Людям не сидится на одном месте, пожалуй, с самого зарождения человечества. Они то и дело ходят, ездят, плавают, летают… И изобрели для ускорения передвижения множество транспортных средств, многие из которых представляют собой настоящее техническое чудо.
Обычно бывает так. Фантасты высказывают какую-то идею, а инженеры затем пытаются ее осуществить. В данном же случае все обстоит как раз наоборот: фантасты не поспевают за фантазиями инженеров. Судите сами…
Две силы действуют воедино. В июле 1960 года «Комсомольская правда» опубликовала статью ленинградского инженера Юрия Арцутанова «В космос на электровозе». Именно в ней впервые рассказывалось о принципе действия внеземного подъемника. Потом идею подхватили другие специалисты, а всем известный английский писатель-фантаст Артур Кларк подробно описал ее в своем романе «Фонтаны рая».
Внешне все выглядит вроде бы просто. Главный элемент подъемника – трос, один конец которого крепится на поверхности Земли, другой – теряется в далеком космосе на высоте около 100 тыс. км (это примерно четверть расстояния до Луны). Причем, несмотря на то что второй конец троса может быть попросту оставлен в пространстве, он будет натянут, как струна.
Вся хитрость в том, что, подчиняясь законам физики, трос этот окажется под воздействием двух могучих разнонаправленных сил.
Чтобы понять их природу, вспомним такой опыт. Привяжите к бечевке какой-нибудь предмет и начинайте раскручивать его. Как только предмет приобретет некую скорость, веревка тут же натянется. Почему? Да потому, что на предмет действует центробежная сила. А на саму веревку – сила центростремительная, которая и натягивает ее.
Нечто подобное произойдет и с поднятым в космос тросом. Любой объект на его верхнем конце или даже сам свободный конец будет вращаться, подобно искусственному спутнику нашей планеты. Стало быть, на этот конец будет действовать центробежная сила. Одновременно на тот же трос будет действовать и противоположная сила – земного притяжения. И тем ощутимее, чем ближе его нижний конец находится к Земле. А чем дальше в космос, тем, наоборот, энергичнее проявляется центробежный фактор. При определенных условиях две противоположные силы уравновешивают друг друга. Происходит это, когда центр массы гигантского каната находится на высоте 36 тыс. км, на так называемой геостационарной орбите.
Космический лифт
Находящиеся там спутники висят неподвижно над Землей, совершая вместе с ней полный оборот за 24 часа. Вот из этой как бы срединной точки лифтовый канат и должен идти вниз и примерно на такое же расстояние в противоположную сторону. Тогда он будет постоянно занимать строго определенное положение – перпендикулярно земному горизонту, точно по направлению к центру нашей планеты. Используя эту рукотворную вертикаль, можно отправлять кабины в космос и опускать их на Землю.
Трос из углерода? Именно этот способ путешествия в космос и был описан в романе Артура Кларка, вышедшем в свет в 1978 году. Идея Арцутанова таким образом приобрела всемирную известность. Вот только воплотить в жизнь ее почему-то никто не торопился. А все потому, что в схеме есть одно слабое звено. Неизвестно, на чем подвешивать кабину космического лифта. Если использовать обычный стальной трос, то простейший расчет показывал: он порвется под воздействием собственной тяжести уже при длине 50 км.
Артур Кларк в своем романе предложил заменить сталь на легкий и очень прочный кевлар. Однако, во-первых, где взять такое количество дефицитного и достаточно дорогого материала? А во-вторых, и в главных, даже при изобилии кевлара длину каната можно увеличить лишь на сотню-другую километров. На большее и прочности кевлара не хватает…
Это, кстати, понимал и сам писатель. А потому придумал некий сверхпрочный «псевдоодномерный алмазный кристалл», который и стал основным строительным материалом. Один из героев романа, инженер Морган, поясняет, что такой кристалл не есть абсолютно чистый углерод, «тут есть дозированные микровключения некоторых элементов». И добавляет, что производство таких кристаллов возможно только в невесомости, где нет тяжести, нарушающей кристаллическую решетку.
Самое интересное, что Кларк почти угадал. Нынешний этап интереса к проекту строительства космического лифта связан именно с углеродными кристаллами, хотя и несколько иного вида.
В 1991 году японский инженер Сумио Иишима, исследуя графитовую сажу, открыл удивительную разновидность углерода – так называемые углеродные нанотрубки. Это микроскопические, неразличимые невооруженным глазом пленочки графита, свернутые в виде крохотных цилиндров.
Диаметр каждой такой трубки в миллион раз меньше миллиметра, длина – всего нескольких микрон. Казалось бы, какой от них прок? Однако вскоре выяснилось, что цилиндрики могут самостоятельно сплетаться в такие же микроскопические канатики. Изготовленная же из них нить прочнее алмаза. Почти невесомая паутинка из углеродных нанотрубок диаметром в 1 мм может выдержать 20-тонный груз!
Имея такой удивительный материал, можно уже и подумать о строительстве космического лифта в обозримом будущем. Во всяком случае, укороченный образец «космического лифта» успешно испытали в сентябре 2005 года, сообщает PhysOrg.com. Специальный робот сумел подняться и спуститься по 400-метровому «канату», прикрепленному к воздушному шару. Эксперимент провела вашингтонская компания LiftPort, которая намерена использовать будущий «лифт» для коммерческой доставки грузов на орбиту.
Причем осуществление этого проекта грозит обернуться немалой экономией средств. Дело в том, что ныне доставка 1 кг полезного груза в космос обходится не менее 10 тыс. долларов, причем подъем на высокую, геостационарную орбиту обходится даже в 40 тыс. Космический подъемник предполагает снижение стоимости доставки до 100 долларов, то есть в 100–400 раз. И это только на первом этапе…
Давайте по порядку. Но пока все это – далекие мечты, осуществление которых зависит от того, как пойдут дела со строительством первого космического лифта. Его концептуальный проект в нынешнем виде содержит достаточно подробные конструкторские разработки. Вот как проясняет некоторые технологические подробности доктор Брэдли Эдвардс из компании Highlift Systems на своем сайте в Интернете.
Прежде всего, ныне он предлагает отказаться от строительства на Земле огромной башни высотой 50 км, как это мыслилось в предыдущих проектах. Сооружение такой Вавилонской башни не только значительно удорожает проект, но и во многом ставит под сомнение его исполнение: ведь ныне ни у кого нет опыта строительства башен, достигающих стратосферы.
Сам Эдвардс предлагает сделать наземной станцией для космического лифта океанскую платформу – наподобие тех, с которых ныне ведут добычу нефти. Ее можно построить в Тихом океане, в таком районе, где практически не бывает гроз.
Вместо троса, как уже говорилось, будет использоваться широкая лента из углеродных нанотрубок. Длина ленты – почти 100 тыс. км (ею можно два с половиной раза обернуть земной шар), ширина – 1 м. Даже при планируемой толщине ленты всего в 2 микрона общая масса, учитывая гигантскую длину этой необычной «дорожки», должна получиться довольно солидной – около 800 т. Тем не менее, как показывает расчет, нанотрубки должны выдержать такую тяжесть.
