вышел из положения? Придумал гипотезу!

Но к этому он пришёл нелегко.

Ньютон, конечно, понимал, что наука не может не оперировать законами, «причины которых ещё не открыты». Но пусть, рассуждал он дерзко, причина и «механизм» тяготения ещё не известны. Это ведь не мешает построению небесной механики, точнейшему предсказанию затмений и величины морских приливов. Закон всемирного тяготения позволяет рассчитывать движение планет без каких-либо гипотез, так зачем же гипотезы, зачем эфир? И он стремился удержаться в этой гордой позиции: гипотезы излишни вообще, не нужны гипотезы и о природе тяготения.

В величайшем труде Ньютона, в «Началах», полное название которого «Математические начала натуральной философии», слово «эфир» не встречается. В первом издании.

Но во втором издании «эфир» появляется — правда, не в основном тексте, а в последнем абзаце знаменитого «Общего поучения» — в самом конце книги. Ньютон упоминает об эфире, но не допускает в межпланетное пространство, ограничивая его возможную роль взаимодействиями тел на близких расстояниях.

Как же так? — спросит читатель. Эфир всё же появился у Ньютона, противника всяких гипотез, и в частности гипотез для объяснения сил тяготения?

Да, сам Ньютон, убеждённый противник гипотез, придумал гипотезу, в соответствии с которой эфир, проникая сквозь все тела, постоянно стремится к Земле, увлекая эти тела за собой. Так, решил Ньютон, может возникать сила притяжения к Земле, сила тяготения. Но, по логике вещей, эфир должен устремляться и в остальные тела, ведь по закону Ньютона все тела тяготеют друг к другу… За уступки надо платить. И скоро Ньютон горько пожалел, что сдал позиции.

Именно в связи с подобными ситуациями Ньютон был принципиальным противником гипотез. Придумывая одну, приходится принимать и следующую, и так без конца. Для объяснения каждого нового факта, каждой новой подробности нужно придумывать новую гипотезу и заботиться о том, чтобы они не противоречили одна другой.

Ньютоний

Итак, Ньютон прибег к помощи эфира. И главное,

не впервые. Без эфира он не смог обойтись ещё в первых спорах о природе света со своими главными противниками Гюйгенсом и Гуком.

Трудности, которые испытали и Ньютон, и Гюйгенс, и Гук, и Гримальди, создавая каждый свою теорию света, столкнули их с эфиром. Нравилось это им или не нравилось, но единственное, что объединяло столь разные теории, был эфир. Гюйгенс, считавший свет волнами, не мог объяснить механизм их распространения без помощи какой-то среды. Он понимал, что это должна быть та же среда, что передаёт силы тяготения, ибо нельзя же было допустить, что отдельно существует светоносный эфир и эфир тяготения.

Ньютон отвергал волновую теорию света, он видел свет частицами, корпускулами. Первоначально ему даже казалось, что для передачи частиц в мировом пространстве не нужна никакая среда. Он самонадеянно решил, что корпускулярная теория света избавит науку от эфира. Но его собственные опыты, когда он наблюдал странные периодические изменения цвета окрашенных колец (колец Ньютона)

в тонком промежутке между выпуклой линзой и плоской пластинкой, показали, что свет связан с какой-то периодичностью. Ньютон был вынужден искать этому объяснение. Корпускулярная гипотеза приводила здесь в тупик. Приходилось громоздить одну гипотезу на другую. И всё равно выходило, что в природе света есть нечто волновое. А раз волновое, значит, без эфира не обойтись.

Впервые Ньютон прибегает к эфиру в 1672 году, сравнивая свою корпускулярную теорию света с волновой теорией. Он пишет: «Колебания эфира одинаково полезны и нужны и в той, и в другой…» Всё же, не желая отступать от своих принципов, Ньютон не считает гипотезу эфира верной. Вот его слова: «Однако, излагая гипотезу (эфира), во избежание многословия и для более удобного представления, я буду иногда говорить о ней так, как будто бы я её принял и верю в неё». Он пользуется ею, но не верит в то, что эфир существует. При этом Ньютон представляет эфир вполне конкретно. «Предполагается, что существует некая эфирная среда, во многом имеющая то же строение, что и воздух, но значительно более разреженная, тонкая, упругая». «Немаловажным аргументом существования такой среды служит то, что движение маятника в стеклянном сосуде с выкачанным воздухом почти столь же быстро, как и в открытом воздухе».

