ЧАСТЬ IV — ВОДА

Углерод — элемент жизни

Земли, Воздуха и Огня достаточно для величественного мира, достаточно для благоприятной окружающей среды, достаточно для богатых запасов материальных благ, но не хватает ключевой сущности — Воды.

Углерод еще и элемент живого мира.

Были созданы элементы Периодической таблицы. Взорвались звезды.

Образовались планеты, и появилось множество химических соединений — кристаллов, жидкостей, клубящихся газов.

Земля готова совершить свое самое созидательное действие.

Вот-вот появится основанная на углероде жизнь.

Эволюция и излучение приносят инновацию за инновацией — собирают атомы углерода, подключают солнечный свет, создают твердые богатые углеродом раковины, пробуют силы на суше.

Жизнь эволюционирует и тем самым навсегда изменяет цикл углерода планеты, когда сферы Земли, Воздуха, Огня и Воды эволюционируют совместно.

ИНТРОДУКЦИЯ — Первозданная Земля

Представьте себе Землю 4,5 млрд лет назад — чужой, негостеприимный мир, бомбардируемый камнями из космоса, опаляемый потоками лавы и обжигаемый выделяющимся из недр паром, пронизываемый смертельным, прямым ультрафиолетовым излучением молодого Солнца. Разве что-нибудь живое могло появиться, а тем более выжить в условиях такой экстремальной угрозы окружающей среде? Но, невзирая на безжалостные вспышки гнева юной Земли, все сырьевые компоненты для жизни уже были готовы к использованию.

Вода? Есть. Биосфера зависит от воды. Клетки более чем наполовину состоят из воды по весу, и практически все сценарии происхождения требуют водного контекста. Вода — универсальный биологический растворитель, среда, в которой клетки появляются, благоденствуют и размножаются.

Энергия? Есть. Все формы жизни требуют надежных ее источников, будь то химическая энергия пищи или энергия солнечного света. И если бы этих надежных и проверенных источников оказалось недостаточно, то и у само́й древней Земли было чем похвастаться — неисчерпаемой энергией внутреннего геотермального тепла, импульсной энергией молний и проникающей ядерной энергией радиоактивного распада.

Углерод? Есть. Углеродсодержащие молекулы жизни падали на юную Землю постоянным потоком углистых метеоритов. А еще более богатые источники компонентов для жизни появлялись из самой Земли — ее атмосферы, океанов и горных пород, по мере того как наша планета становилась двигателем молекулярной новизны.

Сцена была подготовлена. Земля, Воздух, Огонь и Вода приготовились организоваться во что-то новое: Жизнь.

ВСТУПЛЕНИЕ — Происхождение жизни

История происхождения и эволюции жизни — это эпическое сказание, которое лучше всего излагать языком химии углерода. Единственным поистине переломным моментом в истории Земли стало появление биосферы. Мы знаем, что это СЛУЧИЛОСЬ: ведь мы здесь. Поэтому хотим понять, КАК это случилось. Но эта сага зарождения останется лишь невнятным рассказом, по большей части скрытым в тенях «глубокого времени». Целая (пусть и небольшая) армия ученых — исследователей, ведомых любопытством и желанием узнать то, чего никто пока не знает, — посвящает этому поиску всю свою профессиональную жизнь. Мы принимаем вызов без какой-либо гарантии, что убедительное решение будет найдено, прежде чем мы умрем, поскольку это путешествие к открытию уже заняло столетия: квест, в котором вопросов намного больше, чем ответов.

Происхождение жизни — пять главных вопросов

Решительный репортер жаждет расследовать пять главных загадок любой истории: кто, что, где, когда и почему. Добавьте к этому списку «как», и вы получите всеобъемлющий перечень сложных вопросов, стоящих перед исследователями происхождения жизни. На эти классические вызовы нам удастся ответить с разной степенью уверенности в своей правоте, хотя ни одна из этих загадок пока не решена полностью.

Кто и почему?{147}

«Кто?» и «почему?» в контексте происхождения жизни — вопросы, более подходящие философам и теологам, чем ученым-практикам. Убедительных, даже категорических мнений великое множество, но наука должна оставаться нейтральной в отношении вопроса «почему?», поскольку он тесно связан с исконным вопросом о смысле и цели жизни. Наука, в отличие от философии и теологии, полагается на независимо воспроизводимые наблюдения, эксперименты и математическую логику — это эпистемология. Но наука, безусловно, дает информацию философии: в конце концов, как мы можем понять смысл и цель Вселенной, не зная основных правил космической игры? Тем не менее ученые не в состоянии рассказать нам, почему космос, со всеми своими разнообразными живыми и неживыми элементами, вообще существует.

«Кто?» — аналогичный вопрос, на который невозможно ответить с помощью какого-либо строго определенного научного метода, он требует объективных, независимо проверяемых результатов. Если мы не получим доказательств, что жизнь на Землю целенаправленно занес инопланетный разум — есть такая любопытная концепция, называемая направленной панспермией, со своей занимательно-умозрительной литературой, — вопрос «кто?» также останется за пределами узкой компетенции науки.

Когда?

У нас намного больше уверенности в ответе на вопрос, когда появилась жизнь, поскольку мы обнаружили два строгих ограничения — что-то вроде книгодержателей. С одной стороны, Луна появилась в результате впечатляющего столкновения Земли и Тейи, от которого оба мира разрушились около 4,5 млрд лет назад, на что указывает изотопный возраст, измеренный по самым старым лунным кристаллам{148}. Даже если какая-либо форма примитивной жизни и появилась до того катастрофического образования Луны, океан магмы, заливший весь земной шар после столкновения с Тейей, уничтожил бы любое живое царство на Земле. Образование Луны привело к повсеместному стерилизующему «обнулению» океанов, атмосферы и жизни.

С другой стороны, окаменелости (несистематические ископаемые остатки из некоторых самых древних земных формаций горных пород в Гренландии) указывают на то, что микробная жизнь уже вовсю существовала около 3,7 млрд лет назад. Эти характерные строматолиты — напоминающие холмики структуры, образованные напластованием микроскопических слоев минералов, отложенных микробами, — говорят нам о том, что клеточная жизнь уже была сильно развита. Отсюда мы должны сделать вывод, что жизнь появилась задолго до этих самых древних окаменелостей.

Когда точно между 4,5 и 3,7 млрд лет назад это произошло — остается неизвестным. Некоторые эксперты утверждают, что Земля была обитаемой, покрытой океанами и окруженной атмосферой уже 4,4 млрд лет назад; быстрое появление жизни говорит в пользу такой ранней даты. Другие специалисты склонны считать, что жизнь зародилась ближе к 3,9 млрд лет назад, через некоторое время после предполагаемого промежутка интенсивного разрушения под градом больших астероидов и комет. Прямые свидетельства тех бомбардирующих земной шар ударов полностью стерлись с быстро восстановившейся коры Земли, но время и интенсивность так называемой Великой бомбардировки[39] запечатлелись на рубцеватой поверхности Луны. Во всяком случае мы можем с уверенностью утверждать, что Земля была миром жизни более 80% своей динамичной истории.

Где?

Вопрос «где?» в контексте происхождения жизни очень интересен, так как здесь речь идет о непознаваемых местах, которые давным-давно стерты с лица нашей планеты. Если, как полагает большинство из нас, жизнь появилась на Земле, а не на каком-то далеком космическом теле и если она появилась быстро (в течение нескольких миллионов лет после катастрофического столкновения, которое уничтожило внешние слои Земли и привело к образованию Луны), тогда в качестве самых вероятных мест появления жизни мы должны рассматривать более холодные полярные регионы Земли.

Горные породы на полюсах, которые, очевидно, затвердели первыми, были наименее подвержены огромным приливным силам, вызванным находящейся поблизости только что образовавшейся Луной. Вращаясь очень быстро, молодая Луна проходила известную нам ныне последовательность лунных фаз за несколько дней. Через несколько тысячелетий после своего образования Луна представляла собой огромный шар в небе, находящийся от Земли на расстоянии менее одной десятой от нынешнего. По непрерывно разрушаемой поверхности земного шара должны были прокатываться тысячеметровые приливы. И только более холодным стабильным полюсам Земли глубокое разрушительное влияние ранней Луны 4,4 млрд лет назад практически не угрожало.

Если мы допустим более свободные временны́е рамки для происхождения жизни, — скажем, несколько сотен миллионов лет после образования нашей планеты, когда она остыла, а Луна отступила на безопасное расстояние, — тогда вопрос о том, где на земном шаре зародилась жизнь, уходит на второй план. Полюса, средние широты, экватор — это не имеет значения, мы никогда не сможем указать точные GPS-координаты.

Но вопрос «где?» усложняется своими интригующими поворотами. Возможно, жизнь зародилась на какой-то другой планете и Земля была засеяна извне. Эта умозрительная, непроверенная идея имеет по крайней мере два различных варианта. Более «научная» версия указывает на ближайшую планету, почти наверняка Марс, где благоприятные для жизни теплые и влажные условия могли существовать за десятки, сотни миллионов лет до того, как Земля стала обитаемой{149}. Если жизнь — это космический императив, который быстро возникает в любом пригодном для обитания мире, тогда микробы на Марсе, скорее всего, возникли первыми. Некоторые из этих отважных микроскопических букашек, надежно угнездившихся в защитном слое камней, могли прокатиться на марсианских метеоритах, выбиваемых в пространство сильными ударами астероидов, которые должны были испещрять поверхность Марса регулярно.

Может показаться парадоксальным, но математические модели больших столкновений указывают на то, что огромные фрагменты поверхности могли улетать в космос без значительных повреждений составляющих их пород и заключенных в них микробных сообществ. После относительно недолгого путешествия до Земли эти микробы-автостопщики, возможно, и стали первыми колонизаторами, родоначальниками всей сегодняшней жизни. Пусть это звучит несколько натянуто, но одна из причин NASA для продолжения исследований Марса — поиск в защищенных под нынешней высохшей красной поверхностью планеты экосистемах микробов, аналогичных земным. Если они будут обнаружены и если окажется, что у этих микробов те же биохимические особенности, что и у жизни на Земле, тогда многие из нас сделают вывод, что Марс всех опередил и мы произошли от марсиан.

На заметку: некоторые ученые говорят о более далеком происхождении жизни. Уже упоминавшийся астрофизик Фред Хойл, ставший знаменитым после открытия тройного альфа-процесса, в ходе которого в звездах образуется углерод, был явным сторонником версии панспермии, в соответствии с которой первую жизнь на Землю занесли кометы, несущие вирусы{150}. Более того, он утверждал, что кометы продолжают инфицировать планету новыми вирусными болезнями, которые дождем просыпаются на нас из космоса. Большинство ученых считают такой сценарий абсурдным.

Другие исследователи рассматривают возможность того, что жизнь пришла из иной звездной системы, причем возможно даже, что она была искусственно создана и ее намеренно высеивали в ходе направленной панспермии. Подобную гипотезу — по крайней мере на данный момент — невозможно проверить научными методами. Эта псевдонаучная идея также интеллектуально слаба, поскольку она просто переводит вопрос происхождения жизни в другое место и время. В конце концов, кто тогда спроектировал проектировщиков?

Что такое жизнь?{151}

Ну и наконец, сводящий с ума вопрос «что?». Если мы хотим решить загадку древнего происхождения жизни, тогда нам бы нужно, вероятно, знать, что такое жизнь. Но мы не знаем.

Мы почти всегда узнаём жизнь, когда ее видим, но, как ни удивительно, биологи пока не смогли создать универсально приемлемого определения. Этот лексический недостаток происходит не из-за сложности распознавания прыгающих лягушек или качающихся берез, а, скорее, от нашего относительного незнания космических возможностей: у нас есть только одна биосфера для изучения, только один образец «жизни». С одной стороны, если покрытая зеленью Земля — единственный живой мир в космосе, тогда мы смогли бы легко составить приемлемый список химических особенностей и физических характеристик, уникальных для нашей биосферы. Если мы действительно одиноки в необъятном пространстве, тогда наша земная таксономия обеспечила бы всеобъемлющее определение жизни. Мы указали бы на главные химические ингредиенты, такие как углерод и вода, повсеместно распространенные молекулярные модули вроде белков и ДНК, характерные структуры, включая рибосомы и митохондрии, заключенные в микроскопические клетки — самые фундаментальные общие единицы разнообразной биосферы Земли.

С другой стороны, если во Вселенной существует бесчисленное множество других живых миров (как подозревают многие из нас — тех, кто изучает космическую историю), тогда было бы самонадеянно определять жизнь в таком узком «землецентричном» ключе. Вот почему ученые, пытающиеся отличить живое от неживого, прибегают к перечням более общих характеристик и поведения. Все вообразимые формы жизни должны иметь способность — если не индивидуально, то коллективно — воспроизводиться, расти, реагировать на изменения окружающей среды и развивать новые свойства. Управление NASA, в долгосрочную миссию которого входит и поиск жизни на других планетах, делает специальную оговорку, что жизнь должна быть химической системой, состоящей из взаимодействующих атомов и молекул. Соответственно, компьютерная электронная «форма жизни» — растущая, эволюционирующая данность из нулей и единиц, удерживаемая кремниевыми полупроводниками например, — была бы чем-то совершенно иным, требуя новой таксономии и других организационных правил.

Вопрос «что?», таким образом, содержит в себе неоднозначность строгого определения сути жизни. Ученые подходят к этой таксономической проблеме с осторожностью и уважением, поскольку в настоящий момент у нас в наличии один-единственный пример живого мира. Это состояние незнания может измениться в любой момент — вместе с переломным открытием инопланетной жизни одним из наших планетарных зондов или при непосредственном контакте с далекими инопланетными видами. Но на сегодняшний день у нас нет научной основы для каталогизации целого ряда явлений природы, которые можно было бы назвать термином «живое» (несмотря на бесконечно творческие идеи писателей-фантастов).

Каким бы ни было все еще недоказанное космическое разнообразие жизни, попытки понять ее происхождение (или происхождения) сфокусированы на наиболее доступной и известной нам биологии — основанной на земном углероде жизни. Исследование давнего перехода от безжизненного геохимического мира к планете, богатой биохимическими процессами и явлениями, представляет собой одну из самых сложных научных проблем. Этот древний преобразующий прыжок бесконечно сложен, чтобы его можно было объяснить какой-либо одной теорией или исследовать единственной последовательностью экспериментов. Лучше разделить эту историю на множество доступных для понимания глав, каждая из которых будет добавлять ступеньку в структуру и хитросплетения эволюционирующего мира химии углерода.

И на сладкое у нас остается ба-а-альшой вопрос: «Как зародилась жизнь?»

Происхождение жизни: основные химические правила

Когда берешься за одну из величайших загадок природы, лучше начинать с изучения базовых правил. Рамки исследования происхождения жизни определяются тремя основными допущениями. Первое состоит в том (и с этим согласится большинство исследователей), что планеты сами обеспечивают себя всеми исходными материалами — океанами, атмосферой, множеством пород и минералов. Кроме того, многие из нас делают вывод, что происхождение жизни потребовало некоторой последовательности химических этапов, каждый из которых добавлял свою степень сложности и функциональности — это второе допущение. И наконец, третье — главное — допущение практически каждого исследования происхождения жизни заключается в центральной роли углерода. Углерод — основной элемент жизни на Земле сегодня, поэтому большинство из нас в игре по поиску происхождения жизни исходят из того, что так должно было быть с самого начала. Но есть ли у нас такая уверенность?

Сотворение жизни: почему углерод?

Углерод — элемент кристаллов, циклов и вещества. В составе множества твердых, жидких и газообразных форм углерод играет бесчисленные химические роли, которые касаются всех аспектов нашей жизни. А как насчет живых организмов, структуры и функции которых намного сложнее, чем у любого неживого природного или промышленного материала? Какой элемент обеспечит необходимую искру жизни?

Чтобы стать главным для происхождения жизни, этот химический элемент обязан соответствовать некоторым основным ожиданиям. Безусловно, любой важный для жизни элемент должен быть достаточно распространенным и весьма доступным в коре, океане и атмосфере Земли. Этому элементу важно иметь потенциал для участия во многих химических реакциях — нельзя же быть настолько инертным, чтобы просто сидеть здесь и ничего не делать. При этом ключевой элемент жизни не должен быть слишком химически активным — ему «не следует» самовозгораться или взрываться при малейшей химической провокации.

И даже если элемент обладает той самой средней химической активностью — в идеальном диапазоне между взрывной и пассивной, он обязан участвовать более чем в одной химической реакции. Он должен уметь образовывать прочные и стабильные структурные оболочки и волокна — кирпичики и цемент жизни. Он должен уметь хранить, копировать и интерпретировать информацию. А еще этот особенный элемент — в сочетании с другими повсеместно распространенными первичными строительными материалами — должен найти способ использовать энергию от соединений с другими химическими веществами или, возможно, энергию изобильного солнечного света. Такие «умные» сочетания элементов должны хранить данную энергию в удобной химической форме подобно батарейке и высвобождать контролируемые импульсы энергии, когда и где это ни потребовалось бы. Главный элемент жизни должен быть многофункциональным.

А теперь рассмотрим в этих ограничивающих рамках различные возможные элементы. Водород и гелий — самые распространенные в космосе, они занимают места №1 и №2 в Периодической таблице и заполняют весь ее верхний ряд. И при этом не подходят для образования биосферы.

Водород, который умеет крепко соединяться только с одним атомом за раз, не проходит проверку на универсальность. Прошу заметить: водород отнюдь не бесполезен! Он помогает сформировать многие молекулы жизни посредством водородной связи — своего рода молекулярного клея, играя важную роль партнера кислорода в воде, посреднике всех известных форм жизни. Но элемент №1 один не может обеспечить универсальную химическую основу для жизни.

От гелия, второго элемента Периодической таблицы, вообще никакой пользы — это невозможно инертный, высокомерный благородный газ, который отказывается соединяться с чем-либо, даже с самим собой.

Пробежимся по Периодической таблице: элементы с третьего по пятый (литий, бериллий и бор) слишком малочисленны, чтобы построить биосферу. Учитывая концентрацию этих элементов в земной коре — несколько атомов на миллион — и даже еще меньшую в океанах и атмосфере, их можно смело вычеркнуть из списка перспективных ингредиентов, дающих жизнь.

Углерод, элемент №6, — химический герой биологии, мы вернемся к нему.

Элемент №7 — азот — представляет собой интересный случай. Присутствуя в значительных количествах в близповерхностном окружении, азот составляет около 80% атмосферы. Он связывается сам с собой в пары N2 — химически неактивные молекулы, представляющие бо́льшую часть газа, которым мы дышим. Кроме того, азот связывается и со многими другими элементами, среди них водород, кислород и углерод, образуя разные интересные химические вещества, имеющие отношение к биохимии. Белки получаются из длинных цепочек аминокислот, каждая из которых содержит как минимум один атом азота. Жизненно важные генетические молекулы ДНК и РНК также содержат азот в своих структурных единицах — основаниях, определяющих генетический алфавит: «буквы» A, T, Г и Ц (аденин, тимин, гуанин и цитозин). Но азот, которому до магического числа 10 недостает трех электронов, слишком уж их жаждет: его химические реакции слишком энергичные, а возникающие связи слишком негибкие, чтобы он мог играть разноплановые роли ведущего актера. Так что мы можем вывести азот из соревнования.

Но почему не кислород? В конце концов, если считать по атомам, кислород — самый распространенный элемент коры и мантии Земли: он составляет более половины всех атомов большинства пород и минералов. В группе минералов полевого шпата, которая слагает 60% объема континентов и океанической коры Земли, кислород превосходит численностью другие атомы в соотношении 8:5. В вездесущей группе пироксенов преобладающие атомы представлены смесью кислородных атомов и атомов распространенных металлов (таких, как магний, железо и кальций) в соотношении 3:2. Ну и кварц, самый распространенный минерал на большинстве песчаных пляжей, — его формула SiO2. Как замечательно, лежа на песке и принимая солнечные ванны, осознавать: две трети того, что держит вас, — это атомы кислорода. Вот и получается, что кислорода в земной коре при пересчете на атомы примерно в 1000 раз больше, чем углерода.

Но кислород, несмотря на свое поразительное изобилие, химически скучный. Начать с того, что у его отдельного атома восемь электронов и всего двух ему не хватает, так что он связывается без разбора с любым атомом, который восполнит дефицит. Да, кислород является абсолютной основой всех биологически важных химических веществ — сахаров, оснований, аминокислот и, конечно, воды. Но он не умеет формировать ни требуемых цепочек, ни колец, ни ветвящихся структур, которые так важны для сложной архитектуры жизни. Поэтому мы можем вычеркнуть обильный кислород из короткого списка самых важных атомных кирпичиков жизни.