Схема строительства на сегодняшний день выглядит так. Сначала на геостационарную орбиту обычными ракетами будет доставлено около 40 т ленты шириной от 5 до 11,5 см в ширину и толщиной в микроны. Когда она будет развернута на всю длину и достигнет поверхности Земли, то сможет удерживать полезные грузы весом до 495 кг.
Далее специальные подъемники будут подниматься по первоначальной ленте и постепенно расширять ее. На каждое восхождение уйдет от 3 до 4 дней. Через 2,5 года лента будет готова полностью.
Конструкция подъемника как бы охватывает ленту с двух сторон. Кабину планируется оснастить двумя комплектами роликов или гусениц. Лента будет проходить между ними, обеспечивая плавный подъем или спуск кабины за счет трения.
Для движения подъемника по ленте вверх или вниз предполагается использовать электрические двигатели. Энергия будет передаваться с Земли с помощью лазера или микроволнового излучения. Посланный луч преобразуется в электричество, которое приведет в действие моторы лифта. Скорость движения кабины составит 200 км/ч.
Гладко на бумаге… Все этапы научно-исследовательских работ, проектирования и строительства четко расписаны. Так, при соответствующем финансировании уже через два года могут быть получены первые образцы сверхпрочной ленты. Ее испытания, соответствующие доработки и развертывание массового производства займут еще около 3 лет. Строительство отнимет примерно 6 лет. Наконец, еще 2,5 года уйдет на расширение ленты длиной в 100 тыс. км.
Так полагает доктор Эдвардс. Однако многие эксперты не разделяют его оптимизма. Прежде всего, непонятно, удастся ли найти в нынешнем мире столь много свободных финансов. Ведь только на сооружение первого лифта требуется около 10 млрд долларов. А вся программа стоит как минимум вчетверо дороже.
Кроме того, не решены многие принципиальные вопросы. Например, как защитить транспортную ленту от метеоритов и тех обломков, которые в изобилии ныне болтаются на околоземной орбите? Если покрыть ее синтетическим материалом или тонкой металлической броней, то сразу же ее вес многократно увеличится.
Еще одна трудность – мощные порывы ветра. Метровая по ширине лента имеет высокую парусность. А гарантировать, что в данном районе океана сильных ветров вообще не будет, невозможно. Придется также подумать и о защите всего сооружения от ударов молний, океанских штормов и т. д.
Наконец, подобное сооружение – лакомый кусок для террористов. Представьте себе, каков будет резонанс, если в океан ухнет кабина космического лифта…
Тем не менее даже скептики признают чрезвычайную перспективность использования тросовых транспортных систем в космонавтике в будущем. Спор идет лишь о сроках. Так, представитель NASA Роберт Казанова полагает, что первый космический лифт может появиться лет через пятьдесят.
Примерно такие же сроки называет и доктор технических наук, лауреат Государственной премии Георгий Успенский, возглавляющий отделение в Центральном НИИ машиностроения Росавиакосмоса. Он еще в 1989 году опубликовал подобные же расчеты по перспективным космическим транспортным системам.
Ну а дальше вполне возможно продление этой трассы до Луны. Освоение же Луны, строительство на ней ракетодрома откроет возможность путешествий к дальним окраинам Солнечной системы или даже в иные звездные системы.
Имя изобретателя А.Э. Юницкого кое-кому, наверное, знакомо. Да-да, это тот самый Анатолий Юницкий, который еще лет тридцать тому назад предложил проект «Вселенский поезд» – сумасшедшую идею, как можно доставлять в космос сразу десятки тысяч тонн грузов без помощи ракет и «челноков».
За прошедшие годы Анатолий Эдуардович еще много чего успел. Сделал еще около сотни других изобретений, два десятка из которых уже исправно работают в строительстве, электронике, химической и электронной промышленности, в других отраслях народного хозяйства, стал академиком Российской академии естественных наук, почетным и действительным членом еще нескольких академий (Республики Беларусь и других стран СНГ). А главное, он за это время создал фонд «Юнитран», при котором существует исследовательский центр, генеральный конструктор которого А.Э. Юницкий свою главную задачу на сегодняшний день видит в претворении в жизнь другого своего изобретения – струнной транспортной системы (СТС).
«Вселенский поезд»?! Сама эта система отпочковалась в свое время от другого проекта, идею которого Юницкий позаимствовал у К.Э. Циолковского. «Вокруг одного из меридианов планеты устроен гладкий путь, и на нем – охватывающий кругом планету и ползущий по ней пояс, – писал основоположник нашей космонавтики в научно-фантастической повести “Грезы о Земле и небе”, – это есть длинная кольцеобразная платформа на множестве колес… На этой платформе тем же способом двигается другая такая же платформа, но поменьше и полегче, на другой – третья и т. д.».
По сути дела, идея Циолковского представляет собой движущийся многоэтажный кольцевой тротуар, на котором, переходя с яруса на ярус, можно достичь первой космической скорости – 7,9 км/с.
Техническое воплощение такого замысла в точности нереально. Где взять материалы, способные длительное время не разрушаться при тысячах и тысячах градусов? (А именно такие температуры возникают при первой космической скорости в результате трения элементов конструкций об атмосферу.)
Проект струнного транспорта А.Э. Юницкого
Стало быть, идея Константина Эдуардовича – пустая трата времени? Да, если пытаться претворить ее «в лоб». Оригинальную задумку калужского мечтателя мог спасти лишь подход нетривиальный – на уровне редкого творческого озарения. Его нашел и детально проработал тогда еще молодой сотрудник Гомельского института механики металлополимерных систем Академии наук Белоруссии А. Юницкий.
Представьте: вдоль экватора сооружается эстакада. Легкая, изящная, отдаленно напоминающая пешеходный переход над железнодорожными путями. Особой массивности нет – эстакаде предстоит держать, в пересчете на каждый погонный метр, не такой уж большой груз. Эстакада не обязана быть очень «гладким путем» – она вполне может следовать перепадам рельефа. В океане дорога будет опираться на заякоренные плавучие понтоны, размещенные ниже поверхности воды с тем расчетом, чтобы не препятствовать проходу судов. На эстакаде размещается вакуумная разгонная система. Из чего она состоит? Прежде всего это прочная, диаметром несколько десятков сантиметров металлическая труба длиной в окружность Земли – 40 тыс. км. Через специальные окна в нее на всю длину помещают другую трубообразную конструкцию, начиненную контейнерами с полезной нагрузкой. Это ротор. Он также равен длине экватора.
По окончании загрузки из большего трубопровода с помощью высокопроизводительных насосов откачивается воздух, между трубами создается чрезвычайно высокое разрежение, почти полный вакуум.
Вдоль вакуумированной трубы на эстакаде идет статор линейного электродвигателя. Здесь же специальная магнитная система, при включении которой ротор-кольцо с полезным грузом, предназначенным для выведения в космос, отрывается от стенки трубы и зависает в ее центре. Эта система магнитного подвеса и удержания – подобная тем, что испытываются на современных поездах на магнитной подушке, – исключает возможность касания ротором стенок трубы на участках ее изгиба; например, когда эстакада пересекает впадину или возвышенность.