Ньютон прибегает к эфиру не только для объяснения оппонентам оптических явлений, но и для объяснения действия мускулов животных и некоторых химических явлений.

Когда сам Ньютон и другие физики попробовали набросать примерные характеристики этой универсальной среды, получился монстр, сгусток противоречий, соединение несоединимого, объединение необъединимого. Неуловимеё привидения, более разрежен и прозрачен, чем воздух, маслянистее масла.

Кто видел такое вещество в природе? Никто никогда не видел, и тем не менее приходилось мириться с таким союзником. Другого выхода не было. Учёные были вынуждены думать, что эфир — это очень разреженный газ. Настолько разреженный, что он не тормозит извечных движений планет, но при этом увлекает их друг к другу и особенно к Солнцу. Что, проникая в недра Земли, звёзд и других тел, эфир конденсируется и превращается в обычные газы и жидкости. При этом эфир очень упруг, ибо, перенося свет, должен колебаться в такт со световой волной. Кроме того, он текуч, как жидкость, но маслянист, так как должен «прилипать к порам тел», чтобы осуществить притяжение.

Трудно поверить, что эти фантазии разделял великий Ньютон.

Его борьба с эфиром шла с переменным успехом.

В основном труде Ньютона о свете, в знаменитой «Оптике», вышедшей в 1704 году, эфир вовсе не упоминается. Более того, в издании 1706 года сказано: «Не ошибочны ли все гипотезы, в которых свет приписывается давлению или движению, распространяющемуся через некоторую жидкую среду?»

Казалось, вопрос исчерпан. Но ещё через несколько лет Ньютон добавляет к следующему изданию «Оптики» (1717) восемь вопросов по теории света. Ответить на них без помощи гипотезы эфира невозможно! В следующем издании (1721) и в последнем (1730), которые Ньютон редактировал лично, он оставил эти вопросы без изменения. Тем самым он как бы отказался от окончательного решения вопроса об эфире. Эфир для него гипотеза, а гипотезы не должны рассматриваться в экспериментальной философии. Казалось бы, всё ясно?

Но прошли века, и другой титан занялся проблемой эфира.

«Уже в 70-х годах, — пишет великий химик Д.И. Менделеев, — у меня настойчиво засел вопрос: да что же это такое эфир в химическом смысле? Сперва я полагал, что эфир есть сумма разреженнейших газов в предельном состоянии. Опыты велись мною при малых давлениях — для получения намёка на ответ».

Действуя почти так же, как Ньютон, Менделеев написал в статье «Попытка химического понимания мирового эфира»: «Мне кажется мыслимым, что мировой эфир не есть совершенно однородный газ, а смесь нескольких, близких к предельному состоянию, то есть составлен подобно нашей земной атмосфере из смеси нескольких газов».

Удивительно, насколько близко это к мыслям молодого Ньютона.

Сейчас мало кто помнит о том, что Менделеев поместил свой эфир в нулевую группу Периодической системы элементов и назвал его «ньютонием».

Выродок в семье физических субстанций

Эфир шествовал по столетиям, переходя из одной теории в другую, видоизменяясь, выполняя то одну задачу физиков, то другую. Его то временно отменяли как нелепость, то снова молились на него как на избавителя, потому что ничего другого в качестве посредника между телами учёные найти не могли… Разные умы придавали эфиру различные оттенки. Он по желанию учёных менял свой облик, словно глина в руках скульптора.

Но всегда за ним сохранялся ореол могущества и неопределённости, вездесущности и зыбкости. Недаром эфир, один из немногих научных терминов, непринуждённо перешёл в поэзию. Помните, о таинственной ночи у Пушкина: «Ночной зефир струит эфир»? О музыке Скрябина: его руками «рождены хрупкие, трепетные, прозрачные, из эфирных струй сотканные звуки».

Эфир не раз выручал физиков в безвыходных положениях и подставлял свои плечи под тяжесть новых своих обязанностей.

Так, Френелю — уже в XIX веке — он помог при создании новой волновой теории света, способной объяснить не только то, что знал Гюйгенс, но и не объяснённое им явление поляризации света. Явление непонятное, если не ввести гипотезу о том, что световые волны — не продольные волны, подобные звуковым, как считал Гюйгенс, а поперечные, больше похожие на морские волны.

