Плоды и корни

Явлений знак узнай

и будешь властен…

Великое Язу

От булыжника к антивеществу

Сегодня все объясняют с цифрами в руках. К ним апеллируют математики и биологи, кибернетики и демографы, экономисты и писатели-очеркисты. Начнем с них и мы.

Строительство недавно запущенного в Батавии, в США, крупнейшего ускорителя на энергию до 400 Гэв обошлось государству в 250 миллионов долларов. Примерно столько же будет стоить аналогичная машина, к сооружению которой приступили в ЦЕРНе — институте, объединяющем ученых западноевропейских стран.

Расходы на конструирование и изготовление экспериментальной аппаратуры для работы на ускорителях составляют добрую половину стоимости самого ускорителя.

Ни одна другая область фундаментальных исследований, кроме физики элементарных частиц, не может «похвастаться» столь грандиозными затратами. Но это не прихоть ученых, не упущение финансовых или планирующих органов. Это насущная необходимость.

Каждая новая крупинка знания о мире элементарных частиц требует все больших и больших усилий. Продвижение вперед в этом направлении затруднительно не только для отдельной лаборатории или института, но и для отдельного государства. Выход — в развитии международных коопераций ученых, в рамках которых стало возможным создание и эффективное использование многих дорогостоящих установок.

Уже более пятнадцати лет существует Объединенный институт ядерных исследований в подмосковном городе Дубна. Вместе с советскими учеными здесь работают 400 физиков и инженеров из социалистических стран — участниц института. Только в одной научной группе лаборатории высоких энергий ОИЯИ, недавно закончившей важный эксперимент в Серпухове, было четыре рабочих языка.

Между ОИЯИ и ЦЕРНом давно установлены деловые контакты. На Серпуховском ускорителе ставят совместные эксперименты советские ученые и их коллеги из Франции, США, ЦЕРНа.

Недавно на митинге, посвященном утверждению проекта протонного ускорителя на 400 Гэв, профессор Дж. Адамс, директор лаборатории ЦЕРН-2, выразил мнение, что ускоритель следующего поколения — на энергию 10 000 Гэв — будет «тройка-троном» — машиной, созданной совместными усилиями СССР, США и Западной Европы.

Но не слишком ли дорогой стала физика элементарных частиц? Американские ученые подсчитали, что все затраты на фундаментальные исследования от Архимеда до наших дней не превышают стоимости нынешнего десятидневного валового национального продукта США! Вот первый неожиданный вывод: расходы на фундаментальные науки растут медленнее, чем богатство общества. А вклад их в создание современного уровня материального производства огромен.

Интересно, однако, что по этому поводу говорят сами физики.

«Как показывает история, — говорил член-корреспондент АН СССР А. Балдин, — открытие фундаментальных законов природы рано или поздно очень сильно отражается на жизни общества. Сила фундаментальной науки в том, что она дает качественно новые идеи. А с их помощью удается вдруг, сразу, скачком решить много сложнейших практических задач. Убедительный пример — проникновение новых методов квантовой теории поля (которые развивались специально для построения теории элементарных частиц) в физику твердого тела. А уж физика твердого тела (сверхпроводимость, физика полупроводников, физика металлов и др.) имеет самое прямое отношение к технике».

«Невозможно заранее предугадать практические применения вещей, которые еще не изучены, — считает член-корреспондент Ф. Шапиро. — Вот пример из прошлого. Дж. Дж. Томсон открыл электроны: в результате мы имеем электронику, телевизоры, полупроводники. А ему просто было любопытно изучать, как там протекают токи в газах. Сейчас нельзя говорить о каких-то конкретных будущих возможностях использования ядерных сил в практике. Можно только утверждать, что если их не изучать, то никаких возможностей не появится. Будут новые знания, появятся и изобретения в этой области. Но если их не будет, то можно писать только научно-фантастические романы».

«Я мог бы привести множество примеров, — говорит академик Н. Боголюбов, директор ОИЯИ, — когда, казалось бы, чисто теоретические фундаментальные исследования давали тот задел, который вызвал к жизни создание новых областей техники. По моему глубокому убеждению, проникновение в тайны глубинного строения материи должно привести к большим, может быть, совершенно неожиданным практическим приложениям. Конечно, всех интересуют плоды науки, и это естественно. Но при этом следует уделять внимание и глубоко зарытым корням того дерева, на котором такие плоды могут расти».

Хорошо сказал лауреат Нобелевской премии А. Сент-Дьерди: «Достаточно самого среднего умственного развития, чтобы усмотреть тот огромный вклад в развитие человечества, который внесла новейшая наука, чтобы именно в науке увидеть лейтмотив прогресса и то, что задает тон нашему XX столетию. Невозможно не видеть, что практически все мы в долгу перед наукой, и если изъять ее плоды из нашей жизни, то от всей нашей цивилизации ничего не останется».

А теперь попробуем заглянуть в будущее. Известно, что уровень технического развития цивилизации зависит от ее энерговооруженности. Специалисты по инопланетным цивилизациям (уже есть и такие!) определяют несколько ступеней в развитии цивилизации — начиная с создания единого энергетического хозяйства планеты и кончая управляемым энерговыделением звездных скоплений.

