03 Чудеса науки в домашнем быту

Прогресс технологии освещения

Это началось как ручеек, но превратилось в настоящее наводнение. Люди во всем мире массово отказываются от своих старых ламп накаливания в пользу новомодных компактных люминесцентных ламп. Правительства по всему миру принимают законы, запрещающие использование ламп накаливания. Бразилия и Венесуэла первыми вступили на этот путь еще в 2005 году, Австралия – в 2010 году, Великобритания – в 2011 году. На момент написания книги Россия, США и Китай уже тоже законодательно поддержали это начинание. Причина проста: лампы накаливания ужасно неэффективны как источник света. Они были представлены на рынке лишь потому, что не существовало экономически надежных конкурентов.

Традиционную лампу накаливания впервые продемонстрировал на практике не Томас Эдисон и даже не Джозеф Суон[15], а шотландец Джеймс Линдси в 1835 году в Данди. Хотя это изобретение значительно усовершенствовалось за почти 200 лет своего существования, лишь около 2 % энергии, поступающей в лампу накаливания, превращается в видимый свет. Сравните этот показатель с показателем ламп, на которые мы все постепенно переходим: компактная люминесцентная лампа преобразует в свет около 10 % энергии. Теперь понимаете, почему нас всех призывают сделать такой переход?



Компактная люминесцентная лампа представляет собой обычную люминесцентную лампу, свернутую спиралью, в некоторых случаях – заключенную во внешнюю стеклянную колбу. Наука, лежащая в основе ее работы, была известна с 1856 года, но только с инновационной намоткой и в результате миниатюризации эти лампы начали свой путь в наши дома в 1976 году. Трубка компактной люминесцентной лампочки заполнена инертным газом аргоном под очень низким давлением, но внутри трубки также есть крошечная капля жидкой ртути, которая нагревается и испаряется, когда через трубку проходит электрический ток ионов и, собственно, электронов. При этом электричество передает часть своей энергии атомам ртути. Ртуть может удерживать эту энергию совсем недолго, а потом быстро высвобождает ее в форме невидимого глазом ультрафиолетового света. Он в свою очередь попадает на белое порошкообразное люминофорное покрытие на внутренней стороне стеклянной трубки. Люминофор поглощает энергию ультрафиолетового излучения и, как и ртуть, быстро отдает ее, но на этот раз в форме видимого света. Свет современных компактных люминесцентных ламп имеет примерно ту же интенсивность, что и свет ламп накаливания. Но к числу пока не решенных серьезных недостатков относится сравнительно долгое время, которое требуется люминесцентной лампе для достижения максимальной яркости.

Обычно на это требуется от десяти секунд до минуты, и вот почему. Когда вы включаете люминесцентную лампу, внутри трубки очень мало паров ртути. Почти вся она находится в жидком состоянии. Что касается аргона, он не проводит электричество. Чтобы заставить ток течь по трубке, на каждом ее конце должна быть крошечная катушка провода. Когда электричество проходит по этим проводам, они нагреваются и выбрасывают электроны со своей поверхности в газ аргон. Также катушки нагревают ртуть, превращая ее в пар, и, только когда газ внутри лампы достигает критической точки ионизации, электричество принимается течь по трубке в штатном режиме. Затем ртуть начинает испускать ультрафиолетовый свет, который люминофор преобразует в видимый. Все это занимает некоторое время, так что лампа разгорается не сразу. Именно поэтому компактные люминесцентные лампы работают плохо вне помещений. Если воздух холодный, может потребоваться до пяти минут, чтобы лампа разгорелась полностью.

В последнее время появился ряд инноваций, которые способствуют более быстрому «запуску» компактных люминесцентных ламп. И все же никакие инновации никогда не смогут обеспечить им то мгновенное включение, которое предлагают лампы накаливания. Несмотря на это, пятикратное повышение КПД и вытекающая из этого колоссальная экономия энергии более чем компенсируют неудобства первых секунд включения. Однако уже появилась и новая технология – светоизлучающий диод и светодиодные лампы. В настоящее время лампочки, изготовленные на основе светодиодов, значительно дороже, но их эффективность в два раза выше, чем у компактных люминесцентных ламп. К тому же они мгновенно разгораются вне зависимости от температуры воздуха. Так что и у самóй компактной люминесцентной лампы, вытесняющей 200-летнюю лампу накаливания, нет никаких гарантий, что она будет вечно оставаться в центре внимания.

Слинки – шагающая игрушка

В 2014 году я получил возможность попытаться установить мировой рекорд и попасть в Книгу рекордов Гиннесса. Правда, за максимальное количество ступенек, на которые спустится слинки. С Хью Хантом, инженером из Кембриджского университета в Великобритании, мы установили рекорд в тридцать ступеней. В процессе экспериментов – стоит отметить, дело это оказалось сложнее, чем можно себе представить, – я делал перерывы, чтобы задаться вопросом, как вообще работает слинки.

Слинки изобрел Ричард Джеймс, инженер из Филадельфии (США), в 1943 году. Оригинальная конструкция, которая сохранилась и по сей день, представляет собой катушку из стальной проволоки длиной более 21 метра с 98 петлями-витками. Когда в 1945 году такая пружинка поступила в продажу, ее ждал настоящий успех. Говорят, что первую партию раскупили всего за 90 минут. С тех пор были проданы сотни миллионов слинки, и это не считая современных пластиковых версий.

В полной мере магия слинки откроется перед вами, когда вы поставите ее и перекинете верхнюю часть пружинки над краем ступеньки. Вся пружина спустится на ступеньку вниз. Затем слинки самостоятельно сделает еще шаг и спустится на следующую ступеньку. Это будет происходить до тех пор, пока игрушка не доберется до площадки или, что бывает гораздо чаще, не запутается и не остановится. Казалось бы, такая конструкция не должна работать, но она определенно работает.

Каждая пружина, независимо от размера, обладает коэффициентом жесткости, который представляет собой совокупную характеристику ее длины и силы. Чрезвычайно важно, чтобы жесткость пружины была одинаковой по всей длине слинки, а также соответствовала высоте ступеней, по которым вы пытаетесь ее спускать. Если жесткость слишком высока, слинки будет все быстрее переворачиваться вниз по ступенькам и начнет хаотично падать, а не шагать. Если же чересчур низкой – ее верхняя часть достигнет следующей ступени и пружина просто застрянет, не имея достаточно тяги, чтобы опустить нижнюю часть слинки. То же самое и с высотой ступеней: если она окажется неподходящей, пружинка просто не будет шагать. Например, на очень неглубоких ступенях большинство слинки застревает, так как им недостает мощности, чтобы вытянуть всю катушку вниз, к следующей ступени. А на слишком узких – для шага не хватает места.

Но коэффициент жесткости объясняет только, почему слинки спускается на следующую ступеньку, но никак не то, почему она продолжает шагать. Чтобы добраться до сути этого явления, нам нужно очень внимательно понаблюдать за слинки, и лучше в замедленной съемке. Вы заметите нечто весьма интересное: когда пружинка касается нижней ступени, последние несколько витков не торопятся соединиться с остальными и даже на мгновение замирают на верхней ступени. Именно импульс последних витков способен преодолевать силу, стягивающую пружину при растяжении. Запас этого импульса позволяет слинки поднимать верхнюю часть и начинать падать вниз, на следующую ступеньку. Далее гравитация делает свое дело, и весь процесс начинается снова.

Итак, с помощью физики, работающей так, как нужно вам, вы можете заставить слинки пройти определенный путь. Тем не менее, по моему собственному рекордному опыту, секрет действительно длинного спуска заключается в том, чтобы сделать достаточно сильный первый щелчок, и тогда слинки не остановится. Сделайте его правильно, и ваша пружинка будет шагать вниз, пока не закончатся ступени.

Машины, которые видят в темноте

В углу комнаты, где я сижу и пишу эти строки, под потолком висит маленькая коробочка. Это моя система охранной сигнализации. Внешне кажется, что она сформирована из непрозрачного изогнутого листа белого пластика. Коробочка не замечает моего присутствия, но, когда я встаю со своего места, на ней загорается красная лампочка. Каким-то образом белая пластиковая коробка видит меня, хотя я нахожусь по крайней мере в пяти метрах от нее. Если я стою абсолютно неподвижно, примерно через пять секунд лампочка гаснет. Можно двигаться достаточно медленно, чтобы красный огонек оставался выключенным, но это невероятно трудно. Детектор удивительно чувствительный – малейшее быстрое движение, и он замечает меня. Более того, он обнаруживает движение как при дневном свете, так и в кромешной темноте. Как же так получается, что нечто столь маленькое и безобидное может узнать меня в другом углу комнаты?



