CHAPTER 7. TRUTH IN ADVERTISING: The Evolution of Body Signals

Two friends of mine, a husband and wife whom I shall rename Art and Judy Smith to preserve anonymity, had gone through a difficult time in their marriage. After both had a series of extramarital affairs, they had separated. Recently, they had come back together, in part because the separation had been hard on their children. Now Art and Judy were working to repair their damaged relationship, and both had promised not to resume their infidelities, but the legacy of suspicion and bitterness remained.

It was in that frame of mind that Art phoned home one morning while he was out of town on a business trip of a few days. A man's deep voice answered the phone. Art's throat choked instantly as his mind groped for an explanation. (Did I dial the wrong number? What is a man doing there?) Not knowing what to say, Art blurted out, “Is Mrs. Smith there?” The man answered matter-of-factly, “She's upstairs in the bedroom, getting dressed.”

In a flash, rage swept over Art. He screamed inwardly to himself, “She's back to her affairs! Now she's having some bastard stay overnight in my bed! He even answers the phone!” Art had rapid visions of rushing home, killing his wife's lover, and smashing Judy's head into the wall. Still hardly able to believe his ears, he stammered into the telephone, “Who . . . is . . . this?”

The voice at the other end cracked, rose from the baritone range to a soprano, and answered, “Daddy, don't you recognize me?” It was Art and Judy's fourteen-year-old son, whose voice was changing. Art gasped again, in a mixture of relief, hysterical laughter, and sobbing.

Art's account of that phone call drove home for me how even we humans, the only rational animal species, are still held in the irrational thrall of animal-like behavioral programs. A mere one-octave change in the pitch of a voice uttering half a dozen banal syllables caused the image conjured up by the speaker to flip from threatening rival to unthreatening child, and Art's mood to flip from murderous rage to paternal love. Other equally trivial cues spell the difference between our images of young and old, ugly and attractive, intimidating and weak. Art's story illustrates the power of what zoologists term a signal: a cue that can be recognized very quickly and that may be insignificant in itself, but which has come to denote a significant and complex set of biological attributes, such as sex, age, aggression, or relationship. Signals are essential to animal communication-that is, the process by which one animal alters the probability of another animal behaving in a way that may be adaptive to one or both individuals. Small signals, which in themselves require little energy (such as uttering a few syllables at a low pitch), may release behaviors that require a lot of energy (such as risking one's life in an attempt to kill another individual).

Signals of humans and other animals have evolved through natural selection. For example, consider two individual animals of the same species, differing slightly in size and strength, facing each other over some resource that would benefit either individual. It would be advantageous to both individuals to exchange signals that accurately indicate their relative strength, and hence the likely outcome of a fight. By avoiding a fight, the weaker individ-ual is spared the likelihood of injury or death, while the stronger individual saves energy and risk.

How do animal signals evolve? What do they actually convey? That is, are they wholly arbitrary, or do they pos-sess any deeper meaning? What serves to ensure reliability and to minimize cheating? We shall now explore these questions about the body signals of humans, especially our signals related to sex. However, it is useful to begin with an overview of signals in other animal species, for which we can gain clearer insights through doing controlled experiments impossible to do on humans. As we shall see, zoologists have been able to gain insights into animal signals by means of standardized surgical modifications of animals' bodies. Some humans do ask plastic surgeons to modify their bodies, but the result does not constitute a well-controlled experiment.

Animals signal each other through many channels of communication. Among the most familiar to us are auditory signals, such as the territorial songs by which birds attract mates and announce possession to rivals, or the alarm calls by which birds warn each other of dangerous predators in the vicinity. Equally familiar to us are behavioral signals: dog lovers know that a dog with its ears, tail, and hair on the neck raised is aggressive, but a dog with its ears and tail lowered and neck hair flat is submissive or conciliatory. Olfactory signals are used by many mammals to mark a territory (as when a dog marks a fire hydrant with the odors in its urine) and by ants to mark a trail to a food source. Still other modalities, such as the electrical signals exchanged by electric fishes, are unfamiliar and imperceptible to us.