До проникновения в микромир человек пользовался случайно найденными им на поверхности Земли источниками энергии: костром из веток, каменным углем, нефтью. Потом он научился использовать энергию падающей воды.

Из всех наук о природе только физика элементарных частиц дала человечеству новый источник энергии — атомный. Это классический пример того, как фундаментальное исследование реакций тяжелых атомных ядер внезапно решило жгучую для человечества проблему получения энергии.

Ученые обнаружили, что в реакции слияния двух легких ядер тоже выделяется огромная энергия — термоядерная. Управлять ею, однако, еще не научились. Сейчас это первоочередная практическая задача, над решением которой работают большие научные коллективы.

Для развития цивилизации важно не только получение энергии во всевозрастающих количествах, но и ее концентрация и управление ее выделением.

Первобытный человек использовал ничтожную часть энергии, заключенной, скажем, в одном килограмме вещества, когда бросал на охоте камень. Реакция деления атомных ядер тяжелых элементов — необычайно мощный, управляемый и весьма концентрированный источник энергии. Килограмм урана или плутония «заменяет» тысячи тонн лучшего химического горючего и «действие» 1013 булыжников. Это число превышает количество камней, брошенных всеми жившими когда-либо на Земле людьми!

Но в «запасниках» физиков есть кое-что еще. При встрече частицы и античастицы происходит реакция аннигиляции — «уничтожения». Электрон и позитрон исчезают, превращаясь в квант энергии. Вот она, вековечная мечта человечества о полном превращении массы вещества в энергию! Эффективность использования всей энергии, заключенной в веществе, в тысячи раз больше, чем при делении ядер. Но…

«Но пока антивещество стоит много дороже той энергии, которая выделится при его сгорании, — говорит член-корреспондент АН СССР Д. Блохинцев. — Не исключено, однако, что его можно будет использовать в качестве концентрированного топлива для космического транспорта. Но сначала, конечно, придется преодолеть трудности, связанные с хранением, транспортировкой антивещества и т. д.».

Ну а если дать простор фантазии, то далекое будущее энергетики можно представить себе так…

На астероиде или на искусственно созданной планете получается энергия по циклу системы реакций синтеза легких ядер — то, что является источником энергии нашего Солнца и множества других аналогичных звезд. В то же время на Земле энергию черпают управляемым синтезом элементарных частиц из свободных кварков, которые научились получать в любом количестве.

Безудержная фантазия? На сегодняшний день — да. Но вот что сказал о кварках академик Б. Понтекорво: «Если кварки существуют, я не сомневаюсь в том, что они могут быть использованы: стабильное „вещество“ с совершенно новыми свойствами обязательно найдет практическое применение». То же самое можно сказать и о «магнитной материи», построенной из монополей Дирака. Опять-таки — если они существуют в природе.

А уничтожить все эти и многие другие «если» могут только фундаментальные исследования в физике высоких энергий, в физике элементарных частиц.


Универсальные машины

Предсказание будущего всегда было делом нелегким и неблагодарным. Действительность оказывалась намного богаче и значительней, чем это представлялось в прогнозах. И последующие поколения чаще всего удивлялись бескрылой фантазии предшественников.

Сейчас нам трудно понять, как мог Э. Резерфорд всего за год-два до открытия реакции деления ядер сомневаться в возможности какого-либо применения ядерной энергии.

Но вопрос о сегодняшней пользе физики элементарных частиц можно рассматривать не только в плане туманных обещаний, но и конкретных реальных применений.

В 1950 году в американском журнале была опубликована статья известного физика, лауреата Нобелевской премии Е. Вигнера, в которой была такая строчка: «Наша наука с большим успехом увеличивает нашу мощь, чем наделяет нас знаниями, представляющими чисто человеческий интерес».

Сейчас, двадцать с лишним лет спустя, с этими словами нельзя согласиться. Даже если не считать открытия атомного источника энергии, физика элементарных частиц пришла бы на смотр наук, полезных человеку, не с пустыми руками.

Накануне I Международной конференции по мирному использованию атомной энергии 1955 года собралась сессия Академии наук СССР, посвященная этим же проблемам. Академик А. Несмеянов уже тогда сказал, что «атомная промышленность дает науке, и технике радиоактивные элементы, излучения которых используются в медицине для лечения и диагностики, находят применение в пищевой промышленности, автоматике, дефектоскопии, горной разведке и во множестве других направлений. Химия и физика, металлургия, механика газообразного, жидкого и твердого тела и особенно биология с ее богатством областей и направлений, начиная от физиологии высшей нервной деятельности и кончая агрономией, стали широким полем применения меченых атомов, позволили ввести новые методы работы, сделать новые открытия».

Но что же теперь добавилось нового к этим применениям? И приносят ли какую-нибудь пользу людям самые большие и дорогие устройства физики элементарных частиц — ускорители?

При сооружении одного из первых ускорителей в Дубне строители удивлялись тому, что не подводится специальная железнодорожная колея для вывоза «изделий», которые будет производить эта большая машина.

Циклотроны, фазотроны… Окутанные «таинственным туманом» науки, они привлекают к себе внимание, как все неизвестное и непонятное. Сюда часто приезжают на экскурсию люди, далекие от науки. Большинство из них почтительно и робко взирают на громоздкие сооружения из железа и еще более отдаляются от науки, глядя на ее бездушные установки — символы современности.