Пластиковая коробка с мигающим красным огоньком известна на рынке систем охранной сигнализации как пассивный инфракрасный детектор, или ПИР-детектор. Как следует из названия, он способен обнаруживать инфракрасное излучение, которое по сути является таким же излучением, как свет, но мы его видеть не можем. Наши глаза воспринимают только определенный диапазон длин волн света, составляющего радугу. Однако существует непрерывный спектр электромагнитного излучения с длинами волн, которые выходят далеко за пределы диапазона радуги в обоих направлениях. Излучение с длиной волны чуть больше, чем у красного света, – это инфракрасное излучение. Хотя мы его не видим, в некоторых случаях можем почувствовать его как излучаемое тепло.

Все тела испускают инфракрасное излучение в виде слабо ощущаемого тепла. В ПИР-детектор встроен тонкий кристалл чувствительного вещества, называемого нитридом галлия. Кристаллы этого вещества обладают необычным свойством: при попадании на них инфракрасного излучения происходит изменение их структуры. Кроме того, несколько меняются и их электрические свойства, что приводит к незначительной разнице в количестве электричества, которое может протекать через кристалл. Хотя это очень незначительный эффект, вам не составит труда его обнаружить с помощью простых и легкодоступных электрических цепей.

Чтобы увидеть, как что-то или кто-то движется по комнате, понадобиться не один, а два крошечных стержневидных кристалла из нитрида галлия. В детекторе их располагают вертикально рядом друг с другом и с небольшим промежутком между ними. Каждый кристалл эффективно регистрирует тепло только в проецируемой им тонкой вертикальной полоске. Поскольку эти полосы расположены очень близко, стационарное фоновое инфракрасное излучение, попадающее на каждый из них, и разность потенциалов (напряжение), создаваемая каждым кристаллом, почти одинаковы.

Самая большая хитрость состоит в установке кристаллов: положительный выход одного из них необходимо соединить с положительным выходом другого. Если разность потенциалов, создаваемая каждым кристаллом, одинаковая, они сами себя компенсируют, и на выходе мы не получаем никакого напряжения. Этот трюк делает детектор нечувствительным к таким вещам, как радиаторы центрального отопления, вентиляционные отверстия и другие источники медленно меняющегося фонового инфракрасного излучения.

Если вы пересекаете комнату, то непременно проходите и через две тонкие полоски – области «зрения» кристаллов. В какой-то момент вы на мгновение оказываетесь больше на одной полосе, чем на другой. Когда это происходит, инфракрасное воздействие на один кристалл возрастает, вследствие чего вырабатываемое кристаллами напряжение перестает быть равным и больше не компенсируется. Внезапно вы получаете всплеск напряжения от обоих кристаллов, который и регистрирует детектор. Поскольку более крупные тела, движущиеся вдоль полосы, создают более сильные всплески напряжения, вы можете настроить детектор так, чтобы он игнорировал такие мелкие объекты, как домашние животные например.

Проблема этой системы в ее нынешнем виде заключается в том, что она может «ощущать» движение людей, только если они попадают на одну из узких полос, тянущихся от детектора. Чтобы обеспечить ПИР-детектору лучший обзор, используется ряд пластиковых линз, которые располагают вокруг кристаллов. Поскольку нас интересует только инфракрасное излучение, пластик не должен быть прозрачным для видимого света – только для инфракрасного излучения. Таким образом, даже если внешняя оболочка ПИР-детектора белая и непрозрачная, для инфракрасного излучения она препятствием не является. Эти пластиковые линзы фокусируют полосы инфракрасного света с различных углов на кристаллы. Так детектор может видеть комнату в полудюжине, или около того, различных направлений одновременно.

Все это складывается в изящную пассивную инфракрасную систему обнаружения, которая игнорирует не только маленьких существ, но и медленно меняющиеся фоновые инфракрасные источники. ПИР-детекторы слепы к этим вещам, но они чрезвычайно чувствительны к непрошеным гостям в вашем доме или, как в моем случае, к людям, которые хотят установить, насколько медленно нужно двигаться, чтобы перехитрить охранную сигнализацию.

Изготовление одностороннего зеркала

Вы когда-нибудь сидели у окна, наблюдая за тем, как мимо проходят люди? И вдруг обнаруживали, что постепенно за окном темнеет и вы теперь вместо того, чтобы смотреть на прохожих, смотрите на себя, как в зеркало? Ранее прозрачное окно стало отражающим, когда внешний мир потемнел. Ясно, что стекло физически не изменилось, хотя для вас оно превратилось в зеркало. Но все же если вы выйдете в темноту и посмотрите в освещенную комнату, то стекло снова станет прозрачным.

Ключ к тому, что происходит в такие моменты, лежит в осознании того, что стекло не так уж и прозрачно, как мы предполагаем. Если вы направите луч света прямо на него, непосредственно от передней поверхности стекла отразится всего около 4 % света. Также он отразится от внутренней поверхности с другой стороны стекла. В общей сложности отражается почти 7 % света. Стекло всегда действовало и будет действовать как зеркало, только не очень хорошее.

Отражение имеет место каждый раз, когда свет пытается перейти из одной среды в другую. В случае с окном он переходит из воздушной среды в стекло. Луч света – это электромагнитная волна, несущая энергию. То есть часть энергии является электрической, а часть – магнитной. Поверхность стекла заполнена электронами, которые, хоть и не свободны, могут немного перемещаться. Электрическая волновая часть света заставляет их колебаться, что, в свою очередь, создает магнитное поле, которое тоже колеблется. Колеблющиеся магнитные и электрические поля проявляются как свет, излучаемый самим стеклом. Принципиально важно то, что волны этого света не синхронизируются с падающим лучом. Часть испускаемого света движется в том же направлении, что и исходный луч света, но вместо того, чтобы усиливать этот луч, она немного гасит его. В то же время стекло с той же интенсивностью излучает свет в сторону, откуда исходил первоначальный луч. И в результате небольшое количество энергии луча, как нам кажется, отражается от поверхности стекла, тогда как остальная часть света продолжает свое движение, пусть и несколько ослабленное, в том же направлении. По большому счету, эти процессы лежат в основе любого отражения, и именно поэтому стекло ведет себя как зеркало.

Однако это не объясняет, почему вы не можете видеть свое отражение днем, но отлично видите его ночью. Для этого нужно обратиться к биологии. Наши глаза невероятно хорошо справляются с различными условиями освещения. Они в состоянии приспосабливаться за долю секунды, и мы даже не замечаем, как это происходит. Прежде всего автоматически меняется размер наших зрачков, которые пропускают свет в глазные яблоки. Сокращая и расслабляя мышцы, связанные с радужной оболочкой, наши глаза сужают и расширяют зрачки соответственно. Если зрачки сильно расширены, в глаза проникает больше света и мы можем видеть при более низких уровнях освещенности. Если сужены – наоборот, нам комфортнее в условиях яркого освещения, причем глаза не подвергаются чрезмерному воздействию солнца. Есть и другие механизмы в сетчатке, которые постепенно меняют чувствительность светочувствительных клеток, но на это может потребоваться до 30 минут.

В течение дня солнечный свет льется в окна. Даже в пасмурную погоду ваши зрачки довольно узкие, что позволяет лишь небольшому количеству света проникать к вам в глаза. Свет, отражающийся от окна, с того места, где вы стоите внутри комнаты, кажется сравнительно слабым. Поскольку ваше зрение приспособлено к тому, чтобы справляться с высоким уровнем освещенности, вы просто не воспринимаете это слабое отражение. Оно есть, но ваши глаза не могут его уловить. И наоборот: ночью, когда вы смотрите в окно, в ваши глаза не попадает большого количества света со стороны окна. Зрачки становятся предельно широкими, и теперь глаза способны обнаружить это слабое отражение. Выйдите на улицу и посмотрите в окно освещенной комнаты, где вы только что стояли. Ваши зрачки станут ýже, глаза привыкнут к высокой яркости, и отражение снова исчезнет. Конечно, если вы выключите свет в комнате, чтобы было темно как внутри, так и снаружи, вы ничего не увидите.

Исчезая в сливном отверстии по часовой или против

Если однажды вы отправитесь в такие страны, как Эквадор или Кения, – по территории обеих проходит экватор, – то сможете наблюдать эффект Кориолиса в его классическом виде. К сожалению, у меня не было возможности испытать подобный опыт лично, но в 1992 году я сделал это опосредованно во время просмотра телевизионного восьмисерийного документального фильма по книге Майкла Пэйлина «От полюса до полюса». Когда Пэйлин добрался до предместий Найроби в Кении, один восторженный молодой человек показал ему, что вода в сливном отверстии раковины к югу от экватора закручивается по часовой стрелке, а к северу – против часовой. Это достаточно распространенное наблюдение, и его объяснение состоит в том, что все дело в эффекте Кориолиса, который, в свою очередь, обусловлен вращением Земли. Научное обоснование этого эффекта уже полностью сформировано, так что можно даже провести демонстрацию. Тем не менее существуют и более прозаичные объяснения того, что происходит в раковине.