Но как мог выйти из положения французский путейский инженер Френель, знавший, что поперечные волны могут распространяться только в твёрдых телах? Он и объявил эфир твёрдым телом. А расчёты немедленно подтвердили, что этот твёрдый эфир к тому же несравненно более упруг, чем сталь. По упругости он не уступает прежнему газообразному эфиру.

В качестве носителя сил тяготения и продольных световых волн Гюйгенса эфиру достаточно было быть газом, правда, газом, обладающим невероятными свойствами. Однако чтобы справиться с передачей новых, поперечных световых волн Френеля, эфир должен был превратиться в не менее фантастическое твёрдое тело! То газ, то твёрдое тело… Было от чего прийти в уныние!

Поразительно, как придирчивые физики, яростно протестующие против самой малой неточности и неясности в расчётах, экспериментах, теориях, так долго не замечали, что эфир — «выродок в семье физических субстанций», как назвал его впоследствии Эйнштейн. И они не только мирились с капризами эфира, но подлаживались под него, словно его утрата страшила их, словно они боялись лишиться его поддержки! Судите сами: Максвелл, предсказавший существование электромагнитных волн, родственных свету, не понял, что они есть самостоятельная сущность, не нуждающаяся ни в каком посреднике. Он пытался не порывать с прежним воззрением на механизм распространения световых волн. Максвелл считал электромагнитные волны особыми натяжениями эфира, аналогично тому, как раньше их считали его поперечными волнами.

Герц, первым из людей экспериментально обнаруживший реальное существование электромагнитных волн, тоже боялся расстаться с эфиром. Наконец, в науке появился отважный Лоренц — он объявил, что электромагнитное действие осуществляют электроны. Он представил себе, что электромагнитные волны взаимодействуют с электронами, входящими в состав материальных тел. При этом волны вызывают движение электронов, а движения электронов в свою очередь вызывают электромагнитные волны.

Наконец-то наука обошлась без эфира! Однако… Лоренц не решился выбросить эфир за борт своей теории. Правда, он оставил за ним лишь одно качество — неподвижность.

Самое странное в этой истории то, что, хотя все учёные единогласно считали эфир вездесущей субстанцией, его никто, никогда, ни в одном эксперименте не обнаруживал! Он никому не давался в руки. Ни одному учёному. Ни в одном опыте.

Своей неуловимостью эфир напоминал теплород, невесомое вещество, которое долго занимало трон в науке о теплоте, пока учёные не изгнали его, обнаружив, что король гол…

А опыты по обнаружению эфира между тем предлагались, ставились, и были среди них такие, которые, казалось, не могли не обнаружить его, если он действительно существует.

Один из самых знаменитых опытов ставил своей целью поймать «эфирный ветер». Мысль была такой: если эфир наполняет собой всё космическое пространство, а Земля, как корабль, движется сквозь этот океан, значит, можно попытаться определить её скорость относительно эфира.

Логично? И Майкельсон, искуснейший экспериментатор XIX века, потратил на тщательные опыты не один год.

Эфир ничем не выдал себя.

И даже это не отрезвило учёных. Казалось, они готовы простить эфиру все причуды, лишь бы он не покидал науку. Если он не проявляет себя в этом опыте, значит, решили учёные, он не вполне неподвижен, как уверял Лоренц. Значит, Земля в своем движении увлекает эфир за собой — вот почему невозможно заметить её движение. При таком предположении эфир из твёрдого тела превращался в какое-то желе, студень!

Пошли разговоры об эфирных хвостах, которые якобы все небесные тела тянут за собой при движении через эфирный студень: большие тела тащат большие хвосты; за малыми тянутся маленькие хвостики. Наверно, и в этом случае можно было бы придумать какой-то эксперимент по поимке эфира… Но такие опыты показались ненужными, ибо внимание физиков привлекла более чем странная гипотеза Фицджеральда — все тела при движении через эфир деформируются, меняя свои размеры, в том числе измерительные линейки, часы и приборы.

Из этой теории следовало, что движение тел через эфир нельзя обнаружить принципиально.