Фтор, занимающий девятую позицию в Периодической таблице, еще хуже, поскольку ему не хватает лишь одного электрона до желаемого комплекта из десяти. Фтор жадно отбирает электроны почти у всех остальных элементов. Будучи чрезвычайно химически активным, он разъедает металл, протравливает стекло и взрывается при контакте с водой. Вдохните этот газ полной грудью, и вы умрете в страшных мучениях, потому что ваши легкие покроются волдырями от химических ожогов.

И так далее. Элементы №10 и №18, неон и аргон, — это инертные газы, так что мы не будем их дальше рассматривать. Натрий, магний и алюминий (элементы с 11-го по 13-й) слишком жаждут отдавать электроны, а фосфор, сера и хлор (элементы с 15-го по 17-й) слишком жаждут их получать. А если мы еще глубже погрузимся в Периодическую таблицу, элементы будут становиться все менее распространенными и их способности играть ключевую роль в химии жизни окажутся еще скромнее.

Исключение составляет лишь распространенный элемент кремний, который находится в середине третьего периода нашей таблицы. Кремний, элемент №14, занимает важную позицию прямо под углеродом. Поскольку элементы, заполняющие одну группу Периодической таблицы, часто обладают похожими свойствами, не может ли кремний стать жизнеспособным биологическим заменителем углерода? Писатели-фантасты неоднократно хватались за эту возможность. Я живо помню эпизод из первого сезона классического телевизионного сериала «Звездный путь» (того исходного[40], с Уильямом Шетнером в роли капитана Джеймса Т. Кирка и Леонардом Нимоем в роли мистера Спока), в котором экипаж «Энтерпрайза» обнаруживает расу умных и потенциально опасных форм жизни из кремния в виде камней. Концепция шоу несла развлекательный характер, особенно с учетом счастливого мирного исхода, когда камни и люди научились ладить. Но минералогическая предпосылка была ошибочной: кремний — это биологический тупик. У этого элемента на поверхности Земли есть только одна связывающая обязанность — найти четыре атома кислорода и образовать с ними кристалл. Эти раз и навсегда сформированные связи кремния с кислородом остаются слишком крепкими и негибкими, чтобы участвовать в интересной химии. Вы просто не можете основать биосферу на столь целеустремленном элементе, как №14.

Продолжайте в том же духе — но вы напрасно потратите время в поисках еще какого-нибудь подходящего элемента. Впрочем, ваш взгляд может упасть на железо, элемент №26, четвертый по распространенности в земной коре после кислорода, кремния и магния. Так почему не оно? Железо любит связываться, и оно гибкое в своем выборе. Соединяется ли с кислородом? Конечно: образует ржавчину с ионными связями. Соединяется ли с серой? Разумеется: создает сверкающий золотым металлическим блеском пирит (называемый, кстати, «золотом дураков») с ковалентными связями. Железо связывается с мышьяком и сурьмой, хлором и фтором, азотом и фосфором, даже с углеродом в различных минералах карбида железа. А если других элементов под рукой нет, железо радостно связывается само с собой в виде самородного металла. Такое разнообразное портфолио связей может показаться идеальным для ключевого элемента жизни, но у железа есть недостаток: оно с готовностью образует минералы с большими кристаллами, но избегает создавать маленькие молекулы. Жизнь требует огромного разнообразия молекул — в виде цепочек и колец, веток и решеток, — которые железо редко пытается образовать.

Итак нам остается только углерод — самый универсальный, самый гибкий, самый полезный элемент из всех. Углерод — это элемент жизни.

Создание жизни: что может сделать углерод?

Короткий ответ: почти всё. Задача, стоящая перед углеродом, — создать удивительный спектр молекул, которые выполняли бы все разноплановые функции жизни. Один из важнейших их признаков — форма. Успешное функционирование молекул жизни зависит в значительной степени от их трехмерной конфигурации. В некоторых случаях потребность в простой функциональной форме очевидна. Столь различные образования, как связки и сухожилия, виноградная лоза и усики растений, паутина и человеческий волос, требуют прочной связи в одном измерении, чтобы создавать напоминающие веревку волокнистые формы. Углерод проворачивает подобный фокус, связываясь в длинные, прочные, похожие на цепочки полимеры.

В отличие от них, плоские слои углеродсодержащих молекул формируют тонкие гибкие мембраны, окутывающие клетки; прочные хрящи, подстилающие ваши суставы, а также вашу гладкую, эластичную кожу. Более сложные комплексы молекул выполняют разнообразные механические функции — туннелевидных молекулярных проходов в оболочках клеток, крошечных конвейерных лент для перемещения питательных веществ внутри клетки, трубопроводов, по которым текут жидкости, и даже субмикроскопических молекулярных моторов, толкающих сперму навстречу яйцеклетке, которая ждет оплодотворения.

Кроме того, жизнь требует многоцелевого химического набора инструментов, чтобы выполнять разные химические задачи и трюки. Некоторые полезные молекулы действуют как ножницы — обрабатывают пищу, срезая маленькие потребляемые фрагменты с больших частиц. Ваш желудок заполнен молекулами, которые переваривают белки, или жиры, или сложные углеводороды, уменьшая куски пищи до годных к обработке молекулярных кусочков. Другие молекулярные инструменты с восхитительно эволюционировавшими формами эффективно скрепляют две меньшие молекулярные мишени в новый продукт, или сортируют молекулы по схожим группам, или складывают молекулу-мишень в новую полезную конфигурацию. Некоторые из этих молекулярных инструментов содержат тысячи атомов в трехмерных формах поразительной сложности. Не одна Нобелевская премия была присуждена за дешифрование структуры и функции только одного такого молекулярного чуда.

Углерод — единственный химический элемент, который может выполнять роль скелета для столь разнообразного массива сложных молекул. Его секрет кроется в химической гибкости. Будучи элементом №6, что на полпути между магическими числами 2 и 10, углерод может достигать стабильного состояния, добавляя электроны, отдавая их или делясь ими с двумя, тремя или четырьмя соседними атомами.

Химический секрет жизни — в контроле электронов. Жизнь зависит от строго регулируемой последовательности химических реакций — сложных процессов, которые забирают энергию, хранят энергию и используют энергию, чтобы создавать живые ткани. Все основные химические реакции жизни вызывают перестановку атомов и их электронов. Контролируйте движение атомов и электронов — и вы сможете контролировать главные процессы жизни.

Углерод достигает этой цели, поскольку соединяется напрямую с десятками разных элементов, включая и себя самого, а также создает широкий диапазон локальных химических сред. Хотя большинство атомов углерода окружает себя четырьмя соседними атомами и каждый привносит один электрон, чтобы достичь желаемого магического числа 10, углерод также образует двойные связи, делясь с другим атомом — обычно с кислородом или с самим собой — двумя электронами. В результате образования двойных связей у атомов углерода появляется всего два или три ближайших соседа, а не четыре, как обычно. В особых случаях углерод может образовывать даже тройные связи, делясь тремя электронами с другим атомом, чаще всего с азотом или еще одним атомом углерода. Атому углерода с тройной связью нужен лишь один дополнительный электрон, который ему обеспечивает один дополнительный атом-сосед. Эти разные варианты связей сильно увеличивают геометрическое разнообразие углеродсодержащих молекул.

Некоторые из получившихся в результате конфигураций, например украшенная множеством атомов водорода длинная цепь атомов углерода, приводят к образованию углеводородных молекул, в которых каждый атом и каждый электрон находятся в довольно стабильном неактивном состоянии. За исключением случаев экстремального химического разрушения — скажем, при горении в присутствии активного кислорода — атомы и электроны молекулы углеводорода остаются на месте. Следовательно, длинноцепочечные углеводородные молекулы служат эффективными структурными элементами защитных клеточных мембран, а также основными средствами долгосрочного хранения энергии в жирах и маслах.

Белки же, которые управляют клетками, наоборот, представляют собой большие углеродсодержащие молекулы, которые зависят от тонко контролируемого движения электронов. Их атомы упорядочены таким образом, что электрон, слабо удерживаемый несколькими атомами, часто кластером, содержащим атом металла (к примеру, железа, никеля или меди), легко может быть отдан. Подобную реакцию вызовет незначительное изменение условий, окружающих молекулу. Первая химическая реакция может вызвать следующую, а потом и еще одну — быстрый каскад смещений электронов, точно контролируемых геометрией углеродсодержащих белков. Такие цепи реакций необходимы для построения новых молекул, когда клетки растут и размножаются.

Углерод обеспечивает бесподобную молекулярную гибкость, поскольку играет много ролей. Шестой элемент принимает электроны, отдает электроны или делится ими, связываясь таким образом с десятками разных химических элементов в молекулярные цепочки, кольца и ветви с одиночными, двойными или тройными связями. Он образует столь небольшие молекулы, как CO, CO2 и CH4, и при этом является составной частью гигантских молекулярных структур буквально с миллиардами атомов.

С учетом этой уникальной его многогранности нет ничего удивительного в том, что 90% лабораторных химических исследований связаны с углеродом. Посмотрите на набор дисциплин, преподаваемых на химическом или биологическом факультетах любого университета, и вас поразит непропорциональная важность углерода: органическая химия, химия полимеров, фармацевтическая химия, биохимия, молекулярная генетика, сельскохозяйственная химия, пищевая химия и химия окружающей среды. Семинары проводятся по таким темам, как компьютеризированная разработка лекарств, особым образом свернутые структуры белков, углеродсодержащие наноматериалы, микроскопический состав почв и сложная химия вина. Все эти темы плюс еще десятки подобных основаны на химическом богатстве углерода.

Стратегии: последовательные шаги к жизни

Популярное состязание ученых в поисках происхождения жизни — вообразить его «сценарий», тщательно продуманную, с широким охватом, зачастую не поддающуюся проверке историю химических и физических обстоятельств, при которых из безжизненной геохимической среды появился живой мир. Каждый из этих воображаемых сценариев основан на каком-то ранее не учтенном физическом или химическом явлении — им может быть особенный минеральный шаблон вроде слюды или пирита, или удивительная физическая среда типа несущейся по ветру высоко в атмосфере струи аэрозоля, или сульфидный «пузырек» рядом с жерлом вулкана глубоко на океаническом дне.

Баллы (и известность) получают за новизну. Британский минералог Грэм Кернс-Смит, творчески мыслящий ученый, захватывающе читавший лекции и увлекательно писавший, привлек большое внимание своей гипотезой глиняного мира{152}. Он утверждал, что древний фрагмент глины (повсеместно распространенного скользкого минерального компонента грязи) начал самовоспроизводиться, переносить информацию и эволюционировать, чтобы стать в конечном счете шаблоном для биомолекул современной биологии. Несмотря на то что механизмы сего процесса были обрисованы довольно смутно (и, вероятно, они недоказуемы с кристаллохимической точки зрения), этот сценарий захватил воображение людей, хотя и был просто вариацией древнееврейского мифа о Големе — существе, созданном из глины.

На конференциях и в публикациях, посвященных происхождению жизни, постоянно фигурируют концептуальные идеи вроде «мира ПАУ[41]», «мира слюды», «мира боратов»; каждая такая история фокусируется на новой причуде природы, каждая зависит от некоего особого обстоятельства, которое способствовало бы сложному прыжку от неживых химических веществ к живой планете.

Каким бы разумным ни показался на первый взгляд любой из предложенных сценариев, каким бы заманчивым ни был рекламный ход или страстной — презентация, мне все они кажутся немного придушенными, поскольку в них заложено отрицание удивительного богатства природных возможностей. Исследование происхождения жизни в каком-то смысле аналогично игре «Двадцать вопросов», в которой вы пытаетесь установить личность загаданного человека, последовательно задавая все более конкретные вопросы, подразумевающие ответ «да» или «нет». Понимающий стратегию игрок всегда начинает с самых общих вопросов, выясняя, жив ли загаданный человек, мужчина это или женщина и т.д.

Исследование происхождения жизни должно быть таким же. Сначала задайте самые общие вопросы. Посредством каких различных реакций природа может синтезировать биомолекулы? С помощью каких механизмов эти основные компоненты способны собираться в функциональные полимеры и мембраны? Многие сценарии происхождения, напротив, слишком ограничены — это все равно что выстрелить: «Чарльза Дарвина загадали?» первым же вопросом. Конечно, сценарии, как и озарения, могут быть оригинальными и наводящими на размышления, и в кои-то веки вам повезет выиграть в «Двадцать вопросов» интуитивно, но подходить так к глубокой научной проблеме появления жизни не очень практично и вряд ли это даст удовлетворительный результат.

Есть способ получше. Самый основательный подход к ответу на вопрос о происхождении — подумать о появлении жизни как о последовательности химических шагов, каждый из которых добавлял структуру и сложность в то, что в конечном счете стало биосферой Земли. Первый шаг: вы должны создать основные многопрофильные молекулярные кирпичики — аминокислоты, липиды, сахара, основания. Следующий шаг: нужно собрать эти простые молекулы в функциональные структуры — макромолекулы, которые работают в качестве мембран и клапанов, хранят и копируют информацию, а также способствуют росту. И последний шаг: такая совокупность молекул должна научиться копировать себя.

Этот подход, рассматривающий происхождение жизни как последовательность постепенных шагов, имеет значительное преимущество перед любым неординарным сценарием, каким бы разумным тот ни был. Каждый шаг можно исследовать в целенаправленной и строгой экспериментальной программе. Каждый шаг обращается к связанным с химией углерода фундаментальным вопросам, которые важны сами по себе. И эта простая экспериментальная стратегия, скорее всего, воссоздаст последовательные химические шаги, которые должны происходить на любой богатой углеродом планете или ее спутнике повсюду во Вселенной.

Шаг 1. Возникновение биомолекул

Первый шаг, который столь же очевиден, как и любой другой аспект исследования происхождения жизни, должен заключаться в создании главных молекулярных компонентов. В начале 1950-х гг. в Чикагском университете был проведен выдающийся эксперимент, возвестивший зарождение серьезной науки о происхождении жизни. В поисках подходящей темы для диссертации выпускник Стэнли Миллер обратился за советом к своему знаменитому наставнику Гарольду Юри{153}.

Двадцатью годами ранее Юри первым выделил и описал тяжелый изотоп водорода, названный дейтерием, — за это исследование в 1934 г. он был удостоен Нобелевской премии по химии. Во время Второй мировой войны Юри участвовал в Манхэттенском проекте и играл центральную роль в разработке атомной бомбы, отвечая за отделение расщепляемого изотопа урана-235 от гораздо более распространенного урана-238{154}.

После войны многие ученые-ядерщики отказались от тех прикладных исследований, которые привели к созданию оружия массового поражения. Гарольд Юри перенаправил свою энергию на изучение химической эволюции планеты Земля, используя изотопные характеристики горных пород, чтобы выяснить температуру древних океанов и состав атмосферы прошлых геологических эпох. Одним из важнейших открытий Юри стало осознание того, что атмосфера древней Земли, в которой до распространения влияния жизни преобладали вулканические испарения, радикально отличалась от сегодняшней. Ученый утверждал, что она представляла собой смесь химически активных газов, в частности водорода, метана и аммиака, — все они вносили свой потенциальный вклад в добиологическую химию. Никто не знал, каким химическим реакциям способствовала такая экзотическая атмосфера, но Юри пришел к выводу, что подобная смесь газов могла иметь отношение к происхождению жизни. Стэнли Миллер, вдохновленный лекциями Юри на эту тему, решил найти ответ.

Юри и Миллер совместно разработали аккуратный настольный стеклянный прибор — ряд колб и трубочек, заполненных водой (на донышке) и смесью газов, слегка подогреваемых снизу и возбуждаемых электрическими разрядами; таким образом имитировалась первичная близповерхностная обстановка, пронизываемая молниями. Опубликованные в 1953 г. поразительные результаты, о которых раструбили заголовки СМИ по всему миру, возвестили о «получении аминокислот в потенциально возможных условиях первозданной Земли»{155}. Миллер и Юри сотворили ключевые молекулы жизни из самых базовых ингредиентов — воды и тех газов, которые могли извергаться из вулканических источников на древней Земле. Это был основополагающий вклад в то, чему предстояло стать развивающимся «кустарным промыслом» исследований происхождения жизни.

А могла ли возникнуть жизнь в глубоководных вулканических источниках?

У вопроса, как появилась жизнь, есть даже более важная сторона — «где» появилась жизнь, причем, похоже, этого нам не узнать. Появилась ли она на освещенной солнцем поверхности земли? Или в темных глубинах океана? Не было другого предмета обсуждения, относящегося к вопросу происхождения жизни, который разжигал бы столь жаркие споры, был причиной стольких дебатов.

Одна из странностей человеческой природы заключается в том, что мы склонны думать в категориях дихотомии. Клод Леви-Стросс, французский антрополог и философ XX столетия, автор книги «Первобытное мышление»[42], характеризовал такое черно-белое восприятие как пережиток примитивных механизмов выживания: быстрое распознавание друга или врага могло помочь сделать выбор между жизнью и смертью{156}. Когда встречаешься со смертельной опасностью, нужна определенность. То, что происходит сегодня в мире, — проявления расизма, национализма, политическое фракционирование и религиозный фундаментализм, наполняющие сегодняшние новости, — это современные последствия того жесткого бимодального типа мышления, продолжающего делить человечество на два противостоящих друг другу лагеря: «мы» и «они».

Хотелось бы думать, что мы, рациональные ученые, подходим к своим исследованиям с более тонким и просвещенным мировоззрением, но стоит вам только взглянуть на основные положения истории науки, как станет очевидным, что многие исследователи попали в ту же ловушку{157}. Более двух столетий назад величайшие геологи того времени были втянуты в напряженные дебаты, которые разделили исполненных благих намерений исследователей на две группы: униформистов и катастрофистов. Первые утверждали, что все геологические процессы постепенны и продолжают происходить в наши дни, вторые же считали, что геологическая истории Земли состоит из ряда катаклизмов (читай, библейский Всемирный потоп). Сегодня очевидно, что правда где-то посередине. Подобные яростные споры разгорались между Абраамом Готлобом Вернером и его последователями-нептунистами, которые выступали за водное происхождение горных пород, и сторонниками Джеймса Геттона — плутонистами, которые считали главной причиной разнообразия структур земной коры внутреннее тепло. И снова оба лагеря оказались отчасти правы.

Открытие распространенного, легко реализуемого синтеза аминокислот и других биологических структурных элементов в настольном эксперименте, проведенном Стэнли Миллером в 1953 г., создало новую ложную дихотомию. Миллер и большинство сторонников этого многообещающего варианта происхождения жизни пришли к выводу, что ключевая часть проблемы биогенеза решена. Биомолекулы сформировались в древней пронизываемой молниями атмосфере. «Если Бог сделал не так, — иронизировал влиятельный биохимик Лесли Орджел, — то Он упустил хорошую возможность»{158}. Легко достигнутый первый успех оказался притягательным; катехизис «миллеристов» доминировал более трех десятилетий. Растущая армия учеников, воспитанная в лаборатории Миллера в Сан-Диего, распространилась по всему миру, проповедуя ортодоксию Миллера — Юри.

Открытие в 1977 г. «черных курильщиков» — вулканических гидротермальных источников с их богатыми микробными экосистемами на глубоком, темном океаническом дне — предложило интригующий альтернативный сценарий происхождения жизни, основанный на надежной универсальной химической энергии минералов, постоянно выбрасываемых вулканами. Гипотеза зарождения жизни в горных породах привлекла внимание, предъявив правдоподобный дополнительный способ создания биомолекул — более щадящий путь синтеза, который обходился без разрушительного эпизодического влияния молний. Многие из нас (особенно минералоги, чья работа внезапно стала потенциально более важной) уцепились за новую идею. Но Миллер и компания упорно боролись с идеей гидротермального происхождения жизни, публикуя статью за статьей и объясняя, почему их оппоненты-«вентисты»[43] не правы. В выдающейся статье 1992 г., анонсированной на обложке популярнейшего журнала о науке Discover, было процитировано высказывание Миллера, объявлявшего гидротермальную гипотезу «по-настоящему неудачной»{159}. «Я не понимаю, почему мы вообще должны ее обсуждать», — сетовал он.