Названный в честь французского математика эффект Кориолиса – это реальное явление, с которым чаще всего сталкиваются в области метеорологии. Оно наблюдается, когда что-либо, например воздух, движется вдоль поверхности вращающегося тела, такого как Земля.

Представьте себе, что есть некий наблюдатель, сидящий в неподвижном относительно Земли космическом корабле. И у него есть суперсовременное устройство, позволяющее следить за воздушными потоками. Поток воздуха, который с точки зрения космического наблюдателя движется по прямой линии, с точки зрения земного – должен двигаться по изогнутой траектории. Вращение Земли и трение между воздухом и Землей сдвигают воздух в одну сторону и заставляют воздушный поток изгибаться. В Северном полушарии, которое вращается против часовой стрелки, воздух, движущийся по поверхности Земли, немного смещается вправо. Это означает, что по мере того, как воздух проникает внутрь области низкого давления, он начинает вращаться по спирали вокруг и вправо, в результате чего приобретает направление против часовой стрелки. Если же наблюдатель перенесется к Южному полушарию, то при взгляде на него со своего спутника увидит, что оно вращается по часовой стрелке. Так что в области низкого давления к югу от экватора воздух закручивается спиралью тоже по часовой стрелке.

Эти спиральные циклоны создают крупномасштабные движения воздуха, которые управляют большей частью погоды на Земле. Наиболее очевидными из этих крупных циркуляций являются ураганы, вращающиеся против часовой стрелки в Северном полушарии и по часовой стрелке – в Южном. Эффект Кориолиса представляет собой значительную силу, когда движение воздуха наблюдается на больших расстояниях, соизмеримых с диаметром Земли, и во временном масштабе больше, чем суточный период вращения Земли.

В небольших масштабах – например, в раковине – наблюдать эффект Кориолиса немного затруднительно, но все-таки возможно. В 1962 году профессор инженерного факультета Массачусетского технологического института в США построил огромную идеально круглую раковину, имеющую диаметр почти 2 метра и достигающую 15 см в глубину. Ее наполнили водой и оставили на 24 часа, закрыв при этом сверху, чтобы сквозняки не мешали воде; в помещении, в котором она находилась, тщательно поддерживалась постоянная температура. Когда пробку вынули, потребовалось 20 минут, чтобы осушить раковину. Опыт повторили несколько раз, и вода неизменно сливалась против часовой стрелки – точно так, как предсказывал эффект Кориолиса.

Хорошо, но почему же тогда в моей раковине вода всегда сливается по часовой стрелке, хотя я нахожусь в северном полушарии? Дело тут в форме раковины и в том, что почти во всех странах холодный кран принято устанавливать с правой стороны, причем давление холодной воды, как правило, выше, чем горячей. Когда вы заполняете раковину из обоих кранов, холодная вода закручивает воду справа по часовой стрелке. Когда вы вынимаете пробку, остается вращательный момент и образуется вихрь, также закручивающий воду по часовой стрелке. Конечно, эффект Кориолиса, противостоящий этому вихрю, будет иметь место, но он получится совсем слабым.

Оказывается, если у вас нет огромной раковины с абсолютно симметричными потоками, вы ничего и не увидите. Эффект Кориолиса невозможно обнаружить в обычной раковине или ванне. Расстояние, которое вода преодолевает, двигаясь от края раковины к центру, ничтожно мало по сравнению с размерами Земли. Кроме того, движение происходит в течение минуты или около того, что также является крошечной долей того времени, которое требуется Земле, чтобы совершить оборот вокруг своей оси.

В таком случае что же увидели на экваторе Майкл Пэйлин и многие другие туристы? Обычный фокус. Воде просто подсказали, куда нужно закручиваться. Да вы и сами можете попробовать это провернуть в своей собственной раковине. Секрет в том, чтобы осторожно наполнить ее, наливая воду немного не по центру. Это гарантирует, что она сохранит ничтожное, почти незаметное вращение. Меняя направление при наливании воды, можно изменить ее направление и при сливе. Вытащите пробку, и вуаля! Вы можете опустошить раковину и по часовой стрелке, и против – как вам угодно. Таким образом, хотя эффект Кориолиса – это реальность, лежащая в основе всей нашей погоды, единственный способ воссоздать ее в быту – это всегда немного ловкость рук.

Эйнштейн, теория относительности и ваш смартфон

Эйнштейн по праву знаменит рядом экстраординарных открытий. Были, конечно, и великолепные волосы, которыми он щеголял особенно в конце жизни, но, вероятно, более важной является все же его работа над теорией относительности. Вместе взятые, специальная и общая теории относительности стали единой теорией, которая объясняет, как взаимодействуют время, гравитация и скорость. В обычной жизни мы редко сталкиваемся с теорией относительности, ведь ее эффекты можно наблюдать только на огромных расстояниях или при движении со скоростью, близкой к скорости света. Однако в кармане, или где бы то ни было еще, у вас наверняка лежит смартфон – и это устройство уже четко демонстрирует все грани гениальности Эйнштейна и его теории относительности.

Внутри почти любого смартфона есть крошечный чип, прикрепленный к встроенной антенне. Он вычисляет, где на поверхности Земли находится телефон с точностью до 3–4 метров. Глобальная система позиционирования, или GPS, которая позволяет смартфону это делать, опирается не только на сеть спутников, вращающихся вокруг Земли, но и на глубокое понимание теории относительности.



Работа спутника GPS на первый взгляд довольно проста. Каждые 30 секунд он передает радиосигнал, содержащий не только время отправки сообщения, но и информацию о точном положении спутника над Землей. Первое – время передачи – указывается по атомным часам на борту спутника, которые невероятно точны. Их точность – до 1 секунды на каждые 138 миллионов лет. Узнать, где находится сам спутник, тоже не особенно сложно. Поскольку он вращается вокруг Земли над атмосферой, его перемещения легко предсказываются с помощью базовых законов движения. Тем не менее координаты всех спутников GPS постоянно контролируются посредством наземного радара, что позволяет вносить любые, пусть даже самые крошечные поправки в их положение. Вся эта информация сжимается в пакеты и передается вниз на Землю каждые полторы минуты.

Когда ваш телефон получает один сигнал, сам по себе он бесполезен. Смартфону нужно собрать сигналы с трех разных спутников в течение примерно 30 секунд, прежде чем он сможет приступить к сложной математике, называемой трилатерацией. Обратите внимание, что этот процесс отличается от родственной триангуляции, поскольку ваш телефон не знает, под каким углом приходят спутниковые сигналы. Однако он в курсе, за какое время, ведь у телефона есть свои часы. Посмотрев на разницу между временем отправки и временем получения, он может определить, как долго сообщение добиралась до адресата.

Поскольку мы знаем, что радиосигнал распространяется со скоростью света, наши смартфоны способны определить, как далеко находятся спутники, посылающие сигнал. После того как телефон проделает эту операцию с тремя спутниками (а положения этих спутников в момент, когда они послали сигнал, ему известны), он может точно вычислить и свое местоположение, используя математику трилатерации.

Возможно, эта математика немного сложна для понимания – особенно в трех измерениях. Чтобы упростить картину, избавимся пока от одного измерения и в качестве примера рассмотрим ситуацию на плоской поверхности. Представьте себе поле с тремя деревьями, растущими по его краю. На поле отдыхает корова. Если по какой-то причине, совершенно неважно какой, вы хотите определить местоположение коровы на карте, то лучше всего использовать трилатерацию. Начните с измерения расстояния от первого дерева до коровы. Теперь возьмите циркуль, чтобы нарисовать окружность вокруг этого дерева на карте, а радиусом пусть будет масштабированное расстояние, определенное в ходе первого измерения. Корова должна располагаться где-то в рамках этой окружности. Повторите алгоритм снова, но уже со вторым деревом, и на карте у вас появится два круга, пересекающиеся в двух точках – корова находится в какой-то из них. Наконец, измерив расстояние до третьего дерева, нарисуйте последнюю окружность, и тогда вы можете быть уверены, что корова отдыхает в той точке, где пересекаются все три круга.

Ваш телефон совершает все эти действия, не прибегая к рулеткам, часам или компасу. Более того, поскольку он делает это в трех измерениях, его построения уже не с кругами, а со сферами. Первым следствием этого является то, что, рассчитав координаты, телефон сгенерирует не одно, а два возможных местоположения, определенных с помощью трилатерации. Тем не менее только одно из этих мест будет располагаться на поверхности Земли, тогда как другое окажется где-то в космосе. И ваш GPS благоразумно проигнорирует это второе местоположение. Еще одно следствие заключается в том, что в этом расчете будет учитываться также высота.