Теперь давайте посмотрим, как такая удивительная машина работает. Кольцо ротора, как мы помним, своеобразным поясом плотно охватывает поверхность Земли. А теперь предположим, что длина окружности кольца начнет увеличиваться. Что при этом произойдет? Соответственно начнет расти и диаметр, кольцо начнет отрываться от поверхности Земли, тем дальше удаляясь от нее, чем больше разница в длинах окружностей.
«Но ведь кольцо стальное, не резиновое, – резонно скажете вы. – Как же может оно растягиваться? Какая сила его растянет?..»
Верно – не резиновое. Но ведь растягиваться может и сталь. И не так уж мало – на 12–35 % от своей первоначальной длины. Расчет же показывает: чтобы каждая точка планетарного кольца удалилась от его поверхности на 100 км, вполне достаточно, если длина его окружности возрастет всего лишь на 1,6 %. А растянуть кольцо могут центробежные силы, которые появятся, если его раскрутить.
Ожерелье для Земли? Теперь, когда мы немного разобрались в теории, давайте посмотрим, как все это может выглядеть на практике.
Корпус ротора надо сделать двойным: наружный слой – из металла высокой проводимости: меди, алюминия, а еще лучше – из сверхпроводящего материала; внутренний – из стали или другого прочного материала.
Статором же этого всепланетного электродвигателя, как мы говорили, послужит эстакада. Именно на ее обмотки будет подан переменный ток, который породит бегущее вдоль ротора магнитное поле. Оно наведет в его наружном слое поперечные электрические токи, взаимодействующие с бегущим магнитным полем статора. В результате возникнет сила, направленная по продольной оси ротора. Находящееся в вакууме кольцо придет в движение.
Каждый его погонный метр, согласно расчету, имеет вес 20–30 кг; стало быть, общая масса разгоняемого кольца составляет около миллиона тонн. Поэтому время разгона «вселенского поезда» до первой космической скорости будет не так уж мало: в зависимости от мощности источников электропитания, оно может составить от нескольких дней до 2–3 недель.
Представим, нужная скорость достигнута. Притяжение Земли и центробежные силы уравновешены; для ротора-кольца наступила невесомость. Однако линейные электродвигатели продолжают разгон. Центробежные силы растут, ротор стремится к подъему, но система магнитной центровки продолжает удерживать его от касания – теперь уже с верхней частью трубы.
Давление по мере дальнейшего разгона все нарастает. И вот, наконец, достигнута стартовая скорость – 10 км/с! Отключаются источники электропитания, отходят в сторону державшие вакуумированную трубу замки, и она, с несущимся внутри кольцом, отрывается от эстакады и начинает уходить вверх, движимая центробежными силами.
«А если электропитание отключилось? – спросите вы. – Тогда магнитный подвес перестает работать, ротор рвется кверху, касается трубы и – авария; мгновенно плавятся стенки, нарушается вакуум!..»
Нет, этого не случится. Чтобы излишне не загромождать техническое описание разгонной системы, мы намеренно опустили одну деталь. Кроме ротора, в большей трубе – на ее внутренних стенках – имеется устройство автономного магнитного подвеса. Его питание происходит за счет частичного торможения ротора в процессе подъема всей конструкции: кинетическая энергия трансформируется в электричество. Так что центровка продолжает сохраняться.
И вот планетарных размеров «бублик», растягиваясь, продолжает удаляться от земной поверхности. Но герметичность его сохраняется – ведь удлинение конструкции, как мы помним, относительно небольшое, чуть больше процента, и никаких перенапряжений вакуумная оболочка не испытывает, воздух в нее не проникнет.
Когда же атмосфера остается внизу, срабатывают пирозаряды, оболочка раскрывается, подобно двустворчатой ракушке, и ее фрагменты опускаются на парашютах для повторного использования. Освобожденный ротор, растягиваясь далее, продолжает набирать высоту.
По своей конструкции он состоит из отдельных участков-контейнеров, соединенных друг с другом специальными стержнями. Когда ротор достигает расчетной высоты, разрывные силы превысят прочность соединяющих стержней и кольцо разъединится на фрагменты. Цепочки контейнеров начнут, так сказать, самостоятельную жизнь – на орбите появится множество спутников, каждый груз используется по своему назначению. А можно, в принципе, оставить и все кольцо в целости. И тогда вокруг Земли появится своеобразное ожерелье – бывший вселенский поезд превратится в кольцеград. А рядом с ним со временем появится другой, третий… В космосе смогут жить и работать множество людей. Работы же для них – непочатый край.
С неба на землю. Как видите, проект еще в те далекие годы был основательно проработан. Однако не осуществлен до сих пор. Почему? Причина до банальности проста, та же, что в свое время помешала строительству Вавилонской башни…
Сами понимаете, одной нашей стране, да еще в нынешнем состоянии, такой проект не потянуть. Да и трасса пойдет отнюдь не только по территории России, так что все равно надо договариваться всем миром, а потом уж строить. Людям же все время что-то мешает. Деньги на войну находятся, а вот на что-нибудь путное их нет…
Поэтому А.Э. Юницкому пришлось спуститься с небес на землю и трансформировать свою первоначальную разработку вот каким образом.
В России, как говаривал еще Салтыков-Щедрин, две главные проблемы. Ну, о дураках мы поговорим как-нибудь в следующий раз. А вот о дорогах порассуждать тут самое место. Точнее – об их отсутствии.
Если вы посмотрите на карту нашей страны, то увидите, что дорожной сетью более-менее регулярно покрыта лишь европейская часть нашей страны, да и то в центральной и южной части. А чем севернее, тем дорог все меньше, вплоть до полного их отсутствия где-нибудь по полуострове Канин. И до мыса Канин Нос и одноименного поселка на нем можно добраться лишь морем или по воздуху. А по земле разве что на оленях или на каком-нибудь супервездеходе. Да и то нет уверенности, что он где-нибудь не канет в болотистой тундре.
Аналогичная картина, только в еще больших масштабах, в Якутии, Восточной и Западной Сибири, на Чукотке, Камчатке и в большинстве районов Дальнего Востока.
Причем строить в этих местах хоть железную дорогу, хоть асфальтированное шоссе – гиблое дело. История БАМа – тому лишнее свидетельство.
Что же делать? Развивать нетрадиционную транспортную сеть. Одни предлагают использовать транспорт на воздушной подушке, другие – дирижабли… А вот Юницкий предлагает… тянуть струну.
Как устроен путь? Эта идея пришла ему в голову, как уже говорилось, когда изобретатель проектировал свой «вселенский поезд». Чтобы он смог разогнаться, нужно подготовить ему соответствующую трассу. А как ее проложить не только по суше, но и по морям-океанам?..
Перебирая множество различных вариантов, Анатолий Эдуардович в конце концов и пришел вот к какой идее.