Учёные так привыкли к непостижимому характеру эфира, что эта гипотеза некоторым показалась не только правдоподобной, но даже доказывающей существование эфира. Раз эфир не допускает обнаружение движения тел сквозь себя, значит, он тем самым заявляет о себе! Такая уж это необычайная субстанция…

Историю с эфиром можно причислить к великим ошибкам. Он лихорадил воображение многих поколений учёных и вызвал к жизни новые, более правильные взгляды на мир.

То, что учёные мирились с явной нелепицей — средой с заведомо нереальными свойствами, только подчеркивает их человеческую беспомощность. Эта ситуация намекает на возможность компромиссов даже в такой строго логической области человеческой деятельности, как наука.

Выродок продолжает жить?

Казалось бы, после появления теории относительности Эйнштейна, которая без помощи эфира рассказала людям о космосе всё, что интересовало их в первой половине XX века, физики наших дней больше не вспомнят о нём. Каково же было мое удивление, когда недавно я вновь услышала об эфире, и не от неопытного в науке новичка, не от прожектёра, а от одного из серьёзных, интересных и дальновидных учёных, который создал ряд убедительных, бесспорных, новаторских работ.

Было это в Будапеште.

В каждой стране есть свой кумир. В Англии в наш период истории почитают Поля Дирака, предсказавшего антивещество; во Франции гордятся Луи де Бройлем, отцом волновой механики. В Японии первым лицом после императора считают Хидэки Юкаву, творца теории ядерных сил.

В Венгрии национальная гордость — академик Лайош Яноши.

Разумеется, это не означает, что другие венгерские физики хуже. Там много талантливых учёных. И Яноши выделяется не потому, что он самый главный, или потому, что ученикам случалось видеть его в двух галстуках и непарных ботинках. Не многие могут создать собственную трактовку теории относительности. А Яноши создал.

Десять лет жизни отдал Яноши труду под названием «Теория относительности, основанная на физической реальности». В ней он изложил свой взгляд на мир — особый взгляд, мало кем разделяемый.

Познакомившись с Яноши, мне, разумеется, захотелось услышать от него самого о тех новых критериях, которые он ввёл в науку. А услышала я… об абсолютном пространстве, об эфире — понятиях, казалось бы, уже изгнанных прогрессом науки.

— Изгнанных?! — удивился Яноши. — Это неверно.

Посмотрите первый том Собрания сочинений Эйнштейна. Физик уникального чутья и прозорливости, он и после создания общей теории относительности не боялся говорить об эфире как о носителе всех физических событий. Это помогало ему создать качественную и количественную модель мира. А в этой модели он искал нечто, что могло бы сцементировать воедино все то, что мы знаем о макро — и микромире.

Перечитываю труды Эйнштейна. В докладе, сделанном Эйнштейном 5 мая 1920 года в Лейденском университете по поводу избрания почётным профессором, он говорит, что специальная теория относительности не требует безусловного отрицания эфира.

«Можно принять существование эфира, не следует только заботиться о том, чтобы приписывать ему определённое состояние движения».

Этим высказыванием Эйнштейн возвращает эфир в ту точку его истории, когда тот был признан Лоренцем неподвижным.

«Отрицать эфир, — продолжает Эйнштейн, — это, в конечном счете, значит принимать, что пустое пространство не имеет никаких физических свойств. С таким воззрением не соглашаются основные факты механики. Эфир общей теории относительности есть среда, сама по себе лишённая всех механических и математических свойств, но в то же время определяющая механические (и электромагнитные) процессы».

Чувствуете некоторую двусмысленность?

Но все-таки посмотрим, как эволюционировало отношение Эйнштейна, Первого физика нашей эпохи, к эфиру. Откроем одну из удивительнейших книг, когда-либо созданных человеком, — «Эволюцию физики», написанную Эйнштейном совместно с другом, польским физиком Инфельдом. С недоумением эти два замечательных мыслителя приходят к двойственному выводу: «… существует взаимодействие между эфиром и веществом в оптических явлениях, но никакого взаимодействия в механических явлениях! Это, конечно, очень парадоксальное заключение!»

Далее они пишут:

«В нашем кратком обозрении принципиальных идей физики мы встретили ряд нерешённых проблем, пришли к трудностям и препятствиям, которые обескуражили учёных в попытках сформулировать единое и последовательное воззрение на все явления внешнего мира».

Одна из «нерешённых проблем», «трудность», «препятствие» — это всё тот же эфир.