Все это довольно тонкая работа, особенно если вы начнете с самого начала, то есть с того момента, когда спутники передали свои сообщения. Но если вы не примете во внимание теорию относительности, GPS окажется безнадежно неточным.

Согласно специальной теории относительности, чем быстрее вы движетесь, тем медленнее будет идти ваше «бортовое» время для того, кто имеет возможность наблюдать за вами, но сам не движется. В повседневной жизни это, как правило, не проблема, но спутники GPS вращаются вокруг Земли со скоростью около 14 000 км/ч. При такой скорости атомные часы на борту спутников замедляются для нас на 7 мкс в день. Кроме того, мы должны учитывать общую теорию относительности, которая гласит, что в областях с ослабленной гравитацией время идет быстрее для тех, кто наблюдает за ними из областей с более сильной гравитацией. Поскольку спутники GPS вращаются на высоте 20 000 км, гравитационная сила Земли там меньше, и это заставляет атомные часы ускоряться на 45 мкс в день. Общий чистый эффект – это ускорение атомных часов на 38 миллионных долей секунды каждый день.

Конечно, может показаться, что этого очень мало, поэтому не стоит и беспокоиться. Но если подставить эти данные в формулы трилатерации, то в итоге они дадут погрешность GPS в 11 км. Более того, если вы не будете постоянно исправлять эту ошибку, погрешность начнет увеличиваться на 11 км каждый день. Так что в конце недели GPS определит ваше местоположение в 80 км от фактического. К счастью, создатели спутников GPS хорошо знают теорию относительности Эйнштейна и умело используют ее для корректировки атомных часов на борту спутников с учетом ежедневного опережения на 38 мкс[16].

Возможность узнать, где вы находитесь на поверхности планеты, это та чаша Грааля, которую наше общество искало на протяжении веков. Предлагались огромные денежные вознаграждения и, как следствие, прилагались огромные человеческие усилия для решения этой проблемы. И наконец благодаря GPS мы смогли делать это с невероятной точностью. Но ключом к этому стало понимание одного из двух столпов физики XX века. Я изо всех сил пытаюсь разобраться в идеях специальной и общей теорий относительности и знаю, что не одинок в этом. Но пусть я пока не так уж силен в деталях, мне приятно знать, что мой смартфон с GPS-приемником и микрокомпьютером способен выполнить все необходимые вычисления и моментально определить мое местоположение, блестяще доказывая тем самым, что теория Эйнштейна работает.

Тление и горение – разные предпочтения датчиков дыма

Датчики дыма, или пожарные извещатели, стали на удивление распространенным охранным устройством. И не зря. Мировая статистика показывает, что шансы не погибнуть от пожара в доме удваиваются, если в нем установлены эти самые датчики. Национальные пожарные службы во всем мире чрезвычайно заинтересованы в распространении пожарных извещателей, поскольку они не только спасают жизни, предупреждая людей о возгорании незамедлительно, но и дают возможность быстро поставить в известность пожарных, позволяя им добраться до места назначения прежде, чем огонь приведет к непоправимым последствиям.

Хотя все рады иметь дома датчики дыма, чудесные инженерные решения, заключенные внутри них, часто упускаются из виду теми, кто выбирает, какие именно датчики ставить. Существует два основных типа извещателей, и каждый из них чуть лучше подходит для одного из двух слегка различающихся типов пожара.

Если пламя начинает пожирать не особенно огнеопасный материал, то, как известно, создает тлеющий огонь. Такой пожар приводит к образованию дыма, состоящего из крупных частиц сажи. Хотя, конечно, все относительно: диаметр этих частиц равен примерно всего лишь одной сотой доле миллиметра. Для их обнаружения нужен оптический датчик. Внутри его корпуса – кроме батареи, сирены и разнообразной электроники – вы найдете небольшую, окрашенную в черный цвет круглую дымовую камеру. На одном ее конце находится источник света, который светит внутрь камеры. В современных сигнализациях это обычно светоизлучающий диод, и часто он испускает инфракрасное излучение. Также внутри этой камеры, но не напротив источника света, находится фотодиод. По сути это светодиод, работающий в обратном направлении. Когда свет падает на фотодиод, возникает слабый электрический ток. Представьте, что это очень маленькая секция солнечной панели. Поскольку светодиод не обращен к фотодиоду, а свет движется по прямой линии, излучение не улавливается фотодиодом, ток не течет и сигнал тревоги молчит. А теперь представьте, что несколько крупных частиц сажи из тлеющего огня поднимаются к потолку помещения в горячих воздушных потоках и достигают дымовой камеры датчика через отверстия по периметру. Свет или инфракрасное излучение от светодиода попадает на эти частицы сажи и теперь не поглощается рифленой стенкой дымовой камеры, а отражается сажей. Этот отраженный свет рассеивается во всех направлениях, и часть его улавливается фотодиодом. Он вырабатывает малый ток, сигнализация обнаруживает это и включает сирену.

Если же огонь не тлеет, а ярко горит, с прыгающим пламенем и гораздо меньшими (примерно в тысячу раз) частицами сажи, гораздо эффективнее окажется другой тип датчика дыма – ионизационный. В его основе лежит поистине удивительное вещество – крошечный кусочек америция. Америций – это радиоактивный элемент, впервые полученный искусственно в 1944 году в Калифорнийском университете в Беркли (США). Его присутствие в ионизационных пожарных извещателях порой настораживает людей из-за его радиоактивности. Однако вес америция в датчике обычно составляет лишь 1/3 мкг, что является невероятно малым количеством. Если попытаться представить себе этот вес наглядно, это в тысячу раз меньше, чем весит маленькая крупинка соли. Причем под «маленькой» я подразумеваю действительно маленькую крупинку мелкой поваренной соли, которую засыпают в солонки. Внутри датчика дыма америций находится в стальной капсуле, а она помещается в металлическую камеру. Тип излучения, испускаемого этим веществом, называется альфа-излучением. Альфа-частицы имеют очень большие размеры по сравнению с частицами других типов (бета и гамма). Их может полностью остановить даже тонкая металлическая фольга. Безопасные за пределами датчика, альфа-частицы простреливают пространство между двумя металлическими пластинами. И когда они попадают в молекулы газа в воздухе между пластинами, то выбивают электроны и создают электрически заряженные частицы, называемые ионами. Отсюда и название датчика. Поскольку ионы заряжены, они позволяют малому току течь между металлическими пластинами. Когда частицы дыма попадают в эту область (причем неважно, какого они размера), ионы прилипают к ним, снижая свою подвижность, и величина ионизационного тока уменьшается. Уменьшение до определенного значения извещатель воспринимает как сигнал тревоги. Когда это происходит, срабатывает сигнализация.

Итак, какой тип сигнализации лучше иметь в доме? Датчики обоих типов способны обнаружить пожар, но каждый из них выявит «свой» раньше, чем другой. В некоторых странах ионизационные пожарные извещатели не рекомендуются или даже запрещены. Однако они хороши тем, что с меньшей вероятностью отреагируют на такое бытовое происшествие, как подгоревшие тосты или пар из чайника. Очевидно, что любой датчик дыма лучше, чем никакого, поэтому, если хоть малейшая возможность пожара существует, свяжитесь с пожарными экспертами и проконсультируйтесь, какой тип датчика выбрать. Также важный момент, который стоит упомянуть, заключается в том, что, по оценкам, треть всех установленных в домах пожарных извещателей не функционирует либо из-за разряженных батарей, либо из-за того, что они забиты пылью или даже закрашены во время ремонта. Помните: установка датчиков дыма – это только начало, им тоже необходимо регулярное обслуживание и проверка работоспособности.

Исчезающий транзистор и закон Мура

Весной 2005 года корпорация Intel – крупнейший в мире производитель полупроводников – разместила на eBay объявление о награде в размере 10 000 долларов за экземпляр апрельского выпуска журнала Electronics Magazine 1965 года. На другой стороне Атлантики скряга Дэвид Кларк увидел это объявление и понял, что ему, возможно, очень повезло. У него в доме под половицами, как раз для такого случая, была спрятана коллекция этих журналов, включая весьма ценный апрельский выпуск 1965 года. Так что Дэвид Кларк получил свою награду.

Почему гигант-производитель кремниевых чипов Intel решил заполучить экземпляр журнала сорокалетней давности, становится ясно, если посмотреть на страницы 114–117 выпуска. Там напечатана статья Гордона Мура, в которой автор попытался предсказать будущее электронной промышленности – отрасли, по-настоящему начавшей развиваться лишь в 1947 году, после изобретения основного «кирпичика» кремниевого чипа. Я говорю о транзисторе. Мур заметил, что до момента публикации этой статьи количество транзисторов, которые можно было втиснуть в один чип, удваивалось каждые два года. Далее он высказал предположение, что эта тенденция будет сохраняться и в обозримом будущем. Это его наблюдение стало известно как закон Мура, и он в значительной степени соблюдается до сих пор. Через три года после написания этой статьи Гордон Мур стал одним из основателей корпорации Intel. Однако 37 лет спустя выяснилось, что в архивах промышленного гиганта нет ни одного экземпляра этой классической статьи.