Гипотезу глубинного происхождения жизни спасло NASA. Миссия агентства, заключающаяся в исследовании других миров (в особенности планет и их спутников), которые могут быть возможными колыбелями жизни, была расширена за счет тематики изучения глубинной жизни на Земле. В конце концов, если происхождение жизни, согласно модели Миллера — Юри, ограничено теплой и влажной поверхностной средой, периодически пронизываемой молниями, тогда Земля и, возможно, Марс на заре его существования являются единственными потенциально пригодными местами для жизни в нашей Солнечной системе. Это довольно куцый шорт-лист для организации, деятельность которой посвящена исследованию космоса. Но если главную роль может играть также глубинная темная сырая вулканическая зона, тогда полем для биоисследований становится множество других миров. На покрытых льдом спутниках Юпитера Европе и Ганимеде — и, возможно, даже на Каллисто — есть большие подповерхностные океаны, нагреваемые снизу: тепло создается в результате приливного разогрева, поскольку спутники вращаются вокруг газового гиганта.

У Титана, крупного спутника Сатурна, хотя и замерзшего с поверхности, есть криовулканы с водой, которая течет, а затем застывает подобно магме, так что Титан также может иметь глубинные гидротермальные зоны. Еще более привлекательным в данном отношении выглядит крошечный спутник Сатурна Энцелад{160}. Будучи всего 500 км в диаметре, Энцелад может похвастаться подповерхностным океаном и гидротермальными источниками, которые извергают фонтаны воды на покрытую льдом поверхность. Даже сегодняшний Марс с предполагаемой теплой и влажной подповерхностной средой начинает выглядеть многообещающе в качестве дома для некоторых примитивных «подпольных» микробных экосистем. С учетом этих перспектив, хотя и умозрительных, NASA подхватило гипотезу гидротермального происхождения и начало спонсировать несколько лабораторий (включая мою) для проведения полевых исследований, лабораторных экспериментов и теоретического моделирования альтернативных жизненных сред.

Потребовалось более четверти века экспериментов и обсуждений, но в наши дни ученые действительно описывают разнообразные правдоподобные добиологические химические процессы, соотносимые с глубинными гидротермальными зонами, которые, должно быть, дополняли поверхностные механизмы синтеза. Многие исследователи фокусируются на повсеместно распространенных реакциях выветривания базальта, в результате которых свежие вулканические базальтовые потоки преобразуются в карбонатные и глинистые минералы, высвобождая водород — сам по себе прекрасный источник энергии для жизни. И стоит только появиться новому свидетельству богатства химии, основанной на глубинном углероде, некорректные дебаты «миллеристов» и «вентистов» быстро уйдут в анналы истории науки просто как еще один пример непродуктивности полярных мнений в тонких вопросах природы.

Урок, который следует усвоить, прост: наложение ложной дихотомии на вопросы о природном мире не только раскалывает исследователей, но также может препятствовать научному прогрессу, поскольку игнорируются хитросплетения сложных систем. Природа редко окрашена в черное и белое. Отбросив ложные и произвольные разделения, мы значительно быстрее продвинемся в постижении нюансов истины.

Полстолетия научных исследований, в которых участвовали сотни ученых по всему миру, привели нас к пониманию того, что двигателем органического синтеза была сама древняя Земля.

Главные углеродсодержащие молекулы жизни — аминокислоты, сахара, липиды и многие другие — в изобилии образовывались и на пронзаемой молниями поверхности, и в вулканических гидротермальных источниках в глубинах океанов, и в освещенных солнцем бухточках, и в теплых небольших водоемах. Биомолекулы падали дождем с небес как полезный груз богатых углеродом метеоритов и формировались высоко в атмосфере, когда интенсивное ультрафиолетовое солнечное излучение перерабатывало воздух.

За прошедшее десятилетие ученые Обсерватории глубинного углерода расширили этот и без того внушительный перечень, включив в него экспериментальные и теоретические данные, подчеркивающие огромный потенциал Земли и других планет в создании органических молекул в своих глубоких горячих недрах. Исследователи в десятках стран сейчас синтезируют основные био- и другие органические молекулы при столь экстремальных мантийных температурах и давлениях, которые большинство из нас до недавнего времени считали неподходящими для главных молекул жизни. Мораль проста. Было доказано, что в молодости наша планета, а также теплые и влажные планеты и спутники в космосе могли создавать молекулы жизни. Возможно, величайший вклад ушедших семи десятилетий исследований происхождения жизни и заключается в этом однозначном осознании того, что двигателем биомолекулярного синтеза является Вселенная.

Шаг 2. Отбор и концентрация

Второй шаг в происхождении жизни поднимает новые, совсем другие проблемы — не создание органических молекул, а их отсев. Добиологическая Земля создавала углеродсодержащие молекулы в ошеломляющем изобилии — сотни тысяч разных «малых» молекул: каждая — всего с несколькими атомами углерода, каждая — доступная в качестве потенциального биокирпичика. Жизнь же, несмотря на ее поразительное структурное разнообразие, использует химическую стратегию без излишеств. Бо́льшая часть клеток состоит всего из нескольких сотен отобранных молекул.

Для примера: из всего массива существующих аминокислот живые клетки для достижения большинства целей пользуются только двумя десятками. Более того, львиная доля этих 20 аминокислот встречается по крайней мере в двух зеркально симметричных версиях — в виде идентичных по своему составу левостороннего и правостороннего вариантов. Эксперименты в добиологической химии неизменно дают равное количество молекул-«левшей» и «правшей», но жизнь использует почти исключительно левосторонние аминокислоты. Тот же принцип бережливости относится к жизненно важным сахарам, практически все из которых — «правши», а также ко многим липидам и молекулярным компонентам ДНК и РНК. Следовательно, второй важный шаг на пути к происхождению жизни заключается в том, чтобы выбрать только нужное подмножество молекул и сконцентрировать их либо на поверхностях минералов, либо на прогреваемых солнцем окраинах высыхающих приливных бассейнов.

Поверхности — привлекательный вариант, которому мы с коллегами придавали особое значение. Бескрайние океаны древней Земли были слишком разбавленными для того, чтобы добиологическим молекулам удавалось регулярно встречаться и соединяться, но поверхности могли способствовать такому соединению. В некоторых случаях, как в классическом сценарии «нефть в воде», у молекул получалось концентрироваться на поверхности воды, таким образом формируя собственные отдельные слои и глобулы.

Хорошим примером являются мембраны, окружающие клетки. Они спонтанно собираются из множества длинных «тощих» липидных молекул с углеродным скелетом{161}. Один конец каждой молекулы сильно притягивается водой, другой конец вода отталкивает с той же силой. Если вы опустите много таких тонких молекул о двух концах в воду, силы притяжения и отталкивания быстро выстроят миллионы этих молекул в ряд, образующий гибкую двухслойную заполненную водой сферическую структуру. Водолюбивые концы выстроившихся молекул будут на внешних сторонах липидного бислоя, окружающего полую сферу, а концы-водоненавистники окажутся друг напротив друга глубоко внутри мембраны, как можно дальше от воды.

Эксперименты со смесями добиологических молекул подтверждали этот механизм образования мембран снова и снова. Липкие молекулярные смеси, оставшиеся на стенках аппарата Миллера — Юри, либо извлеченные из богатых углеродом метеоритов, либо полученные в ходе экспериментов по синтезу при высокой температуре, — все спонтанно образуют в воде крошечные подобные клеткам структуры. Эта часть загадки происхождения жизни — неизбежное возникновение самых примитивных клеточных мембран, — похоже, решена.

Но отбор и концентрация, стягивание в одном месте большинства молекул жизни — тех, которым свойственно растворяться в воде и которые не так легко самоорганизуются, — пока остаются под вопросом. Как древние аминокислоты нашли друг друга, чтобы создать первые белки? Как молекулярные кирпичики ДНК и РНК собрались в первые структуры, чтобы нести и копировать биологическую информацию? Чтобы решить эти загадки, многие из нас обратились к минеральному царству.

Минералы и происхождение жизни

Происхождение жизни зависело от стабильных поставок исходных материалов — химических кирпичиков и строительного раствора клеток. Для того чтобы появились клетки, нужные химические ингредиенты должны были просто встретиться и объединить силы, но эти шаги не могли произойти в слабом первичном бульоне без чьей-либо помощи.

К счастью, природа придумала несколько способов концентрации молекул жизни из разбавленного океана. Один очевидный механизм — когда океаническая вода расплескивается или поднимается в мелкий бассейн, где испаряется, таким образом концентрируя оставшиеся химические вещества в насыщенном органическом супе. Полтора столетия назад Чарльз Дарвин описал такой «теплый маленький пруд» в письме к своему другу, и уютная картинка благоприятного для зарождения жизни освещенного солнцем места закрепилась{162}.

Стэнли Миллер, возможно нечаянно, проверил новый вариант этой идеи, поместив контейнер органического раствора в морозильник и оставив там — наверное, ученый просто забыл о нем — на 30 лет. По мере того как вода замерзала, остававшиеся крошечные карманы жидкости становились все более и более концентрированным раствором, насыщенным углеродсодержащими молекулами, которые медленно вступали друг с другом в химические реакции, создавая новые органические молекулы. Циклы замерзания и таяния на древней Земле могли подобным образом способствовать расширению списка концентрированных биокирпичиков.

Несмотря на череду разумных идей, после десятилетий тщетных попыток получить из водных смесей главных для жизни молекул полезные биологические структуры многие исследователи происхождения жизни пришли к выводу, что основную роль играло твердое основание из горных пород и минералов. Похоже, что важные функции выполняли упорядоченные атомные решетки поверхностей минералов. Некоторые минералы катализируют синтез ключевых биомолекул — аминокислот, сахаров и органических оснований. Другие минералы отбирают и концентрируют эти небольшие молекулы, адсорбируя их своей поверхностью в строго определенном положении и ориентации, защищая тем самым от химических воздействий. Минералы также обладают способностью выстраивать и связывать молекулы в функциональные мембраны и полимеры.

Эти предположения твердо укоренились в посвященной происхождению жизни литературе — хотя бы по той простой причине, что мы не можем придумать жизнеспособные альтернативы. В отсутствие минералов молекулы редко сталкиваются друг с другом, тем более соединяются в нужной последовательности. В открытом океане, особенно рядом с горячими вулканическими источниками на его дне, эти слабые молекулы, скорее всего, распадутся. Минералы отбирают, концентрируют, защищают и связывают молекулярное сырье жизни. Но несмотря на эти правдоподобные доводы, мало кто из ученых пытался провести уточняющие эксперименты, необходимые для проверки в природных условиях роли минералов.

Экспериментальные исследования механизмов, посредством которых органические молекулы поглощаются минеральными поверхностями, находятся на стыке биологии и геологии. Они сложны, поскольку требуют знаний по крайней мере в трех областях, которые редко пересекаются. Во-первых, нужно быть специалистом по химии воды, потому что все эксперименты необходимо проводить в воде с точно контролируемыми условиями температуры, состава и кислотности. Во-вторых, понадобятся глубокие знания по органической химии — особенно по сложному поведению аминокислот и сахаров, способных менять свою форму и химические свойства при изменении водной среды. И в-третьих, хорошо бы быть знатоком минералогии, особенно в том, что касается нюансов замысловатых атомных структур кристаллических поверхностей.

Мало кто из ученых соответствует всем трем требованиям, но одна замечательная молодая исследовательница по имени Шарлин Эстрада оказалась более чем способной справиться с этой задачей{163}. С трехлетнего возраста, с тех пор как папа кружил ее в воздухе под музыкальную тему из «Звездного пути», она знала, что хочет исследовать Вселенную. Этот папа — профессор, занимающийся изучением американцев мексиканского происхождения, — был первым в семье, кто получил степень PhD, так что путь к научной карьере оказался проложен. «Я хотела стать астрономом, палеонтологом, археологом. Больше всего мне нравилось играть с магнитами, литым резиновым шаром в виде Юпитера, бинокулярами и (продезинфицированными) куриными костями. Мне ничего не казалось слишком странным или пугающим — главное, чтобы в первую очередь оно было интересным», — вспоминает исследовательница.

Стать минералогом Эстрада решила, когда ее семья переехала в Тусон (штат Аризона) — место ежегодного проведения знаменитого Шоу драгоценных камней и минералов, самого крупного в мире. Каждый год она копила карманные деньги только ради возможности пополнить свою коллекцию камней за эти несколько недель в январе-феврале, когда тысячи участников-дилеров со всего мира приезжают в Тусон, выставляя образцы в павильонах, выставочных залах и гостиничных номерах по всему городу. Будучи студенткой Аризонского университета, Эстрада все время проводила в минералогической лаборатории Боба Даунса, где стала его лучшей студенткой — подающим большие надежды экспертом в этой области.

Я познакомился с Шарлин летом 2008 г., когда она приступила к практическим работам в моей Геофизической лаборатории. Она трудилась над лабораторными исследованиями поверхностей минералов с Димитри Сверженски и со мной, «объединяя» свои профессиональные познания в области кристаллов с углубленным изучением химии воды. За десять коротких недель Шарлин завершила элегантное исследование адсорбции аминокислот на рутиле — минерале оксида титана, который в силу особой устойчивости в воде мог служить отправной точкой для всех наших исследований поверхностей минералов.

Летом у Эстрады было своего рода прослушивание: она подала документы в аспирантуру Университета Джонса Хопкинса, легко прошла этап отбора и вскоре уже работала со Сверженски, погрузившись в геохимию и науку о поверхностях. Она публиковала статью за статьей, поочередно исследуя разные сочетания минералов и молекул и проводя эксперименты, которые подкрепляли предположения, что минералы могли играть ключевую роль в происхождении жизни.

В ходе одного такого замечательного эксперимента Эстрада добавила в раствор с ионами кальция (типичным химическим ингредиентом морской воды) смесь пяти аминокислот в равных пропорциях и брусит — магниевый минерал, который обычно формируется, когда свежие вулканические породы взаимодействуют с водой и преобразуются на океаническом дне. Мы думали, что брусит адсорбирует все аминокислоты одинаково, но Эстрада обнаружила, что только одна из пяти молекул — аспарагиновой кислоты — легко прилипла к поверхности минерала{164}. Но самое неожиданное — исследовательница открыла, что при адсорбции молекул аспарагиновой кислоты бруситу протянули руку помощи ионы кальция. Теперь мы понимаем, что такое сотрудничество молекул и ионов — один из ключей к пониманию происхождения жизни.

Информация

Наука — это здание, которое строит себя само. Достижения Шарлин Эстрады стали всего одним рядом кирпичиков лишь в одном углу этой конструкции, но зато указали другим путь, чтобы продолжать строительство. Следующим ученым, который присоединился к нашей команде, была Тереза Форнаро{165}. Получив докторскую степень в знаменитой Высшей нормальной школе в Пизе (неподалеку от Пизанской башни) и пройдя интенсивную исследовательскую программу во флорентийской Обсерватории Арчетри, Форнаро олицетворяет собой новое поколение астробиологов, которое, вероятно, раскроет секрет происхождения жизни. Ее знания необычайно широки и глубоки по сравнению с теми, что имели большинство молодых исследователей предыдущих поколений. Тереза — профессионал в областях органической химии и минералогии, планетологии и истории Земли, она с одинаковой уверенностью управляется с привередливыми аналитическими приборами в лаборатории изучения поверхностей и выполняет витиеватые квантово-механические вычисления взаимодействий минералов и молекул.

Терезе Форнаро необязательно было входить в конкурентный мир научных исследований. Она вполне могла присоединиться к семейному бизнесу — одному из первых предприятий по производству пасты ручной работы в итальянском Неаполе, поставляющему десятки разновидностей макаронных изделий ресторанам, получившим звезды Мишлена, по всей Европе и за ее пределами. Но стремительно развивающаяся астробиология стала ее главной страстью. Форнаро энергично и жизнерадостно рассказывает о своих последних находках и быстро заряжает вас своей уверенностью и энтузиазмом.

Основываясь на исследованиях Эстрады, Форнаро взялась за одну из центральных загадок происхождения жизни — образование насыщенных информацией молекул ДНК и РНК. Многие эксперты в вопросах происхождения жизни фокусируются на РНК как универсальной молекуле, которая, наверное как ничто другое, способна отражать некоторые характеристики жизни. РНК может катализировать химические реакции, ускоряя важные биологические функции. Помимо этого, молекула умеет переносить информацию в своем четырехбуквенном алфавите: A, Ц, Г и У[44]. А еще у РНК есть потенциал (правда, пока не доказанный в лаборатории) делать точные копии себя, т.е. она несет основное свойство жизни — самовоспроизведение. Следовательно, гипотеза «мира РНК» не просто оригинальная идея. Для многих ученых это та самая гипотеза происхождения, которую надо доказать. Затруднение состоит в том, что никто пока не смог понять, как собрать стабильную молекулу РНК в правдоподобной добиологической среде. Более того, структурные элементы РНК химически нестойкие, они имеют тенденцию распадаться в воде.

Сосредоточив свое внимание на брусите, а косвенным образом и на глубинной океанической среде, которая производит впечатление неблагоприятной для образования и стабильности РНК, Форнаро изучала, как структурные элементы РНК взаимодействуют с поверхностями минералов{166}. Она сделала важное открытие: брусит выборочно адсорбирует кирпичики РНК, защищая их от распада в водной среде. Она также обнаружила, что поверхность минерала ориентирует молекулы таким образом, который может способствовать добиологической самоорганизации РНК.

Понятно, что любой эксперимент лишь малая частица общей картины происхождения жизни. Для понимания взаимодействий минералов и молекул нужны еще десятилетия исследований. Но все больше настойчивых ученых получают обнадеживающие результаты с каждым новым экспериментом.

Эти исследования открывают важную истину о добиологической химии. Простые эксперименты только с одним или двумя химическими ингредиентами, проводимые при комнатной температуре и давлении и использующие обычную воду из-под крана, относительно легко выполнить, но они столь же легко могут привести к ошибкам, когда речь идет о процессах, ведущих к происхождению жизни. Существенную роль в появлении жизни должны были сыграть результаты сотрудничества и конкуренции большого количества молекул. Мы приходим к выводу, что сложность жизни в значительной степени связана со сложностью природной геохимической среды. Похоже, отбор, концентрация и монтаж молекулярных строительных материалов жизни требуют мудреных трехмерных процессов на атомном уровне — процессов, которые начали раскрываться в экспериментах Шарлин Эстрады и Терезы Форнаро.

Хорошие новости заключаются в том, что сложные взаимодействия между многочисленными небольшими биомолекулами, химическими веществами в растворе и поверхностями минералов намекают на некую тропинку от геохимии к сложности биохимии. А вот и плохие новости — исследование даже крошечной доли потенциально возможных комбинаций молекул, растворов и минералов в перспективе выглядит пугающе. Головокружительное многообразие вероятных добиологических сред заставляет нас воображать буквально миллиарды сочетаний, каждое из которых потребует месяцев кропотливых экспериментов для детального изучения.

Уверенными можно быть лишь в одном: недостатка в темах для лабораторных исследований в ближайшее время у нас не будет.

Шаг 3. Возникновение самовоспроизводящихся систем

Основная загадка происхождения жизни — как небольшие молекулы, неживые и «бесплодные», соединяются в комбинацию, которая может самокопироваться. Сами по себе аминокислоты, сахара и липиды, даже тщательно отобранные и сконцентрированные, очень далеки от жизненности. Эти ингредиенты должны каким-то образом самоорганизовываться в системы большей сложности: они составляют несущие информацию полимеры, окружают себя защитными гибкими оболочками и создают катализаторы, которые ускоряют желаемый химический процесс, блокируя создание конкурирующих молекул. И затем — высшая задача: они делают собственные копии.

В качестве примера стратегии поиска такого самовоспроизводящегося молекулярного процесса можно рассмотреть углеродную химию современных клеток. Необходимо выявить самые древние и глубоко укоренившиеся пути синтеза — наипростейшие химические акты, которые происходят в каждой живой клетке. Одним из таких примитивных биохимических процессов является известный целым поколениям студентов, изучающих биологию, цикл лимонной кислоты (также называемый циклом Кребса или циклом трикарбоновых кислот) — важный этап энергетического потока в клетках. Вероятно, вам на занятиях рассказывали, что цикл этот запускает энергически насыщенная шестиуглеродная молекула лимонной кислоты, которая проходит чуть ли не десяток последовательных шагов фрагментации, сопровождаемых небольшим выделением поддерживающей клеточные функции энергии, а также созданием молекул, служащих отправной точкой для образования основных биохимических веществ. Этот основанный на углероде каскад химических реакций, происходящий триллионы раз в секунду в течение всей вашей жизни — чтобы обрабатывать съеденную вами пищу, — встроен практически в каждую клетку вашего тела.