«Однопутная трасса СТС, – пишет он в своей монографии, – представляет собой два специальных токонесущих рельса-струны (изолированные друг от друга и от опор), по которым движется четырехколесный высокоскоростной электромодуль».
Если же мы перейдем с языка технического на обыденный, то получится примерно такая картина. Представьте себе, что по той же тундре протянулась цепочка анкерных опор. По своему внешнему виду, да и по конструкции они во многом напоминают опоры высоковольтных линий электропередачи. Только провода между ними протянуты не совсем обычные.
«Рельс-струна с точки зрения строительной механики представляет собой жесткую нить, включающую балку (пустотелый рельс специальной конструкции) и размещенные внутри с провесом несколько прочных стальных канатов, – продолжает свои рассуждения автор. – Если эти канаты потом натянуть с суммарным усилием в несколько сотен тонн, то получится весьма прочная конструкция. Останкинская башня – тому свидетельство. Даже после пожара, когда часть канатов лопнула, а другая – ослабла, она продолжает стоять и не упала, вопреки многочисленным прогнозам»…
Говоря иначе, рельс-струна сочетает в себе свойства гибкой нити и жесткой балки. Ближайшим аналогом этой конструкции является предварительно напряженная железобетонная балка моста. Только в данном случае в качестве связующего вещества вместо тяжелого бетона лучше использовать эпоксидную смолу или иной подходящий полимер.
Как показывают расчеты, такая конструкция оказывается прочнее и легче железнодорожного рельса. И в изготовлении не представляет собой ничего особого сложного. Сам рельс в сечении напоминает обычный швеллер, а струна представляет собой пучок стальных проводок, подобных тем, что ныне выпускаются для канатов, корда автомобильных шин и т. д.
Два таких рельса-струны и образуют путь, по которому может двигаться вагон-модуль.
Чем такой путь лучше традиционного железнодорожного? По многим критериям. Во-первых, под стальные пути обязательно надо класть «подушку». А ее стоимость в болотистой местности может в десятки раз превосходить стоимость самого пути. Во-вторых, в районах вечной мерзлоты есть опасность, что в жаркое лето даже многометровая подушка все-таки «поплывет», а вместе с нею разрушится и путь.
Анкерные же опоры ЛЭП уже в настоящее время научились ставить, практически не затрагивая вечную мерзлоту. Она не мешает, а, напротив, укрепляет сооружение.
Далее, зимой в северных регионах нашей страны железнодорожные пути то и дело заносит снегом, их приходится постоянно чистить, расходуя на это немало сил, средств, времени и энергии. Струну же чистить не надо – на ней снег попросту не держится.
Не надо ее и особо охранять – редкий дурак полезет на многометровую высоту, да еще зная, что рельс-струна находится под напряжением. А вот гайки с обычных рельсов в нашей стране принято свинчивать еще со времен Чехова…
Прогиб же под весом вагона-модуля, как показывают расчеты, составит не более 1 %. В переводе на обыденный язык это означает, что вагоны могут мчаться по идеально ровному, действительно натянутому, словно струна, пути со скоростью до 500 км/ч!
Ну а для большей безопасности между основными опорами поставят еще и дополнительные, вспомогательные. Кроме того, внутри каждого рельса-струны проходят три многожильных троса. Так что вероятность обрыва сразу их всех одновременно равна практически нулю.
Есть также варианты установки опор в различных климатических и географических условиях, в том числе и над морем. При большей же глубине океана трасса может быть проведена в туннелях-трубах, проложенных либо по дну, либо в толще воды с расчетам обеспечения нулевой плавучести.
Предлагая свой проект вниманию общественности, А.Э. Юницкий и его коллеги просчитали все до мелочей. И уж конечно, особое внимание они обратили на экономическое обоснование проекта.
Так вот расчеты показали, что километр усредненной обустроенной двухпутной трассы СТС при серийном производстве будет стоить порядка 1–2 млн долларов на равнине, от 2 до 4 – в горах, и 5—10 млн при размещении в трубе, проложенной в толще моря. Для сравнения укажем, что километр современной высокоскоростной железной дороги обходится где-то в 10–15 млн долларов, а километр автобана в средней полосе стоит от 3 до 10 млн долларов.
Выводы, как говорится, делайте сами. Юницкий же заверяет, что стоимость проезда на таком транспорте будет не дороже, чем в плацкартном вагоне обычного поезда. И это при самолетной скорости движения!
Когда более полувека тому назад начинались первые космические полеты, они были делом сугубо державным. Ныне же из космических держав, пожалуй, лишь Китай да Япония все еще считают покорение космоса государственной задачей. Остальные стали все больше полагаться на частный капитал. И произошло своеобразное чудо: оказалось, что частники способны решать сложные технологические задачи быстрее и с меньшими затратами, чем государственные корпорации. Вот тому несколько примеров.
Полет на 101 км. В июне 2004 года группа инженеров, возглавляемая Бартом Рутаном, осуществила первый в мире частный суборбитальный полет. Самолет SpaceShipOne под управлением космонавта-любителя Майкла Невилла поднялся на высоту свыше 100 км и благополучно приземлился на аэродроме в Калифорнии. Таким образом командой Рутана сделан еще один шаг к завоеванию приза в 10 млн долларов, который был учрежден в 1996 году Питером Диамандисом, предпринимателем из Сент-Луиса, штат Миссури, и должен был достаться тому, кто первый доставит в космос хотя бы одного туриста.
По условиям конкурса претенденты должны были стартовать до 1 января 2005 года. В космической гонке приняли участие свыше двух десятков коллективов из Аргентины, Канады, России, Англии и США. Правда, достижения большинства были сомнительны с самого начала…
Иное дело – команда Барта Рутана. Конструктор прославился еще в 1986 году, когда построил самолет «Вояджер», на котором его брат Дик Рутан вместе с Джейн Игер совершил беспосадочный полет вокруг земного шара за девять суток.
В апреле 2003 года Барт продемонстрировал транспортную систему SpaceShipOne, состоящую из самолета и ракетоплана, способного, по заверению конструктора, доставить людей в космос. Затем было совершено несколько испытательных полетов, которые показали, что самолет-ракетоносец «Белый рыцарь» и ракетоплан в принципе готовы к штурму высоты.
Схема такова: высотный самолет «Белый рыцарь» поднимает небольшой ракетоплан на высоту 13–14 км. Затем тот стартует и, преодолев еще 87 км на собственных двигателях, дальше движется по инерции до высоты примерно 100 км, описывая параболу. При этом его экипаж пребывает в невесомости 3–4 минуты, а затем возвращается на землю, спланировав на крыльях ракетоплана, которые разворачиваются в рабочее положение на высоте 24 км.
Самолет «Белый рыцарь» с ракетопланом
Барт Рутан предложил для этой схемы ряд новшеств. Например, работа ракетного двигателя основана на жидкой окиси азота, которая проходит через пустотелый резиновый цилиндр. Жидкость представляет собой мощный окислитель, благодаря которому резина сгорает с повышенной интенсивностью, создавая при этом тягу. Таким образом, система сочетает безопасность ракетного двигателя на жидком топливе (при помощи клапана его можно быстро отключить) с простотой твердотопливного ракетного ускорителя.
