ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ Ассамблея ассамблеров

Нанотехнология. Так называется новая, революционная отрасль современной техники. Приставка «нано» происходит от греческого слова nannos — карлик (отсюда, кстати, и нанометр — одна миллиардная доля метра).

Термин появился в середине XX века благодаря нобелевскому лауреату, известному физику Ричарду Фейнману. Еще в 1959 году он предсказал, что человечество скоро научится манипулировать отдельными атомами, молекулами или живыми клетками и сможет синтезировать все, что угодно. Сам Фейман не дожил до осуществления своей мечты, но идея осталась жить.




Первые шаги

В 1981 году ученые швейцарского отделения фирмы IBM изобрели силовой туннельный микроскоп. Мы уже рассказывали об этом удивительном инструменте подробно, поэтому лишь вкратце напомним.

Над полупроводниковой или металлической подложкой расположена тончайшая вольфрамовая игла. Напряжение порядка 10 вольт создает разность потенциалов между иглой и подложкой, являющимися в данном случае как бы обкладками конденсатора. Причем из-за малости зазора и крошечных размеров кончика иглы напряженность электростатического поля получается весьма солидной — около 108 В/см. Это поле и является основной действующей силой туннельного микроскопа: точнее, одной из его разновидностей — атомного силового микроскопа.

Работать этот агрегат может в двух режимах. Если с помощью специальной схемы поддерживать ток между иглой и подложкой постоянным, то при сканировании (многократном проведении иглы над поверхностью) она будет то опускаться, то приподниматься, в зависимости от рельефа, как патефонная игла копирует профиль поверхности.

Поскольку любой механический привод весьма груб, перемещениями иглы на субатомные расстояния управляют с помощью пьезоэффекта. Керамическая пьезотрубка при подаче на ее электроды управляющего напряжения меняет свою форму и размеры, что позволяет в зависимости от сигнала перемещать иглу по трем координатам. Насколько велика чувствительность микроманипулятора, можно судить по таким цифрам: при изменении напряжения на 1В таким игла смещается на величину порядка 2–3 нанометров.

Ведя таким образом иглу над поверхностью рельефа, довольно просто получить серию электрических кривых, которые с высокой степенью точности будут описывать характер изучаемой поверхности. Воочию ее можно увидеть на экране персонального компьютера.



1. Нанороботы внутри кровеносных сосудов ведут ремонт организма.

2. Эти шестеренки, едва видимые на ладони невооруженным глазом, — детали первых наномеханизмов.


Изобретение такого микроскопа стало этапной вехой в создании практической нанотехнологии. Ведь, кроме «микроскопии на ощупь», с помощью аналогичной установки можно формировать саму поверхность. Хорошо известно, что электрическое поле влияет на характер диффузии — проникновения атомов со стороны в поверхностные слои вещества.

Если игла подведена к поверхности чересчур близко даже по меркам нанотехнологии, то в локальном поле появляются силы, достаточные для того, чтобы стягивать к игле атомы, подобно тому, как к наэлектризованной стеклянной палочке притягиваются бумажки и соринки. Увеличив поле, можно даже оторвать от поверхности одиночный атом, перенести его в другое место, а затем внедрить его там, сменив полярность напряжения на игле так, чтобы атом отталкивался от нее.

Именно таким образом, например, в 1990 году специалисты фирмы IBM «нарисовали» фирменный знак своего предприятия, использовав всего 35 атомов ксенона. А первый в мире робот, созданный компанией «Ксерокс» в начале 90-х годов, вылавливал отдельные атомы, а затем использовал их для художественного конструирования. Так маленькие дети используют элементы конструктора для своих поделок.

Первые шаги в развитии нанотехнологии были сделаны. Что дальше?


Детские забавы?

Большинство предметов, созданных человеком, как известно, насчитывают в своей структуре триллионы триллионов атомов. И для того чтобы получить из какого-то сырья полезную вещь, надо эти атомы упорядочить.

Конечно, от изготовления первых кремневых рубил до создания компьютеров на кремниевых микрочипах — дистанция огромного размера. Но суть методики всегда одна — обрабатывая детали, мы отсекаем лишнее, пытаемся навести какой-то порядок в кристаллической структуре. Современные технологи уже научились обращаться с объектами микрометровых размеров. Свидетельством тому те же микрочипы, в которых работают группы в тысячи атомов или даже в сотни.