Полстолетия назад биологи обнаружили, что некоторые примитивные клетки научились запускать цикл лимонной кислоты в обратном направлении{167}. Начнем с простой, имеющей в своем составе два атома углерода молекулы уксусной кислоты — основного ингредиента уксуса. Вызовем реакцию уксусной кислоты с одной молекулой CO2, чтобы получить трехуглеродную пировиноградную кислоту. Добавим еще одну молекулу CO2 — и получим четырехуглеродную щавелевоуксусную. Дальше последуют восемь химических реакций, каждая из которых добавит по маленькому фрагментику (H2, H2O или CO2) шаг за шагом, чтобы построить более крупные молекулы — вплоть до лимонной кислоты с шестью атомами углерода.

Этот обратный цикл лимонной кислоты способен сам себя копировать. Расщепите лимонную кислоту на одну молекулу пировиноградной кислоты и одну — щавелевоуксусной, чтобы один цикл стал двумя. Продолжайте в том же духе, и два цикла станут четырьмя, четыре — восемью и т.д. В качестве бонуса многие промежуточные соединения в цикле служат отправными точками создания других важных биомолекул — аминокислот для построения белков, сахаров для построения сложных углеводородов, липидов для построения клеточных мембран и структурных элементов ДНК и РНК.

Исходя из его повторяющейся простоты и биохимических возможностей, многие изучающие происхождение жизни полагают, что этот обратный цикл лимонной кислоты (или что-то подобное) стал той самой первой самовоспроизводящейся системой миллиарды лет назад. Мы считаем, что именно эта химическая инновация и была действительным началом жизни. В наших текущих экспериментах, где воспроизводятся обстановки первичной Земли, уже воссоздано большинство главных химических этапов цикла (хотя и не все). Мы чувствуем, что разгадка соблазнительно близка.

Независимо от того, что стало этим стимулирующим фактором, — обратный цикл лимонной кислоты, самореплицирующаяся молекула РНК или какая-то другая самовоспроизводящаяся система, которую еще только предстоит описать, — спутанное сообщество молекул еле-еле взаимодействовало посредством этих замечательных новых способов. Но внезапно, в один момент непревзойденного творческого становления, это молекулярное сообщество начало создавать собственные копии. Как происходило это преобразование, какие молекулы участвовали и в какой последовательности они вступали в химические реакции друг с другом, мы пока расшифровать не можем — это самый большой пробел в нашем понимании происхождения жизни. Впрочем, наше нынешнее состояние незнания не столь безнадежно, как кульминационный пункт моей любимой карикатуры Сидни Харриса, на которой длинное и сложное математическое доказательство, неразборчиво написанное ученым на доске, разбивается посередине фразой «Затем случилось чудо…», а потом продолжается дальше. Но пробелы в нашем понимании остаются, и исследователи происхождения жизни продолжают свои поиски в надежде найти простой цикл молекул, который копирует себя, хотя параллельно они горячо обсуждают природу той первой самовоспроизводящейся системы.

Говоря коротко и упрощенно, переход от неживой геохимии к живому миру выглядит как поступательное движение. Жизнь появилась в виде логической последовательности химических шагов, каждый из которых добавлял структуру и сложность углеродсодержащей молекулярной сети, и в конечном счете получился эволюционирующий живой мир. Первыми возникли небольшие молекулярные кирпичики, затем функциональные макромолекулы и наконец — соединения тех углеродсодержащих молекул, которые делали собственные копии. Если вы посетите одно или несколько научных мероприятий по происхождению жизни, которые ежегодно проводятся по всему миру, вы увидите непрерывный ряд ученых, представляющих свои последние данные и гипотезы, сопровождая их сложными диаграммами и графиками, а также уверенными заявлениями. И нужно сказать, мы действительно многое узнали о появлении жизни миллиарды лет назад. Но сколько еще остается неизвестного, скрытого, загадочного…

Вот поэтому-то исследование происхождения жизни так занимательно!

Второе Бытие: жизнь на других планетах{168}

Жизнь на Земле появилась миллиарды лет назад, когда геосфера преобразовалась в биосферу. По мере того как жизнь на нашей планете, эволюционируя, выходила из глубокого моря, захватывая сушу и воздух, расширялся и репертуар стратегий выживания.

Чего мы не знаем, так это уникальна ли данная эпическая история жизни для нашей планеты. Или она повторялась бесчисленное число раз в бесчисленных мирах по всей Галактике? Это единичное явление или множественное? Космический императив или счастливая случайность? Философы не уклоняются от споров об этом. Жак Моно, французский биолог, лауреат Нобелевской премии, занял довольно пессимистическую позицию. В своей классической книге 1970 г. «Случайность и необходимость» Моно делает вывод: «Вселенная вовсе не была чревата жизнью, равно как и биосфера — человеком. <…>Человек наконец сознает свое одиночество в равнодушной бескрайности Вселенной, из которой он возник по воле случая»[45]{169}.

Многим ученым, включая поистине всех нас, занимающихся исследованием происхождения жизни, не по душе столь негативная оценка. Если это так, получается, мы зря тратим время в своих лабораториях. Бельгийский биолог Эрнест Шоффенильс так сказал за многих из нас в книге 1976 г. «Антислучайность» (своем ответе Моно), представляя альтернативную философскую позицию: «Происхождение жизни и эволюция были неизбежными, обусловленными условиями на Земле и присущими элементам свойствами»{170}. Это занимательный спор, но никто на самом деле не знает правильного ответа.

Так случайность или неизбежность? Действительно ли глубокие космические преобразования сводятся к этому ограниченному выбору или, как склонен думать я, такая дихотомия ошибочна? Когда мы говорим о Вселенной с ее постоянно возникающими и эволюционирующими системами — звездами и планетами, изотопами и элементами, жизнью и сознательным мозгом, обществом и культурой, разве не естественно задаться вопросом: какие явления неизбежны, а какие, наоборот, являются чистой случайностью? Ни в одной другой области исследований этот вопрос не стоит более актуально, являясь в то же время и более сложным, чем в отношении древнего происхождения жизни. Эволюция от геохимии к биохимии — это характерная особенность землеподобных планет или жизнь редка в космосе?

Надежных данных, подтверждающих ту или иную из этих точек зрения, не так уж и много. Во всей необъятности космоса у нас есть свидетельство только одного живого мира и только одного происхождения жизни. Мы никогда не узнаем точно, является ли жизнь космическим императивом, если не найдем «второго бытия» — второго независимого происхождения жизни. Если найдем, то будем руководствоваться правилом «ноль, один, много». Вкратце это правило гласит, что либо природное явление никогда не происходит (например, обратный ход времени), либо оно случается лишь однажды («сингулярность», как Большой взрыв), либо оно имело место бесчисленное множество раз (возможно, происхождение жизни).

О комбинаторном богатстве землеподобных планет{171}

Размышляя о вероятностях происхождения жизни, вполне естественно представлять себе проведение экспериментов во временны́х и пространственных рамках исследовательской лаборатории. Обычно подготовка к защите диссертации на степень PhD занимает три-четыре года — как и вообще многие исследовательские проекты. Но в широком контексте планет необходимы химические реакции, которые вряд ли можно наблюдать в таких ограниченных масштабах лабораторных экспериментов.

Если мы понимаем происхождение жизни как последовательность химических реакций (а я склоняюсь к химическим реакциям, идущим на поверхностях минералов), тогда мы должны задаться вопросом, сколько таких реакций могло произойти на добиологической Земле. Ответ прямо-таки астрономический. На землеподобных планетах есть тонкозернистые глины, залежи вулканического пепла, зоны выветривания и другие обнажения горных пород с огромной площадью общей поверхности, которая во много миллионов раз больше идеализированной гладкой поверхности сферы планетарного размера. Эти минеральные поверхности создают условия для молекулярных реакций уже сотни миллионов лет.

Для сравнения: отдельные химические реакции в масштабе молекул происходят за секунды. Даже скромного размера планета может соединять и смешивать органические молекулы снова и снова, эффективно пробуя разные химические реакции более триллиона триллионов триллионов триллионов раз.

Ясно, что это значит для изучения происхождения жизни. Эксперименты, требующие точного совпадения условий или необычного идеального совмещения нескольких химически активных молекул, в лабораторных условиях могут не реализоваться никогда, но в планетарных масштабах пространства и времени у них есть шанс оказаться вполне реальными. Если происхождение жизни требует более одной такой невероятной химической реакции, то нам будет сложно когда-либо решить эту проблему.

Но не стоит отчаиваться. У нас есть стратегии увеличения вероятности наблюдения невероятных химических реакций в лабораторных условиях. Мы можем отталкиваться от современной биохимии, фокусируясь на ключевых химических соединениях и продуктах их реакций. Новые подходы в комбинаторной химии в совокупности с вычислительной химией дают надежду на быстрое сужение области поиска. Химическая и физическая интуиция будет также продолжать играть центральную роль в исследовании происхождения жизни. Тем не менее если объяснение происхождения жизни зависит от некоей привередливой реакции, которая происходит на землеподобной планете только раз на триллион триллионов триллионов взаимодействий, тогда подробное понимание химии происхождения может оказаться за пределами текущих лабораторных возможностей — даже если происхождение жизни предопределено для любого теплого влажного мира, похожего на Землю.

Независимо от того, является ли жизнь широко распространенным космическим императивом, — или это уникальный случай, ограниченный Землей, — у нас есть только один богатый и чудесный живой мир, который можно исследовать. Жизнь, основанная на углероде, появилась 4 млрд лет назад, развивая вариацию за вариацией на клеточную тему. И каждая вариация добавляла новые черты динамичному углеродному циклу Земли.

ВАРИАЦИИ — Эволюция жизни (Тема с вариациями)

Тема: Эволюция жизни

Если бы вы смогли вернуться на 4 млрд лет назад, во времена молодой Земли, то обнаружили бы планету, которая совершает свои первые несмелые шаги в качестве живого мира. Если бы вы совершили это путешествие сквозь «глубокое время» и прогулялись по немногим появляющимся участкам суши или поплавали в омывающих весь земной шар океанах, было бы простительно, если бы вы при этом не заметили едва различимые признаки жизни. Немногочисленная популяция самых первых на Земле микроскопических клеток находила себе убежище в темных глубинах океана, цепляясь за камни, в большинстве своем укрытые от беспощадного солнечного излучения.

На ранних стадиях химической эволюции Земли происходили последовательные шаги, ведущие к появлению жизни, пробовалось и отвергалось огромное количество молекулярных структур, пока одна исключительная группа молекул не начала копировать сама себя. С этого момента — по мере того как новые копии заполняли окружающую среду — и двинулась эволюция по дарвиновскому сценарию естественного отбора. В некоторых из этих копий с неизбежностью происходили какие-то изменения: атомы кислорода замещались атомами серы и наоборот; кластеры атомов углерода прикреплялись к основе подобно только что отросшим ветвям и кольцам; другие спонтанные вариации преобразовывали конфигурации атомов, их изгибы, спирали и петли. Большинство этих случайных изменений не оказывали особого влияния, другие же становились смертельными — буквально исполнялся дохлый номер. Но время от времени какая-нибудь молекулярная вариация срабатывала получше, способствуя более эффективному копированию или появлению цикла молекул, менее подверженных деградации, или же возникала молекула, способная «выживать» в более экстремальных условиях температуры или кислотности.

Основная тема — это эволюция, она осуществлялась посредством мощного процесса естественного отбора. Как понял Чарльз Дарвин более полутора веков назад, живые системы эволюционируют в силу трех неотъемлемых атрибутов, или признаков, жизни, которые мы все наблюдаем каждый день{172}. Первое дарвиновское положение заключается в том, что индивидуумы каждого вида представляют собой отдельные вариации: нет двух абсолютно одинаковых дубов, или грибов, или человек. Сейчас мы знаем, что эти вариации не ограничиваются внешними размерами и формами больших и малых существ, они простираются вплоть до фундаментальных различий в тысячах белков — основных молекул жизни.

Второй атрибут всех жизненных форм Дарвин увидел в том, что всегда рождается больше особей, чем в конечном счете становится взрослыми. Это истина, хорошо иллюстрируемая расточительным образованием желудей каждую осень и пыльцы каждую весну, навсегда запечатлелась в моем мозгу во время памятного занятия «Покажи и расскажи»[46] в третьем классе. Дело происходило в начальной школе Гарнетта в Фэрвью-парк, штат Огайо. Я обычно приносил с собой в школу странные окаменелости или минералы, подобранные в ближайшем парке Роки-ривер, но в этот раз нашел удивительный кокон, прилипший к ветке. Занятие «Покажи и расскажи» было ближе к полудню, так что я положил ветку с коконом в парту с откидывающейся крышкой и забыл о нем.

Когда я открыл крышку пару часов спустя, мне вначале показалось, что на мои книги пролилась какая-то темная жидкость. Присмотревшись, я обнаружил тьмы и тьмы крошечных ползающих младенцев-богомолов. Они были везде — суетящейся коричневой массой на моих книгах, карандашах и несъедобном теперь ланче. Увидев дневной свет, они поползли вверх, перелезая через металлические края парты и падая на пол и на штанину моих брюк. Я закричал. Тогда остальные подбежали посмотреть и тоже начали кричать; вскоре в классной комнате царил полнейший хаос. Нам на помощь пришел храбрый сторож с мощным пылесосом, но потребовалось некоторое время, чтобы класс успокоился. (Успокоившись, все единогласно заявили, что это было «самое лучшее “Покажи и расскажи”».) В любом случае нам довелось увидеть потрясающую иллюстрацию второго положения Дарвина: особей рождается больше, чем может выжить.

Третий отмеченный Дарвином ключевой признак эволюции жизни также очевиден: индивидуумы с полезными чертами, которые повышают шансы на выживание, скорее всего, передадут эти желательные черты следующему поколению. Если растение лучше других способно выдержать резкое похолодание или сквозняк, оно будет размножаться. Если животное обладает лучшей маскировкой или более развитым разумом, у него с большей вероятностью будут детеныши. Желательные черты в конечном счете побеждают.

Если три фундаментальных атрибута живого мира присутствуют, все, что вам нужно, — это много поколений (читай, много времени), чтобы жизнь эволюционировала до новых форм с улучшенными способностями к выживанию и воспроизводству. В этом суть эволюции посредством естественного отбора.

Как только первая клетка утвердилась и начала делиться, усложняющиеся петли обратной связи между клетками и их окружением привели к новым формам на суше, в море и в воздухе. Взаимодействие геологических условий и биологической новизны отразилось в шести отличающихся друг от друга вариациях эволюции жизни на Земле. Первые формы жизни — единичные клетки, настолько маленькие, что их можно увидеть только в самый мощный микроскоп, — были обязаны своим появлением почти исключительно химической энергии горных пород. Возможно, прошел миллиард лет, прежде чем появилась вторая вариация, когда более продвинутые клетки начали поглощать солнечный свет в качестве нового источника энергии. Третьей вариацией, появившейся примерно 575 млн лет назад, стала многоклеточная жизнь — новая стратегия выживания.

Вскоре после этого биологическая гонка вооружений представила следующую вариацию — четвертую, по мере того как камень зубов и когтей крошился в борьбе с броней раковин и костей. Пятая вариация появилась, когда растения и животные вышли на сушу, чтобы создать то, что — как сейчас считает большинство из нас — и есть характерный зеленый ландшафт Земли. И шестая вариация на тему эволюции, самая последняя, представляет людей, которые играют главную роль в меняющейся земной биосфере. Каждая вариация была переходом к новой стратегии использования питательных веществ и поддержания жизни. Каждая эволюционная вариация являлась, по сути, энергетическим опытом, и каждая меняла пути циркулирования углерода между резервуарами, расположенными вблизи непостоянной поверхности нашей планеты.

Вариация 1. Микробы едят минералы{173}

В истории жизни углерод является центральным атомом — игроком драмы, но в действие ее приводит энергия. Мы уверены, что химия происхождения основана на углероде, потому что он входит в состав всех современных биомолекул, и полноценной альтернативы ему нет. Вопрос источника энергии для жизни гораздо туманнее, а ряд вероятных ответов более разнообразен. Бо́льшая часть жизни на Земле сегодня в конечном счете получает энергию — либо напрямую, либо косвенно — от Солнца посредством фотосинтеза. Но сбор солнечного света и преобразование его в химические структуры — процесс замысловатый, соответственно, это более позднее достижение, требующее эволюции сложных уровней клеточных инноваций. Самые примитивные одноклеточные организмы на Земле сегодня используют гораздо более простое и, предположительно, более древнее энергетическое решение: они едят минералы.

Чтобы прийти к концепции минералов как пищи требуется довольно нетрадиционный взгляд на вещи, поэтому-то данная идея и приглянулась геобиологу Полу Фальковски{174}. Дитя послевоенного демографического взрыва, выросший в Нью-Йорке, Фальковски вспоминает свое взросление «на окраине Гарлема» в 1950–60-х гг. Семья мальчика принадлежала к рабочему классу и жила небогато, пытаясь свести концы с концами. Родители Пола не особенно интересовались наукой, но они развили возникший у их сына интерес к миру природы, подарив ему микроскоп (дорогостоящий презент на день рождения, когда ему было девять) и регулярно водя его в прославленный Американский музей естественной истории (где столь многие из нас, ученых, впервые почувствовали тягу к науке). В результате общения с молодой четой биологов, выпускников Колумбийского университета, которые жили в том же доме, в Фальковски проснулась длящаяся всю его жизнь любовь к разведению и изучению тропических рыб и их сложных замкнутых экосистем. Даже сегодня офис Пола и его лаборатории в Ратгерском университете могут похвастаться эффектными аквариумами со всевозможными цветными рыбками и кораллами.

Фальковски учился неподалеку от дома — он ходил сначала в Бруклинскую техническую среднюю школу, а затем в Городской колледж Нью-Йорка. Ненадолго погрузившись в изучение философии и логики и блестяще овладев требуемыми физическими, математическими и химическими знаниями (их перечень очень длинен и зануден), он обнаружил свое истинное призвание — океанографию. Городской колледж запустил программу по забору образцов воды и микроорганизмов из реки Гудзон и гавани Нью-Йорка на 27-метровом катамаране Atlantic Twin, и Фальковски, в то время студент-старшекурсник, вызывался участвовать в этих акциях при любой возможности.

Формально Пол Фальковски — официальный член Общества океанографов со степенью PhD Университета Британской Колумбии, имеющий за плечами долгие месяцы морских путешествий, среди которых переходы в Западную Антарктиду и Саргассово море. В действительности же его профессиональный путь был очень своеобразным. Годами он совмещал работу в Брукхейвенской национальной лаборатории на Лонг-Айленде — знаменитом центре физических исследований — с постом профессора геологии Ратгерского университета в Нью-Джерси. Будучи ненасытным читателем, он видит те природные связи, которые другие упустили.

Одна из самых глубоких догадок Фальковски заключается в том, что Земля функционирует подобно огромной электрической цепи, а жизнь в ней играет такую же фундаментальную роль, как лампочка, которую вы (скорее всего) используете, чтобы читать эту книгу{175}. Вот что он имеет в виду: каждая электрическая цепь имеет три основных компонента. Во-первых, должен быть надежный источник электронов, поскольку электричество — это не что иное, как поток электронов. Во-вторых, должен быть какой-то электрический проводник, по которому они проходят. И в-третьих, должно быть место для хранения всех этих электронов, когда они переместились. Обозревая планету в глобальном масштабе — океаны, атмосфера, горные породы и жизнь, — Фальковски понял, что там присутствуют все компоненты. Электроны выходят на поверхность Земли через вулканы — особенно те, что на океаническом дне, — которые выносят насыщенные ими атомы железа из глубоких недр. В этом смысле породы эквивалентны отрицательному полюсу батарейки.

Океаны в глобальной цепи Фальковски являются «проводами»: они отводят электроны от богатых ими пород. В конце пути эти электроны оказываются в насыщенной кислородом атмосфере, которая представляет собой аналог положительного полюса батарейки. Свежие, новые вулканические породы, которые изливаются на океаническом дне, «изображают» из себя источник электрической потенциальной энергии — энергии, которая только и ждет, чтобы ее использовали.

И тут на сцене появляются микробы, которые едят минералы. Точнее, эти микробы используют химический дисбаланс, который возникает, когда некоторые минералы имеют слишком много или слишком мало электронов по сравнению со своим окружением. Как и в батарейке, огромные количества электронов (например, от богатого железом оливина в породах, излившихся из недр Земли в поверхностную среду) готовы стать потоком. Микробы проникают внутрь пород, фактически подключаясь к этому потоку и вызывая вокруг себя «короткое замыкание». Для бактерий эта электрическая энергия вроде бесплатного ланча, в процессе которого постепенно потребляется оливин, а на его месте образуются новые минералы.