Однако раньше на подобной гибридной тяге в космос никто не летал. И были опасения, что при прохождении окиси азота через резиновую оболочку могут образоваться ударные волны, что приведет к потере стабильности. Тем не менее все обошлось…
Имелись и другие трудности. Например, аэродинамику своего корабля Рутан тщательно смоделировал на компьютере, но испытаний в аэродинамической трубе не проводил. Он рассчитывал проверить пригодность проекта сразу в реальном полете, навесив аппарат на «Белого рыцаря». А это – известный риск.
Тем не менее Рутан был уверен в надежности своих технологий. И в самом деле, в начале октября 2004 года команде создателей SpaceShipOne удалось выиграть этот приз.
Впрочем, сама по себе награда не так уж дорога. Рутан потратил на проект более 25 млн долларов, полученных им от спонсоров, которых, видимо, больше привлекает возможность заработать на космических туристах.
По плану их собирались возить в космос по три человека в неделю. Каждый заплатит порядка 80 тыс. долларов. Согласитесь, это намного меньше 20–40 млн долларов, которые тратят на полет нынешние космические туристы.
А если построить аппарат, способный взять на борт сразу 15 человек, то цена за место и еще упадет. Тем не менее инициаторы проекта рассчитывают зарабатывать ежегодно до миллиарда долларов. То есть куда больше обещанных 10 млн долларов…
Наши конструкторы тоже попытались было участвовать в этом заочном соревновании. И продемонстрировали прототип ракетоплана С-XXI, похожего на уменьшенный «Буран». Создала его частная «Суборбитальная корпорация» под руководством Сергея Костенко.
В проекте участвовало и КБ имени Мясищева, создавшее стратосферный самолет М-55 «Геофизика», который и должен поднять С-XXI с экипажем в три человека на высоту 17 км на своей «спине». Для этого М-55 оснастят двумя дополнительными ракетными ускорителями. Далее С-XXI, по идее, полетит самостоятельно. И, совершив суборбитальный полет, вернется на аэродром на своих крыльях.
По словам главного конструктора проекта Валерия Новикова, С-XXI позволит совершить своего рода революцию в астронавтике, поскольку приведет к появлению нового поколения космических носителей многоразового использования – куда более дешевых и надежных, чем нынешние. Однако пока готов лишь макет нового космоплана, на большее нет денег – наши миллиардеры предпочитают покупать футбольные и баскетбольные команды, дорогие яхты и недвижимость за рубежом, нежели вкладывать деньги в космические проекты.
Вторая попытка. Барт Рутан и его команда тем временем не остановились на достигнутом. Они спроектировали и построили SpaceShipTwo. В отличие от своего предшественника он может нести на борту до 8 человек (6 пассажиров + 2 пилота), стал крупнее и комфортнее. Улучшены и полетные характеристики. Максимальная высота полета теперь 140 или даже 320 км, что позволит увеличить время в невесомости до 6 минут.
Первый тестовый полет состоялся в марте 2010 года. Всего запланировано порядка 100 тестовых полетов. Начало коммерческой эксплуатации – не ранее 2012 года.
При этом Барт Рутан и его коммерческий партнер Ричард Брэнсон, основавший предприятие Virgin Galactic, сами собираются участвовать в первых полетах SpaceShipTwo, чтобы показать всем свою уверенность в надежности конструкции.
Всего планируется построить пять космолетов SpaceShipTwo и два самолета-носителя White Knight Two. Планируется, что помимо туристических задач SpaceShipTwo будет выполнять исследования атмосферы. Часть приборов будет размещена на самолете-разгонщике WhiteKnightTwo с целью регулярного измерения содержания газов (метана и углекислого газа) на высотах 8—15 км, а также получение проб воздуха с этих высот. При помощи самого SpaceShipTwo будут проводиться изучение ионосферы на высотах 100–110 км и более.
7 декабря 2009 года Virgin Galactic продемонстрировала миру готовый корабль. На официальном сайте компании можно забронировать билеты стоимостью в 200 тыс. долларов каждый.
Кстати, среди первых 300 туристов, полностью оплативших будущий полет, есть и россияне. Среди российских космических туристов, имена которых уже озвучил Virgin Galactic, в основном фигурируют представители крупного бизнеса – президент рекламного агентства Orange Игорь Куценко, его коллега по бизнесу Сергей Тяглов и его родители, а также экс-совладелец «Евросети» Тимур Артемьев с супругой.
15 июля 2010 года челнок SpaceShipTwo совершил пробный 6-часовой полет с экипажем на борту в атмосфере. Полет челнока над калифорнийской пустыней Мохаве был совершен в пристыкованном состоянии к самолету-платформе White Knight Two.
21 августа 2010 года при очередном приземлении на аэродроме в пустыне Мохаве (штат Калифорния) произошла авария самолета-носителя White Knight Two; у четырехмоторного самолета было повреждено левое шасси.
Поломку исправили, и 10 октября 2010 года на том же аэродроме Мохаве состоялся первый испытательный полет самого ракетоплана. Аппарат был поднят самолетом-носителем на высоту 15 км, после отделения от самолета-носителя и 15-минутного свободного полета совершил посадку.
4 мая 2011 года над пустыней Мохаве суборбитальный самолет впервые продемонстрировал эффективность уникального хвостового оперения, которое позволяет аппарату безопасно входить в атмосферу. За 45 минут носитель поднялся на высоту 15,7 км и сбросил SpaceShipTwo. Хвостовое оперение впервые было повернуто вверх на угол 65°. В этой конфигурации аппарат пролетел 1 минуту 15 секунд и почти вертикально спустился на 4,7 км. Суборбитальный самолет показал отличную устойчивость и управляемость. На высоте 10 км пилоты повернули оперение в обычный, «самолетный» режим и спустя 11 минут 5 секунд после сброса с борта WhiteKnightTwo приземлились на взлетно-посадочную полосу.
Таким образом подготовка к началу коммерческих суборбитальных полетов идет полным ходом. «Мы хотим, чтобы наша программа стала началом новой эры космического туризма», – заявил сэр Брэнсон.
Датская самодеятельность. Тем временем на передний план неожиданно выдвинулась Дания – страна, ранее как будто никогда не строившая космических планов. Тем не менее в октябре 2010 года мировые СМИ поместили сенсационное сообщение. Кристиан фон Бенгтсон – глава компании Copenhagen Suborbitals – объявил об испытании космической ракеты HEAT 1-Х.
И все мировое сообщество стало следить за датским экстремальным экспериментом. Ведь в случае успеха Кристиана фон Бенгтсона Дания стала бы четвертой страной мира, самостоятельно запустившей в космос человека. И первой, сделавшей это в рамках негосударственного коммерческого проекта.