Но разве сложные конструкции нефтеперегонного завода более человечны? Просто люди знают, что здесь производят керосин и бензин. Даже огромные средства, затраченные для высадки людей на Луну, представляются полезней, чем расходы на исследования в физике высоких энергий, — такую мысль высказал известный американский физик В. Вайскопф на Тбилисском симпозиуме 1969 года.

К сожалению, для широкой публики практически до сих пор неизвестен огромный вклад, который ускорители, да и вся экспериментальная физика высоких энергий вносят в повседневную жизнь человека.

На мощном синхроциклотроне, созданном еще в конце 1949 года — в тяжелое послевоенное время, — Институт ядерных проблем Академии наук СССР исследовал процесс деления тяжелых ядер под действием нейтронов. Эти результаты необходимы были для решения задач практического использования атомной энергии. Теперь на ускорителях этого класса работают не только физики, но и представители совершенно иных специальностей: радиохимики и медики, радиобиологи и геохимики, сотрудники научных институтов, непосредственно связанных с промышленностью.

Здесь испытывают на устойчивость к радиационным облучениям солнечные батареи и решается проблема защиты человека от действия радиационных поясов Земли и солнечных вспышек.

Развитие ускорительной техники далеко вперед продвинуло человечество в ядерной медицине и радиотерапии. Больше половины всех известных радиоактивных ядер обнаружены в реакциях, которые физики изучали на ускорителях. Большинство изотопов получают в ядерных реакторах. Но радиоактивный изотоп цинк-72, который применяется для раннего обнаружения рака предстательной железы, получают только на ускорителях.

Медики давно применяют кобальтовую пушку для лечения злокачественных опухолей гамма-квантами, которые испускает радиоактивный изотоп кобальта. Но это излучение поражает и расположенные рядом здоровые ткани. Более перспективно применение протонов и особенно пи-мезонов. При остановке в веществе они выделяют большую энергию в очень небольшом объеме.

Физики уже научились создавать специальные «медицинские» пучки протонов на синхроциклотроне в Дубне и протонном синхротроне в Москве. Медики-клиницисты из Института экспериментальной и клинической онкологии АМН СССР изучают сейчас возможность их использования для улучшения методики лучевой терапии рака.

Так, почти незаметно, ускорители уже давно встретились с человеком.

До сих пор ничего не говорилось об использовании ускорителя в промышленности. С помощью протонов с энергией около 150 Мэв можно измерить толщину графита с точностью до 0,0015 процента по сравнению с 2 процентами, которые получаются при использовании для этой цели альфа-частиц или электронов. После радиационной обработки материалов на ускорителе повышается их точка плавления, увеличивается сила натяжения, прочность, меняются структура и свойства полимерных материалов.

Американский физик Л. Розен, выступая на национальной конференции по ускорителям в Чикаго, сообщил, что из 1000 ускорителей, работающих в США, лишь менее 150 используются исключительно для фундаментальных исследований. Около 1/3 используется в промышленности и медицине, а остальные — в прикладных науках.

Косвенным образом физика элементарных частиц влияет на ход технического прогресса человечества.

«Будучи действительно передовой наукой, — говорил академик Б. Понтекорво, — она для своих нужд прямо развила ряд новых методических разработок или стимулировала их развитие. Эти разработки, часто на пределе возможностей современной техники, нашли практическое применение в ядерной технике, в медицине, в биологии, в исследовании космического пространства, в разведке полезных ископаемых, в вычислительной и оборонной технике. Не случайно, что именно физика элементарных частиц стимулирует сейчас создание сверхпроводящих магнитов, которые, без сомнения, найдут важное практическое применение в различных областях техники».

Группа криогенного отдела лаборатории высоких энергий ОИЯИ долго работала над созданием жидководородной и дейтериевой мишени для экспериментов с ка-ноль-мезонами. В процессе этой работы ученые разработали «дьюары» специальной конструкции. Ими заинтересовались многие промышленные организации. А недавно приезжали и представители сельского хозяйства. Начальник криогенного отдела А. Зельдович вспоминал, как «попутно» с созданием жидководородных камер им пришлось разработать крупные водородные ожижители. Ожижители эти по чертежам физиков стали выпускать серийно. Впервые в СССР на них получался жидкий параводород.

Академик Г. Флеров, директор лаборатории ядерных реакций ОИЯИ, так сказал о практическом применении достигнутых в лаборатории результатов: «Вся изощренная техника, разработанная у нас в лаборатории для выделения отдельных тяжелых ядер из большой массы вещества, уже используется в тонкой промышленной технологии. Образно выражаясь, мы можем найти иголку в стоге сена. Чувствительнейшие методы анализа, применяемые у нас, давно используются при получении особо чистых химических веществ».

Удалось обратить на пользу даже принципиальный недостаток, присущий ускорителю электронов — синхротрону. Двигаясь по круговым орбитам в магнитном поле ускорителя, электроны тормозятся, испуская «синхротронное излучение». Это явление, с которым практически невозможно бороться, препятствует дальнейшему разгону электронов в циклических машинах. Но для биологов, химиков и медиков «синхротронное излучение» — желанное, поскольку никаким другим способом невозможно получить столь интенсивные потоки мягких (поляризованных!) рентгеновских квантов. И, как это ни парадоксально звучит, уже создаются специальные ускорители, на которых для исследований используются уже не сами ускоренные электроны, а как раз то, что мешает их ускорению.