Самые первые живые организмы Земли существовали за счет минералов, которые находились в химическом дисбалансе со своими соседями. Микробы росли на минеральных поверхностях, действуя как катализаторы и ускоряя химические реакции, которые замещали старые минералы новыми видами — новыми минералами, которые, вероятно, сформировались бы в любом случае, но гораздо медленнее. На деле же все следы этих первых клеток исчезли из ископаемой летописи. Единственные зримые результаты древних микробных «банкетов» — это отдельные, как правило слоистые, залежи полезных ископаемых.

Секрет этих поддерживающих жизнь взаимодействий минералов и микробов кроется в способности многих элементов-металлов существовать в химических вариантах с разными количествами валентных электронов. Самым распространенным примером является железо. Большинство атомов этого металла, которые изливаются с вулканическими лавами, находятся в степени окисления +2, отдав два электрона окружающим атомам. Но при наличии кислорода или какого-то другого жаждущего электронов элемента железо +2 может отдать один электрон, выбросив немного энергии, и остаться вполне себе счастливым со степенью окисления +3.

Первобытные микробы, ищущие надежные источники энергии, научились катализировать переход железа от состояния +2 к +3 с отдачей электрона и по ходу дела осаждать слои рыжих оксидов железа на океаническое дно. И действительно, самые большие в мире месторождения руд железа, а также магния, урана и других ценных элементов формировались атом за атомом деятельностью бесчисленных потребляющих минералы микробов.

За последующие миллиарды лет жизнь расширила свой репертуар стратегий получения энергии, но этот — самый древний — процесс использования пород для получения энергии сохранился, став неотъемлемой частью глобальной электрической цепи, ускоряя и расширяя поток электронов планеты Земля.

О неожиданной распространенности глубинной подповерхностной жизни{176}

Вот примечательный факт. Пробурите скважину на глубину чуть больше 1 км практически в любой точке Земли — в пустыне или лесу, на суше или в море, рядом с экватором или за Полярным кругом, — и почти со 100%-ной вероятностью вы найдете микробную жизнь. Там не будет крупных скоплений клеток, да и сами они не окажутся какими-то причудливыми — просто небольшие сферы или прутики, едва различимые в мощный микроскоп, — но вы найдете живые клетки. Эта скрытая биосфера, состоящая почти полностью из микробных потомков первых потребляющих минералы форм жизни, является убедительным доказательством самой древней стратегии потребления энергии Земли.

Ни в одной другой области коэволюция геосферы и биосферы не проявляется так очевидно, как в подповерхностной зоне, где единственные источники энергии и питательных веществ — это горные породы и глубоко циркулирующие воды. Исследование глубинной микробной биосферы окончательно оформилось за прошлое десятилетие в ходе «Переписи глубинной жизни» — центрального проекта Обсерватории глубинного углерода{177}. Перепись документирует подповерхностные микробные сообщества по всему земному шару, главным образом в кернах скважин и глубоких шахтах.

Бурение в поисках микробов — нетипичный подход, но он стал страстью целой группы ученых по всему миру. Они отправляются в удаленные участки континентов — Оман, Центральный Китай, горы Скандинавии и пустыни Африки, чтобы изучать поднятые на поверхность километры цилиндриков породы. Ученые проникают в илистые отложения всех земных океанов, а также десятков озер — от экваториальных областей Африки и Южной Америки до Заполярья, чтобы извлечь и описать редкие популяции подземных клеток. Во избежание загрязнений поверхности следует быть очень осторожными, поскольку крошечная капля поверхностной воды может залить любой биологический сигнал из глубин.

Основная доля находок глубинных микробов приходится на океанографа Стивена Д’Ондта из Род-Айлендского университета{178}. Своей копной непослушных волос и внезапной широкой улыбкой Д’Ондт производит впечатление человека, который занимается наукой с удовольствием. Как многие из нас, он заинтересовался ею рано. «Мой интерес к геологии и палеонтологии проснулся, когда родители подарили мне на седьмой день рождения минералогический набор компании Porter-Spear, — рассказывает Стивен. — В нем было руководство по горным породам и минералам, несколько диагностических инструментов — бисквит[47], увеличительное стекло, спиртовая горелка — и коллекция неизвестных минералов, которые нужно было определить». Спиртовая горелка, вероятно, не соответствовала бы правилам безопасности XXI столетия, смеется Стив: «Но мне удалось ничего не сжечь».

Однако интересы Д’Ондта в начальной школе поддерживались не всеми. «Следующие несколько лет мне пришлось украдкой таскать (а потом возвращать) учебники по геологии, биологии и астрономии из школьной библиотеки, поскольку библиотекарь считал, что они мне не по возрасту». Не испугавшись препятствий, он продолжал заниматься наукой со страстью, получив в итоге магистерскую степень в Стэнфорде и докторскую в Принстоне.

Профессиональные интересы Стива Д’Ондта были сосредоточены на сложном взаимодействии жизни и Земли на протяжении геологического времени. Изучая ископаемые и химические «летописи» прошедших 100 млн лет, он начал все сильнее осознавать, что океаны Земли постоянно изменяются за счет метаболической деятельности микробов, живущих в отложениях океанического дна. «Мне стало ясно, что исследование глубинной жизни представляет исключительную и при этом новую возможность понять границы жизни и влияние микробов на Землю», — вспоминает Стивен.

Предвосхитив DCO почти на десятилетие, Д’Ондт возглавил исследовательские работы на борту бурового судна JOIDES Resolution зимой 2002 г. Буровая экспедиция в восточную часть Тихого океана (первая, сфокусированная прежде всего на поиске подповерхностной жизни) убедительно доказала, что глубинная жизнь — разнообразный, распространенный и в целом недооцененный аспект биосферы Земли.

Последующие исследования — помимо поразительного осознания, что биосфера Земли распространяется глубоко под поверхность и на суше, и на море, — привели к важным открытиям. Сейчас мы понимаем, что подповерхностная жизнь играет ключевую роль в химической эволюции земной коры, участвуя в круговороте питательных веществ и разрушая горные породы по всей планете.

Глубинный микробный мир бросает вызов традиционным представлениям об экосистемах. Д’Ондт называет его глубинной зомби-сферой, потому что подповерхностные микробы почти ничего не делают, их и живыми-то трудно назвать — они редко двигаются, почти никогда не размножаются и существуют в невероятных пространственных и временны́х масштабах. Прежде всего, глубинная жизнь удивительно неторопливая. Клеточное размножение здесь происходит, возможно, раз в тысячу лет. Среднее микробное сообщество во многих подповерхностных экосистемах сохраняется миллионы лет, почти ничем не занимаясь и выживая на энергетических потоках, сила которых меньше, чем на поверхности. Плотность наиболее глубинной жизни (на глубине более 2 км) может составлять 1 микроб на 1 см3 (приблизительно соответствует кубику сахара). Если проводить аналогию с человеческим населением, то это как если бы отдельные люди жили на расстоянии примерно 640 км друг от друга.

Глубинную биосферу назвали новыми дарвиновскими Галапагосами, потому что глубоко изолированные микробные популяции подобно группе дарвиновых вьюрков на изолированных Галапагосских островах предоставляют нам природную лабораторию для изучения эволюции, многообразия и распределения микробов. Глубинная жизнь медленная и некомпактная, но общий объем подповерхностной биомассы, находящейся под всеми океанами и континентами Земли на глубине 1 км и глубже, ошеломляет.

Думая об этой скрытой, загадочной глубинной биосфере, вы можете задаться вопросом: сколько же жизни скрыто? Сколько углерода скопилось в подповерхностных клетках? И насколько глубоко простирается биосфера? «Перепись глубинной жизни» сейчас насчитывает более 1200 подповерхностных «локаций» — некоторые на глубине аж 3 км — с данными о разнообразии и образе жизни этих таинственных обитателей. В связи с этим наше понимание глубинной микробной биосферы расширилось и можно сделать несколько выводов. Прежде всего, глубинная биосфера необыкновенно обильна. Несколько лет назад, когда большинство подповерхностных образцов отбирались из богатых микробами океанических отложений у окраин континентов, казалось, что по своему объему подповерхностная биосфера может конкурировать с поверхностной жизнью — всеми деревьями, травой, муравьями и китами, вместе взятыми. Потому что даже на глубинах порядка 800 м и ниже прибрежные отложения содержат более 60 000 микробов на 1 см3. В пересчете на огромный объем всех прибрежных отложений Земли это очень много.

Проведенные недавно измерения в более удаленных местах — там, где океанические отложения находятся далеко от богатой питательными веществами береговой линии, — показывают, что в осадках глубоководной части океанов концентрация микробов намного ниже. Тем не менее даже пересмотренные оценки скрытой глубинной микробной популяции указывают на значение 6 × 1029 клеток, в которых содержится от 10 до 20% общей биомассы Земли, — небольшую, но бесконечно интересную часть углеродного цикла Земли.

Выживание жизни на такой глубине стоит перед по крайней мере тремя наводящими страх вызовами: давлением, температурой и энергией. Но оказывается, что давление не такое уж большое ограничивающее условие. Около 20 лет назад, просто чтобы увидеть, что произойдет, мы с коллегами сжали культуру всем известной кишечной палочки E. coli{179}. Мы воспользовались той же ячейкой с алмазными наковальнями, которая используется в исследованиях минералогии глубинного углерода Земли, только заполнили ячейку водой, питательными веществами и живыми микробами. Мы собирались закрутить наш винт давления до 2000 атм, что приблизительно в два раза больше давления в самой глубокой океанической впадине. Но какой-то слишком «рьяный» поворот винта привел к тому, что давление подскочило выше 10 000 атм, эквивалентных сокрушительному давлению на глубине 50 км в земной коре (своего рода момент «упс!» в мире экспериментов высокого давления). Удивительно, но некоторые микробы выжили. Из этих и последующих (более контролируемых) экспериментов мы сделали вывод, что микробные экосистемы Земли давлением не ограничены.

Выживаемость при таких экстремальных давлениях вызывает вопросы. Как могут молекулы жизни с функциями, которые столь чувствительны к строгой молекулярной форме, его выдерживать? В некоторых случаях разгадка кроется в умной химии углерода. Клеточные мембраны при низком давлении образуются из массивов молекул с прямыми углеродными скелетами, которые легко выстраиваются бок о бок, подобно сухим спагетти в коробке. Они упаковываются эффективно, но с достаточно большими промежутками, чтобы основные пищевые молекулы могли проходить сквозь мембрану.

При экстремальном давлении такое взаиморасположение, должно быть, становится слишком плотным, и необходимые для жизни питательные вещества не могут проникать в клетку. Поэтому мембраны высокого давления «подстраиваются» под изогнувшиеся углеродные скелеты, в которых у каждой скрюченной молекулы несколько искривлений. Располагаясь рядышком, они адаптируются к высокому давлению, изгибаясь как пружинки и таким образом обеспечивая пути для питательных веществ, при этом не разрушаясь.

С температурой — другая история. Вы, возможно, думаете, что точка кипения воды (100 °C) — абсолютный предел для жизни. Но давление повышает стабильность воды в жидком состоянии; ее температура в глубочайших вулканических источниках на морском дне может превышать 288 °C. Более фундаментальный предел — когда разрушаются жизненно важные белки. Некоторые из них денатурируются при температуре около 127 °C. Это достаточно горячо, чтобы у вас остались волдыри от ожогов, но несколько выносливых микробных видов в состоянии выдерживать и подобную экстремальную жару. Сейчас 127 °C считается пределом той клеточной жизни, которую мы знаем.

Профили температуры и давления Земли связаны: чем глубже вы погружаетесь, тем горячее становится. В некоторые горячие точки вроде гидротермальных зон Йеллоустона или Исландии нужно опуститься всего на несколько метров, чтобы достичь температурного предела жизни. Но в более прохладных континентальных зонах, вдали от какой-либо вулканической активности, температура повышается менее чем на 7 °C с каждым километром земной коры. Следовательно, вполне можно допустить, что некоторые микробы живут более чем в 16 км под поверхностью, хотя отобрать каменный образец на такой глубине пока не позволяет ни одна из самых современных технологий бурения.

Третий стоящий перед глубинной микробной жизнью вызов заключается в том, чтобы найти надежный источник энергии. Многие глубинные микробы «приурочены» к мельчайшим карманам воды, порой изолированным в течение миллионов лет. Любая химическая энергия в минеральных зернах, выстилающих эти наполненные жидкостью полости, давно израсходовалась, но свежие исследования обнаружили другой, довольно неожиданный источник энергии — радиоактивность. В каждой горной породе есть следовые количества радиоактивного урана — возможно, один атом на миллион. Уран в природе распадается чрезвычайно медленно: его период полураспада (с испусканием разрушительных альфа-частиц) равен примерно 4,5 млрд лет. Но горные породы в целом содержат так много его атомов, что медленный и постоянный поток альфа-частиц буквально пропитывает подповерхностную область. Когда альфа-частица «плюхается» в воду, она может разделить H2O на водород и кислород — отличную еду для микробов. Это не очень солидный источник энергии, но, видимо, его достаточно, чтобы поддерживать некоторые крошечные микробные сообщества в течение целых геологических эонов.

Как минералога меня привлекает идея, что история жизни неизбежно связана с минеральным царством. Горные породы и минералы действительно могли служить энергетической отправной точкой для жизни, но есть еще один привлекательный — и даже более многообещающий и надежный — энергетический источник. Вот потому-то жизнь и научилась жить за счет света Солнца.

Вариация 2. Для получения энергии жизнь учится использовать солнечный свет{180}

В течение как минимум миллиарда лет примитивная, связанная с водой микробная жизнь Земли — включая как те клетки, что живут на поверхности, так и те, что находятся глубже, — играла незначительную роль в циркулировании углерода. Общая биомасса Земли была скудна, она ограничивалась маленькими редкими микробными пленками, распространение которых обусловливалось в основном химической энергией свежих вулканических пород, контактирующих с водами океанов. Такое положение должно было измениться, когда жизнь поняла, как использовать гораздо более мощный источник энергии — свет Солнца.

Фотосинтез — потрясающая биологическая инновация. По своей сути фотосинтез, который мы знаем сегодня, с готовностью берет доступные составляющие — простые молекулы воды и углекислого газа плюс энергию солнечного света — и производит целый ряд молекулярных продуктов, необходимых для жизни (вместе с жизненно важным газом кислородом). Этот процесс представлял собой фундаментально новый и эффективный способ циркулирования углерода (сложные детали рассматривать не будем).

В основе фотосинтеза лежит фортуна: нам попросту повезло, что идущие от Солнца волны света, или фотоны, способны нести энергию. Чем короче длина волны, тем больше энергия. Мало того, эта энергия может быть передана атомам в процессе поглощения. Но, как и в истории Златовласки с тремя мисками каши, существует энергическая золотая середина, когда не слишком жарко и не слишком холодно. Для инициирования в биологии необходимой химической реакции нужно, чтобы поглотилось только требуемое для перемещения электронов между атомами количество энергии.

Атомы легко поглощают инфракрасные фотоны с длинами волн больше (и, таким образом, с меньшей энергией), чем у видимого света. Инфракрасные волны заставляют атомы колебаться немного быстрее — мы ощущаем это как тепловую энергию. Когда вы чувствуете тепло Солнца или пылающего костра, ваша кожа поглощает инфракрасное излучение, ее молекулы нагреваются. Воздействие усиливается, если объект черный, что вы, безусловно, испытывали на себе, гуляя босиком по битумному покрытию солнечным летним днем. Однако только самые энергичные из инфракрасных фотонов — с длиной волны, близкой к той, которую мы видим, как красный свет, — обладают достаточной энергией, чтобы перемещать электроны между атомами и таким образом запускать биологические реакции{181}.

Ультрафиолетовое излучение — с другого конца светового спектра — имеет более короткие длины волн, а следовательно, обладает большей энергией, чем видимый свет. У этих потенциально опасных фотонов достаточно энергии, чтобы полностью выбивать некоторые электроны из атомов. Этот процесс, называемый ионизацией, может разрушать атомные связи и фрагментировать важные молекулы. Если вы когда-нибудь обгорали на солнце — в данном случае из-за разрушения молекул погибают клетки кожи, — вы испытывали на себе ионизирующее ультрафиолетовое излучение. Вредные ультрафиолетовые фотоны обладают слишком большой энергией для большинства биологических потребностей.

Золотой серединой оказываются фотоны видимого света, особенно той его части, которая расположена ближе к менее «энергичному» красному концу спектра. Когда кластеры атомов хлорофилла — пигмента зеленых растений — поглощают фотоны красного света, их электроны переходят в возбужденное состояние. Эти электроны могут перескакивать с одного атома на другой, образуя новые химические связи. Фотосинтезирующие микробы пользуются этим удачным свойством фотонов световой и близкой к инфракрасной частей спектра, чтобы поддерживать биологию.

Зловонная жизнь

Самые древние версии фотосинтеза, появившиеся более 3 млрд лет назад, возможно, отличались от процесса, описанного в учебниках, — того, который создает насыщенную кислородом атмосферу Земли. Первые потреблявшие солнечную энергию клетки использовали для поддержания биологических процессов другие химические вещества, к примеру зловонный токсичный газ сероводород H2S — распространенный продукт вулканов. Для поглощения красных длин волн Солнца и перемещения электронов эти зеленые серобактерии осуществляли светопоглощающий процесс, названный «фотосистема I».

На первом его этапе зеленый пигмент освобождает электрон, который затем движется к другим атомам. Пол Фальковски использует удачную метафору в своей увлекательной книге о микробной эволюции «Двигатели жизни»[48]. Перемещение электронов между атомами, замечает он, похоже на переезд пассажиров метро от станции к станции в час пик. Представьте себе, что вы отрицательно заряженная частица (электрон), ожидающая поезд на зеленом пигменте. Отрицательные электрические заряды отталкивают друг друга, поэтому вам не так-то легко будет перепрыгнуть с вашей уютной молекулярной платформы в вагон метро, полный других отрицательных частиц. Но если одетый в форму работник платформы подпихивает вас (как это бывает в некоторых странах!), то вы рискуете оказаться втиснутым в вагон по крайней мере на перегон или два, прежде чем сможете выйти на менее заполненную молекулярную платформу.

Подобным же образом и фотон красного света может обеспечить энергетический пинок, временно перемещающий электрон с пигмента на другие атомы. Когда электрон удаляется, пигмент оказывается положительно заряженным и ему нужен другой электрон. При фотосинтезе эта отрицательная частица может быть взята у атома металла, который, в свою очередь, способен украсть еще один электрон у сероводорода в каскаде химических реакций, расщепляющих сероводород на водород и серу. В итоге же эти продукты химических реакций обеспечивают потрясающее топливо для жизни.

Чтобы не остаться за бортом, другие микробы для извлечения выгоды из бесплатного солнечного ланча развили совершенно иной биохимический путь — фотосистему II. Эти другие микробы, в том числе так называемые пурпурные бактерии, поглощают немного больше энергетических фотонов, чтобы сдвигать и перемещать электроны, но окончательный результат примерно тот же. Электроны перемещаются в цепочке реакций, которые в конечном итоге расщепляют сероводород и вырабатывают топливо для жизни.

Появившись более 3 млрд лет назад, зеленые серные и пурпурные бактерии до сих пор живут в изолированных подводных сообществах. Ищите их в глубоких стоячих водах, в которых солнечный свет проникает в те зоны, где абсолютно нет кислорода — смертельного яда для этих первобытных микробов. Но самый значительный вклад упомянутых двух типов примитивных клеток заключается не в том, что они рассеянно распространены на Земле и сегодня, а в кардинальной эволюционной инновации, которая связала их две отдельные светопоглощающие стратегии в современную двухэтапную версию фотосинтеза.

Мощь воды

Адекватным химическим топливом для зеленых и пурпурных бактерий служат сульфиды. Появившись по крайней мере 3,5 млрд лет назад, эти настойчивые кланы микробов использовали сульфиды плюс одиночные фотоны красного света, чтобы поглощать энергию Солнца. Но сульфиды не особенно-то распространены на поверхности Земли, да и энергия серы и водорода не лучшее из того, что может предложить наша планета.

Вода намного лучший вариант. Этот оксид водорода не только гораздо более распространенное вещество, нежели сероводород, — вода также может обеспечить биологическое топливо в форме кислорода и водорода, которое дает куда больше энергии. H2O представляет собой основное топливо для жизни на Земле, но есть проблема: чтобы расщепить воду, необходимо намного больше энергии, чем для расщепления сероводорода. Одиночным фотонам это не под силу. Потребовался миллиард лет проб и ошибок, но в конечном счете какой-то везучий микроб обнаружил двухэтапный процесс кислородного фотосинтеза — координированного сочетания фотосистем I и II. Такая последовательность поглощений фотонов и обеспечивает ту дополнительную энергию, которая необходима для расщепления воды на водород и кислород.