Разработка этого экстравагантного носителя началась в 2004 году. Причем удивительно уже то, что его создатели довели проект до «железа» – ведь компания финансируется исключительно частными спонсорами и добровольными меценатами из числа астрономов-любителей. Носитель работает на жидком кислороде и отличается небольшими размерами – 9 м в длину и 64 см в диаметре. Разгонный блок работает лишь 60 секунд, обеспечивая необходимое ускорение менее чем в 3g. Успешное тестирование его прошло зимой и весной 2010 года.
Капсула ракеты Tycho Brahe способна взять на борт всего одного человека и предоставляет ему широкий обзор через прозрачный купол. При старте он должен находиться в ракете в положении стоя, оставляя место для дополнительного оборудования, необходимого для полета, решения научных и коммерческих задач. А первым пилотом этого корабля хочет стать Питер Мэдсен (тоже датчанин).
Ракета должна подняться на высоту 30 км и, после отделения ступеней, сбросить в море на парашюте капсулу с находящимся внутри манекеном. Питера Мэдсена пока решили поберечь, хотя его жена дала добро на его подвиг, заявив: «Пусть летит куда хочет».
Первый испытательный запуск ракеты HEAT 1-Х проходил в Балтийском море. Испытание, которое двое датских конструкторов с юмором назвали «краш-тест», закончился полным провалом. Ракету с капсулой, названную в честь датского астронома Тихо Браге, первоначально должны были запустить с подводной лодки в окрестностях острова Борнхольм. Но когда обратный отсчет добрался до нуля, из нижней части аппарата повалил дым, как из старинного паровоза. Инцидент объяснили замерзанием клапана, контролирующего подачу жидкого кислорода.
Проанализировав причины неудачи, датчане подготовили второй запуск, который и состоялся в начале июня 2011 года. Первая в мире самодельная космическая ракета была успешно запущена с плавучей платформы близ острова Борнхольм в Балтийском море.
Испытательный старт опять-таки состоялся не сразу. Поначалу были проблемы с зажиганием, но разработчики быстро все исправили, и ракета массой 2000 кг взлетела. На борту ракеты вместо человека находился манекен, который вскоре был благополучно выловлен из воды.
Спонсировали проект около 20 компаний, а также власти Дании. В будущем конструкторы рассчитывают отправить в космос первого датчанина. Таким образом, Дания может стать четвертой космической державой в мире после России, США и Китая.
«Русь» и другие. Впрочем, не желают упускать своего первенства и признанные лидеры полетов в космос – Россия и США.
У нас вместо оказавшегося не очень удачным проекта «Клипер» ныне ведутся разработки над космическим кораблем, известным под предварительным названием «Русь». Работы над проектом нового корабля ведутся в строгой секретности, его эскизы – полная тайна РКК «Энергия».
Все, что о нем известно: корабль будет иметь форму конуса. Ведь конус – оптимальная форма для прохождения плотных слоев атмосферы. «Космический аппарат, который с первой космической скоростью влетает в нашу атмосферу, нагревается до 2–2,5 тысячи градусов. Никакие материалы, никакие стали, металлы подобное выдержать не могут. Поэтому мы вынуждены отказаться от развитой поверхности. Это будет комбинация различных систем приземления – то есть парашютная и реактивная», – пояснил президент Ракетно-космической корпорации «Энергия» Виталий Лопота.
Новые корабли смогут выводить на околоземную орбиту до шести членов экипажа и перевозить не менее 500 кг груза. На окололунную орбиту они будут способны доставить четырех космонавтов и 100 кг груза.
Руководитель пилотируемых программ Роскосмоса Алексей Краснов отметил, что первые запуски будут проведены с космодрома Байконур, но позже все старты будут осуществляться с космодрома Восточный, который должен быть построен в Амурской области.
«Корабль должен летать успешно как на околоземную орбиту, то есть к МКС, к другим станциям такого же типа, к будущему сборочному комплексу на околоземной орбите, так и иметь возможность полета на орбиту вокруг Луны, находиться не менее 30 суток в автономном полете», – уточнил он.
В Роскосмосе на эту программу – большие надежды. Вероятно, новый аппарат станет частью марсианской программы. Будущий межпланетный комплекс соберут на так называемой низкой орбите Земли. Его вес может быть до 500 т. В собранном виде конструкцию постепенно поднимут на высоту 200 тыс. км, и на это понадобится несколько месяцев. Экипаж марсианской экспедиции доставят в последний момент перед стартом, чтобы космонавты не получили дополнительную дозу солнечной радиации, и уже с высокой орбиты комплекс стартует в сторону Красной планеты.
О необычной задумке разработчиков корабля рассказал гендиректор и главный конструктор Научно-производственного предприятия «Звезда» Сергей Поздняков.
«Есть идеи посадить космонавтов, которые не принимают участие в управлении кораблем, в герметичные капсулы вместо скафандров. Космонавт входит в такую капсулу, закрывает гермомолнию и на опасных этапах полета сидит в ней, как в яйце», – описал конструкцию гермокапсул Поздняков. Он подчеркнул, что пока новая концепция существует только на уровне идеи. Детальные разработки могут начаться после того, как в «Звезду» поступят требования к системам жизнеобеспечения экипажа, в частности информация о параметрах перегрузок и времени полета в случае разгерметизации кабины.
Примерно по такому же принципу пошло американское NASA, создавая свой будущий корабль «Орион». Его первый полет запланирован на 2014 год.
А осенью 2010 года совершил первый испытательный полет космический корабль Dragon компании SpaceX; он успешно приземлился с помощью парашютной системы, будучи сброшен с самолета-носителя. Космический корабль Dragon и ракета-носитель Falcon 9 компании SpaceX были выбраны NASA в качестве транспортного средства для доставки грузов на борт Международной космической станции.
Dragon – это первый и довольно успешный опыт создания космического корабля частной компанией. С помощью NASA инженерам SpaceX удалось создать относительно недорогой, простой и весьма надежный космический аппарат. Имея все достоинства российского «Союза-ТМ» (это основной транспорт МКС), Dragon на одну тонну легче, имеет вдвое больший объем герметичного отсека (10 куб. м) и может спустить на землю куда больший груз – 2,5 т.
Сорок с лишним лет тому назад, 17 ноября 1970 года, на Луну опустилась советская межпланетная станция «Луна-17», привезшая «Луноход-1». И вскоре он проложил по поверхности Селены первую в истории человечества «космическую колею».
Но знаете ли вы, с чего началась история «лунного трактора» и какие приключения с ним случались?
Кто придумал лунную танкетку? Долгое время имена инженеров, сконструировавших и построивших «Луноход-1» и «Луноход-2», держались в секрете. Правда, теперь мы знаем – первое транспортное средство для Луны было создано в конце 60-х годов XX века в бывшем «почтовом ящике», что базируется в подмосковных Химках, под руководством Г.Н. Бабакина.
А вот изобретено оно было еще раньше, в середине 50-х годов прошлого столетия. Звали человека, придумавшего луноход, Юрий Сергеевич Хлебцевич. Во время войны работал в засекреченном конструкторском бюро. А потом перешел на работу в Московский авиационный институт, где у него появилась возможность заняться проектами не только сегодняшнего, но и завтрашнего дня.