Ускоритель — генератор энергии

Ускорители элементарных частиц используются сегодня очень широко. Но даже при богатом воображении трудно перебросить мостик от слова «ускоритель» к слову «генератор» — аппарат, вырабатывающий энергию. Прямо-таки бьет в глаза вопиющее противоречие в самом сочетании этих слов. Как ускоритель может быть генератором энергии, когда он сам непрерывно потребляет ее в солидных количествах?

В самом деле, если прекратить подачу тока, огромная машина тотчас замрет. И никому не известно о таких случаях, когда бы ускоритель возвратил затраченную энергию, не говоря уж о том, чтобы производить ее.

И тем не менее то, что утверждает заголовок, не сказка. Еще, правда, и не быль, но уже вполне реальная возможность. Оказывается, с помощью ускорителя элементарных частиц можно получать топливо для ядерной энергетики.

В 1955 году дала ток первая в мире атомная электростанция в Обнинске под Москвой мощностью всего лишь в 5 мегаватт. Сейчас во всех странах работает более 230 атомных электростанций общей мощностью в 20 000 мегаватт. Пока это всего лишь 2 процента энергетических мощностей мира. Но по прогнозам энергетиков, к 1980 году процент этот увеличится до 30, а к концу столетия — до 50!

Пришло время, когда атомная энергия из неожиданной находки физики микромира превращается в важный энергетический ресурс планеты.

«Легко убедиться, — говорит академик Н. Боголюбов, — что за период от I Международной женевской конференции по мирному использованию атомной энергии 1955 года до IV — в сентябре 1971 года произошли радикальные изменения во взаимоотношениях „атом — общество“».

Действительно, проблема, над которой раньше работали лишь ученые, занимающиеся ядерными реакторами, интересует теперь очень широкий круг специалистов. Генеральная Ассамблея ООН поставила перед IV женевской конференцией новую важную цель: она должна быть полезна не только для ученых и инженеров, но также для организаторов промышленности, администраторов, экономистов. Атомная энергетика превращается в жизненную необходимость.

А теперь вернемся к проблеме ядерного топлива. Что мы подразумеваем под этими словами? Уран? Да, топливом для ядерных электростанций является природный уран. Но что дарует нам природа? Только 0,7 процента от этого подарка составляет изотоп урана-235 — те «сухие лучинки», что сгорают в реакторе. Все остальное — «сырые дрова», негорючий уран-238. Если б можно было использовать его, то добытого урана хватило бы на сотни лет. Но в тепловых реакторах выжигается лишь ничтожная его часть.

Если сравнить современные масштабы добычи урана с его «неполным» сгоранием в реакторах, то вывод оказывается неутешительным. Несмотря на чрезвычайную «калорийность» уранового топлива, его слишком мало и не хватит атомной энергетике будущего.

Но природа не скупа. Кроме урана-235, она наделила способностью к делению плутоний-239 и уран-233, лишив нас в то же время возможности добывать их естественным путем: ни того, ни другого изотопа в природе не существует.

Физики-ядерщики знают, однако, что плутоний можно получить из урана-238, а уран-233 — из негорючего природного тория, если облучить их мощным потоком нейтронов.

На VII мировом энергетическом конгрессе академик А. Александров сказал: «Когда мы говорим о практически неисчерпаемых энергоресурсах ядерного горючего, то имеем в виду необходимость и возможность ввода в игру вторичного горючего — плутония и использования благодаря этому большей части запасов урана-238. Без этого не может быть речи о длительном развитии ядерной энергетики в тех масштабах, которые определяются современными темпами технического прогресса, так как ресурсы урана-235 для этого будут недостаточны».

Разведанные запасы сырья могут удовлетворить потребности в уране только до конца 70-х годов. Поэтому уже сейчас встает задача налаживания производства вторичного горючего в больших масштабах.

Плутоний можно получить, имея огромное число нейтронов. Но где их взять? Возникает еще одна проблема — получения интенсивных потоков нейтронов.

Несколько нейтронов рождается при делении ядер в атомных реакторах. Часть из них тут же поглощается для поддержания цепной реакции. А некоторые нейтроны все-таки становятся добычей ядер урана-238. Из отработанных урановых стержней извлекают новое ядерное топливо — плутоний.

Гораздо эффективнее этот процесс происходит в реакторах на быстрых нейтронах. Вокруг активной зоны реактора, работающего на чистом уране-235 или плутонии, выкладывают негорючий, «сырой» изотоп урана или торий. Поглощая быстрые нейтроны, вылетающие из этой зоны, они превращаются в расщепляющийся материал.

Но пока что перед создателями этих реакторов стоит целый ряд нерешенных инженерных и физических задач. Реакторы должны быть экономически выгодными. А главное, чтобы обеспечить необходимый темп развития ядерной энергетики, количество плутония в них должно удваиваться максимум за 5–7 лет. Все же существующие и строящиеся реакторы на быстрых нейтронах обеспечивает удвоение плутония в 2–4 раза медленнее, чем требуется.