В ходе цепочки химических реакций, следующих за расщеплением воды, живые клетки бурно разрастаются. Вот что здесь самое важное: молекулы водорода и углекислый газ вместе образуют один из видов сахара — глюкозу, а кислород остается в виде отходов. Молекулы глюкозы соединяются в прочные цепи целлюлозы — главной составляющей зеленой биомассы и, следовательно, самой распространенной биомолекулы на Земле. Стебли и листья, корни и ветви, трава и стволы деревьев — половина современной биомассы Земли — это целлюлоза. Неистовое образование этого вещества повлекло за собой серьезные последствия. Миллиарды лет назад, по мере того как фотосинтезирующие клетки впитывали солнечный свет, углекислый газ в атмосфере становился сырьем для живых клеток. Воздух и вода постепенно превратились в массы зеленых водорослей, которые заполонили мелкие прибрежные зоны. Богатая углеродом биомасса канула на дно, где продолжала накапливаться, при этом содержание кислорода в атмосфере и океанах постепенно росло.

Земля подошла к переломному рубежу чуть более 2 млрд лет назад — тогда произошло Великое кислородное событие, после которого ускоряющиеся, связанные между собой циклы углерода и кислорода наставили Землю на путь к современному миру. Находясь в зависимости от кислородной атмосферы, мы часто забываем, что образовавшийся в современной двухэтапной версии фотосинтеза кислород был просто побочным продуктом — формой химических отходов, которые очень долгое время не играли существенной роли в развивающейся истории жизни.

Великое кислородное событие, напротив, сыграло выдающуюся роль в эволюции геосферы. К тому моменту атмосфера стала побогаче кислородом — его уровень достиг 1 или 2% от современного. Многие горные породы начали вступать в химические реакции с агрессивным газом, результатом которых стал целый поток новых минеральных видов, ранее не встречавшихся на Земле (или вообще где-либо в нашей Солнечной системе, коли на то пошло){182}.

До Великого кислородного события атомы металлов в большинстве минералов находились в их наиболее восстановленном, богатом электронами состоянии. Относительно распространенные элементы, к примеру железо и марганец, вместе со множеством более редких металлов, таких как медь, никель, молибден и уран, были сконцентрированы не более чем в нескольких сотнях минеральных видов. Льющийся в атмосферу поток кислорода изменил этот сценарий: по мере того как газ захватывал любой свободный электрон, который только мог найти, появлялись тысячи новых минералов.

Мы с коллегами пришли к выводу, что два из каждых трех минеральных видов на Земле, включая многие самые ненаглядные цветные кристаллы, выставленные в музеях естественной истории по всему миру, являются прямыми следствиями кислородного фотосинтеза. Большинство минералов меди, в частности темно-зеленый малахит, ярко-синий азурит и полудрагоценная бирюза, появились уже после Великого кислородного события. Более 90% из почти 300 разных видов урановых минералов, многие из которых представлены ярко-желтыми и оранжевыми кристаллами, также являются косвенными последствиями фотосинтеза. Углеродсодержащие минералы тоже стали разнообразнее после этого эволюционного изменения близповерхностной химической среды Земли.

Осознание того, что эволюция земных минералов зависит напрямую от биологической эволюции, слегка шокирует. Это фундаментальное изменение точки зрения, которая существовала несколько десятилетий тому назад, когда научный руководитель моей диссертации по минералогии сказал мне: «Не трать время на биологию. Она тебе никогда не пригодится!»

Вариация 3. Появляется большая жизнь{183}

Закройте глаза и представьте себе «жизнь».

Готов поспорить, что вы подумали о чем-то большом — быть может, о вашем коте, или цветке, или воробье у кормушки. Могла прийти на ум даже еще более крупная форма жизни — любимое дерево, панда или, возможно, слон. Начиная со зверинца Ноева ковчега и до современных городских зоопарков, наибольшим вниманием пользуется харизматичная мегафауна. В контексте же истории Земли это сильно искаженный взгляд на жизнь.

По крайней мере три четверти истории Земли «жизнь» состояла исключительно из микроскопических клеток, в большинстве своем скрытых глубоко под землей и только время от времени показывающихся на поверхности в виде каменных строматолитовых построек или зловонных масс нитей зеленых водорослей. Вам бы потребовался мощный микроскоп, чтобы получить хоть какое-то представление о том древнем живом мире. Сегодняшняя биосфера, наполненная плавающими, ползающими и летающими существами, — относительно недавняя инновация, представляющая лишь последние 10% времени богатой событиями эволюционной истории Земли. И в связи с этим возникает вопрос: зачем после 3 млрд лет успешной жизни в одноклеточном виде клеткам нужно было начинать сотрудничать таким образом, чтобы стало возможным появление этих больших организмов?

Самый простой ответ заключается в том, что единичной клетке сложно делать все это: создавать основные молекулы жизни или питаться ими, защищаться от других голодных клеток и делать точные копии себя поколение за поколением. Вот почему самые простые одноклеточные организмы природы зачастую живут в сложных сообществах, называемых консорциумами, в которых разные виды клеток играют специализированные химические роли. Микробные консорциумы исполняют изящный электронный танец, постоянно передавая электроны от доноров к акцепторам. Некоторые микробы получают энергию от Солнца, другие — от химических веществ, вырабатываемых их фотосинтезирующими соседями. Многие члены консорциума развивают особые химические навыки, производя только часть основных биомолекул для других членов клуба. Следовательно, выживание клеток в консорциумах полностью зависит от их соседей.

Эти умные кластеры клеток похожи на нашу обусловленную энергией экономику. Некоторые бодрые, энергичные люди производят энергию, добывая уголь, выращивая продукты питания, собирая солнечный свет или обуздывая ветер. Другие специализируются на производстве полезных товаров — машин, одежды, домов, музыки — и обменивают эти продукты на энергию. Так же и клеточные консорциумы состоят из множества клеток, каждая из которых является независимым подрядчиком, играющим свою роль, что основана на ее отличной от других генетической идентичности и внутренней химии.

Преимущества совместной игры

Как минимум 1,5 млрд лет назад появился абсолютно новый и чрезвычайно важный вариант клеточного сотрудничества — когда у группы относительно крупных одноклеточных организмов, называемых эукариотами («полноядерными» в переводе с греческого), образовались внутренние структуры, окруженные собственными мембранами{184}. Эти органеллы (что-то вроде жизненно важных органов людей) включают в себя ядро, содержащее ДНК клетки, митохондрии, которые действуют как клеточные энергетические станции, и хлоропласты, которые накапливают свет и преобразуют его в богатый энергией сахар. Некоторые биологи считают появление эукариотов самой важной инновацией в истории жизни, поскольку в результате этого события клетки получили источник внутренней энергии, позволивший им развиваться и кооперироваться как никогда раньше.

Как же возникла эта новая сложная клеточная архитектура эукариот? Основные подсказки нам дают митохондрии и хлоропласты. У них есть собственные мембраны и собственная ДНК, и они сами воспроизводятся, как если бы были независимыми клетками, живущими внутри более крупного эукариота. Сегодня общепризнано, что эукариотические клетки появились, когда бо́льшая клетка проглотила одну или несколько меньших. Гости не были переварены более крупным организмом, вместо этого сложился новый вариант сотрудничества.

Этот концептуальный прорыв, который заметнее всех поддерживала блестящая и противоречивая исследовательница Линн Маргулис, стал теперь прописной истиной, пересказываемой с прекрасными иллюстрациями в каждом учебнике по введению в биологию{185}. Но так было не всегда. В течение двух десятилетий биологическое сообщество резко критиковало гипотезу симбиогенеза. Статья Маргулис 1967 г., отстаивающая эту концепцию, отвергалась более десятка раз; заявки на грант также были отвергнуты, да еще и с едкими замечаниями{186}.

Горячность критики отчасти была вызвана тем, что новая гипотеза воспринималась как угроза устоявшейся эволюционной теории. Дарвиновская парадигма эволюции посредством естественного отбора требовала изменений постепенных, происходящих благодаря бесчисленным, обычно небольшим мутациям, за которыми следовало выборочное отсеивание среди разных популяций более или менее подходящих индивидуумов. В версии дарвинизма XX столетия эти мутации возникали исключительно из-за генетических вариаций ДНК. Гипотеза же симбиогенеза утверждала, что новые формы жизни иногда появляются при взаимном слиянии двух совершенно разных видов. Какое-то время наука находилась в досадном тупике, пока не произошло открытие ДНК в митохондриях и хлоропластах и не стало ясно, что эти органеллы некогда были независимыми клетками.

И хотя бионаучное сообщество приняло симбиотическое происхождение эукариот, наградив Маргулис десятками призов, медалей и почетных степеней, все же оказалось, что исследовательница раздвинула границы дозволенного. Симбиоз, утверждала она, является главной движущей силой эволюции жизни. Генетические вариации происходят в первую очередь из-за перемещения ДНК между клетками, а не вследствие мутаций. Продвигая свои взгляды, она критиковала неодарвинистов, которые, по ее словам, «погрязли в своей зоологической, капиталистической интерпретации Дарвина, основанной на понятиях конкуренции и экономической выгоды»{187}.

Маргулис видела симбиотические эволюционные пути везде — в термитах, коровах, деревьях и людях. Подкрепляя свои страстные выступления массой анатомических и молекулярных данных, она утверждала, что буквально каждая клетка на Земле критическим образом зависит от какой-то другой группы сотрудничающих, а не конкурирующих клеток. Без специализированных органов, наполненных питающимися целлюлозой микробами, термиты и коровы умерли бы. Без обширных симбиотических сетей корневых грибов, не говоря уже о разнообразном зверинце микробов в почве, погибли бы деревья. На самом деле Маргулис представила в этом новом симбиотическом контексте всю природу — в виде так называемой гипотезы Геи, согласно которой Земля сама функционирует как единая саморегулирующаяся система.

В 2011 г., всего за несколько недель до ее преждевременной смерти от сердечного приступа, я встречался с Линн Маргулис у нее дома в Амхерсте — она преподавала науки о Земле в местном кампусе Массачусетского университета. Маргулис сама была силой природы — агрессивно-любознательной, всегда подвергавшей сомнению условности и творчески переосмысливавшей природу. Она получала искреннее удовольствие от своих исследований, и мне было ясно, что Линн просто хотела знать, как функционирует природа, и отказывалась принимать традиционные объяснения сложных проблем.

Дом Маргулис стоял по соседству с домом-музеем Эмили Дикинсон, и, пока мы гуляли и разговаривали, она иногда прерывалась и читала какие-нибудь «припасенные» стихи Дикинсон, указывая именно на ту узкую тропинку или тот ряд кустов, которые были упомянуты в строках. Маргулис пригласила меня в Амхерст, чтобы обсудить ее крепнущее убеждение, что эволюцию посредством симбиоза можно расширить до не рассматриваемых ранее аспектов геосферы Земли. Тот разговор в некотором смысле предвосхищал основные идеи минеральной эволюции, хотя я не осознавал этого в то время. Если бы я только мог поделиться с ней теми идеями…

Загадочные вариации{188}

Без малого миллиард лет — бо́льшую часть протерозойского эона Земли, который охватывал огромный интервал времени с 2,5 до немногим более 0,5 млрд лет назад, — эукариотические клетки вели уединенную жизнь. Между современной, полной сил биосферой и тем могучим миллиардолетним микробным царством имел место короткий загадочный этап «выпуска новинок» — эдиакарский период[49], когда появились первые сложные многоклеточные организмы. У мягкотелых животных гораздо меньше шансов сохраниться в виде фоссилий в каменной летописи Земли, нежели у их собратьев, обладавших твердыми раковинами. Тем не менее ископаемые остатки червей и медуз находят по всему миру в мелкозернистых горных породах с пониженным содержанием кислорода, где мертвые организмы, скорее всего, «мумифицировались».

Самые первые необычные отпечатки больших мягкотелых ископаемых, которые вы можете подержать в руках, появляются в породах, образовавшихся, согласно оценкам, примерно 575 млн лет назад — почти за 35 млн лет до широкого распространения животных с минерализованными раковинами. В диапазоне размеров от маленьких монеток до обеденных тарелок эти странные, округлые и напоминающие очертаниями листья пальмы существа, очевидно, жили в своего рода подводных садах на древнем океаническом дне. Споров относительно их биологической принадлежности много. Большинство исследователей считают, что они были животными, возможно типа губок или медуз, хотя столь же вероятно, что у них нет близких ныне существующих родственников, с которыми можно было бы установить их родство. Другие утверждают, что они представляли собой первые фотосинтезирующие растения или даже примитивные формы лишайников. Продолжающиеся дебаты добавляют очарования эдиакарской загадке.

Хорошо сохранившихся образцов эдиакарских ископаемых мало, и находят их на большом расстоянии друг от друга, часто в отдаленных и недоступных местах, таких как обожженные солнцем скалы Долины Смерти в Калифорнии, медвежьи углы в горах Маккензи на северо-западе Канады, далекие утесы арктической Норвегии и неспокойные с политической точки зрения местности в Иране и Сибири. Это не легкодоступные и распространенные раковины более поздних организмов или притягательные кости динозавров; чтобы свести воедино разрозненные ископаемые находки эдиакарского периода, нужен палеонтолог особого склада.

За эту работу взялся Майкл Мейер — в недавнем прошлом мой коллега по Институту Карнеги, а ныне сотрудник Гаррисбергского университета в Пенсильвании{189}. На первый взгляд и не скажешь, что Мейер — отважный путешественник по миру. Он щеголяет в ярких гавайских рубашках, украшает свой кабинет постерами из «Звездных войн» и использует забавные фото своей маленькой дочки Сэм в качестве заставки на экране компьютера. Вас бы поняли, если бы вы приняли Мейера за обычного сотрудника, просиживающего штаны в будни с девяти до пяти. Но затем выясняется, что он работает в своем кабинете допоздна, монитор его компьютера заполнен таблицами и графиками, вокруг стоят коробки с образцами, помеченные надписями «Южная Африка» или «Хуанлин, Китай». Исследователь небрежно замечает, что у него было «запредельно много опасных для жизни столкновений с животными… ламантинами, аллигаторами, акулами, львами».

После защиты диссертации в Южно-Флоридском университете и полевых исследований в Южном Китае, Аргентине и на горном хребте Флиндерс в Австралии Мейер пришел в мою безопасную (в плане отсутствия хищников) лабораторию, чтобы изучать древнюю жизнь. Мы честолюбиво намеревались создать новые базы данных окаменелостей и расширить уже существующие. Палеонтологи были на шаг впереди в этой игре, потратив десятилетия на создание «Палеобиологической базы данных»[50] — хранилища сотен тысяч записей по ископаемым остаткам со всего мира{190}. Тем не менее база данных не была полной, особенно по образцам, относящимся ко времени до «кембрийского взрыва» — геологического события, которое имело место примерно 540 млн лет назад, когда начали повсеместно распространяться организмы с раковинами. Тесно работая со своими коллегами Дрю Масенте и Энди Кноллом из Гарвардского университета, Мейер взялся раздвинуть «Палеобиологическую базу данных», включив в нее всех эдиакарских ископаемых.

Через год их работы — штудирования публикаций и общения со специалистами по всему миру — на свет появился каталог 95 типов ископаемых организмов из почти 100 местонахождений по всему миру{191}. Во всеоружии этой всеобъемлющей таблицы Мейер и Масенте смогли увидеть скрытые ранее закономерности. Эксперты выделяют в эдиакарском периоде три стадии. Самая ранняя — авалонская — началась около 575 млн лет назад, вскоре после оледенения Гаскье, когда, как предполагают некоторые специалисты, бо́льшая часть поверхности Земли от полюсов до экватора была покрыта слоем льда и снега. В течение 15 млн лет после глобального ледникового периода на планете произошел значительный подъем температур и появились первые похожие на пальмовые листья существа в отложениях, которые, судя по всему, формировались в относительно глубокой океанической среде.

Животные следующей, беломорской стадии — промежутка времени в 10 млн лет, продолжавшегося с 560 до 550 млн лет назад, — отличались от авалонских. Их окаменелости характеризуются резким увеличением разнообразия, наличием десятков видов соревнующихся форм, напоминающих листья папоротника и ветвящиеся структуры, которые сосуществовали с разнообразными плоскими животными, ископаемые остатки которых выглядят как плиссированные блинчики или миниатюрные надувные матрасы.

Заметно, что в течение третьего и последнего эдиакарского отрезка времени — намского, продолжавшегося с 550 до 541 млн лет назад, — произошло смещение к прибрежным отложениям и появился целый ряд новых существ, включая более десятка животных, похожих на трубочки, а также напоминающих доисторический тако[51] своей странно согнутой формой.

Вооружившись новыми результатами, Мейер и Масенте оказались готовы сделать поразительное открытие. Разместив все данные в виде сетевой структуры наподобие паутины, где точками были обозначены биологические виды, а те из них, которые существовали вместе, соединялись линиями, ученые изобразили всю эдиакарскую фауну в виде одной открытой «сетевой диаграммы». Получившаяся картинка представляла две отдельные группы организмов — все авалонские существа собрались в одном углу сети, а смесь беломорской и намской фаун — в более крупном центральном кластере. Только три вида эдиакарских ископаемых организмов присутствовали в обоих кластерах.

То, что увидели Мейер и Масенте, стало прямым свидетельством массовой смены фауны 560 млн лет назад, когда большинство авалонских животных исчезли, а их место заняли новые организмы{192}. Специалисты до сих пор не определили, насколько сильным и внезапным могло быть это изменение. С одной стороны, породы, несущие в себе окаменелости авалонского возраста, характеризуют удаленную от берега обстановку континентального шельфа — в отличие от более мелководных, «потрепанных» волнами осадков, содержащих окаменелости беломорской и намской стадий. Так что изменение фауны можно просто объяснить незначительной переменой места жительства организмов, переехавших из глубоких вод в более мелкие. С другой стороны, не исключено, что резкий контраст между более древней авалонской фауной и более молодой беломорской указывает на драматичный эпизод массового вымирания — и это можно считать самой древней глобальной гибелью организмов, «записанной» в ископаемых находках. (Даже Мейер и Масенте не могут прийти к согласию по этому вопросу.) Эта эдиакарская история выявляет, безусловно, лишь одно — нам еще многое предстоит узнать об эволюции жизни за 4 млрд лет.

Самые древние эукариоты демонстрировали выдающееся усложнение клеточной жизни — они были более крупными, более разнообразными и владели бо́льшим химическим репертуаром, чем любая предыдущая форма жизни, но все еще оставались одноклеточными. В многоклеточных же червях, или медузах, или похожих на папоротник существах должны сотрудничать и специализироваться на чем-то конкретном уже разные виды клеток. Некоторые из них находятся с внутренней стороны организма, другие — снаружи. Некоторые формируют верхнюю часть «пальмовых листьев», а другие прикрепляются к океаническому дну. Присмотритесь внимательнее, и вы обнаружите, что клетки играют также и разные химические роли — собирают пищу, переваривают питательные вещества, распределяют основные биомолекулы и удаляют отходы.

Фундаментальное правило жизненной игры заключается в том, что инновации должны быть выгодными. Так почему же после 2,5 млрд лет вроде бы стабильной одноклеточной жизни клетки начали склеиваться в консорциумы и играть специализированные роли? Такие формы жизни сталкиваются по крайней мере с тремя вызовами, которые не стоят перед одноклеточными. Во-первых, их клетки должны приклеиваться друг к другу упорядоченным, структурированным образом; большинству многоклеточных организмов нужны голова и хвост — или верх и низ. Во-вторых, эти клетки должны сотрудничать при использовании атомов и энергии. Специализированные клетки, которые собирают пищу, обязаны делиться своим богатством с остальными. И в-третьих, подобно всем формам жизни, клетки этого сообщества должны найти способ делать точные копии себя. Это значительные трудности — вызовы, которые не появились бы, если бы их преодоление не вело к каким-то преимуществам.