Советский «Луноход-1»
В ту пору журнал «Знание – сила» предложил своим авторам, среди которых был и Хлебцевич, посмотреть на мир как бы из года 1974-го. Вот тогда в печати и появилось первое упоминание о луноходе.
Появилось и… вскоре исчезло. Все публикации о «танкетке Хлебцевича» были изъяты из свободного доступа. Почему? Об этом ныне остается лишь догадываться. Скорее всего, запрет последовал потому, что где-то в недрах «королевского хозяйства» примерно в то время были начаты работы по созданию реальных луноходов. И шум в прессе на эту тему прекратили во избежание случайных утечек информации. У нас же любят всяческие секреты.
Но если это так, почему не пригласили к сотрудничеству самого Юрия Сергеевича? Объяснение этому может быть такое: Хлебцевич был не «из той системы». Возможно, С.П. Королев даже хотел привлечь специалиста, но сделать этого без согласия «компетентных органов» он не смог. И поручил освоение Луны Георгию Николаевичу Бабакину.
Кстати, в музее Научно-производственного объединения, которое ныне носит имя Г.Н. Бабакина, вам могут показать уникальный в своем роде экспонат – «Луноход-3». Два первых лунохода, как известно, остались на Луне. А вот «Луноход-3» туда не долетел. Потому как был спроектирован совсем для другой цели. Если бы на Луну, как намечалось, ступили наши космонавты – Валерий Быковский или Алексей Леонов, – они бы не только ходили, но и катались на специализированном транспорте. Для этого на «Луноходе-3» предусматривалась площадка, на которую мог стать человек в скафандре подобно тому, как располагаются водители на электрокарах. Однако советская лунная программа была свернута, и «Луноход-3» отправился в музей.
Однако мы несколько забежали вперед…
В поход, луноход! Сам же «Луноход-1» под руководством Бабакина был разработан в рамках секретной программы и представлял собой герметичный приборный отсек, смонтированный на 8-колесном самоходном шасси, изготовленном во ВНИИ «Трансмаш».
Как рассказывали мне конструкторы, были опробованы различные варианты шасси – на гусеницах, даже на механических ногах, но остановились, в конце концов, на привычных колесах с «баллонами» из металлической сетки. Хотя общая опорная площадь колес составляла всего 0,25 кв. м, а весил «Луноход-1» на Земле 756 кг, в условиях лунного притяжения, которое в 6 раз меньше земного, они обеспечили достаточную проходимость по лунному грунту.
Исследовательская аппаратура требовала поддержания температурного режима от 0 до 40 °C. Выдерживать его, когда на лунной поверхности –150 °C ночью и +120 °C днем, было непросто. Поэтому верхняя часть открывающейся крышки приборного отсека использовалась как радиатор охлаждения. В качестве испарителя применялась вода, а в воздушном контуре – азот. Источником же тепла служил ядерный подогреватель, работавший на изотопах. А электричество давала солнечная батарея, которая могла поворачиваться под разными углами для точного ориентирования на Солнце.
В передней части «космического джипа» располагались датчики и оптико-механические телекамеры для управления движением и фотографирования лунной поверхности.
Управляло «Луноходом-1» специальное подразделение Центра дальней космической связи в Крыму. В оперативную смену входило пять офицеров: водитель лунного аппарата, штурман, инженеры, следившие за работой антенны и бортового оборудования, а также командир расчета. Вместе с техническими специалистами и научными консультантами одна рабочая смена командования «Луноходом» составляла 30 человек.
Сложность управления заключалась в долгом прохождении радиосигнала; оператор наблюдал обстановку с опозданием в 2 секунды. Кроме того, из-за слишком низкой установки телекамер дальность видения «лунной трассы» составляла только 8 м, а потому скорость движения «Лунохода» не превышала 140 м/ч.
Тем не менее программа исследований лунной поверхности была успешно выполнена. Вместо запланированных трех месяцев «Луноход-1» проработал на Луне десять с половиной. За это время он проехал расстояние в 10 540 м и исследовал площадь в 80 тыс. кв. м.
Опыт создания и эксплуатации «Лунохода-1» затем пригодился для «Лунохода-2», а также был использован и на Земле. Во время ликвидации последствий взрыва на Чернобыльской АЭС позарез оказался нужен аппарат, способный работать в условиях жесткой радиации. В кратчайшие сроки специалисты из ВНИИ «Трансмаш» изготовили на основе лунохода безотказного робота, благодаря которому остались в живых многие ликвидаторы аварии.
Кому нужен «лунный джип»? Нынешний виток интереса к луноходам связан не только с приближающейся знаменательной датой, но и некоторыми примечательными фактами в истории луноходов.
Вспомним хотя бы, как в повести «Омон Ра» Виктор Пелевин рассказал жуткую историю о безногих камикадзе, которые, пройдя тренировки в подвалах Лубянки, отправились на Луну прямо в своих ватниках и катались там на луноходах, пока хватило сил. И воздуха…
Только улегся шум, поднятый этой фантастической историей, как по страницам СМИ прокатился очередной «девятый вал». Дескать, луноходы и впрямь оказались транспортом для прогулок. Только не людей, а тех «зеленых человечков», которые издавна приглядывают за нами с Луны. Ведь Селена-то на самом деле внутри полая и издавна служит им базой.
Именно лунатики, дескать, и содержат наши луноходы в идеальном порядке. В чем американцы недавно убедились с помощью новейшего лунного зонда Lunar Reconnaissance Orbiter, с высоты 50 км рассмотревшего, что «космический джип» в полной исправности стоит на поверхности Селены.
Правда, на снимках «Луноход-1» выглядит всего лишь как некая букашка величиной меньше муравья. А потому о том, что это именно наш «джип», профессор Том Мерфи и его студенты из Калифорнийского университета определили лишь с помощью уголкового отражателя – этакой открытой коробочки с тремя металлическими зеркалами, закрепленными перпендикулярно друг другу. Особенность отражателя состоит в том, что лазерный луч, попавший на зеркала, отражается в ту точку, из которой был выпущен.
На нашем самоходном аппарате был установлен французский уголковый отражатель. И первые эксперименты с его помощью были проведены в 1971 году одновременно в СССР и во Франции. Потом долгое время луноходом никто не интересовался. А когда три года назад американцы из NASA попытались его отыскать, то сразу сделать этого не смогли.
Дело в том, что точное местоположение лунохода было неизвестно ученым – в 70-х годах навигационная техника была развита хуже, чем сейчас. И отыскать аппарат, размер которого сравним с автомобилем «Ока», на расстоянии в 384 тыс. км – задача посложнее, чем отыскать иголку в стоге сена.
Все изменилось в 2009 году, когда американцы запустили аппарат Lunar Reconnaissance Orbiter (LRO), оснащенный камерой LROC, специально предназначенной для фотографирования объектов размером до нескольких метров. На одном из присланных им снимков специалисты и заметили подозрительный светлый объект. Определить, что пятнышко, которое запечатлела камера, – это автоматическая станция «Луна-17», помогли уходящие от объекта колеи. Их мог оставить только «Луноход-1». И, проследив, куда ведет след, ученые обнаружили аппарат.