Тогда физики предложили другой метод получения делящихся материалов, связанный не с тепловыми или быстрыми реакторами, а с ускорителями элементарных частиц.

Атомные ядра — это настоящие кладовые, набитые нуклонами. Но как их вскрыть — вот в чем проблема. В ядерных реакторах нейтроны освобождаются в реакциях деления. Но есть и другая возможность.

В начале нашего века Э. Резерфорду с помощью примитивного инструмента — источника альфа-частиц впервые удалось выбить из легких ядер протоны. Но много ли можно добиться, «ковыряя» замок хитроумного ядерного сейфа почти голыми руками? А когда ученые вооружились орудиями большого калибра — мощными ускорителями элементарных частиц, им удалось вызвать реакцию расщепления ядер тяжелых атомов. Ускоренные протоны так сильно встряхивают переполненные слабо связанными нуклонами ядра, что из них одновременно высыпается несколько десятков частиц. Один протон большой энергии может вытряхнуть около 17 нейтронов из ядра урана и около 12 из ядра свинца. Освобожденные частицы имеют достаточно большую энергию и, сталкиваясь с другими ядрами, в свою очередь, встряхивают их. Так одна за другой раскрываются «двери» ядерных кладовых.

В реакциях деления удается извлечь лишь по нескольку нейтронов из ядер дефицитных делящихся материалов. Но если поместить кусок свинца в мощный пучок протонов, вылетающих из ускорителя, свинец превратится в генератор нейтронов.

А теперь вместо свинца поместим достаточно протяженную массивную мишень из урана-238 или из тория. Достаточно включить ускоритель, и дело закипит: протоны начнут трясти ядра мишени, а осыпающиеся нейтроны будут «подсушивать» негорючий уран. Такой метод получения вторичного ядерного топлива назвали электроядерным.

Идея этого метода, его физические основы известны давно. Но раньше он не мог быть применен из-за отсутствия необходимого для него ускорителя. У физиков сегодня большой выбор: циклотрон, фазотрон, синхрофазотрон… Но ни одна из существующих машин для этой цели не подходит.

Серпуховской ускоритель разгоняет впущенные в него протоны до 70 000 мега-электрон-вольт. Но число одновременно ускоряемых им частиц невелико — около 1012 протонов в секунду. Для промышленного же производства нейтронов электроядерным методом достаточно сообщить протонам энергию 1000 Мэв, но ускоритель должен выбрасывать в миллион раз больше частиц.

Как заставить магнитное поле ускорителя собирать, удерживать и разгонять такое огромное количество протонов? В сильноточном ускорителе частицы должны фокусироваться магнитным полем еще более жестко, чем даже в Серпуховском. Но можно ли одновременно увеличить плотность пучка протонов и сохранить одинаковой частоту его обращения?

Казалось, что удовлетворить одновременно и тому и другому требованию невозможно. Но что скажет эксперимент, да и с чем экспериментировать? Ведь прежде чем строить сложный и дорогостоящий ускоритель, надо быть уверенным, что он обязательно заработает.

Разорвать заколдованный круг удалось советским ученым, которые под руководством члена-корреспондента АН СССР В. Джелепова и профессора В. Дмитриевского создали модель сильноточного протонного циклотрона.

Когда говорят о создании модели новой машины, речь идет о ее уменьшенной копии. А что означает создание модели ускорителя? Миниатюрный ускоритель, все размеры которого сокращены в несколько раз, может быть лишь макетом, а не моделью. Маленький магнитик не сможет разогнать протоны до энергии в 1000 Мэв, — а промоделировать движение частиц надо именно с той скоростью, какую они имеют при такой энергии.

Легко сказать, найти модель для протона. И все-таки ее нашли. Электрон! Полноправный гражданин мира элементарных частиц, электрон тоже владеет единичным зарядом, но почти в тысячу раз легче протона. Электроны с энергией всего 0,5 Мэв имеют ту же скорость, что и тяжелые протоны, ускоренные до 1000 Мэв, и прекрасно имитируют движение протонов в магнитном поле.

На маленькой электронной модели протонного циклотрона диаметром всего в два метра удалось подобрать необходимую конфигурацию поля. Модель оказалась вполне жизнеспособной. В начале 1971 года директор лаборатории ядерных проблем ОИЯИ В. Джелепов сообщил: «Эксперименты на электронной модели показали, что можно ускорять протоны до энергий порядка 1000 Мэв и одновременно будут вылетать 1018 частиц в секунду! Мощность такого пучка будет достигать сотен мегаватт. А это путь к созданию сверхмощных мезонных фабрик, нейтронных генераторов и др.».

«Мезонная фабрика» — такое название закрепилось за ускорителями, рассчитанными на энергию протонов не больше 1000 Мэв, но с интенсивностью частиц на несколько порядков выше, чем у обычных машин. На этих установках можно будет получать мощные пучки пи- и мю-мезонов. Пучки эти необходимы не только для фундаментальных исследований, но и для чисто практического применения.

В нашей стране есть малоосвоенные места с дешевыми источниками энергии. Например, Восточная Сибирь с ее неисчерпаемыми запасами гидроэнергии. Сейчас ток, вырабатываемый сибирскими ГЭС, по линиям высокого напряжения большой протяженности вливается в общую энергосистему. Потери на этих линиях довольно велики. Сильноточный ускоритель с мишенью-реактором мог бы прямо на месте с большой экономической выгодой перерабатывать дешевую энергию в ядерное топливо. А компактную продукцию такого «завода» нетрудно переправить туда, где она необходима.

