В ПОЛЕТ, МАХОЛЕТ?!

Раз уж мы заговорили о машущем полете, надо, наверное, сказать несколько слов и об его истории. Среди создателей махолетов немало изобретательных людей, и, похоже, они близки к решающему успеху.

Во всяком случае не столь давно американский авиаинженер и изобретатель П. Маккриди продемонстрировал машущий полет… птеродактиля!

А началось все с того, что в Техасе были обнаружены останки гигантского ископаемого летуна. У него оказался рекордный среди других существ, когда-либо обитавших на Земле, размах крыльев — почти 11 м! Подсчитали вес — около 70 кг. Как вообще такой гигант мог летать? Согласно законам аэродинамики, он должен был опрокидываться при полете назад. Птицы, к примеру, управляют своим телом в полете при помощи хвоста и оперения. У летающего же ящера ни того, ни другого. Может быть, стабилизатором ему служили голова и клюв? То есть летал он по известной среди авиамоделистов схеме «утка» …

Чтобы проверить это предположение, П. Маккриди и решил сделать летающую модель гигантского птеродактиля в масштабе 1:2.

Развлечение? Отнюдь. Для палеонтологов это экспериментальное подтверждение гипотезы. Для инженеров — повод для серьезного размышления и анализа, возможность накопить полезный опыт. Ведь машущий полет — один из самых экономичных. Кроме того, по своей маневренности птицы и насекомые намного превосходят самые совершенные летательные аппараты, построенные людьми.

Итак, П. Маккриди взялся за дело и за несколько месяцев создал конструкцию с размахом крыльев около б м и весом более 20 кг. В действие модель летающего ящера приводили три электромотора, питаемые от никель-кадмиевых аккумуляторов. Два мотора предназначались для движения крыльев вверх-вниз, а третий — вперед-назад. Чтобы смягчить полет, а заодно и сэкономить энергию, усилие моторов не сразу передавалось на крыло, а прежде запасалось в 66 каучуковых «мышцах». Они и заставляли крылья двигаться мягко, можно сказать, даже величественно.

Наконец для управления полетом необходим мозг. Настоящему ящеру в свое время оказалось достаточно мозга весом в несколько граммов. Искусственного же пришлось оснастить компьютером и несколькими автопилотами общим весом в несколько килограммов.

Вот птеродактиль взлетел и на глазах у нескольких десятков корреспондентов почти сразу же … рухнул на землю. Система управления не справилась со своей задачей в результате какого-то сбоя.

Конструктор, конечно, был расстроен, хотя и постарался не подать виду. «Теперь все мы наглядно убедились, что доисторический птеродактиль летал плохо», — прокомментировал он ситуацию на импровизированной пресс-конференции. Впрочем, автор вовсе не считает свою работу завершенной и когда-нибудь надеется создать махолет, который сможет поднять в воздух и человека.

На этом, наверное, можно было бы и закончить рассказ о неудачном эксперименте, если бы за ним не прослеживались гораздо более серьезные исследования и изобретения. Руководитель группы специалистов Нью-Йоркского университета Л. Бенет, занимающийся исследованиями полета насекомых, выразился совершенно определенно: «Если мы сумеем разобраться в аэродинамике полета майского жука, то либо откроем вопиющее несовершенство современной теории полета, либо выясним, что майский жук обладает каким-то до сих пор не известным способом создания подъемной силы».

Действительно, согласно теории ни майский, ни другие жуки летать не должны. Совершенно точно установлено, что их тоненькие хрупкие крылья, коэффициент подъемной силы которых меньше единицы, просто не способны поднять в воздух жука массой почти в целый грамм. Но жук-то летает!..

Некоторые причины такого несоответствия попытался понять киевский инженер В. Стоялов. После нескольких лет экспериментов он выяснил: майскому жуку в немалой степени помогают летать жесткие хитиновые надкрылья. Прежде чем взлететь, майский жук поднимает надкрылья под определенным углом кверху. Частые взмахи машущих крыльев образуют под ними зону повышенного давления. Выше надкрыльев, напротив, образуется зона пониженного давления. Подъемная сила возрастает, и жук благополучно взлетает.

И это только одна из тайн, окружающих полет насекомых и птиц. Взгляните хотя бы на крыло обыкновенной, а еще лучше фруктовой мухи через увеличительное стекло или под микроскопом. С точки зрения современных специалистов по самолетостроению, мушиное крыло — форменное аэродинамическое безобразие. Оно все в желобках, вмятинах, микроскопических волосках… Такое крыло словно бы специально предназначено для того, чтобы взвихривать, взбаламучивать воздушный поток вместо того, чтобы его сглаживать, как это делают авиаконструкторы на крыльях современных летательных аппаратов.

Впрочем, так оно и есть на самом деле. Об этом свидетельствуют специальные исследования. До сих пор считалось, что во время полета крылья насекомых и других летунов погружены в так называемый ламинарный пограничный слой воздуха, который сглаживает все неровности. Однако последние данные заставляют эту точку зрения пересмотреть: судя по всему, на машущем крыле такой слой отсутствует. При машущем полете, видимо, выгоднее использовать как раз турбулентные вихри для получения большей подъемной силы. Сложный же рельеф поверхности крыла позволяет живым летунам лучше управлять воздушными потоками.