While these signals that I have just mentioned can be rapidly turned on and off, other signals are wired either permanently or for extended times into an animal's anatomy to convey various types of messages. An animal's sex is indicated by the male/female differences in plumage of many bird species or by the differences in head shape between male and female gorillas or orangutans. As discussed in chapter 4, females of many primate species advertise their time of ovulation by swollen, brightly colored skin on the buttocks or around the vagina. Sexually immature juveniles of most bird species differ in plumage from adults; sexually mature male gorillas acquire a saddle of silvery hairs on the back. Age is signaled more finely in Herring Gulls, which have distinct plumages as juveniles and at one, two, three, and four or more years of age.

Animal signals can be studied experimentally by creating a modified animal or dummy with altered signals. For instance, among individuals of the same sex, appeal to the opposite sex may depend on specific parts of the body, as is well known for humans. In an experiment demonstrating this point, the tails of male Long-Tailed Widowbirds, an African species in which the male's sixteen-inch tail was suspected of playing a role in attracting females, were lengthened or shortened. It turns out that a male whose tail is experimentally cut down to six inches attracts few mates, while a male with a tail extended to twenty-six inches by attaching an extra piece with glue attracts extra mates. A newly hatched Herring Gull chick pecks at the red spot on its parent's lower bill, thereby inducing the parent to vomit up half-digested stomach contents to feed the chick. Being pecked on the bill stimulates the parent to vomit, but seeing a red spot against a pale background on an elongated object stimulates the chick to peck. An artificial bill with a red dot receives four times as many pecks as a bill lacking the dot, while an artificial bill of any other color receives only half as many pecks as a red bill. As a final example, a European bird species called the Great Tit has a black stripe on the breast that serves as a signal of social status. Experiments with radio-controlled, motor-operated tit models placed at bird feeders show that live tits flying into the feeder retreat if and only if the model's stripe is wider than the intruder's stripe.

One has to wonder how on Earth animals evolved so that something seemingly so arbitrary as the length of a tail, the color of a spot on a bill, or the width of a black stripe produces such big behavioral responses. Why should a perfectly good Great Tit retreat from food just because it sees another bird with a slightly wider black stripe? What is it about a wide black stripe that implies intimidating strength? One would think that an otherwise inferior Great Tit with a gene for a wide stripe could thereby gain undeserved social status. Why doesn't such cheating become rampant and destroy the meaning of the signal?

These questions are still unresolved and much debated by zoologists, in part because the answers vary for different signals and different animal species. Let's consider these questions for body sexual signals-that is, structures on the body of one sex but not the opposite sex of the same species, and that are used as a signal to attract potential mates of the opposite sex or to impress rivals of the same sex. Three competing theories attempt to account for such sexual signals.

The first theory, put forward by the British geneticist Sir Ronald Fisher, is termed Fisher's runaway selection model. Human females, and females of all other animal species, face the dilemma of selecting a male with which to mate, preferably one bearing good genes that will be passed on to the female's offspring. That's a difficult task because, as every woman knows all too well, females have no direct way to assess the quality of a male's genes. Suppose that a female somehow became genetically programmed to bo sexually attracted to males bearing a certain structure that gives the males some slight advantage at surviving compared to other males. Those males with the preferred structure would thereby gain an additional advantage: they would attract more females as mates and hence transmit their genes to more offspring. Females who preferred males with the structure would also gain an advantage: they would transmit the gene for the structure to their sons, who would in turn be preferred by other females.

A runaway process of selection would then ensue, favoring those males with genes for the structure in an exaggerated size and favoring those females with genes for an exaggerated preference for the structure. From generation to generation the structure would grow in size or conspicu-ousness until it lost its original slight beneficial effect on survival. For instance, a slightly longer tail might be useful for flying, but a peacock's gigantic tail is surely no use in flying. The evolutionary runaway process would halt only when further exaggeration of the trait would become detrimental for survival.