учёные продолжают сердиться

Последние десятилетия жизни Эйнштейн тщетно пытался справиться с силами, властвующими над Вселенной, объединить их в единую теорию, объясняющую строение мира.

«Тогда, — мечтал он, — была бы достойно завершена эпоха теоретической физики… Сгладились бы противоречия между эфиром и материей, и вся физика стала бы замкнутой теорией».

Эйнштейн не осуществил мечты своей жизни. «После стольких неудач наступает момент, когда следует совершенно забыть об эфире и постараться никогда не упоминать о нём. Мы будем говорить: наше пространство обладает физическим свойством передавать волны — и тем самым избежим употребления слова, от которого решили отказаться».

Так Эйнштейн в вопросе об эфире пришёл, по существу, к тому же, что и Ньютон. Не нужно говорить об эфире, не нужно пытаться апеллировать к нему при решении научных вопросов. Но не следует формулировать прямого ответа на вопрос о существовании подобной среды, пока опыт не даст для ответа какой-нибудь определённой основы.

Эйнштейн пишет: «Нам пока ещё не ясно, какую роль новый эфир призван играть в картине мира будущего».

Этим признанием, созвучным отчаянию Ньютона: «Я не знаю, что такое этот эфир», Эйнштейн констатирует, что история эфира не завершена.

… Что такое этот, новый эфир? Неясно и сегодня. Вернее, иногда можно услышать ответ: «ясно». Но у разных учёных это разное «ясно».

Яноши ослушался Эйнштейна. Он упорно и напряжённо думал над загадочным, неуловимым образом, олицетворяющим плоть мира. Об этом думают и некоторые другие современные физики наперекор общепринятому отрицанию эфира. Во всяком случае, тем физикам, которые категорически отклоняют всякие разговоры об эфире, считая это в наше время криминалом, можно напомнить, что такой серьёзный физик, как нобелевский лауреат Чарльз Таунс, американский создатель мазеров — «атомных часов», не преминул использовать их — в 1960 году! — для попытки обнаружить эфирный ветер.

— Чтобы найти общий язык в такой сложной области, как философия физики, надо спорить, доказывать, критиковать, ведь только в споре рождается истина, — сказал в заключение нашей беседы Яноши, пожалуй, самый нетипичный из физиков наших дней, позволяющий себе иметь на многие проблемы свою собственную, нестандартную точку зрения.

То, что Яноши вновь обращает свое внимание на эфир, означает, что проблема среды, носителя механических и оптических явлений, не исчерпана. Она, несомненно, будет занимать и будущих физиков. И это неизбежно. Проблема света доведена до удовлетворительного состояния современной квантовой электродинамикой. И нас уже не смущает двойственная природа света, заставляющая его проявлять себя в одних условиях в виде волн, в других — в виде частиц-фотонов, причём всё это без помощи эфира.

Однако с проблемой поля тяготения не всё обстоит так благополучно. Гравитационное поле существует. Его закономерности хорошо описываются общей теорией относительности, а поисками гравитационных волн или гравитонов — частиц гравитационного поля — занято немало физиков. Но таинственные гравитоны всё ещё не обнаружены.

Впрочем, решение может быть найдено и завтра, и даже сегодня… Вдруг фортуна улыбнется одному из начинающих физиков? Или маститому? Может быть…

Я не поняла во всех деталях картину мира, нарисованную венгерским учёным. Как выяснилось, не все физики понимают её. Во всяком случае, если нечто подобное высказываниям Яноши позволит себе на экзамене студент, двойка ему обеспечена.

Но когда о своих взглядах на мир писал и говорил физик масштаба Яноши, в яростный спор вовлекались корифеи современной науки. В нём участвовали академики Тамм, Скобельцын, Блохинцев. Но к взаимопониманию не пришли. Неспециалисту невозможно определить, кто прав в этом споре. Возможно, не пришло ещё время созреть решению. Слово — за будущими физиками. Проблема строения мира — одна из главных тем, над которой будут ломать себе голову и те, кто сегодня трудится на научном поприще, и те, кто ещё только учится в школе. Возможно, именно они поймут, в чём заблуждение Яноши, если он заблуждается; в чём он прав, если он прав. Допустим, он ошибается, вновь ища поддержки эфира, воскрешая ньютоново абсолютное пространство, по-своему перекраивая мир. Науке важнее другое: затраченные им усилия. Науке всегда были необходимы люди неординарного склада мышления, учёные, в которых природа заронила дар особого видения. Такие всегда оставляют заметный след в истории. Если не открытиями, то ошибками. Их дерзость будоражит воображение, воспитывает в молодых умах способность анализировать, критиковать, искать… По-настоящему новое в науку вносят дерзкие умы. Умы, не боящиеся идти против течения, не страшащиеся риска, не обращающие внимания на насмешки и непонимание.