Еще одна проблема многоклеточности — энергия. Концентрированная масса клеток, особенно такая, где клетки выполняют специализированные функции, требует относительно концентрированной формы энергии. Каждая клетка — это крошечная электрическая цепь, которой нужен поток электрических зарядов. Поэтому почти все многоклеточные формы жизни на Земле зависят от концентрированной химической энергии кислорода. Для сравнения: водород или сера не могут обеспечить многоклеточную жизнь достаточной энергией. Каждая клетка животного требует стабильной поставки кислорода, так что клетки, находящиеся внутри, могли бы оказаться в проигрыше. Для решения этой проблемы появились по крайней мере две стратегии. У некоторых примитивных организмов клетки образуют сложенные в складки слои с промежутками между ними, которые позволяют кислороду из окружающей среды достигать каждой клетки. Тогда получается, что все клетки находятся как бы снаружи. Более совершенные организмы вроде нашего имеют сложную кровеносную систему, в которой кровь является тем самым высокоспециализированным агентом доставки кислорода.

Несмотря на все эти препятствия, многоклеточные организмы эволюционировали и распространялись с необыкновенной скоростью. Появились новые стратегии выживания, стимулируемые повышающейся конкуренцией за ресурсы — еду, территорию и защиту; животные научились есть растения и других животных. И при этом живые клетки играли еще более активные роли в динамичном углеродном цикле Земли.

Вариация 4. Жизнь учится создавать минералы{193}

Жизнь всегда была историей выживания: найти пищу, произвести потомство, не дать себя съесть. За последние полмиллиарда лет биосфера переживала эскалацию этой конкурентной эволюционной саги, буквально гонку вооружений — разящего оружия и защитной брони. Все это началось, когда клетки научились создавать минералы.

Никто не знает, когда или где точно появилась первая раковина. Прародители ее — в глубокой древности. Более 3,5 млрд лет назад одноклеточные колонии, как говорилось выше, построили строматолиты — странные куполообразные холмики карбонатных минералов. Уже первые признаки многоклеточной жизни, появившиеся примерно 600 млн лет назад, сопровождались образованиями, подобными аляповатым минерализованным пластинкам и «бронированным» то там, то сям следам ползания. Но настоящий взрыв разнообразия организмов с изящно вылепленными твердыми частями — спиральными раковинами, ветвящимися кораллами, пиловидными зубами и сложного рисунка костями — произошел в «узком окне» начала кембрийского периода, примерно 540 млн лет назад. Первыми появились карбонатные минералы, хотя подробности этого поразительного минералогического трюка остаются загадкой. Сначала клетки должны были создать локальную химическую среду, в которой ионы кальция и углерода в растворе соединились бы, сформировав твердые кристаллы оболочки. Затем минеральные компоненты должны были выстроиться таким образом, чтобы создать функциональный защищающий животное дом. Как это случилось?

Изучение данной биохимической инновации является делом всей жизни Патриции Дав, заслуженного профессора факультета наук о Земле в Политехническом университете Вирджинии в Блэксбурге, штат Вирджиния{194}. Дав получает удовольствие от занятий наукой. Чтобы продемонстрировать повседневные шедевры биоминерализации, она протянет вам разделенную на камеры и покрытую тонким орнаментом раковину наутилуса или вытащит из кармана яйцо. Исследовательница никогда не теряла ощущения чуда, испытываемого ею с детства, с тех пор как она росла на семейной ферме в Бедфорде, штат Вирджиния, в часе езды на машине к востоку от Блэксбурга. Это типичная история многих успешных ученых: родители и учителя, которые поддерживали увлечение наукой, любовь к природе и коллекционированию, призы, получаемые на научных олимпиадах, и стипендия в колледже — в случае Дав это был Политехнический университет Вирджинии. За получением степени PhD в Принстонском университете последовало недолгое пребывание в Стэнфорде и Политехническом университете Джорджии, а затем она снова вернулась в свою любимую Вирджинию.

Во всех своих исследованиях Патриция Дав подчеркивает, что раковины, зубы и кости — это гораздо больше, чем просто кристаллы минералов. Они всегда содержат в себе слои и волокна белков и других биомолекул, которые добавляют им прочности и гибкости — свойств, вдохновивших на разработку легкого стекловолокна и композиционных материалов из углеродных волокон. В некоторых раковинах материал, получающийся в результате соединения минералов и белков, оказывается в тысячу раз прочнее чистого минерала. Дав также напоминает вам, что биоминералы играют много ролей вне раковин, костей и зубов: они могут служить организмам в качестве линз, фильтров, сенсоров и даже крошечных внутренних компасов.

Энергичная исследовательская группа Дав много сил посвящает изучению механизмов образования карбонатов на атомном уровне — молекулярному танцу, основанному на тесном взаимодействии органической и неорганической углеродной химии. Эта команда исследователей обнаружила, что формирование биоминералов происходит, когда клетки создают специализированные отсеки с местными средами, где минералообразующие ингредиенты концентрируются и образуют зародыши, на которых вырастают идеально правильные кристаллы. В этих отсеках одни биомолекулы стимулируют образование кристаллов, а другие — тормозят рост.

Одно из самых удивительных открытий исследовательской группы Дав заключается в том, что многие организмы начинают биоминерализацию с той формы карбоната кальция, которая вовсе не кристаллическая. Они образуют и накапливают гелеобразное вещество — аморфный карбонат кальция (исследователи называют его АКК), который хранится про запас до нужного момента{195}. В отличие от традиционного пути образования кристаллов, кристаллический рост в этом необыкновенном процессе запускается молекулярным спусковым крючком, триггером. Некоторые линяющие[52] животные могут, видимо, хранить АКК неделями или месяцами, запуская быстрый рост раковины на критически уязвимой стадии, когда старый покров сбрасывается и вкусная мягкая ткань обнажается.

Возможно, сразу после появления первых животных с защитной оболочкой хищники переключились на более легкую, незащищенную добычу. Зачем прикладывать дополнительные усилия, чтобы разломать твердую раковину, когда прямо под рукой — сочные черви? Но, по мере того как все больше обитателей морского дна надевали броню, быстро возникали и контрстратегии: более крепкие челюсти, более острые зубы и более устрашающие клыки. Все это появилось именно тогда, когда жизнь научилась создавать защитные раковины. Этот затянувшийся «кембрийский взрыв» не был таким уж взрывным — он продолжался десятки миллионов лет, но зато бесповоротно направил биосферу Земли по новому курсу.

Появление прочных минеральных раковин добавило также новые нюансы в цикл углерода. С возникновением карбонатных кораллов, мшанок, брахиопод, моллюсков и другой фауны известняковые рифы достигли эпических размеров, распространились на сотни километров вдоль побережий и кое-где постепенно достигли высоты в несколько сотен метров. Ранее никогда не оказывалось возможным такое массовое накопление карбонатных биоминералов, которые заполнили прибрежное мелководье и внутренние моря небывалыми отложениями. Когда литосферные плиты в процессе своего перемещения неумолимо закрыли эти неглубокие бассейны и сжали их отложения, образовались увенчанные карбонатами зубчатые горные хребты, изменившие ландшафт Земли. Канадские Скалистые горы, североитальянские Доломитовые Альпы и даже высочайшие гималайские вершины, среди которых сам Эверест, сложены прочными карбонатами — живыми рифами, некогда украшавшими дно прибрежной зоны океанов.

Последние полмиллиарда лет карбонатная биоминерализация происходила практически исключительно в прибрежной зоне — в области коралловых рифов. Кораллы, улитки, двустворчатые моллюски и десятки других форм жизни пользовались преимуществами мелких, залитых солнцем и богатых питательными веществами вод вдоль берегов континентов.

Двести миллионов лет назад жизнь провернула еще один минералогический трюк. Микроскопические одноклеточные морские водоросли, называемые кокколитофоридами, которые и сегодня процветают в Мировом океане, зачастую вдали от какой бы то ни было земли, научились создавать крошечные прозрачные дискообразные защитные пластинки из карбоната кальция, называемые кокколитами{196}. Кокколит напоминает микроскопическое ажурное колесико диаметром 20–30 мкм. Каждая клетка водоросли покрыта внахлест дюжиной таких пластинок, причем не совсем понятно для чего. Некоторые биологи полагают, что минеральные диски служат защитой, другие — что карбонат кальция является природным «кремом от загара», который оберегает плавающие клетки от вредного ультрафиолетового излучения. Согласно еще одной гипотезе, минеральные пластинки обеспечивают клеткам нейтральную плавучесть, позволяя микроорганизмам погружаться или всплывать, перемещаясь в более богатые питательными веществами слои океана.

Какова бы ни была функция кокколитов, они образуются в огромных количествах. Когда кокколитофориды погибают, их крошечные пластинки накапливаются на дне, образуя мощные залежи мела. Вооруженный микроскопом взгляд на знаменитые Белые скалы Дувра — сотни метров отложений мела, накопленные за миллионы лет, — осведомляет нас, что они сложены прекрасными резными кокколитами, присутствующими здесь в астрономических количествах. В отличие от первых геологических эонов, почти треть сегодняшнего океанического дна покрыта известковым илом, имеющим нередко мощность более 1 км и богатым на эти микроскопические диски.

Все вышеописанное имело серьезные последствия для углеродного цикла Земли. На протяжении большей части геологической истории глубинные отложения океанов практически не содержали карбонатных минералов. Субдукция перерабатывала океаническую кору, в которой преобладал базальт. Сегодня же главный компонент морского дна — углеродсодержащие минералы. Когда океаническое дно затягивается в зонах субдукции, некоторое количество этого новообразованного карбонатного ила уносится вниз, погружаясь глубоко в мантию Земли. Остается нерешенной загадка, фундаментально ли в наши дни меняется углеродный цикл Земли вследствие такого погружения углерода. Если большее количество атомов углерода погружается, нежели возвращается на поверхность, может ли биосфера Земли постепенно потерять свой углерод?

Поиск ответа на этот серьезный вопрос о глубинном углеродном цикле Земли неизбежно направляет наш взор на дополнительные петли обратной связи между биосферой и геосферой, так что нам пора переместить внимание в сторону появления жизни на суше.

Вариация 5. Жизнь укрепляет позиции на суше{197}

По мере того как жизнь и горные породы совместно эволюционировали во все более сложных петлях обратной связи, усложнялся и цикл углерода. И нигде эти петли обратной связи не были так заметны, как в появлении жизни на суше.

На начальных его этапах центральную роль играл кислород. Большинство клеточных организмов не могут пережить прямого воздействия жесткого, ничем не ослабленного ультрафиолетового излучения Солнца. Самые основные биомолекулы распадаются. Клетки погибают. Появление в атмосфере кислорода также означало и появление озона — молекулы, состоящей из трех атомов кислорода, которая образуется, когда обычные молекулы O2 расщепляются и переупорядочиваются под действием ультрафиолетового излучения. После того как это происходит, некоторые атомы пересобираются в O3. Молекулы озона редки; когда они «концентрируются», формируя так называемый озоновый слой, расположенный в верхних слоях атмосферы на высоте около 30 км над землей, их содержание достигает несколько молекул на миллион. Однажды образовавшись, этот слой стал играть роль природного «средства от солнца», оберегающего Землю от непрестанного пагубного влияния солнечного ультрафиолета. Крепкий озоновый слой является необходимым условием существования устойчивой наземной экосистемы.

Самые первые шаги выходящей из моря жизни были осторожными, они практически не меняли земной ландшафт. Раньше всех — более 450 млн лет назад — на сцене появились крошечные, лишенные корней растения, которые добавили зеленый мазок болотистому оцеплению прибрежных бассейнов и неглубоких водных потоков. Примерно 430 млн лет назад дебютировали первые растения с малюсенькими корневыми системами, что дало возможность зеленым растениям основать новые экосообщества подальше от моря. Корни ускорили разрушение камней и образовали богатые глиной почвы, которые способствовали росту более длинных и эффективных корней, а те в свою очередь производили еще больше почвы. Буквально за одно геологическое мгновение кусты и деревья все бо́льших высоты и обхвата покрыли собою сушу.

Изменение следовало за изменением. Наземные растения способствовали распространению животных. Самый древний известный обитатель суши, дышащий воздухом, — примитивная многоножка Pneumodesmus newmani{198}, единственный ископаемый экземпляр которой (фрагмент длиной 1,27 см) был найден шотландским водителем автобуса и коллекционером-любителем ископаемых Майком Ньюманом в 2004 г. в отложениях возрастом 428 млн лет из Абердиншира, Шотландия[53]. Ископаемые находки таких мягкотелых древних животных чрезвычайно редки, поскольку они плохо сохраняются, поэтому вполне вероятно, что первые насекомые появились даже раньше. Самые древние находки губоногих имеют возраст 420 млн лет, самому старому известному летающему насекомому — около 400 млн лет, а сколько еще редких и бесценных ископаемых свидетельств наверняка ожидают, пока мы их откроем.

И хотя окаменелости позвоночных сухопутных животных, казалось бы, должны были лучше сохраниться в каменной летописи, их находки малочисленны и рассредоточены. Скромное (но всевозрастающее) количество известных биологических видов палеозойской эры указывает на постепенный переход от морских организмов к наземным, от рыб — к амфибиям со все более специализированными структурами для жизни вдали от моря. Плавники превратились в конечности с пальцами, плечами, локтями и запястьями. В черепах постепенно образовались ноздри, чтобы дышать, и ушные отверстия, чтобы слышать. И — в отличие от большинства рыб — у первых обитателей суши была шея; они могли вертеть головой по сторонам, чтобы обозревать сухопутные окрестности. Переход на сушу не был внезапным, и вряд ли когда-либо можно будет указать на «самого первого» земного позвоночного, но есть серьезный кандидат на этот титул — Tiktaalik roseae, переходная форма между рыбами и амфибиями возрастом 375 млн лет, обнаруженная в 2004 г. на острове Элсмир за Северным полярным кругом в отдаленной канадской провинции Нунавут.

В форме увлекательного представления палеонтологического расследования Нил Шубин из Чикагского университета и Тед Дэшлер из Академии естественных наук в Филадельфии предсказали, что подобное существо можно обнаружить в Северной Канаде — холодной арктической местности, которая переехала на север вследствие перемещения тектонических плит, а 400 млн лет назад находилась рядом с экватором{199}. Прогноз исследователей основывался на логическом методе исключения. Они поняли, что недостающее звено между рыбами и земноводными должно находиться в породах возрастом около 375 млн лет, предпочтительно образовавшихся в теплом экваториальном регионе и рядом с древней линией побережья. В районе для поисков должно быть много хороших скальных обнажений, так что лесистая местность не подходила. Исследователи прочесали геологические карты мира и остановились на острове Элсмир как идеальном месте для дальнейших изысканий.

Найти недостающее звено на удаленном арктическом острове оказалось нелегкой задачей. Местность практически недоступна, а периоды для сбора образцов короткие — всего несколько недель в году, приходящихся на середину лета, когда толстое одеяло снега уже растаяло, а первые осенние снега еще не выпали. Потребовалось пять безуспешных полевых сезонов — в ходе некоторых ученые, как оказалось, фокусировали поиски на непродуктивных слоях пород, другие же прерывались ужасной погодой, — прежде чем были сделаны первые поразительно целые находки переходного от рыбы к амфибии вида Tiktaalik в низком каменном уступе{200}. Это оказалось крупное существо, некоторые особи вырастали в длину почти до 3 м. Увидев целое животное, Шубин и Дэшлер поняли, что его ископаемые остатки были довольно распространенными; несколько разрозненных и неопознанных фрагментов Tiktaalik уже находили в предыдущие сезоны сбора.

Эта ходячая рыба, название которой на языке инуитов — коренного населения региона — означает местную разновидность трески (хотя первооткрыватели Шубин и Дэшлер неформально назвали ее «рыбоногое»), стала сенсацией в СМИ, темой публичных лекций и телевизионных шоу. У нее даже появился собственный веб-сайт. Широко известный аккаунт Шубина, названный «Ваша внутренняя рыба», вырос до статуса научного бестселлера с собственными видеопроектами в медиапространстве. Эта палеонтологическая сага своей цельностью — от смелого прогноза к непростому открытию и возрастающему осознанию того, что многие анатомические инновации Tiktaalik сохраняются в структурах наших тел, — снова демонстрирует мощь дарвиновской теории эволюции посредством естественного отбора.

Tiktaalik лишь один представитель последовательности ископаемых животных, каждое из которых было более адаптированным к жизни на твердой земле, чем предыдущее. Скорость этого перехода с геологической точки зрения была быстрой, хотя первые однозначно сухопутные животные стали бродить по примитивным джунглям Земли только 10 млн лет спустя. Все это время, пока углерод накапливался в корнях, стеблях, листьях и стволах, его циркулирование между разными резервуарами — Землей, Воздухом, Огнем и Водой — усиливалось.

Погребенная биомасса

Леса эволюционировали, став новым и самым потрясающе многоликим резервуаром углерода после появления жизни на суше. Они добавили очередной нюанс углеродному циклу — ведь гигантские растения древних заболоченных лесов Земли, обширные заросли пышных папоротников, саговников и хвойных деревьев вытягивали углерод из воздуха, чтобы образовать древесину и кору. Когда одно из таких самых первых наземных растений погибало, его ствол, ветви, листья и корни вносили свой вклад в биомассу, из которой образовывались новые типы богатых углеродом отложений: слабо уплотняющийся торф приповерхностных болот, мягкий бурый уголь и твердое черное ископаемое топливо, известное как каменный уголь{201}.

Львиная доля каменного угля Земли образовалась в течение непродолжительного интервала длиной в 60 млн лет (кстати, названного каменноугольным периодом), начавшегося приблизительно 360 млн лет назад. Когда дерево падает в сегодняшних лесах, оно обычно быстро разлагается, возвращая атомы углерода в почву, чтобы они использовались снова и снова. Триста же миллионов лет назад — пока в результате эволюции не появились разнообразные обитающие в древесине грибы, научившиеся способам разрушения ее жестких лигниновых волокон, — эффективной переработки деревьев еще не было. Перед тем как начать разлагаться, упавшие мертвые деревья накапливались слоями мощностью 30 м и больше. Остатки растений погружались все глубже и глубже, их ткани сдавливались и затвердевали. Эта биосмасса постепенно высыхала, а биомолекулы деполимеризовались, высвобождая летучие вещества и увеличивая содержание углерода до более чем 90% в самых востребованных разновидностях антрацита. Сегодня мы добываем это каменноугольное наследие огромными темпами, за считаные десятилетия возвратив в атмосферу углерод, изымавшийся оттуда в течение 60 млн лет.

Не успели накопиться слои угля, как растущий богатый почвенный покров Земли нашел еще один способ связывания углерода{202}. Значительную роль в этом начали играть глинистые минералы — распространенные спутники пробивающихся корней с их неумолимым превращением горных пород в почву. Глины уникальны по своему физическому и химическому поведению. Их минералы формируются в виде тонких плоских чешуек, слишком маленьких, чтобы их можно было увидеть в обычный микроскоп. Эти крошечные листочки скользят друг по другу (насколько глина скользкая, особенно во влажном состоянии, каждый знает по собственному опыту).

Поверхность глины не имеет себе равных также в своей способности соединяться с небольшими богатыми углеродом молекулами, среди которых есть и продукты разложения органики. Когда корни и другой подповерхностный детрит[54] сгнивают, их биомолекулы по большей части собираются на поверхностях глинистых минералов. В результате эрозии почвы реками и ветрами огромные количества глины перемещаются в океаны. В прибрежной зоне накапливаются тысячи метров глинистых отложений, и в них содержится много углерода — это еще один резервуар элемента №6 в сложном углеродном цикле Земли. А некоторая часть этих богатых углеродом отложений погружается глубоко в земную мантию вместе с бесчисленными карбонатными кокколитами. По этим потокам углерода и можно установить возраст жизни на суше независимо от предыдущих 4 млрд лет истории Земли.

Вариация 6. Мы вносим свою лепту

На Земле появились бесчисленные миллионы биологических видов, но подавляющее большинство этих форм жизни исчезло навсегда. Трилобиты, распространившиеся повсеместно харизматичные обитатели палеозойских морей, вышли на сцену более полумиллиарда лет назад. Их почитаемые окаменелые остатки, сегментированные и шипастые, кажется, смотрят на нас сквозь века выпуклыми фасеточными глазами. Трилобитов больше нет — они полностью вымерли в течение чуть более 250 млн лет. Господствуя величественно и сурово над мезозойским миром, дождались своей очереди и динозавры — на суше, в море и в воздухе. Массивные ископаемые фрагменты их скелетов служат молчаливым напоминанием о безжалостной естественности борьбы за выживание. Все вымерли, кроме птиц, радикально рассеявших доминировавшую некогда линию. Сейчас наша очередь.