A second theory, proposed by the Israeli zoologist Amotz Zahavi, notes that many structures functioning as body sexual signals are so big or conspicuous that they must indeed be detrimental to their owner's survival. For instance, a peacock's or widowbird's tail not only doesn't help the bird survive but actually makes life more difficult. Having a heavy, long, broad tail makes it hard to slip through dense vegetation, take flight, keep flying, and thereby escape predators. Many sexual signals, like a bowerbird's golden crest, are big, bright, conspicuous structures that tend to attract a predator's attention. In addition, growing a big tail or crest is costly in that it uses up a lot of an animal's biosynthetic energy. As a result, argues Zahavi, any male that manages to survive despite such a costly handicap is in effect advertising to females that he must have terrific genes in other respects. When a female sees a male with that handicap, she is guaranteed that he is not cheating by carrying the gene for a big tail and being otherwise inferior. He would not have been able to afford to make the structure, and would not still be alive, unless he were truly superior.

One can immediately think of many human behaviors that surely conform to Zahavi's handicap theory of honest signals. While any man can boast to a woman that he is rich and therefore she should go to bed with him in the hopes of enticing him into marriage, he might be lying, Only when she sees him throwing away money on useless expensive jewelry and sports cars can she believe him. Again, some college students make a show of partying on the night before a big examination. In effect, they are saying: “Any jerk can get an A by studying, but I'm so smart that I can get an A despite the handicap of not studying.”

The remaining theory of sexual signals, as formulated by the American zoologists Astrid Kodric-Brown and James Brown, is termed “truth in advertising.” Like Zahavi and unlike Fisher, the Browns emphasize that costly body structures necessarily represent honest advertisements of quality, because an inferior animal could not afford the cost. In contrast to Zahavi, who views the costly structures as a handicap to survival, the Browns view them as either favoring survival or being closely linked to traits favoring survival. The costly structure is thus a doubly honest ad: only a superior animal can afford its cost, and it makes the animal even more superior.

For instance, the antlers of male deer represent a big investment of calcium, phosphate, and calories, yet they are grown and discarded each year. Only the most well-nourished males-ones that are mature, socially dominant, and free of parasites-can afford that investment. Hence a female deer can regard big antlers as an honest ad for male quality, just as a woman whose boyfriend buys and discards a Porsche sports car each year can believe his claim of being wealthy. But antlers carry a second message not shared with Porsches. Whereas a Porsche does not generate more wealth, big antlers do bring their owner access to the best pastures by enabling him to defeat rival males and fight off predators.

Let us now examine whether any of these three theories, devised to explain the evolution of animal signals, can also explain features of human bodies. But we first need to ask whether our bodies possess any such features requiring explanation. Our first inclination might be to assume that only stupid animals require genetically coded badges, like a red dot here and a black stripe there, in order to figure out each other's age, status, sex, genetic quality, and value as a potential mate. We, in contrast, have much bigger brains and far more reasoning ability than any other animal. Moreover, we are uniquely capable of speech and can thereby store and transmit far more detailed information than any other animal can. What need have we of red dots and black stripes when we routinely and accurately determine the age and status of other humans just by talking to them? What animal can tell another animal that it is twenty-seven years old, receives an annual salary of $125,000, and is second assistant vice president at the country's third largest bank? In selecting our mates and sex partners, don't we go through a dating phase that is in effect a long series of tests by which we accurately assess a prospective partner's parenting skills, relationship skills, and genes?

The answer is simple: nonsense! We too rely on signals as arbitrary as a widowbird's tail and a bowerbird's crest. Our signals include faces, smells, hair color, men's beards, and women's breasts. What makes those structures less ludicrous than a long tail as grounds for selecting a spouse— the most important person in our adult life, our economic and social partner, and the coparent of our children? If we think that we have a signaling system immune to cheating, why do so many people resort to makeup, hair dyes, and breast augmentation? As for our supposedly wise and care-ful selection process, all of us know that when we walk into a room full of unfamiliar people, we quickly sense who attracts us physically and who doesn't. That quick sense is based on “sex appeal,” which just means the sum of the body signals to which we respond, largely unconsciously. Our divorce rate, now around 50 percent in the United States, shows that we ourselves acknowledge the failure of half of our efforts to select mates. Albatrosses and many other pair-bonded animal species have much lower “divorce” rates. So much for our wisdom and their stupidity!