Среди физиков много альпинистов и горнолыжников. Не потому ли, что в физику идут в основном те, кто не боится опасности?

Сомнения еретиков

Всем известно мнение философов о том, что познанию нет предела. Нет застывших истин, ничто из добытого людьми не лежит у нас в копилке мёртвым грузом — знания дополняются, пересматриваются, уточняются. Это можно проиллюстрировать судьбой такой великой теории, как теория относительности Эйнштейна. С самого возникновения её окутывала меняющаяся атмосфера. С ней произошло то же, что и со многими другими великими творениями человеческого духа. Вокруг них часто возникают как бы две противоборствующие стихии. Одни учёные стараются сохранить эти творения в первозданном виде, в неприкосновенности; другие рассматривают их как трамплин для нового скачка мысли.

Широко известно, что теория относительности Эйнштейна вначале многим показалась бредом. Даже в 1935 году, через два десятилетия после её рождения, профессор Чикагского университета известный физик Макмиллан говорил на лекциях своим студентам, что теория относительности — печальное недоразумение.

После признания теории крен пошёл в другую сторону — к каждому её положению стали относиться как к святыне, с благоговением, боясь что-то изменить или нарушить. И каждого, кто пытался что-то додумать по-своему, считали чуть ли не еретиком.

Раз мы заговорили в этой главе об академике Яноши, следует сказать, что он как раз и является одним из «еретиков».

— Да, многие так говорят обо мне, — без улыбки подтверждает он. — Но это результат неполной информации о моих научных взглядах. Просто некоторые воображают, что мир ведёт себя так, как вытекает из придуманных нами законов. В действительности ему дела нет до наших фантазий! Верны лишь те законы, которые подтверждаются опытом. Надо контролировать теорию экспериментом. Без этого физика — сплошной идеализм. Ничто в наших трактовках окружающего мира не должно опираться на домыслы — только на опыт. Пример — теория относительности Эйнштейна. Она родилась из фактов. А потом начались кривотолки, словесный туман. Мы, его последователи, далеко не единодушны в своём понимании структуры мира…

И Яноши рассказал любопытную историю своих собственных сомнений по этому поводу, историю созревания своего «еретичества».

Создавая собственную концепцию строения мира, Яноши исходил не из теории относительности Эйнштейна, он оттолкнулся от знаменитых преобразований Лоренца, из которых вытекало, что размеры всех тел, например обычных линеек, зависят от их скорости. Чем больше скорость, тем короче линейка. Эти преобразования предсказывали также, что ход часов замедляется, если скорость их движения в пространстве возрастает. Эта позиция нам знакома, мы говорили о ней в связи с гипотезой Фицджеральда, которой соответствуют математические построения Лоренца.

Яноши возражал против интерпретации преобразований, данных самим Лоренцем, но в ещё большей мере он расходился с Эйнштейном.

Венгерский учёный предлагал свою собственную интерпретацию, а вместе с ней и свой подход к основам теории относительности, который он изложил в статье 1952 года.

Полемический итог этой публикации был воспринят большинством физиков так: все результаты теории относительности можно получить без теории относительности. Статья Яноши не вызвала резонанса в научной печати. Однако Яноши стремился к ясности. Он продолжил исследования и через шесть лет заново сформулировал свои аргументы, приняв во внимание результаты многочисленных обсуждений. Его статья «Дальнейшие соображения о физической интерпретации преобразований Лоренца» появляется в советском журнале «Успехи физических наук».

Некоторые выводы этой статьи показались редакционной коллегии сомнительными. Учитывая, что журнал читают не только физики, но и люди других специальностей, в том числе и студенты, не способные самостоятельно разобраться в содержании этой сложной статьи, редакционная коллегия попросила одного из наиболее авторитетных физиков-теоретиков академика И.Е. Тамма ознакомиться со статьей Яноши до её опубликования и, если нужно, прокомментировать её.