Начиная с первых дней развития электроники, когда Мур писал свои книги, и вплоть до расцвета индустрии персональных компьютеров в 1980-х годах количество транзисторов и, следовательно, вычислительная мощность действительно удваивались каждые два года. В 1978 году мы полагали, что достигли грандиозных высот в разработке компьютерных чипов, выпустив процессор Intel 8086, который содержал более 20 000 отдельных транзисторов. С тех пор произошло примерно 17 удвоений: как и предсказывал Мур, последние микропроцессоры[17] имеют умопомрачительное количество транзисторов – 2,5 миллиарда штук. Мы перешли от двойки с четырьмя нулями (20 000) к двойке с девятью нулями (2 000 000 000).

Просто удивительно, как быстро росли эти значения и как близки они оказались к предсказаниям Мура. Хотя кое-кто может подумать, будто это так называемое самореализующееся пророчество. С 2000 года группа отраслевых ассоциаций публикует «Международный план по развитию полупроводниковой технологии». Этот документ устанавливает цели для полупроводниковой промышленности, включая такие аспекты, как количество транзисторов в микропроцессорах. Частично при постановке целей этот документ опирается на закон Мура.

К сожалению, закон Мура рано или поздно все же перестанет быть верным. Сам автор писал в статье: «Это не может продолжаться вечно. Природа экспонент такова, что однажды вы откажетесь от них, ибо они ведут к катастрофе». Хотя я не совсем уверен, что это будет именно катастрофа, насчет экспонент основатель корпорации Intel точно прав: скорость, с которой растет экспонента, становится все выше и выше. Поскольку транзисторов, согласно закону Мура, становится все больше, их размер неуклонно уменьшается. В конце концов мы достигнем рубежа, когда транзистор должен будет стать меньше атома, что явно невозможно.

Хотя здесь не все так очевидно. Мы уже подходим к предельному уровню миниатюризации, но, похоже, есть и другие, более хитрые подходы к решению проблемы увеличения вычислительной мощности. Ведь мало просто взять нужное количество транзисторов и поместить их на кремниевый чип: необходимо также сжать все проводниковые соединения между транзисторами до минимума (время прохождения битов имеет значение!). Одним из значительных скачков вперед в разработке микропроцессоров стало изобретение новых способов соединения транзисторов. Шины теперь занимают меньше места, оставляя пространство для еще большего количества транзисторов. Исследователи также придумали способы, как выполнять больший объем вычислительной работы с помощью транзисторов, которые у них уже есть.

Как долго закон Мура будет оставаться верным, нам еще предстоит выяснить. Некоторые аналитики считают, что мы уже прошли этот рубеж и рост числа транзисторов скоро выйдет на плато. Другие, включая самого Мура, склоняются к тому, что у нас еще есть немного времени. Может быть, пройдет еще лет 20, прежде чем мы увидим, что реальность и закон Мура начинают расходиться. Ведь за всю историю вычислительной техники он не раз сталкивался со всевозможными и, казалось бы, непреодолимыми препятствиями. Но неизменно, когда это происходило, нам удавалось найти новый подход или изобрести нечто такое, что позволяло удваивать число транзисторов каждые два года. Мур однажды описал свой закон как «нарушение закона Мерфи». А вы знаете, что этот самый закон предсказывает: если что-то может пойти не так, оно точно пойдет не так? И тем не менее пока мы все еще можем придерживаться закона Мура и, как говорил он сам, «становиться все лучше и лучше».

Вибрирующие кристаллы в ваших часах

Не подскажете, сколько времени? Скорее всего, вы посмотрите на часы и, благодаря этому крошечному устройству, использующему кристалл кварца, сможете ответить на вопрос. На циферблаты многих настольных и наручных часов крошечными буквами наносят надпись quartz, чтобы вы точно знали, что перед вами кварцевые часы. Но никаких других видимых доказательств вы не найдете, пусть и разберете свои часы, – вам вряд ли удастся обнаружить даже что-то похожее на кварц.

Кварц – чрезвычайно часто встречающееся в природе вещество, второй по распространенности минерал в мире. Каждый раз, когда вы видите песчаный пляж, а точнее прогуливаетесь по нему, вы буквально идете по кварцу. Из него состоит бóльшая часть этого песка. Кварц – это соединение из атомов кремния и кислорода, связанных вместе в кристалл. Он обладает многими нужными нам свойствами: кварц очень твердый, прозрачный, его можно изготовить искусственно и он демонстрирует необычный эффект, называемый пьезоэлектричеством.

В 1880 году – задолго до того, как стать мужем Марии Склодовской, – Пьер Кюри обнаружил, что если сжать кристалл кварца, то он поляризуется и произведет слабый электрический импульс. Эта его способность стала известна как пьезоэлектрический эффект. Год спустя Кюри доказал, что открытый им эффект работает и в обратном направлении. Если приложить ток к кристаллу кварца, его форма слегка деформируется. А после отключения тока кристалл возвращается к своей первоначальной форме и производит небольшой электрический импульс. Это позволило исследователям из Bell Telephone Laboratories спустя 30 лет понять главное: если сделать из кварца крошечные камертоны, можно заставить их резонировать, подавая на них электрические импульсы.

Когда объект резонирует, он вибрирует с так называемой резонансной частотой. Представьте себе ребенка, сидящего на качелях. Они совершают колебание назад и вперед примерно раз в 2 или 3 секунды. Это резонансная частота качелей, и, если вы хотите подниматься все выше и выше, вам нужно придерживаться этой частоты. Если же вы попытаетесь толкать качели чаще, стремясь увеличить частоту, это окажется вовсе не эффективным. Каждый объект имеет свою особую резонансную частоту, которая определяется его физическими свойствами. В случае с качелями это длина их канатов или цепей.



Внутри кварцевых часов есть крошечная металлическая деталь диаметром в несколько миллиметров. Именно в ней скрыт кристалл кварца, сегодня, как правило, круглого, хотя сначала он имел форму вилки-камертона. Когда на него подаются импульсы электричества, он начинает вибрировать, и эти вибрации сильнее всего на его резонансной частоте. После каждого механического воздействия кристалл расслабляется и производит крошечный электрический импульс. Если для воздействия вы будете использовать ту же частоту электрических импульсов, с которой их генерирует кристалл, то сразу достигнете резонанса. Чтобы определить резонансную частоту импульсов, нужно заставить кварц вибрировать сильно. Кварц формируется лазерными резаками[18], после чего вибрирует ровно 32 768 раз в секунду. Когда я говорю «ровно», то имею в виду с точностью до тысячной доли вибрации в секунду.

Причина, по которой выбрано число 32 768, проста. Дело в том, что эта частота находится в том диапазоне частот, в пределах которого легко заставить кварц вибрировать. Но более важно другое: если вы разделите это число на два 15 раз, то получите строго одну вибрацию в секунду. Наряду с хитроумной электроникой, создающей резонанс в кристалле, в часах есть схема, которая подсчитывает электрические импульсы, производимые кварцем. Используя повторное деление на два, она может выдавать электрический импульс ровно один раз в секунду. А далее это задача крошечного шагового электродвигателя (чаще используется шаговый электродвигатель Лавета) и простых шестеренок – преобразовать импульс в движение стрелок на часах.

Быть может, вы решите, что это все, конечно, удивительно, но это же прошлый век. Компьютеры и смартфоны автоматически узнают время, скачивая его из интернета. Что ж, это действительно так, и тем не менее им все равно нужно следить за временем, чтобы просто не слетала системная дата, и они способны делать это даже без интернета. Так что все наши современные часы и устройства, которые показывают время, заключают в себе то, что известно как часы реального времени[19]. Внутри них, вибрируя с частотой 32 768 раз в секунду, функционирует крошечный кварцевый кристалл – кварцевый генератор.

Когда батареи умирают

Электрическую батарею изобрели в 1800 году. Человеком, совершившим этот прорыв, стал Алессандро Вольта – немного застенчивый итальянец, чья фамилия в конце концов увековечилась как единица измерения электрической энергии. До того момента в истории наше понимание электрических явлений простиралось не дальше мгновенных искр статического электричества. Затем появился Вольта со своим столбом из соединенных медных и цинковых дисков, между которыми прокладывалась бумага или сукно, пропитанное серной кислотой. Этот столб мог производить постоянный электрический ток. Каждая ячейка из дисков давала напряжение около 0,85 В, хотя в то время и не существовало технической возможности измерить это и, конечно же, не было даже понятия о вольтах. Если сложить достаточное количество таких ячеек вместе в батарею, можно получить серьезные величины разности потенциалов и начать проводить интересные электрические эксперименты. Именно этим и занялось научное сообщество.