In fact, like other animal species, we have evolved many body traits that signal age, sex, reproductive status, and individual quality, as well as programmed responses to those and other traits. Attainment of reproductive maturity is signaled in both human sexes by the growth of pubic and axillary hair. In human males it is further signaled by the growth of a beard and body hair and by a drop in the pitch of the voice. The episode with which I began this chapter illustrates that our responses to those signals can be as specific and dramatic as a gull chick's response to the red spot on its parent's bill. Human females additionally signal reproductive maturity by expansion of the breasts. Later in life, we signal our waning fertility and (in traditional societies) attainment of wise elder status by the whitening of our hair. We tend to respond to the sight of body muscles (in appropriate amounts and places) as a signal of male physical condition, and to the sight of body fat (also in appropriate amounts and places) as a signal of female physical condition. As for the body signals by which we select our mates and sex partners, they include all those same signals of reproductive maturity and physical condition, with variation among human populations in the sig-nals that one sex possesses and that the other sex prefers.

For instance, men vary around the world in the luxuriance of their beard and body hair, while women vary geographically in the size and shape of their breasts and nipples and in their nipple color. All of these structures serve us humans as signals analogous to the red dots and black stripes of birds. In addition, just as women's breasts simultaneously perform a physiological function and serve as a signal, I shall consider later in this chapter whether the same might be true for men's penises.

Scientists seeking to understand the corresponding signals of animals can carry out experiments involving mechanical modifications of an animal's body, such as shortening a widowbird's tail or painting over a gull's red spot. Legal obstacles, moral compunctions, and ethical considerations prevent us from performing such controlled experiments on humans. Also preventing us from understanding human signals are our own strong feelings that cloud our objectivity about them, and the great degree of cultural variation and individually learned variation in both our preferences and our bodies' self-modifications. However, such variation and self-modification can also help us gain understanding by serving as natural experiments, albeit ones lacking experimental controls. At least three sets of human signals seem to me to conform to Kodric-Brown's and Brown's truth-in-advertising model: men's body muscle, facial “beauty” in both sexes, and women's body fat.

Men's body muscle tends to impress women as well as other men. While the extreme muscle development of professional bodybuilders strikes many people as grotesque, many (most?) women find a well-proportioned muscular man more attractive than a scrawny man. Men also use the muscular development of other men as a signal-for example, as a way of quickly assessing whether to get into a fight or to retreat. A typical example involves a magnificently muscular instructor named Andy at the gymnasium where my wife and I exercise. Whenever Andy lifts weights, the eyes of all the women and men in the gym are on him. When Andy explains to a customer how to use one of the gym's exercise machines, he begins by demonstrating the machine's operation himself while asking the customer to place a hand on the relevant muscle on Andy's body so that the customer can understand the correct motion. Undoubtedly, this means of explanation is pedagogically useful, but I am sure that Andy also enjoys the overwhelming impression that he leaves.

At least in traditional societies based on human muscle power rather than on machine power, muscles are a truthful signal of male quality, like a deer's antlers. On the one hand, muscles enable men to gather resources such as food, to construct resources such as houses, and to defeat rival men. In fact, muscles play a much larger role in a traditional man's life than do antlers in the life of a deer, which uses antlers only in fighting. On the other hand, men with other good qualities are better able to acquire all the protein required to grow and maintain big muscles. One can fake one's age by dyeing one's hair, but one cannot fake big muscles. Naturally, men did not evolve muscles solely to impress other men and women, in the way that male bowerbirds evolved a golden crest solely as a signal to impress other bowerbirds. Instead, muscles evolved to perform functions, and men and women then evolved or learned to respond to muscles as a truthful signal.

A beautiful face may be another truthful signal, although the underlying reason is not as transparent as in the case of muscles. If you stop to think about it, it may seem absurd that our sexual and social attractiveness depends on facial beauty to such an inordinate degree. One might reason that beauty says nothing about good genes, parent-ing qualities, or food-gathering skills. However, the face is the part of the body most sensitive to the ravages of age, disease, and injury. Especially in traditional societies, individuals with scarred or misshapen faces may thereby be advertising their proneness to disfiguring infections, inability to take care of themselves, or burden of parasitic worms. A beautiful face was thus a truthful signal of good health that could not be faked until twentieth-century plastic surgeons perfected facelifts.