Человеческая история гораздо более неизгладима, чем история других видов. Мы, люди, меняем окружающую среду такими способами, за которыми тянутся следствия. Мы возводим памятники, мы копаем уголь, мы зажигаем огни и оставляем после себя предметы. В этой многовековой истории углерод играет особую, удивительную роль, поскольку, пока мы проживаем свои жизни и создаем свою культуру, атомы углерода предоставляют нам часы, которые ведут хронику человеческой истории.

Углеродные часы

Чуть ли не каждый атом углерода — это неустаревающее наследие звезд, вечное, неизменное, используемое снова и снова. Но крошечная, крохотулечная доля атомов шестого элемента в воздухе и в наших телах лишь временно выступает на динамичной сцене Земли. Эти атомы появляются как будто по волшебству и показывают товар лицом только на короткий промежуток времени, чтобы исчезнуть потом в мгновение ока.

Мы уже встречались с двумя стабильными формами углерода: распространенный углерод-12 составляет более 99% атомов углерода вашего тела; его чуть более тяжелый собрат углерод-13 — оставшийся 1%. Эти изотопы — один с шестью нейтронами, другой с семью — образовались миллиарды лет назад, преимущественно в больших звездах.

Радиоактивный углерод-14 с восемью нейтронами не такой{203}. Он нестабильный и относительно короткоживущий. Углерод-14 непрерывно образуется преимущественно поверх облаков в тех воздушных слоях, где космические лучи из глубин пространства бомбардируют насыщенную азотом атмосферу. Эти космические лучи, состоящие из бешено мчащихся протонов и других атомных ядер, действуют подобно боевым атомным пулям, которые сталкиваются с молекулами газов атмосферы, вызывая ядерный хаос. Образовавшиеся вторичные частицы градом разлетаются во все стороны; некоторые из них — это полные энергии нейтроны, часть которых затем сталкивается с атомами азота. От сильного удара быстродвижущегося нейтрона ядро азота-14 может «испортиться», потеряв один протон и приобретя один нейтрон, — в результате образуется углерод-14. Этот бурный созидательный процесс, происходящий уже миллиарды лет, обеспечивает небольшую, но постоянную поставку углерода-14 в атмосферу Земли.

Принципиальная разница между углеродом-14 и его более легкими и более стабильными углеродными кузенами заключается в радиоактивности. Углерод-14 балансирует на грани саморазрушения, потому что набрал слишком много нейтронов, чтобы чувствовать себя комфортно. Безо всякого предупреждения радиоактивный атом углерода-14 спонтанно превращается обратно в стабильный атом азота-14. Радиоактивный распад углерода-14 — надежный планомерный процесс. Исчезновение половины любой совокупности радиоактивных атомов углерода занимает порядка 5730 лет. Этот удачный период полураспада идеально подходит для изучения развивающихся человеческих технологий и культуры с помощью мощного метода радиоуглеродного анализа.

Эта революционная технология датирования по углероду-14 зависит от смерти, точнее — от времени смерти. А залогом успеха технологии является углеродный цикл. Пока растение живо, оно постоянно поглощает углекислый газ, воду и энергию солнечного излучения, чтобы синтезировать сахар. В этом суть фотосинтеза, который обеспечивает химической энергией почти всю жизнь на Земле. Животные питаются богатыми сахаром растениями или поедают других животных, пища которых — растения. Грибы и падальщики потребляют мертвые растения и животных. На каждом этапе сложной пищевой цепи атомы углерода переходят из одного резервуара в следующий.

Пока растение живет, оно потребляет около одной части на триллион углерода-14 наряду с другими атомами углерода — соотношение 12C, 13C и 14C зафиксировано изначально атмосферой. Пока вы едите растения или животных, которые съели эти растения, в вашем теле будет то же соотношение изотопов — примерно один на каждый триллион атомов углерода в вашем теле будет радиоактивным углеродом-14. И эта малюсенькая доля останется более или менее постоянной, пока растение не погибнет. Или пока вы не умрете. Вот тогда начнут тикать углеродные часы.

Углерод повествующий

Вдохновение использовать радиоактивный углерод для определения возраста органических остатков посетило химика Уилларда Либби из Чикагского университета вскоре после окончания Второй мировой войны{204}. Участник Манхэттенского проекта, Либби был хорошо знаком с химическим поведением радиоактивных изотопов, поэтому он отчетливо осознал, что у углерода-14 особое предназначение в исследовании сравнительно недавней истории человеческой цивилизации. Как и очень многие его коллеги по атомной эре, после войны он перенаправил применение своих знаний на мирные цели.

Идея Либби весьма проста: возьмите старый пергамент, давно потухший уголек из костра, волосок или кусочек высохшей кожи, измерьте соотношение изотопов углерода и вычислите возраст. Если распалась половина атомов углерода-14, то объекту около 5730 лет. Если их осталась всего четверть, тогда возраст в два раза больше — приблизительно 11 500 лет. Радиоуглеродный анализ замечательно подходит для датировки фрагментов ушедшей жизни возрастом до 50 000 лет, по истечении которых выживает только порядка тысячной доли первоначальных атомов радиоактивного углерода.

На практике углеродное датирование немного сложнее. Начать с того, что точно измерить одну часть на триллион углерода-14 — нелегкая задача. При обычном подходе ученые учитывают каждое событие распада и определяют содержание углерода-14, исходя из степеней радиоактивности. Распад радиоуглерода медленный, так что этот метод требует больших образцов со множеством атомов углерода, а также много-много терпения. В более эффективных современных методах для того, чтобы измерять количества тяжелых изотопов углерода-14, пока они не распались, используют мощные масс-спектрометры. Это более быстрый подход, и его можно применять к гораздо меньшим образцам, не крупнее просяного зернышка или короткого волоска.

Радиоуглеродный анализ перевернул наше понимание человеческой истории. Вы можете видеть его плоды каждую неделю в новостях. Особое внимание было уделено артефактам христианства. Собрание десятков свитков, написанных на древнееврейском и арамейском языках, обнаруженное в 1947 г. в пещерах неподалеку от Мертвого моря, стало первым резонансным испытанием для новой технологи датирования Уилларда Либби. Метод показал, что этим свиткам около 2000 лет, таким образом они являются самыми ранними из известных текстов, имеющих под собой библейское основание. Тем не менее знаменитая Туринская плащаница, почитаемая некоторыми верующими как льняной саван Иисуса из Назарета, была исследована в 1988 г. тремя независимыми лабораториями и датирована XIV столетием. Происхождение этого прекрасного полотна с его призрачным образом человека по сей день остается предметом бурных споров.

Радиоуглеродный анализ играет существенную роль и в археологии, он обеспечил нас подробной хронологией египетских династий, показал последовательность африканских миграций, передачу технологии в Европе и заселение доисторической Британии. Углерод-14 помогает определить возраст бесчисленных древних памятников и объектов — от монолитов Стоунхенджа, самым старым частям которого 5100 лет, что установлено по остаткам древесины, до «ледяного человека» Этци, который умер 5200 лет назад и сохранился в альпийских льдах неподалеку от границы нынешних Австрии и Италии. Обнаружение и датирование артефактов также меняет евроцентричный взгляд на «открытие» и колонизацию Америк — четкие свидетельства некогда горевших костров в поселениях викингов показывают, что они здесь были уже к 1000 г. нашей эры, за пять столетий до первого путешествия Колумба.

Радиоуглеродный анализ оказался весьма важен и для определения границ в противоречивой хронологии миграции людей в Америку. В исследовании 2015 г., опубликованном в журнале Proceedings of the National Academy of Sciences, ученые из Техасского университета A&M описали древнюю стоянку с костями разделанных лошадей и верблюдов, обнаруженную рядом с нынешним Калгари в канадской провинции Альберта{205}. Углеродный возраст этого лагеря оказался равным (с погрешностью всего 15 лет) 13 300 годам, что больше, нежели установленный возраст народа Кловис, который, как считается, прибыл из России через Берингов пролив не ранее 13 000 лет назад. Другие, менее убедительные доказательства в виде кострищ, обнаруженных рядом с примитивными каменными артефактами, побуждают некоторых исследователей называть даже более древний возраст миграции из Азии в Северную Америку — возможно, вплоть до 40 000 лет. Каким бы ни стал окончательный вывод, радиоуглеродный анализ сыграет главную роль.

А что насчет следующих поколений? Какие сведения о сегодняшних днях соберут будущие археологи по углеродным остаткам нашего века? Их ждут сюрпризы. Прошедшие два столетия отличает значительное поступление «мертвого» углерода — наследие сжигания огромных количеств ископаемого топлива, содержащего древние атомы углерода, которые были запертыми миллионы лет. Получающийся в результате поток «мертвого» углекислого газа разбавляет атмосферу молекулами CO2, полностью лишенными радиоактивного углерода-14.

Вторая, еще более драматическая аномалия — на этот раз «бомбового» углерода — маркирует стремительную яростную эру открытых испытаний ядерного оружия. Это 1950-е и начало 1960-х гг. — время до заключения Договора о запрещении испытаний ядерного оружия{206}. За десять с небольшим лет ядерные взрывы привели к увеличению концентрации углерода-14 в атмосфере в два раза. Она постепенно снизилась за счет того, что углекислый газ измененного воздуха поменялся местами с молекулами в океанах, оказался связанным в горных породах или был поглощен растениями. С неизбежностью содержание углерода-14 в растениях за короткое время удвоилось, затем удвоилось в животных — а также в вас, если вы застали беспокойную эру холодной войны.

Мы в совокупности всё еще содержим немного того ядерного наследства в наших мышцах и костях, поскольку являемся частью человеческого углеродного цикла.

РЕПРИЗА — Человеческий углеродный цикл

Ключ к пониманию неразрывных связей между Землей, углеродом и нами кроется в циклах. В основе быстрых изменений, которые люди навязывают Земле как с умыслом, так и непреднамеренно, лежит циркулирование углерода. Мы выращиваем и разводим богатую углеродом пищу, чтобы поддерживать растущее мировое население, неизбежно разрушая окружающую среду, которая была устойчивой тысячи лет. Мы лишаем землю лесов, а моря — рыб, изменяя экологический баланс. Мы добываем углерод в огромных количествах, используя давно захороненные ресурсы в качестве топлива, а также для производства материальных ценностей. В этих да и в других подобных примерах ускоряющееся человеческое воздействие на углеродный цикл является глубоким и глобальным, а последующие изменения в атмосфере и климате — в значительной степени непредсказуемыми.

Все живые существа, включая наш человеческий род, играют свою роль в глобальном цикле углерода. Взгляните вокруг, и вы увидите последствия: минералы и воздух Земли становятся растениями, растения — едой для животных, погибшие животные и растения поддерживают благоденствие грибов и микробов; в свою очередь все эти организмы возвращаются в почву и царство минералов. Атомы углерода включаются в этот цикл снова и снова, и каждый атом за миллиарды лет своего существования принимает множество форм.

В нас с вами происходит также и индивидуальный углеродный цикл — гораздо более непосредственный и интимный, связанный с изменением нашего тела. Мы переживаем этот личный цикл элемента №6 с самого зачатия и до того момента, когда наши останки полностью разложатся.

Вы вдыхаете кислород и едите богатую углеродом пищу, которые являются движущей силой метаболизма. Ваше тело встраивает в себя этот углерод, когда создает новые клетки; ваше тело вырабатывает углекислый газ, когда сжигает насыщенное углеродом топливо.

Вы выдыхаете углекислый газ, и ваше тело сбрасывает атомы углерода, как деревья — осенние листья. С каждым выдохом вы немного таете{207}. С каждым выдохом крошечная доля углерода вашего тела — менее 0,001% — уходит, рассеивается, она готова вступить в новый цикл. Ваше тело сегодня может казаться таким же, каким было на прошлой неделе или в прошлом году, но это не так. Многие атомы уже другие — точные копии, но другие.

Всю свою жизнь вы потребляли новые атомы углерода, теряя старые атомы углерода. Как эфемерны наши тела! Немного осталось тех атомов, тех молекул, которые были вами при рождении. Немногие из атомов, молекул, которые являются вами сегодня, по-прежнему будут вами, когда вы проживете еще с десяток лет. Мы, люди, не задумываясь приравниваем наши тела к нашим сущностям. Наши разумы разделены, наши мысли — однозначно наши собственные, но атомы в наших телах столь же мимолетны, как морской бриз.

И где сейчас эти атомы — те, что были еще недавно частью вас? Некоторые — в воздухе или растворились в океанах. Некоторые, возможно, заперты в карбонатных раковинах моллюсков и улиток или скоро будут изолированы в известняке коралловых рифов. Многие из триллионов и триллионов атомов углерода, которые когда-то были вами, сейчас обитают в стеблях, листьях, цветах и корнях растений — дуба, пшеницы, розы, мха. Животные едят растения и таким образом наследуют и задерживают на некоторое время то, что когда-то было вами. И каждый человек на Земле, который прожил хотя бы несколько лет, любой, кто ел растения или животных, которые ели эти растения, сейчас содержит атомы углерода, которые когда-то были вами, а в то же время в вас есть атомы углерода, которые когда-то были ими, — атомы каждого, кого вы знали в своей жизни, ваших друзей, родственников, любимых; почти всех, кто когда-либо жил.

Попробуйте представить себе космический путь одинокого атома углерода, который сейчас — на недолгий миг — является частью того, что вы считаете «собой».

Этот атом углерода выковался в недрах большой звезды и вылетел в космос, когда звезда взорвалась. Предположим, что он присоединился к другим атомам углерода и образовал крошечный кристаллик алмаза, став частичкой пыли и газа в молекулярном облаке — изобильной звездообразующей области Млечного Пути, нашей молодой Галактики. Возмущение в этом облаке, к примеру встряска от взрыва ближайшей сверхновой, способствует локальному коллапсу — и так зарождается наша Солнечная система. Бо́льшая часть всей этой массы падает внутрь, чтобы образовать наше Солнце, но алмазная крупинка находит себе другой дом в оставшемся веществе, которое начинает образовывать третью большую планету в упрочняющейся системе.

Земля слишком горяча, слишком химически активна, чтобы маленький алмаз мог выжить. Наш атом углерода соединяется с атомами кислорода и образует молекулу углекислого газа — мельчайшую частичку развивающейся атмосферы. Эта молекула CO2 поглощается океаном, где ее тысячу лет носят течения, пока она не осядет в виде карбонатного слоя на дне мелководной окраины океана.

Проходят еще один-два миллиона лет. А затем в береговую линию врезается астероид диаметром больше километра и происходит всеобщее разрушение. Минералы углерода испаряются, возвращая углекислый газ в атмосферу. Цикл повторяется: из воздуха в океан, из океана в горные породы, но на этот раз слой карбонатов, захваченный опускающимся фрагментом плотной земной коры, медленно погружается в верхнюю мантию, где внутреннее тепло Земли расплавляет вмещающую породу. Этот расплав, богатый водой и CO2, поднимается все выше, а давление пока в состоянии удерживать летучую смесь. Когда магма подходит к поверхности, флюиды внезапно и бурно превращаются во взрывной поток, который, вырываясь наружу, забрасывает окрестности вулканическими бомбами и пеплом. И снова наш атом углерода высвобождается в воздух в виде молекулы CO2.

Этот повидавший мир атом углерода, подзаправившись ближайшей вспышкой молнии, соединяется с азотом и другими атомами для образования аминокислоты — молекулы, которая живет всего несколько дней, пока не распадется под действием ультрафиолетового излучения Солнца. В своем более стабильном облике, в виде молекулы углекислого газа, наш атом очередной раз вступает в цикл — отправляется из воздуха в океан. Этот атом неоднократно подвергается химическим реакциям в глубинных жерлах гидротермальных источников на дне океана, образуя аминокислоты, которые выживают там лишь несколько недель, прежде чем распасться обратно до CO2. Вот так рожденный звездой атом циркулирует по резервуарам Земли эон за эоном, переходя из газа в жидкость, а потом в камень и обратно бесчисленное количество раз.

Перемотаем на миллиард лет вперед. Появляется новый феномен жизни. Манят новые углеродные резервуары. Углекислый газ извлекается из воздуха и фотосинтезирующими водорослями преобразуется в сахар. Сахар становится топливом для производства потрясающих молекулярных новинок: липидов из цепочек углерода — для формирования клеточных мембран; оснований из колец углерода — для переноса генетического кода; а углерод, связанный с азотом и кислородом в аминокислоту, — это строительный материал белков. Наш атом углерода быстро циркулирует по биосфере, играя множество новых ролей в гораздо более бешеном темпе, чем раньше, иногда меняя химическую форму десяток раз за неделю. А в некоторых случаях он запечатывается в карбонатной раковине, падая на дно океана связанным на 100 млн лет и ожидая возвращения в энергичный живой мир на поверхности.

На прошлой неделе вы съели этот атом углерода. Сейчас он часть молекулы белка, которая играет жизненно важную роль в одной из ваших клеток. Будем надеяться, что все идет как надо.

Смерть и углерод

Мы, многоклеточные формы жизни, уязвимы. Многое может пойти не так с атомами углерода в столь сложных системах.

У моего брата Дэна рак начался в двенадцатиперстной кишке — том месте, где никто не ищет рак, где не возникает явных симптомов, по крайней мере пока опухоль не распространится на другие органы. Но это уже оказывается слишком поздно. Врачи пытались остановить агрессивные клетки, когда рак убил печень. Дэн месяцами терпел жуткую химиотерапию. Она не помогла. Через полгода брат умер.

Виновниками были углеродсодержащие молекулы — как и во многих других болезнях. Один атом углерода — это мелочь, но когда несколько его атомов выпадают или располагаются не там или не так, они могут многое изменить: мы подчиняемся прихоти углерода в отношении смерти так же, как и применительно к жизни. Врачи не могли объяснить нам, что пошло не так у Дэна, почему именно он — находящийся в лучшей по сравнению со всеми нами форме, внимательнее относящийся к своему питанию, физически активный — пал жертвой. Что-то пошло не так с молекулами, которые контролируют деление клеток. Всего одной клетки из 10 трлн. Эта клетка начала размножаться неконтролируемо и в конечном счете узурпировала другие клетки, другие органы.

Все виды рака и генетические заболевания в данном отношении одинаковы: это ошибки в атомах углерода — их расположении, их связях. Рассмотрим главные аминокислоты аспартат (аспарагиновую кислоту) и глутамат, которые различаются только одним атомом углерода. Вставьте не ту аминокислоту в принципиально важный белок — и длинная цепочка молекул сложится не тем образом, которым должна была сложиться. Получившаяся не той формы структура может посеять клеточный хаос, следовательно, клетка будет не в состоянии выполнять свои жизненно важные функции.

А куда деваются наши атомы углерода, когда мы умираем?

Я думаю о Лулу, нашей четвертой и последней мальтийской болонке, представительнице третьего поколения милых белых пушистых мячей. Бо́льшую часть времени из прожитых 13 лет она веселым эльфом выскакивала за дверь, лая и подпрыгивая, когда я приходил домой из лаборатории. Ее сестра-близнец Джулия умерла годом ранее в возрасте 12 лет, и после этого здоровье Лулу стало неуклонно ухудшаться. Под конец жизни она потеряла слух и ориентацию в пространстве, то где-то пряталась, то внезапно выскакивала и начинала бегать, облаивая непонятно кого. Когда собачка перестала есть и пить, мы ее усыпили. По крайней мере уход ее был спокойным; когда-то оживленный дом поглотила тишина.

Мы выкопали могилку в лесу рядом с домом, под цветущим багрянником. Кудрявая белоснежная шерсть Лулу казалась совсем не к месту в этой глубокой темной яме; мы попрощались, накрыв трупик 60 см плодородной коричневой земли.

В маленькой собачке весом 4,5 кг содержится от 900 до 1300 г углерода — это порядка 50 трлн трлн его атомов. Что произошло с ними, когда Лулу умерла? Короткий промежуток времени — часы, не дни — ее мертвое тело еще удерживало почти все эти атомы. Но в контакте с воздухом и почвой останки собаки представляли собой богатый запас химической энергии для бактерий, грибов и мелких животных-падальщиков. Начался неизбежный процесс рассеивания ее атомов. Бо́льшая часть мертвой плоти пошла на обеспечение энергией и атомами других живых существ. Атомы углерода стали диффундировать, распространяясь наружу от разлагающейся Лулу все возрастающими сферами. Распад тела также высвободил в атмосферу углекислый газ и другие небольшие органические молекулы, которые распространились по всему миру и — самое главное — были использованы бесчисленное количество раз в новой жизни на каждом континенте. Возможно, прямо сейчас вы вдыхаете атомы, которые когда-то были частью Лулу.

Круговорот. Вот что делает природа. Стабильные атомы земного углерода ни создаются, ни разрушаются — они используются снова и снова.

Загрузка...