Еще один шаг вниз — в наномир — позволит производить вещи из отдельных атомов, делать машины, сравнимые по размеру с крупными молекулами.

Да, пока первые опыты постижения наномира опять-таки похожи скорее на детские забавы. Как уже упоминалось, с помощью туннельного микроскопа исследователи выкладывают буквы высотой в 6–8 атомов, образующие название корпорации. Или с помощью приложенного электроимпульса открывают и закрывают коробочку длиной в несколько нанометров. Или заставляют крутиться молекулу-пропеллер…

Все это не более чем «проба пера». Хотя современная технология позволяет манипулировать отдельными атомами, но выглядят такие операции довольно неуклюже: для транспортировки одного-единственного атома служит огромный по сравнению с ним прибор. Это как если бы многотонный самосвал вез одну горошину.

Исследователи понимают недостатки нынешней технологии и мечтают научиться создавать настоящих нанороботов, которые бы работали с атомами, сами будучи размером с нанометр.

Дело дошло до того, что Институт Форсайта пообещал премию в четверть миллиона долларов тому, кто построит «руку», способную манипулировать с веществом на молекулярном уровне. И ныне уже есть подробный проект такого устройства.

У позиционирующего устройства будет шесть степеней свободы. Каждая будет управляться своей пневмосистемой, приводимой в действие давлением инертного газа, а цилиндрами послужат углеродные нанотрубки. Все в общем-то довольно просто, даже примитивно. Однако пока такая «рука» не создана. Ведь осуществить такой «примитив» куда сложнее, чем, скажем, подковать пресловутую лесковскую блоху.

Тем не менее, исследователи надеются, что первые «наноруки» вот-вот появятся.



Так выглядит сегодня главный блок атомного силового микроскопа.


«Наноруки» на нанозаводах

Первой областью, в которой они начнут работать, наверное, станет микро-, точнее, наноэлектроника. Дело в том, что у микросхем, изготовляемых традиционным способом, есть два фундаментальных недостатка. Во-первых, традиционная технология, как уже говорилось, не может оперировать с элементами схем меньше сотен атомов в размере. И во-вторых, она не позволяет создавать объемные схемы, что повысило бы вместимость чипов в десятки раз и во столько же уменьшило их размеры. А это, в свою очередь, открыло бы возможности создания нейронных схем, подобных тем, что работают в человеческом мозге.

Первые шаги в этом направлении уже сделаны! В 1998 году датские ученые продемонстрировали атомный триггер, состоящий из… одного атома кремния и двух атомов водорода.

Можно сказать, что современная техника уже вплотную приблизилась к теоретической возможности запоминать и передавать бит информации с помощью одного электрона.

Однако настоящая революция в нанотехнологии произойдет, лишь когда десятки, сотни «нанорук» под управлением нанокомпьютеров будут собраны в бригады, появятся первые нанозаводы, способные, следуя заданным программам, собирать из отдельных атомов другие наномашины.

Такие устройства некоторые специалисты называют «ассемблерами», или сборщиками. Ну а бригады, состоящие из них, — соответственно «ассамблеями» или «ансамблями».

Полагают, что лет через 10–15 такие ансамбли смогут переставлять с места на место примерно миллион атомов в секунду. За тысячу секунд, или немногим больше чем за 15 минут, такой ассемблер сможет скопировать самого себя. Это уже сопоставимо с тем временем, за которое воспроизводит сама себя обыкновенная бактерия.


По нашему образу и подобию?

Отсюда вытекают уже грандиозные возможности — тонна ассамблеров сможет быстро построить тонну еще чего-нибудь. Причем конечный продукт будет иметь все свои триллионы триллионов атомов в нужных местах без всяких стружек и прочих отходов.

А это фактически приведет к тому, что станут совершенно ненужными все современные производства, начиная от сталеплавильных комбинатов и машиностроительных заводов и кончая агрофермами и пищевыми комбинатами. Зачем что-то растить на огороде, когда готовый продукт можно сразу получить в чане биореактора?..

В свое время (см. «ЮТ» № 10 за 1988 г.) мы писали о том, что современная технология позволяет ракеты не строить, а… ткать. Сегодня мы можем помечтать о том времени, когда ракетные двигатели для тех ракет будут выращивать.