Our remaining candidate for a truthful signal is women's body fat. Lactation and child care are a big energy drain on a mother, and lactation tends to fail in an undernourished mother. In traditional societies before the advent of infant formulas and before the domestication of milk-producing hoofed animals, a mother's lactational failure would have been fatal to her infant. Hence a woman's body fat would be a truthful signal to a man that she was capable of rearing his child. Naturally, men should prefer the correct amount of fat: too little could be a harbinger of lactational failure, but too much could signal difficulties in walking, poor food-gathering ability, or early death from diabetes.

Perhaps because fat would be difficult to discern if it were spread uniformly over the body, women's bodies have evolved with fat concentrated in certain parts that are readily visible and assessed, although the anatomical location of those fat deposits varies somewhat among human populations. Women of all populations tend to accumulate fat in the breasts and hips, to a degree that varies geographically. Women of the San population native to southern Africa (the so-called Bushmen and Hottentots) and women of the Andaman Islands in the Bay of Bengal accumulate fat in the buttocks, producing the condition known as steatopy-gia. Men throughout the world tend to be interested in women's breasts, hips, and buttocks, giving rise in modern societies to yet another surgical method of fake signals, breast enhancement. Of course, one can object that some individual men are less interested than other men in these signs of female nutritional status, and that the relative popularity of skinny and plump fashion models fluctuates from year to year as fads. Nevertheless, the overall trend in male interest is clear.

Suppose one were again playing God or Darwin and deciding where on a woman's body to concentrate body fat as a visible signal. The arms and legs would be excluded because of the resulting extra load on them during walking or use of the arms. That still leaves many parts of the torso where fat could be safely concentrated without impeding movement, and in fact I just mentioned that women of various populations have evolved three different signaling areas on the torso. Nevertheless, one has to ask whether the evolutionary choice of signaling area is completely arbitrary, and why there are no populations of women with other signaling locations, such as the belly or the middle of the back. Paired fat deposits on the belly would seem to create no more difficulties for locomotion than do our actual paired deposits in the breasts and buttocks. It is curious, however, that women of all populations have evolved fat deposition in the breasts, the organs whose lactational performance men may be attempting to assess by fat deposit signals. Hence some scientists have suggested that large fatty breasts are not only an honest signal of good overall nutrition but also a deceptive specific signal of high milk-producing ability (deceptive because milk is actually secreted by breast glandular tissue rather than by breast fat). Similarly, it has been suggested that fat deposition in the hips of women worldwide is also both an honest signal of good health and a deceptive specific signal suggesting a wide birth canal (deceptive because a truly wide birth canal would minimize the risk of birth traumas but mere fat hips would not).

At this point, I have to anticipate several objections to my assumption that the sexual ornamentation of women's bodies could have any evolutionary significance. Whatever the interpretation, it is of course a fact that women's bodies do possess structures functioning as sexual signals, and that men tend to be especially interested in those particular parts of women's bodies. In those respects women resemble females of other primate species living in troops that contain many adult males and adult females. Like humans, chimpanzees and baboons and macaques live in troops and have sexually ornamented females (as well as males). By contrast, female gibbons and the females of other primate species that live as solitary male-female pairs bear little or no sexual ornamentation. This correlation suggests that if and only if females compete intensively with other females for males' attention-for example, because multiple males and females encounter each other daily in the same troop-then females tend to evolve sexual ornamentation in an ongoing evolutionary contest to be more attractive. Females who do not have to compete on such a regular basis have less need of expensive body ornamentation.

In most animal species (including humans) the evolutionary significance of male sexual ornamentation is undisputed, because males surely compete for females. However, scientists have raised three objections to the interpretation that women compete for men and have evolved bodily ornaments for that purpose. First, in traditional societies at least 95 percent of women marry. This statistic seems to suggest that virtually any woman can get a husband, and that women have no need to compete. As one woman biologist expressed it to me, “Every garbage can has a lid, and there is usually a bad-looking man for every bad-looking woman.”

But that interpretation is belied by all the effort that women consciously put into decoration and surgical modification of their bodies so as to be attractive. In fact, men vary greatly in their genes, in the resources that they control, in their parenting qualities, and in their devotion to their wives. Although virtually any woman can get some man to marry her, only a few women can succeed in getting one of the few high-quality men, for whom women must compete intensely. Every woman knows that, even though some male scientists evidently don't.