Но была и остается одна проблема: все батареи в конце концов перестают работать. Батареи, изобретенные когда-то Вольтой, теперь питают почти все устройства, что есть у нас дома, и являются неотъемлемой частью нашей жизни. Но даже аккумуляторные батареи, которые мы можем подзарядить, неизбежно выходят из строя.

Ключом к пониманию того, почему это происходит, служит усвоение факта, что батарея – это резервуар для энергии, хранящейся в химической форме. Внутри любой батарей есть два разных и обычно твердых химических вещества, соединенных между собой третьим – жидким. В вольтовом столбе ученый использовал твердые медь и цинк, а соединяла их пропитавшая сукно серная кислота. Однако можно взять бесчисленное множество других комбинаций электродов и электролитов. Независимо от того, каким химическим веществам отдано предпочтение, лежащая в основе всего этого электрохимия одна и та же. На одной стороне элемента высвобождаются электроны, которые затем проходят через электропроводную жидкость (электролит) на другую сторону, где накапливаются и компенсируют нехватку электрического заряда. Результат – возникает разность потенциалов и течет ток.

Батарейка устроена умно. Электрохимическая реакция происходит в ней только тогда, когда она подключена к электрической цепи. Если батарейку от нее отключают, реакция тут же прекращается, поскольку без непрерывного тока электроны остаются на своей стороне в электроде. В результате реакция не идет и на другой стороне. Химическая энергия, накопленная в батарее, остается там до тех пор, пока вы не присоедините последнюю к замкнутой электрической цепи. После этого электроны вновь могут перемещаться по цепи, питающей все, что к ней подключено. Так, когда на светофоре загорается зеленый свет, автомобили продолжают свое движение.

Следствием этого расхода электронов является то, что исходные материалы электрода также расходуются. Вот когда один из электродов растворяется, батарея и умирает. Запас электричества, которое она содержала, был отдан и потрачен.

Наиболее распространенным типом одноразовой батарейки в наши дни является щелочная батарея. Вместо цинка, меди и серной кислоты в ней содержится цинковый порошок, двуокись марганца и гидроксид калия. Именно из-за этой, выбранной в качестве электролита сильной щелочи, гидроксида калия, батарейка так называется. По мере прохождения электрохимической реакции в щелочной батарее цинковый порошок превращается в оксид цинка, а диоксид марганца – в триоксид димарганца. Когда бóльшая часть цинка и диоксида марганца претерпевает эти изменения, внутренние ресурсы батарейки истощаются, и она умирает. Но это не означает, что нет пути назад.

Если вы хотите перезарядить батарею, можно попытаться отменить те изменения, которые произошли, и вернуть химические вещества в исходное состояние, восстановив их энергетические ресурсы. Теория, стоящая за этим, до смешного проста. Поскольку все химические реакции обратимы, вам нужно всего лишь прогонять электрический ток через батарею в противоположном направлении, и таким образом все вернется на круги своя. И все же, хотя обычные щелочные батарейки можно заряжать, делать этого не рекомендуется по нескольким причинам. Поскольку оксид цинка превращается обратно в цинк, он может образовывать не порошок, а кристаллы, причем в неправильных местах. Острые кристаллы цинка способны разорвать прокладку между цинком и диоксидом марганца. А если это произойдет, могут иметь место всевозможные новые реакции, и в ходе некоторых из них будет выделяться газообразный водород. Поскольку емкость, в которую заключена батарейка, газонепроницаема, накопление водорода может привести к взрыву, в результате чего содержимое батарейки, включая сильную щелочь гидроксид калия, распылится. Вот почему мы не заряжаем обычные щелочные батарейки.

В перезаряжаемых аккумуляторных батареях нужно использовать более сложную электрохимию, поскольку у них более сложное внутреннее устройство. Их конструкция призвана гарантировать, что при обращении всех прошедших химических реакций вспять все вещества вернутся туда, где они были изначально, чтобы батарейка не повредилась. Но обратный процесс все же не может идти настолько точно. Так что, хотя обратные химические процессы в аккумуляторных батареях не вызывают повреждения последних, они не являются на 100 % эффективными. А значит, и эти источники энергии имеют ограниченный ресурс в виде определенного количества перезарядок.

Интересно, что слово battery («батарея») применительно к новому электрическому устройству было придумано за полвека до изобретения вольтового столба, в 1748 году, Бенджамином Франклином, великим ученым и одним из отцов-основателей США. До этого времени батареей называли установленные в ряд артиллерийские орудия, но Франклин использовал это слово, чтобы описать кульминацию вечеринок, которые он периодически устраивал у себя дома в Филадельфии. Эти вечеринки включали в себя демонстрации разнообразных экспериментов, связанных с электричеством: поджаривание индейки электрическим током, электризацию кубков вина и бокалов с пылающими спиртными напитками, зажженными искрами. И все это завершалось разрядом орудий электрической батареи. Электрическая батарея тогда представляла собой несколько лейденских банок, заряженных статическим электричеством. Это была предтеча вольтового столба. Как только 1800 год прогремел новыми открытиями и Вольта вышел на авансцену науки, это слово быстро закрепилось в качестве названия для его изобретения.

Долгоживущие мыльные пузыри

Поистине жесток тот, кто уничтожает мыльные пузыри, не говоря уже о мыльных пузырях, пускаемых ребенком. Но малейшее прикосновение пальцем – и они лопаются, так что мыльные пузыри стали воплощением хрупкости. Они настолько тонкие, что лопаются и сами, без видимого внешнего воздействия. Но все же и мыльные пузыри бывают невероятно долгоживущими, что может подтвердить любой, кто видел, как они плывут по воздуху, движимые легким ветерком. Вы поймете, что это не противоречивые наблюдения, как только углубитесь в науку о пузырях.

Любой ребенок знает: чтобы выдуть мыльный пузырь, нужно залить в банку побольше моющей жидкости. Важным ингредиентом тут являются молекулы моющего средства, обладающие тем особым свойством, что один их конец притягивает воду, а другой – отталкивает. При смешивании с водой эти молекулы могут образовывать так называемые мыльные пленки. Они состоят из двух слоев моющего средства и воды, зажатой между ними. Каждый из слоев, как правило, толщиной всего в одну молекулу, но эти молекулы плотно «упакованы» и ориентированы в одном направлении. Они располагаются так, что все гидрофильные их части обращены внутрь «сэндвича», к воде, а гидрофобные – торчат наружу, врезаясь в воздух вокруг мыльной пленки.

Также стоит отметить, что именно этот своеобразный сэндвич «моющее средство – вода – моющее средство» и создает радугу цветов, которую вы видите в пузырьках. Кроме того, он может быть невероятно тонким – намного тоньше 100 нм (это десятитысячная доля миллиметра). И это даже меньше длины волны видимого света. Когда свет попадает на мыльный пузырь, бóльшая его часть проходит насквозь без преломления, но часть света отражается от передней поверхности мыльной пленки, а другая – от второго слоя моющего средства. Это создает два отраженных луча света, один из которых слегка смещен по фазе относительно другого. Поскольку свет ведет себя как волна, две световые волны могут местами гасить друг друга. Именно это и происходит в мыльных пленках. При определенных толщинах мыльной пленки некоторые длины волн и, соответственно, цветá света сами себя подавляют. Тогда, вместо того чтобы видеть отраженный белый свет, мы видим белый свет минус подавленные цвета. Например, если у вас есть мыльная пленка толщиной около 430 нм, что как раз подходит для подавления желтого света, то отраженный свет, видимый на поверхности мыльного пузыря, выглядит синим.



Причина того, что цвета в мыльных пузырях постоянно меняются, заключается в том, что последние меняют форму. Другая причина кроется в том, что мыльная пленка при высыхании становится тоньше. И именно поэтому пузыри лопаются сами по себе. Они просто высыхают. Слой воды между двумя слоями моющего средства имеет толщину всего в одну или несколько молекул. Если вода не очень холодная, то она сравнительно быстро испаряется. А когда вода испаряется, она покидает «сэндвич» и тот становится тоньше. В конце концов два слоя моющего средства соприкасаются. Однако само по себе моющее средство не способно образовать пленку: для этого ему нужна вода. Так что пленка разрывается, и в ней образуется крошечная дырочка. Ну а как только в мыльной пленке появляется отверстие, поверхностное натяжение неумолимо это отверстие растягивает, и в итоге вся пленка разрушается.