Причем и само крыло, скажем, того же насекомого, благодаря скоординированной работе мышц, движется при взмахе по довольно сложной траектории, как бы описывая своим концом восьмерку. Поначалу оно опускается прямо вниз, опираясь всей лопастью на воздух, давая своеобразный толчок, поднимающий тело насекомого вверх. Впрочем, опускание крыла идет не совсем уж прямо — небольшие даже по отношению к насекомому мышцы прямого действия, волокна которых прикреплены вблизи крыла, смещают маховую часть чуточку вперед. В нижней части своего пути крыло также поворачивается несколько вокруг своей продольной оси. Пластина его становится вертикально, и в таком положении крыло движется вверх и назад. Гребная пластина ударяет по воздуху, словно весло по воде, обеспечивая насекомому продвижение вперед. Дойдя до крайней верхней и задней точки, крыло снова поворачивается вокруг продольной оси, и плоскость его опять принимает горизонтальное положение. Затем цикл повторяется.

Конечно, столь сложный цикл движений пока. не по силам современным летательным аппаратам. Может быть, именно поэтому нынешние махолеты, строящиеся силами как отдельных энтузиастов, так и целыми лабораториями (одна из таких лабораторий, например, вот уже несколько лет работает в МАИ), правильнее было бы назвать не «летами», а «прыгами». Они, подобно упитанной курице, лишь отрываются от земли, а летать толком не могут. Впрочем, погодите…

Летом 1989 года один такой махолет все-таки полетел! «Во время Всесоюзното слета сверхлегких летательных аппаратов (СЛА-89), — сообщает журнал „Изобретатель и рационализатор“, — на глазах у изумленной публики летал махолет, как стрекоза. Его построили ребята из клуба юных техников при Боткинском механическом заводе под руководством инженера В. Топорова…»

Что же представляет собой воткинский махолет? Это тандем с двумя парами крыльев — в точности как у стрекозы. На длинном, стрекозином же хвосте — оперение обычного, самолетного типа. При планировании с зафиксированными крыльями махолет может пролететь, постепенно снижаясь, довольно значительное расстояние. А вот если завести микродвигатель МКД-0,25 мощностью около 0,25 л.с., его мощности оказывается достаточно, чтобы шестикилограммовая машина летела по прямой со скоростью 32 км/ч.

Учтите, 24 кг на лошадиную силу — это фантастическая нагрузка. Для сравнения: у транспортного самолета она равна 4–5 кг/л.с., а у сверхлегкого рекордного мотопланера — 12 кг/л.с.

Итак, воткинский махолет, поднявшись на 50-метровую высоту за 4 минуты 32 секунды полета, доказал принципиальную возможность построения подобных машин. Так, по крайней мере, думали ошеломленные зрители. А что полагают специалисты?

Доктор технических наук Л. Л. Кербер, известные авиаконструкторы П. А. Ивенсен и В. П. Кондратьев отнеслись к новинке довольно сдержанно. Как ни жаль, но полетела очередная экзотическая игрушка, не более того, полагают они. Именно очередная, поскольку модели махолетов летали и раньше, а вот полноразмерную машину, способную поднять в воздух человека, создать пока не удается. Крыло живой птицы невоспроизводимо из-за своей сложности. Если же упростить конструкцию, пытаясь восполнить недостаток подъемной силы частотой взмахов, как это делают насекомые, то нужную частоту довольно просто обеспечить лишь при малых размерах. А чем больше крыло, тем задача сложнее. Она может стать и вообще невыполнимой, как по законам аэродинамики, так и сопромата.

Впрочем, корреспонденту «ИРа» Ю. Н. Егорову удалось заручиться и другим мнением. Старший научный сотрудник МАИ Ю. В. Макаров полагает, что в Риге впервые летал махолет, обладающий уникальными свойствами. При небольшой частоте и малой амплитуде взмахов крыльев он совершил достаточно длительный, устойчивый и управляемый полет. Модель с размахом крыла 3 м имела необычайно большую нагрузку по мощности и приличную скорость. К особенностям махолета можно отнести также автоматическую осевую закрутку крыла, которая осуществлялась под действием аэродинамических сил. Утверждение, что с увеличением масштаба махолета увеличивается и нагрузка на крылья, неверно. В этом можно убедиться, сравнивая полет, скажем, лебедя и жаворонка. Прежде летали комнатные махолеты весом порядка 10 г и легкие модели небольших размеров. Теперь же впервые осуществлен полет достаточно большой модели. Так что прогресс налицо.

…И последние новости: Топоров все-таки добился своего! Он построил и совершил первый полет на махолете собственной конструкции. Вслед взлетел махолет и одного из его учеников. Так держать, россияне!

(c) Знак Вопроса № 4/94

Загрузка...