A second objection notes that men in traditional societies had no opportunity to choose their spouse, whether on the basis of sexual ornamentation or any other quality. Instead, marriages were arranged by clan relatives, who did the choosing, often with the motive of cementing political alliances. In reality, though, bride prices in traditional societies, such as the New Guinea societies where I work, vary according to a woman's desirability, the woman's health and probable mothering qualities being important considerations. That is, although a bridegroom's views about his bride's sex appeal may be ignored, his relatives who actually select the bride do not ignore their own views. In addition, men certainly consider a woman's sex appeal in selecting partners for extramarital sex, which is likely to account for a higher proportion of babies in traditional societies (where husbands don't get to follow their sexual preferences in selecting their wives) than in modern societies. Furthermore, remarriage following divorce or the death of the first spouse is very common in traditional societies, and men in those societies have more freedom in selecting their second spouse.

The remaining objection notes that culturally influenced beauty standards vary with time, and that individual men within the same society differ in their tastes. Skinny women may be out this year but in next year, and some men prefer skinny women every year. However, that fact is no more than noise slightly complicating but not invalidating the main conclusion: that men at all places and times have on the average preferred well-nourished women with beautiful faces.

We have seen that several classes of human sexual signals-men's muscles, facial beauty, and women's body fat concentrated in certain places-apparently conform to the truth-in-advertising model. However, as I mentioned in discussing animals' signals, different signals may conform to different models. That's also true of humans. For example, the pubic and axillary hair that both men and women have evolved to grow in adolescence is a reliable but wholly arbitrary signal of attainment of reproductive maturity. Hair in those locations differs from muscles, beautiful faces, and body fat in that it carries no deeper message. It costs little to grow, and it makes no direct contribution to survival or to nursing babies. Poor nutrition may leave you with a scrawny body and disfigured face, but it rarely causes your pubic hair to fall out. Even weak ugly men and skinny ugly women sport axillary hair. Men's beards, body hair, and low-pitched voices as signals of adolescence, and men's and women's hair whitening as a signal of age, seem equally devoid of inner meaning. Like the red spot on a gull's bill and many other animal signals, these human signals are cheap and wholly arbitrary-many other signals can be imagined that would serve equally well.

Is there any human signal that exemplifies the operation of Fisher's runaway selection model or Zahavi's handicap principle? At first, we seem devoid of exaggerated signaling structures comparable to a widowbird's sixteen-inch tail. On reflection, however, I wonder whether we actually do sport one such structure: a man's penis. One might object that it serves a nonsignaling function and is nothing more than well-designed reproductive machinery. However, that is not a serious objection to my speculation: we have already seen that women's breasts simultaneously constitute signals and reproductive machinery. Comparisons with our ape relatives hint that the size of the human penis similarly exceeds bare functional requirements, and that that excess size may serve as a signal. The length of the erect penis is only about VA inches in gorillas and 1 1/2 inches in orangutans but 5 inches in humans, even though males of the two apes have much bigger bodies than men..

Are those extra couple of inches of the human penis a functionally unnecessary luxury? One counterinterpretation is that a large penis might somehow be useful in the wide variety of our copulatory positions compared to many other mammals. However, the 1 1/2-inch penis of the male orangutan permits it to perform in a variety of positions that rival ours, and to outperform us by executing all those positions while hanging from a tree. As for the possible utility of a large penis in sustaining prolonged intercourse, orangutans top us in that regard too (mean duration fifteen minutes, versus a mere four minutes for the average American man).

A hint that the large human penis serves as some sort of signal may be gained by watching what happens when men take the opportunity to design their own penises, rather than remaining content with their evolutionary legacy. Men in the highlands of New Guinea do that by enclosing the penis in a decorative sheath called a phallo-carp. The sheath is up to two feet long and four inches in diameter, often bright red or yellow in color, and variously decorated at the tip with fur, leaves, or a forked ornament. When I first encountered New Guinea men with phallo-carps, among the Ketengban tribe in the Star Mountains last year, I had already heard a lot about them and was curious to see how they were used and how people explained them. It turned out that men wore their phallocarps constantly, at least whenever I encountered them. Each man owns several models, varying in size, ornamentation, and angle of erection, and each day he selects a model to wear according to his mood, much as each morning we select a shirt to wear. In response to my question as to why they wore phallocarps, the Ketengbans replied that they felt naked and immodest without them. That answer surprised me, with my Western perspective, because the Ketengbans were otherwise completely naked and left even their testes exposed.