Таким образом, если бы мы были в силах остановить испарение, мы смогли бы предотвратить быстрое лопание пузыря. Очевидный способ достичь этого – поместить пузырь в среду со 100-процентной влажностью. При такой высокой влажности никакого испарения не будет. Этот трюк освоил в свое время великий американский шоумен, повелитель пузырей Эйфель Пластерер. Он пускал пузыри в большие банки из-под варенья, на дне которых плескалась вода. Эта вода обеспечивала максимально возможную влажность, и пузырь-рекордсмен Пластерера продержался 340 дней.

Есть также химический трюк, который можно провернуть, чтобы остановить испарение пузырей. Я говорю о так называемых увлажнителях – соединениях, молекулы которых удерживают воду и препятствуют ее испарению. Вы можете использовать в качестве увлажнителя сахарный сироп, но тогда ваши пузырьки оставят липкий след там, где они приземлятся. А еще подойдет глицерин. Маленькие бутылочки с этой прозрачной вязкой жидкостью продаются в супермаркетах, поскольку глицерин обычно добавляют в блюда, чтобы защитить их от высыхания. Например, в глазурь для торта: благодаря глицерину она не застывает слишком сильно. Добавляют его и в смесь для выдувания пузырей, и это действительно увеличивает время их жизни. По моему собственному опыту, для получения хорошей пузырьковой смеси необходимо соединить 1 часть глицерина и 10 частей моющего средства, а потом добавить к этому 100 частей чистой воды. Далее получше все перемешать и оставить на ночь, чтобы пена успокоилась. А затем можно надувать пузыри, и у вас будут получаться долговечные гиганты.

За свою карьеру популяризатора науки я несколько раз выступал с пузырями на сцене и просто перед камерами. Я был настоящим мастером по выдуванию пузырьковых скульптур и даже чуть не побил мировой рекорд по величине внутреннего пузыря. К сожалению, мне не хватило какой-то доли кубического метра. Но если мой опыт работы с пузырями меня чему-то и научил, так это тому, что наиболее распространенная причина потери большого пузыря вовсе не испарение: на самом деле пузыри редко получают шанс на это, особенно перед аудиторией. Гораздо чаще дети просто тычут в них пальцами. И теперь я начинаю думать, что не только дети не могут удержаться от соблазна потрогать мыльный пузырь руками. Независимо от возраста пальца, являющегося виновником разрушения пузыря, механизм один. Когда палец касается «сэндвича» из моющего средства и воды, он расталкивает воду. А значит, возникает та же ситуация, что и при испарении: нет воды – нет «сэндвича».

И для бутылок, и для одежды

Еще в 1979 году компания Malden Mills в США выпустила новый тип ткани под названием Polar Fleece, предназначенный для замены шерстяных тканей. Сегодня вы можете купить вещь из поларфлиса в любом магазине одежды. Однако из-за того, что владелец Malden Mills Эрон Фюрштайн решил не патентовать свое изобретение, эту ткань обычно называют просто флисом. Но удивительно другое: сейчас выпускается огромное количество флиса и бóльшая его часть производится из переработанных пластиковых бутылок.

Поларфлис, созданный Malden Mills, изначально изготавливался не из вторичных полностью синтетических полиэфирных нитей. Тогда его ткали[20], причем применяя вполне традиционный метод изготовления ткани. И все же одно обстоятельство делало поларфлис особенным: дополнительная процедура, которая производилась с ним после того, как он был соткан. Ткань расчесывали тонкими проволочными гребнями, чтобы вытянуть маленькие петли волокна с поверхности. Этот процесс с древних времен назывался ворсованием. Затем верхушки петель отрезали, чтобы создать негладкую, ворсистую поверхность. Изначально поларфлис был очень популярен среди туристов, а теперь из него шьют повседневную одежду. Мало у кого из нас не найдется дома флисовой вещи, припрятанной на случай холодов.

Когда компания Malden Mills начала производить поларфлис, сырьем для него служил пластик с непроизносимым названием «полиэтилентерефталат» – или лавсан, или просто ПЭТ, если вы предпочитаете покороче. В то время все используемые ткани и нити на основе ПЭТ изготавливались из химических веществ, полученных из сырой нефти. Но оказалось, что ПЭТ хорош не только для этого. Он также идеально подходит для формования бутылок. Сейчас вся мировая индустрия бутилированных напитков работает на ПЭТ. Что же делает его таким полезным материалом? Тот факт, что это термопластик, то есть при нагревании он превращается почти в жидкость. Если взять пустую ПЭТ-бутылку и нагреть ее, она расплавится при температуре 250 °C. Теперь достаточно направить эту жидкость в нагретую форму, и получатся полиэфирные волокна. Конечно, звучит все проще, чем есть на самом деле, но мы определенно можем применить эту технологию для переработки отходов.

Сбор и утилизация использованных ПЭТ-бутылок сегодня – нечто само собой разумеющееся, хотя это явно сложная и важная логистическая задача. После того как бутылки собраны, им предстоит долгий путь, прежде чем начнется их новая жизнь. Они обычно сортируются вручную, и в ходе сортировки удаляются любые крупные нежелательные предметы, которые могут нарушить технологический процесс переработки. Затем запакованные в тюки бутылки почти во всех случаях отправляются на Дальний Восток. Там они измельчаются, и, так как колпачки изготавливаются из другого пластика – полиэтилена высокой плотности, их отделяют от массы ПЭТ при помощи воды: полиэтилен высокой плотности плавает на ее поверхности, тогда как ПЭТ тонет. Удаление бумажных этикеток и клея – еще одна существенная проблема, которая требует применения таких неприятных химических веществ, как каустическая сода например. После этого остаются чистые куски мокрых ПЭТ-бутылок и вода на поверхности пластика. Если ПЭТ растопить, вода войдет в состав пластика, что приведет к его деградации и разрушению. Поэтому одна из самых сложных задач для переработчиков ПЭТ – высушить эту массу наиболее энергоэффективным способом, но так, чтобы не начался процесс плавления. А затем масса ПЭТ наконец будет готова к превращению в синтетические волокна, но это тоже довольно трудоемкий процесс.

Клочья пластика расплавляют и разбрызгивают через специальные формы, в результате чего образуются волокна. Но поскольку в ходе этой процедуры они получаются недостаточно тонкими, их повторно нагревают и растягивают. После чего – гофрируют и нарезают на волнистые пряди длиной около 4 см. Полученный «пух» можно использовать для наполнения подушек и мягких игрушек, а также для производства тканей – для этого волокна расчесывают и прядут из них нити. Вот тут и появляется то, что позволяет изготовить полиэфирную ткань и начать процесс, изобретенный Malden Mills. И в результате получится флис, который, в отличие от первоначального поларфлиса, будет сделан из переработанных бутылок, а не из сырой нефти.

Безусадочная шерсть

Шерсть – это замечательный материал. Ее можно использовать для создания одежды, которая является одной из самых теплых, самых прочных, самых немнущихся и даже самых дышащих. Конечно, лучшие из высокотехнологичных синтетических тканей могут превзойти шерстяные по нескольким параметрам, но, если оценивать по всему диапазону качеств, эту натуральную ткань победить нельзя. Однако, несмотря на все преимущества, у шерсти есть один серьезный недостаток. Она садится. И поэтому ее рекомендуется промывать самым тщательным образом. Я стоял во главе исследований процесса усадки шерсти, и после каждого испытания в его рамках неизменно удивлялся: почему у овец нет такой же проблемы. В конце концов, в моей лесной глуши дожди идут часто, но я никогда не видел овцу со сморщенной, немного севшей шерстью.

В основном шерсть состоит из белка, называемого кератином. Он образует длинные извивающиеся нити, сворачивающиеся в спиральки. Эти спиральки связываются вместе и создают своего рода основу, матрицу. Вся шерстяная нить покрыта слоем отмерших высушенных клеток, которые практически полностью состоят из кератина. То есть человеческие волосы и мех животных по существу имеют одинаковую структуру. Простите за небольшое отклонение от темы, но единственная разница между волосами и мехом – это плотность волосяных фолликулов. В среднем на голове мужчины, не страдающего облысением, имеется около 40 волос на квадратный сантиметр. Для сравнения: у мериносовой овцы – 9 000 шерстинок на квадратный сантиметр. Но все же рекордсмен по меху – морская выдра: у нее более чем 120 000 волосков на квадратный сантиметр. Очевидно, что внутренняя структура волосков у выдры такая же, но чем плотнее волоски, тем они тоньше.

Одна из причин того, что из шерсти легко прясть нить, а затем изготавливать из нее одежду, заключается в том, что шерстяной нити свойственна естественная волнистость и эластичность. Последнее качество следует понимать буквально. Шерстяные волокна можно сильно растянуть, а затем они вернутся к своей первоначальной форме. Это связано не только с тем, что шерсть состоит из нитей кератина, но и с ее волнистостью: она имеет от 1 до 12 изгибов на каждом сантиметре длины. На самом деле шерстяные нити по форме напоминают растянутые пружины.