Представьте, в цехе стоит огромный бак, внутри которого расположена опорная плита. На ней — «семя»-механозародыш — нанокомпьютер с хранящимися в кем планами будущей конструкции. На поверхности «зародыша» имеются места, к которым прикрепляются ассемблеры.

Насосы заполняют емкость густой жидкостью, которая состоит из ассамблеров (их вырастили и перепрограммировали в другом чане), а также того сырья, из которого хотят получить нужное нам изделие.

Ассамблер-сборщик прилипает к «семени» и получает от него инструкцию по дальнейшим действиям. А дальше все идет примерно так же, как в живом организме после оплодотворения. Одна клетка делится на две, те еще пополам… Сначала эти «клетки» не имеют специализации, они просто наращивают количество себе подобных.

Но вот рубикон перейден, количество перешло в новое качество. И ассамблеры начинают специализироваться. Их сообщества постепенно превращаются в органы — детали будущего агрегата. За несколько часов каркас из ассамблеров вырастает так, что уже соответствует конечной форме двигателя.

По мере того, как ведется сборка, в «семя» поступают запросы на те или иные химические элементы, и их по мере надобности добавляет в бак. И к концу смены, глядишь, из него вынимают уже готовый двигатель. Или тонну колбасы… Или фруктовое пюре…

Ведь ассамблерам в общем-то без разницы, что именно делать.


Растущие механизмы

Когда же можно будет ожидать появления первых наномеханизмов? Известный специалист Эрик Дрекслер полагает, что такое производство получит широкое распространение уже к середине нынешнего века.

И тогда наше хозяйство преобразится. Комплексы нанороботов заменят естественные «машины» для производства пищи — растения и животных. Вместо длинных цепочек «почва — углекислый газ — фотосинтез — трава — корова — молоко» останутся лишь «почва — нанороботы — молоко».

Или, если хотите, сразу творог. Или мясо. Уже жареное…

В быту появятся умные вещи, созданные наномашинами. Мало того, что они смогут видеть, слышать и даже соображать. На базе нанотехники ничего не стоит создавать предметы и конструкции, изменяющие свою форму и свойства.

Скажем, в зависимости от количества пассажиров автомобиль, например, сможет отращивать дополнительные сиденья, а его двигатель — заживлять царапины на стенках цилиндров.

Человечество перестанет вредно влиять на окружающую среду. Потому как все отходы будут тут же превращаться в полезное исходное сырье для новой нанопереработки.

Таковы перспективы завтрашнего дня, обрисованные зарубежными специалистами.


Скатерть-самобранка XXI века

«Ну а что делают наши нанотехнологи?» — наверняка спросите вы.

Мы уже рассказывали (см. «ЮТ» № 10 за 1993 г.), как работают специалисты в НИИ «Дельта», где создают первые образцы «скатертей-самобранок XXI века». Именно так называет устройства, создаваемые здесь, один из его конструкторов — П.Н. Лускинович.

И ему вполне можно верить, поскольку его слова подтверждаются работами сотрудников возглавляемой им лаборатории.

Со стороны все выглядит на редкость обыденно. За дисплеем персонального компьютера сидит молодой человек, постукивает по клавишам. А рядом на рабочем столе стоит небольшое устройство, размерами и блеском никеля напоминающее кофейник. «Кофейник» и оказался тем самым атомным силовым микроскопом, с помощью которого можно манипулировать атомами. Чем, кстати, молодой человек и занимался.

Настукивал на клавишах программу работы персональному компьютеру, а тот, в свою очередь, командовал молекулярной сборкой. И на телеэкране было отчетливо видно, как на глазах менялся рельеф бугристой поверхности — одни атомы замещались другими.

Атом к атому, молекула к молекуле… Получается клетка. Потом несколько клеток формируют зародыш органа, а из органов в конце концов вырастает организм. Вот эту-то операцию, лежащую в начале всех начал, и отрабатывают ныне ученые. Раз за разом, атом за атомом пробуют они разные комбинации, подбирают наилучшие алгоритмы действия.

Пока все это делается довольно медленно. Но не забывайте, что действуют специалисты все-таки не голыми руками, а с помощью туннельных микроскопов и ЭВМ. А компьютер — такая машина: научи ее однажды чему-то, и она уже не забудет. И вскоре сможет выполнять разученные операции со сказочной быстротой, круглые сутки без остановки.



П.Н. Лускинович (в центре) со своими коллегами.

Станислав СЛАВИН

Загрузка...