Невозможно сказать, когда, где и в каком варианте будет создана такая установка для получения вторичного горючего. Это зависит от многих обстоятельств: и от дальнейшего развития ускорительной техники, и от того, удастся ли найти удачное инженерное решение конструкции реактора-мишени, и от того, будет ли эта реальная установка экономически выгодной.

Но ясно одно. Предложен новый способ получения расцепляющих материалов, основанный на глубоком знании поведения элементарных частиц больших энергий.


Рукотворные атомы

Летом 1971 года подмосковный город Дубна вновь встречал гостей — участников IV Международной конференции по физике высоких энергий и структуре ядра. На одном из заседаний конференции к кафедре один за другим подходили трое советских ученых и рассказывали о достижениях в новой области исследований, родившейся в Дубне, — мезонной химии.

«Работы советских ученых в области мезохимии лучшие в мире. Мы хотели бы работать в сотрудничестве с ними», — сказал выступивший на конференции профессор Л. Розен из США.

Что такое мезохимия?

Вдоль стены большого зала синхроциклотрона ОИЯИ идет ряд отверстий-каналов, по которым из ускорителя «подаются» для экспериментов различные частицы: протоны, нейтроны, пи-мезоны. Там, где проходят пучки мю-мезонов, стоят установки, на которых с помощью этих частиц изучаются важнейшие характеристики химических реакций. Установки эти очень похожи на многие другие, расположенные в зале. В них много «физического» — счетчики элементарных частиц, массивные блоки свинцовой защиты, и нет ничего «химического» — ни колб, ни пробирок, ни перегонных аппаратов. Отсутствует также и непосредственный контакт ученого-химика с исследуемым веществом. Во время работы ускорителя ученые находятся за несколько десятков метров от зала и только по показаниям приборов следят за идущими в веществе мишени реакциями.

Как возник этот новый удивительный метод изучения химических свойств элементов?

Мю-мезон — один из ветеранов таблицы элементарных частиц. Его нашли в космических лучах еще в 1938 году, через несколько лет после предсказания японским физиком-теоретиком X. Юкава легкой нестабильной частицы — переносчика ядерных сил.

Однако быстро откликнувшаяся на призыв физиков частица вскоре разочаровала их: мю-мезон не годился для предлагаемой ему роли. Но тогда возникает вопрос: какое место в природе занимает эта частица, во всем похожая на электрон, но с массой, в двести раз большей? Вопрос, заданный тридцать лет назад, остается и по сей день без ответа, хотя находится в центре внимания физиков.

«По-видимому, — говорит академик М. Марков, — одна из фундаментальных проблем современной теории элементарных частиц — это проблема, связанная с пониманием различий в физических свойствах мю-мезона и электрона и места мю-мезона и электрона в систематике элементарных частиц».

Экспериментаторы, работающие на ускорителях, начиная с 50-х годов детально исследовали свойства быстрых мезонов и мезонов, останавливающихся в веществе. А загадочная частица не выдала своей тайны ученым. Зато именно эти работы стимулировали рождение мезохимии.

Мю-плюс- и мю-минус-мезоны рождаются при распаде более тяжелой нестабильной частицы — пи-мезона. Появляются они на свет в сопровождении нейтрино. А эта удивительная частица всегда награждает свидетелей своего рождения каким-нибудь необычным свойством.

Не остаются без «подарка» и мю-мезоны (мюоны). Магнитные моменты всех частиц одного знака заряда имеют строго определенное направление. Про такие мюоны говорят, что они поляризованы. Но каково было удивление физиков, когда они обнаружили, что стоит этим частицам затормозиться и остановиться в веществе, как за несколько миллионных долей секунды, остающихся до их распада, большинство мезонов теряет свою поляризованность. Почему? Что происходит в мишени, поставленной на их пути?

Измерения проводили в разных веществах, но результаты измерений не поддавались интерпретации. В одних мишенях равнение нарушали меньше половины всех мезонов, в других — почти все частицы теряли первоначальную поляризацию. Она менялась и от температуры вещества мишени, и от его молекулярной структуры, наличия примесей и величины напряженности внешнего магнитного поля и от многих других внешних условий.

Крупнейший советский физик-теоретик Л. Ландау одним из первых объяснил, что же происходит с мю-плюс-мезоном, останавливающимся в веществе. Мезон, оказывается, отрывает от одного из окружающих атомов слабо связанный с ним внешний электрон и создает свой собственный атом — атом мюония.

Мюоний экспериментаторы обнаружили. Но оставалось непонятным: что происходит с ним дальше, в самые последние миллионные доли секунды до распада?

У мюония «ядро» с положительным зарядом — мю-плюс-мезон, — а на орбите один отрицательный электрон. Мюоний очень похож на атом водорода. Вот только по весу не дотягивает, ведь мезон в 9 раз легче протона, ядра атома водорода. Да и живет мюоний лишь до распада мю-мезона на два нейтрино и позитрон. Но и за это ничтожное время он не остается «незамеченным» соседними атомами.