В замечаниях Тамма, опубликованных вместе с этой статьей, указано, что скептическое отношение Яноши к теории относительности привело его к ряду неправильных утверждений, ошибочность двух из них разъясняется читателям.

Замена теории относительности динамическим рассмотрением всех конкретных задач действительно приводит к тем же выводам о строении мира. Но это не может служить доводом против теории относительности. Справедливость этой теории в течение полувека подтверждалась при детальной опытной проверке всех её предсказаний.

Дружеская критика Тамма и других советских учёных заставила Яноши тщательно пересмотреть свои аргументы. Результат многолетних трудов суммирован в книге, о которой мы уже говорили. Книга вышла в 1971 году в Венгрии на английском языке. Впоследствии она была выпущена и в Японии.

Понимая особое место теории относительности в системе научного познания, Яноши опубликовал краткий очерк философских аспектов, лежащих в основе его монографии, в советском журнале «Вопросы философии». Статья, как и книга, называлась «Теория относительности, основанная на физической реальности». Он пишет:

«Монография содержит оценку специальной и общей теории относительности. Математический формализм, который используется в ней, эквивалентен общепринятому, и при рассмотрении частных феноменов я прихожу там к хорошо известным и всеми признаваемым результатам. Тем не менее используемые мною понятия выводятся с помощью метода, отличного от принятых обычно в учебниках и исследовательских работах, посвящённых этой проблеме».

Если Яноши пришёл к тем же выводам, что и Эйнштейн, но другим путём, это лишний раз подтверждает правильность теории Эйнштейна.

Работа Яноши, мне кажется, вызвана не духом противоречия. А тем неудовлетворением, которое испытывают сегодня физики, не получая от теории прежней безотказной помощи при новых затруднениях. Период, когда теория относительности объяснила целый ряд неясностей, накопившихся в течение нескольких столетий, прошёл. Сейчас появились новые экспериментальные материалы, и теория относительности иногда задерживается с ответом.

Это отнюдь не значит, что она неверна. Но она уже требует расширения её рамок, универсализации одних положений и углубления других.

22 ноября 1972 года в Москве на сессии Академии наук СССР академик Я.Б. Зельдович докладывал свои соображения о природе «чёрных дыр» — удивительных, до сих пор до конца не объяснённых объектов, вероятно существующих в космосе. Он сказал: даже теория относительности Эйнштейна, раскрывшая так много тайн Вселенной, бессильна перед тайной «чёрных дыр». Это явление не укладывается ни в одну из современных теорий мироздания. Слово за будущими Эйнштейнами…

Слушая Зельдовича, физики не могли не вспомнить слова самого Эйнштейна: «В науке нет вечных теорий. Всегда происходит так, что некоторые факты, предсказанные теорией, опровергаются экспериментом. Всякая теория имеет свой период постепенного развития и триумфа, после которого она может испытать быстрый упадок».

Эйнштейн не имел здесь в виду теорий, неразрывно связанных с опытом. Такие теории, как, например, динамика Ньютона и теория относительности самого Эйнштейна, никогда не испытают упадка. Они могут быть только развиты и углублены. Неудовлетворённость прежними теориями, прежними взглядами на мир рождается из-за того, что каждое новое поколение знает о мире чуть больше, чем прежнее. Переоценка ценностей — естественный процесс эволюции научных взглядов. Он порождает «еретиков». И они всегда будут появляться в науке. Должны появляться, сигнализируя своим появлением о том, что строгость и требовательность учёных не угасают, что поиски истины для них важнее успокоенности, что они подстерегают недомолвки, ошибки, заблуждения, чтобы ликвидировать их.

«Наша задача — ошибаться как можно быстрее» — этими словами Дж. А. Уилера мы могли бы закончить главу о закономерности временных ошибочных гипотез; об естественности процесса переоценки научных ценностей;

о плодотворности появления в науке «еретиков» — кто же, как не они, найдут в прежних теориях слабые и спорные места и загорятся желанием найти новый, более надёжный путь к истинному знанию?

Но естественным заключением этой главы, пожалуй, является такая мысль: уже тысяча лет парадокс эфира существует, оставаясь до сих пор догадкой.

Надеюсь, что большинство читателей этой книги узнает, чем будет заменена древняя гипотеза.

Загрузка...