In effect, the phallocarp is a conspicuous erect pseudo-penis representing what a man would like to be endowed with. The size of the penis that we evolved was unfortunately limited by the length of a woman's vagina. A phallocarp shows us what the human penis would look like if it were not subject to that practical constraint. It is a signal even bolder than the widowbird's tail. The actual penis, while more modest than a phallocarp, is immodestly large by the standards of our ape ancestors, although the chimpanzee penis has also become enlarged over the inferred ancestral state and rivals men's penises in size. Penis evolution evidently illustrates the operation of runaway selection just as Fisher postulated. Starting from a 1/4-inch ancestral ape penis similar to the penis of a modern gorilla or orangutan, the human penis increased in length by a runaway process, conveying an advantage to its owner as an increasingly conspicuous signal of virility, until its length became limited by counterselection as difficulties fitting into a woman's vagina became imminent.

The human penis may also illustrate Zahavi's handicap model as a structure costly and detrimental to its owner. Granted, it is smaller and probably less costly than a peacock's tail. However, it is large enough that if the same quantity of tissue were instead devoted to extra cerebral cortex, that brainy redesigned man would gain a big advantage. Hence a large penis's cost should be regarded as a lost-opportunity cost: because any man's available biosyn-thetic energy is finite, the energy squandered on one structure comes at the expense of energy potentially available for another structure. In effect, a man is boasting, “I'm already so smart and superior that I don't need to devote more ounces of protoplasm to my brain, but I can instead afford the handicap of packing the ounces uselessly into my penis.”

What remains debatable is the intended audience at which the penis's proclamation of virility is directed. Most men would assume that the ones who are impressed are women. However, women tend to report that they are more turned on by other features of a man, and that the sight of a penis is, if anything, unattractive. Instead, the ones really fascinated by the penis and its dimensions are men. In the showers in men's locker rooms, men routinely size up each other's endowment.

Even if some women are also impressed by the sight of a large penis or are satisfied by its stimulation of the clitoris and vagina during intercourse (as is very likely), it is not necessary for our discussion to degenerate into an either/or argument that assumes the signal to be directed at only one sex. Zoologists studying animals regularly discover that sexual ornaments serve a dual function: to attract potential mates of the opposite sex, and to establish dominance over rivals of the same sex. In that respect, as in many others, we humans still carry the legacy of hundreds of millions of years of vertebrate evolution engraved deeply into our sexuality. Over that legacy, our art, language, and culture have only recently added a veneer.

The possible signal function of the human penis, and the target of that signal (if there is one), thus remain unresolved questions. Hence this subject constitutes an appropriate ending to this book because it illustrates so well the book's main themes: the importance, fascination, and difficulties of an evolutionary approach to human sexuality. Penis function is not merely a physiological problem that can be straightforwardly cleared up by biomechanical <>x-periments on hydraulic models, but an evolutionary problem as well. That evolutionary problem is posod by the fourfold expansion in human penis size beyond its inferred ancestral size over the course of the last 7 to 9 million years. Such an expansion cries out for a historical, functional interpretation. Just as we have seen with strictly female lactation, concealed ovulation, men's roles in society, and menopause, we have to ask what selective forces drove the historical expansion of the human penis and maintain its large size today.

Penis function is also an especially appropriate concluding subject because it seems at first so nonmysterious. Almost anyone would assert that the functions of the penis are to eject urine, inject sperm, and stimulate women physically during intercourse. But the comparative approach teaches us that those functions are accomplished elsewhere in the animal world by a relatively much smaller structure than the one with which we encumber ourselves. It also teaches us that such oversized structures evolve in several alternative ways that biologists are still struggling to understand. Thus, even the most familiar and seemingly most transparent piece of human sexual equipment surprises us with unsolved evolutionary questions.

Загрузка...