По химическим свойствам мюоний — двойник атома водорода. Он вступает в те же химические реакции, что и атом водорода. Значит, мю-мезон в составе мюония в последние мгновения своего бытия ведет необычную для элементарных частиц жизнь — химическую. А это сразу же отражается на направлении его магнитного момента.

Сотрудники Института теоретической и экспериментальной физики поняли и на опыте доказали, что по изменению поляризации мю-мезонов можно с высокой точностью определить абсолютную скорость и тип химической реакции мюония, а следовательно, и водорода с веществом. Обычными химическими способами узнать это невозможно. А для мезонного метода здесь нет никакой проблемы. Меченый радиоактивный атом мюония с помощью позитрона, который вылетает при его распаде, «сообщает» о ходе химической реакции из твердого, жидкого или газообразного образца. Это избавляет ученых от необходимости извлекать из исследуемого вещества конечный продукт химической реакции.

Иная судьба у мю-минус-мезона. Как только он затормозится в веществе, атомное ядро сразу же захватывает его на свою орбиту. Отрицательный мюон при этом играет роль «тяжелого» электрона. Так возникает мезоатом — своеобразный «изотоп» существующего в природе элемента. В химическом смысле мезоатом похож на атом реально существующего вещества, который находится в периодической таблице на одну клеточку левее вещества мишени, в которой остановился отрицательный мезон.

Группа научных сотрудников лаборатории ядерных проблем ОИЯИ несколько лет занималась вопросом: почему, образуя мезоатом, мю-мезоны в различных условиях по-разному меняют направление своих магнитных моментов? После многочисленных и разнообразных экспериментов на ускорителе физики наконец поняли, что стали первыми свидетелями интереснейшего явления — химических реакций мезоатома! В мишени, наполненной водой, атомы кислорода захватывали мю-минус-мезоны и превращались в мезоатомы, похожие на атомы азота: модели атомарного азота. И модели эти были действующими.

Атомы мезоазота сталкивались с атомами, молекулами или обломками молекул среды и быстро образовывали химические соединения. И опять у мезонов нарушалась поляризация. А чуткие приборы, регистрируя электроны, вылетающие из мишени после распада мезонов, тотчас улавливали это изменение. По нарушению же поляризации легко определить ход химической реакции.

Водород — одно из главных действующих лиц в органической химии. Почти 90 процентов всех реакций сложных технологических процессов, таких, как крекинг нефти, происходит с участием атомарного водорода. И если бы с большой точностью были известны абсолютные скорости его реакций, то с помощью ЭВМ можно было бы заранее рассчитать оптимальный вариант любого химического промышленного процесса.

На сегодняшний день это пока лишь мечта. Технология будет отлаживаться методом проб и ошибок в течение нескольких лет или даже десятилетий.

Обычными химическими методами просто невозможно выделить определенный канал химической реакции. Практически всегда реакция протекает неоднозначно, обрастая в разных установках различной «паутиной» из петель побочных реакций. Поэтому значения абсолютных скоростей реакций, полученные разными исследователями, сильно различаются. Расхождения так велики, что, как говорят химики, разница между скоростями реакций в сто раз считается хоть и плохой, но терпимой, в десять раз — удовлетворительной, а в два-три раза — вполне удовлетворительной.

Совсем в иных условиях работают физики, изучающие элементарные частицы. Их методы настолько точны, что получаемые результаты практически не зависят от условий эксперимента. Таким же качеством обладает и новый мезонный метод. С помощью мю-мезонов можно с точностью до 10 процентов определить абсолютные скорости очень быстрых химических реакций водорода и более тяжелых атомов с различными веществами и при разной температуре.

Много беспокойств доставляет химикам и другое, не менее популярное, чем водород, вещество — азот. Азотная кислота — хлеб химической промышленности. Большая химия немыслима без аммиака так же, как полет космической ракеты без гидразина.

Химические свойства атомарного азота, давно известного людям элемента, до сих пор очень плохо изучены. А связано это в первую очередь с его высокой химической активностью. Она мешает выделить механизмы его реакций, определить их количественные характеристики, столь важные для практических применений.

Теперь на помощь приходят мезоатомы. Изучая мезоатомы азота, ученые получили первые сведения о характере химического взаимодействия атомов азота с атомами водорода и молекулами перекиси водорода. С помощью электронной аппаратуры удалось установить, что в воде и водных растворах при комнатной температуре мезоазот вступает в химические реакции за ничтожно малое время, порядка 10–11 секунды. Удалось также измерить абсолютные скорости некоторых из этих реакций.

Разумеется, водородом и азотом дело не ограничивается. Подбирая вещество для остановки отрицательно заряженных мю-мезонов, можно создать «действующие» модели многих других атомов и изучать их поведение. Либо же — с помощью мезоатомов — исследовать различные процессы в окружающей среде.


Дубна — «мекка» мезохимии

На сцене природы в пьесах «Химия» и «Физика» играют, в сущности, одни и те же исполнители. Только в традиционных химических действиях атомы и молекулы прикрыты такими пышными одеждами из устрашающих названий разных соединений и так скованы химическими канонами, что за всем этим так же трудно разглядеть физическую основу их поведения, как в театре масок рассмотреть настоящее лицо актера.