Теперь обратимся к высушенным кератиновым чешуйкам, обнаруженным на поверхности шерстяных волокон. Все волокна волос, шерсти и меха имеют слой, состоящий из перекрывающихся высохших клеток. Как вы могли видеть в рекламе средств по уходу за волосами, они немного похожи на черепицу на крыше, но у шерсти чешуйки лежат не особенно ровно. Края чуть приподнимаются вверх и то и дело цепляются друг за друга. И вот теперь мы наконец добрались до причины, по которой шерстяная одежда садится.

Если поместить ее в горячую мыльную воду, волокна впитают часть воды и немного набухнут. Не столь важно даже, чтобы вода была горячей и мыльной. Гораздо важнее, чтобы шерсть хорошо набухла. Тогда края чешуек раздвинутся еще больше, чем обычно. Более того, горячая вода немного ослабляет упругость пружины в волокнах. Это позволяет чешуйкам сильнее стягивать волокна вместе, ведь сопротивление оказывается слабее. Когда впоследствии шерсть высыхает и остывает, упругость волокон шерсти восстанавливается, но они уже крепко стянуты и удерживаются вместе их собственными чешуйками. Так что получается немного севший свитер.

На самом деле таковы же первые этапы создания войлока, который начинается с простой шерстяной пряжи. Шерсть нагревается и растирается до тех пор, пока все волокна в ней не будут плотно взаимно зафиксированы при сохранении пружинистости. Хотя сам по себе войлок – ценный и полезный материал, он гораздо менее гибкий и удобный для ношения, так что это все же не лучшее, что можно сделать со свитером.

Поскольку шерсть может сесть и в холодной воде, овцы, по идее, тоже должны от этого страдать. Но, будучи на теле, их шерсть не садится, ведь она содержит еще один компонент, который нужно учитывать. Я говорю о ланолине – желтом воскообразном веществе, выделяемом кожей овец. Ланолин может составлять до четверти веса одного овечьего руна. Это вещество аналогично кожному салу, выделяемому нашей кожей, которое постепенно делает волосы жирными. Ланолин не только придает шерсти ее неповторимый овечий запах, но и обеспечивает ей водонепроницаемость. Он предотвращает пропитывание шерсти животного водой, так что шерсть может быть мокрой снаружи, но никогда не промокнет насквозь. Более того, воскоподобный ланолин покрывает кератиновые чешуйки на поверхности шерстяных волокон, и они не могут больше цепляться друг за друга. Так что именно ланолин предотвращает усадку шерсти на теле овцы.

Теоретически вы могли бы сделать свою шерстяную одежду устойчивой к усадке, пропитав ее ланолином, но, боюсь, даже если бы вы сами могли смириться с этим запахом, окружающие бы точно возражали. К счастью, на помощь пришли современные технологии, позволившие стирать некоторые шерстяные вещи даже в машинке. Один из них – ненадолго погрузить изделие в ванну со слабым раствором уксусной (или винной) кислоты. Она растворяет чешуйки на поверхности нитей, после чего шерсть уже без опаски можно стирать машинным способом. Также ее можно обработать лаком, который покрывает чешуйки и позволяет им скользить друг по другу. Короче говоря, в любом случае получается волокно, обладающее всеми свойствами шерсти, кроме ее склонности к усадке.

Свежий воздух действительно полезен для нас

В западном мире давно и глубоко укоренилась идея, что свежий воздух и солнечный свет полезны для нас. Начиная со Средневековья распространение болезней часто связывали с плохим или зловонным воздухом (тогда это «заразительное начало» называли миазмами). Идея о том, что свежий воздух может лечить, была актуальна вплоть до совсем недавних времен. В течение XIX века практикующие врачи и другие медики, такие как Флоренс Найтингейл, советовали пациентам почаще бывать на свежем воздухе, а единственным лечением туберкулеза являлось пребывание в санатории. Медицинское обслуживание в таких местах вплоть до начала XX века состояло из особого режима питания и лежания на улице в кресле. В непогоду пациентов заворачивали в одеяла. Короче говоря, свежий воздух и солнечный свет считались лекарством от самых разных недугов.

Сегодня мы оглядываемся назад и, вооруженные современными медицинскими знаниями, снисходительно улыбаемся, говоря об этой причудливой концепции. Хотя мы понимаем, что солнечный свет необходим для выработки витамина D в организме, идея о том, что солнечный свет и свежий воздух могут быть лечением, кажется отсталой. Мы не исключаем, что это полезно на психологическом уровне: всегда приятно, когда светит солнце, а в окно дует легкий ветерок. Но мы сомневаемся, что это оказывает прямое медицинское действие.

И все же в чем-то медики прошлого были правы. Например, если говорить о солнечном свете, мы теперь знаем, что ультрафиолет довольно эффективно уничтожает бактерии. В частности, ультрафиолетовое излучение с определенной длиной волны (207 нм) очень активно поглощается маленькими бактериями, тогда как ущерб от него гораздо более крупным клеткам человека минимален. Это поглощение ультрафиолета приводит к повреждению бактериальных ДНК, в результате чего бактерии погибают.

Но еще более интригующим является эффект свежего воздуха в больницах. В ходе исследования американских солдат, несших службу в Саудовской Аравии во время Первой войны в Персидском заливе в 1990 году, было установлено, что люди, спавшие в палатках, страдали от простуды и насморка меньше, чем те, кто жил в помещениях с кондиционером. Могли ли мы себе представить, что рециркуляция воздуха в кондиционированных казармах окажется ответственной за бóльшую частоту простуд? Однако кондиционер едва ли осуществляет значительную рециркуляцию воздуха. Он лишь фильтрует, а затем охлаждает наружный свежий воздух.

В 2012 году профессор Джессика Грин из Университета штата Орегон в США опубликовала результаты бактериальных проб, взятых с поверхностей в больничных палатах. Некоторые были из кондиционированных комнат, другие – из комнат с регулярно открывавшимися окнами. Профессор Грин обнаружила, что, хотя количество присутствовавших бактерий различалось не так уж сильно, отличались виды бактерий. В кондиционированных помещениях насчитывалось меньше видов бактерий, но бóльшая часть из них была потенциально болезнетворна для человека. Конечно, если вы регулярно чистите больничную палату мылом и антибактериальными средствами, вы наверняка уничтожите подавляющее большинство бактерий. Но эту борьбу нужно вести постоянно, поскольку помещение будет немедленно заселяться бактериями вновь – из самого обильного источника заражения, которым в больнице являются люди. Многие из людей закономерно (ведь они болеют!) полны именно патогенных микроорганизмов. Так что нет ничего удивительного в том, что и в больницах их хватает. Удивительно другое! Если периодически открывать окна палат, многие из этих микроорганизмов оттуда исчезают.

Только недавно мы начали понимать, насколько обильна, разнообразна и вездесуща окружающая нас бактериальная экосистема. Естественный, некондиционированный, свежий воздух населяет множество бактерий, дрейфующих на частичках пыли и в крошечных капельках воды. Если поверхности в комнате подвергаются воздействию этого воздуха, то бактерии из него осаждаются там, где есть условия, благоприятствующие их росту и размножению. Но большинство из них безвредны. И при обилии бактерий разных видов те немногие, что способны вызвать болезнь или инфекцию, вынуждены конкурировать со множеством неопасных бактерий. Из-за чего патогенные микроорганизмы уже не могут действовать в полную силу и представляют для нас меньшую угрозу.

Если вы откроете окна в больничной палате, поверхности которой регулярно дезинфицируются, они повторно заселятся весьма разнообразным сообществом бактерий, в числе которых окажется не так уж много опасных для нас. Таким образом, за счет регулярной уборки болезнетворных бактерий в палатах будет все меньше, а благодаря периодическому проветриванию безвредные микроорганизмы будут обеспечивать все более серьезную конкуренцию. А значит, вероятность болезни или инфекции станет существенно сокращаться.

Флоренс Найтингейл, работавшая медсестрой во время Крымской войны (1853–1856), сделала огромный вклад в больничное дело. Одними из самых значительных ее нововведений являются строгое соблюдение чистоты в больничных палатах и постоянный приток туда свежего воздуха. По возвращении в Великобританию Найтингейл продолжила свое начинание, и сегодня ее даже считают одной из тех, кто заложил основы современного сестринского дела в целом и профессии медсестры в частности. Хотя многие из ее принципов надежно сохранились в нынешней практике, ее идеи о свежем воздухе вышли из моды. Возможно, пришло время вернуться к ним. Как она выразилась более ста лет назад, в 1898 году: «Никогда не бойтесь открывать окна».

Загрузка...