Д. Менделеев уже после создания периодической системы элементов часто говорил, как ему хочется узнать о причине периодичности химических свойств веществ. Физика, разгадав строение атома, помогла химии познать самое себя — увидеть зависимость, существующую в природе между строением электронных оболочек и химическими свойствами вещества.

Но, как это ни печально, традиционные методы экспериментальной химии не позволяют вскрывать эту зависимость в каждом конкретном случае. Получается так, что экспериментаторы не могут опираться на теорию, а теоретики не имеют необходимого экспериментального материала для проверки своих расчетов. Не помогают и мощные вычислительные машины. Возможности теоретической химии пока что ограничены.

И вот сейчас на переднем крае современной науки «разводит пары» «скорая помощь» с пи- и мю-мезонами на борту, направляющаяся по маршруту «физика элементарных частиц — химия».

Сотрудники лаборатории ядерных проблем впервые обнаружили, что характеристики рентгеновского излучения из мезоатомов отражают особенности химического строения вещества мишени. Исследуя окислы разных элементов, физики нашли четкую периодичность свойств мезорентгеновского излучения. Не будь периодическая система элементов открыта 100 лет назад, ее можно было предсказать на основании опытов с мюонами.

Мю-минус-мезон, попадая в какой-нибудь атом, успевает до захвата его ядром послать серию сигналов — рентгеновское излучение, — по которым нетрудно догадаться, в «плену» у какого атома он находится.

А могут ли ученые определить, какое вещество находится в наглухо запертой коробке? Сколько ни верти ее в руках, узнать, что у нее внутри, невозможно. На помощь приходит физик-экспериментатор, работающий на мю-мезонном пучке. Облучив коробку отрицательными мезонами, он тут же по идущему от нее рентгеновскому излучению узнает, какие химические элементы в ней находятся.

Тонкий, как карандаш, пучок элементарных частиц, создаваемый на Лос-Аламосской «мезонной фабрике» в США, без труда проникнет в любой внутренний орган человека и даст возможность сравнить излучение здоровой ткани с излучением, испускаемым тканью заболевшей. Ранняя медицинская диагностика — необходимейшее условие для быстрого выздоровления человека — вот что может дать фундаментальное исследование свойств мезоатомов.

Удивительным было также открытие влияния электронной структуры водородсодержащих соединений на вероятность ядерной реакции поглощения отрицательно заряженных пи-мезонов протонами. Пи-мезоны приобрели вторую специальность. Их способность быстро разбираться, в каких условиях находятся атомы водорода в молекулах сложных веществ, открывает перед этими частицами много химических тайн.

Как влияют друг на друга растворитель и растворенное в нем вещество? Этот вопрос оставался без ответа десятки лет. Д. Менделеев предполагал, что растворение не механическое дробление на все более мелкие частицы вплоть до молекул, а химическое взаимодействие. Но доказательств ни у него, ни у последующих поколений химиков не было.

Не так давно физики поместили в пучок пи-мезонов, вылетающих из синхроциклотрона лаборатории ядерных проблем ОИЯИ, сначала мишень, наполненную дистиллированной водой, а потом — ту же мишень, содержащую водный раствор определенного вещества. И что же? Во втором случае вероятность захвата пи-мезонов изменилась, значит, изменилась электронная структура молекул воды. Так было получено свидетельство вступления воды в химическую реакцию с растворенным веществом.

Что такое кислота? Прямой ответ на вопрос затруднителен даже для специалистов. В монографии «Теоретическая неорганическая химия», изданной в 1969 году, черным по белому написано: «И все-таки после трех столетий работы с кислотами еще нет единого мнения по определению понятия „кислота“ и по теории их свойств».

В чем же трудность? Возможно, в том, что до сих пор нет четкого определения главного свойства кислот — их силы. Рассуждения о том, что сила кислоты, по-видимому, связана со структурой ее молекулы, не новость для химиков. Но в их руках не было подходящего инструмента для измерения плотности электронов в разных местах молекулы. И дело не двигалось до тех пор, пока на помощь не подоспели физики.

Несколько кислот одна за другой подверглись воздействию пи-мезонного зонда. По изменению процесса захвата пи-мезонов водородом, входящим в состав этих кислот, нашли распределение плотности электронов в молекулах. А когда по полученным результатам кислоты расположили в ряд, оказалось, что точно в таком же порядке они следуют по убыванию их силы. Мезонный «силомер» не подвел.

Мезонный метод исследования вещества — крупное достижение ученых социалистических стран. Мезохимия сейчас бурно развивается. Она уже вышла за стены лаборатории ядерных проблем. Дубна сегодня — признанный всеми центр мезохимических исследований. Сюда приезжают ученые многих стран для стажировки в новой области науки.

Глубинные исследования в физике элементарных частиц способствовали появлению нового мощного побега на древе науки. И на ветвях его скоро засверкают драгоценные плоды.

Наверное, недалеко то время, когда будут созданы комплексные комбинаты науки. К мощному сильноточному ускорителю протонов будут примыкать институты физики и биологии, институт получения вторичного ядерного топлива, промышленные научные институты, больницы и другие учреждения. И конечно же, атомная электростанция, горючее для которой поставляет сам ускоритель и которая снабжает весь этот комплекс почти бесплатной энергией.

Загрузка...