Нужен же он оказался исследователям не более и не менее как для проверки теории относительности! Собственно, сам луноход как таковой специалистов не интересует. Единственная деталь, ради которой они годами разыскивали аппарат, – это установленный на нем уголковый отражатель.
Причем «Луноход-1» – не единственный аппарат на Луне, снабженный уголковым отражателем. Еще один установлен на «Луноходе-2», а три других были доставлены на спутник в ходе 11, 14 и 15-й экспедиций «Аполлон».
Мерфи и его сотрудники в своих исследованиях регулярно использовали их все пять отражателей. И ныне для проведения полноценных экспериментов ученым не хватало именно отражателя «Лунохода-1». Как объяснил Мерфи, все дело в местоположении аппарата, которое идеально подходит для проведения опытов по изучению характеристик жидкого ядра Луны и определения ее центра масс. Жидкие же «внутренности» Луны влияют на характер движения спутника (попробуйте вращать на столе вареное и сырое куриные яйца, и вы сразу увидите, как проявляется это влияние), и поэтому для получения точной картины необходимо выяснить, как именно Луна отклоняется из-за особенностей своего ядра.
Исследователям повезло – они «попали» в отражатель лунохода со второй попытки. К удивлению Мерфи и его команды, пришедший от «Лунохода-1» сигнал был очень интенсивным – в 2,5 раза сильнее, чем сигналы второго лунохода.
Таким образом, история «Лунохода-1», прервавшаяся 40 лет назад, получила неожиданное продолжение в наши дни. Такое вот техническое чудо…
Одна из самых совершенных конструкций дирижабля на сегодняшний день – термоплан. Этот гибрид, объединившем в себе достоинства предыдущих конструкций, имеет отсеки, которые заполняются не только гелием, но и теплым воздухом, что позволяет обходиться без балласта. Однако достоинство термоплана не только в этом. Недавно конструкторы из Московского авиационного института придумали еще одно оригинальное усовершенствование.
Преимущества термоплана. По первому впечатлению термоплан «Россия» весьма похож на «летающую тарелку». И это сходство не случайно. Как вы помните, слабое знание аэродинамики приводило в 30-х годах XX века к тому, что первые дирижабли-гиганты под действием ветра переламывались пополам. Дело в том, что их рассчитывали, исходя из равномерного распределения нагрузки по длине корпуса, тогда как она прилагалась больше к корме и носу. И эта ошибка частенько приводила к трагедиям.
Поэтому создатели термоплана и отказались от традиционной формы: не «сигара», а «чечевица», или, если хотите, «летающая тарелка» диаметром от 180 до 300 м и более, – вот, считают они, наилучшая форма современного дирижабля. При такой конфигурации сила воздействия бокового ветра уменьшается в несколько раз, а кроме того, создается дополнительная аэродинамическая сила.
Основную же подъемную силу, как уже говорилось, создает легкий газ гелий, заключенный в нескольких герметичных отсеках, распределенных по объему «чечевицы». Другие отсеки негерметичны, в них обычный воздух, который нагревают до температуры 150–200 °C газовыми горелками – примерно такими же, что используют в современных монгольфьерах.
Надо взлететь – включают горелки. Суммарная подъемная сила термоплана увеличивается, он плавно поднимается вверх. А потребовалось совершить посадку, горелки гасят, воздух постепенно остывает, подъемная сила уменьшается, и аппарат плавно идет на снижение.
Термоплан «Россия» на испытаниях
Если экипаж видит, что условий для мягкой посадки нет – скажем, кругом тайга, – термоплан может зависнуть на высоте, а вниз на тросах уйдут лишь грузовые платформы, выполняя роль своеобразных лифтов. А приземлившись, аппарат будет надежно «притерт» к земле с помощью своеобразного вакуумного «якоря». Под платформой у земли возникает эффект присоски, и аппарат как бы прилипает к поверхности.
Конечно, сегодня трудно определить весь круг обязанностей, который смог бы выполнять термоплан в народном хозяйстве. Но основные направления их использования прослеживаются уже достаточно четко. Еще в 1978 году специальная экспертная комиссия, например, заключила, что аппараты подобного класса могут взять на себя до 12 % грузоперевозок России. Причем, по подсчетам специалистов, тонно-километр такой перевозки обойдется в 6 раз дешевле, чем использование, скажем, автомобиля-вездехода в условиях Заполярья. К тому же автомобильный транспорт в тех районах используется, как правило, лишь на «зимниках». Весной и летом он безнадежно вязнет в болотах…
Заместитель «шаттла»? Создатели термоплана между тем придумали вот какую интересную штуку. Как показали продувки в аэродинамической трубе, «летающая тарелка» имеет свойства крыла-диска. То есть, как уже говорилось, при движении с достаточно высокой скоростью к аэростатической подъемной силе добавляется еще и аэродинамическая. При этом удельная нагрузка на крыло в 15–20 раз меньше, чем, например, у всем известного «шаттла», снятого ныне с полетов.
У «челноке» тут мы вспомнили совсем не случайно. Какая у него главная обязанность? Правильно, выводить в космос коммерческие нагрузки. Так вот маевцы подсчитали, что термоплан может быть использован и в качестве первой ступени системы, которая будет осуществлять подобные транспортные операции в 2–3 раза дешевле, чем «шаттл».
Выглядеть все это будет примерно так. Термоплан берет прямо со двора завода, КБ или иного предприятия полезную нагрузку, представляющую собой ракету-носитель вместе со спутником связи, модулем строящейся международной орбитальной станции и т. д. Все это на внешней подвеске буксируется дирижаблем в экваториальную зону, где запускать ракеты, как известно, выгоднее всего, поднимается на высоту в несколько десятков километров, где и производит пуск ракеты-носителя из контейнера. Таким образом, как минимум мы экономим одну ступень ракеты-носителя.
А можно, в принципе, и вообще обойтись без нее. Термоплан ведь вовсе не случайно напоминает «летающую тарелку». И если сделать оболочку достаточно жесткой, прикрепить к нему реактивные двигатели и ракетные ускорители, то можно добиться, что, разогнавшись, наш термоплан сам выйдет на околоземную орбиту.
Мыльные пузыри, надувные матрасы, мячи, даже конструкции типа мобильного госпиталя хорошо известны многим. Но вот чтобы сделать надувным космический корабль – это уж, пожалуй, слишком… И тем не менее…
Сплошное надувательство. Было это уж лет тридцать тому назад, вспоминал Николай Хлебников. Работал он тогда в Казахстане, в г. Лисаковске, на станции юных техников. И готовился вместе с ребятами к очередному, тогда еще всесоюзному конкурсу «Космос». Юные техники строили модель очередного звездолета, и лишь один хитрован – Иван Варфоломеев – затеял мыльные пузыри пускать.
«Ваня, – сказал ему руководитель. – Ты что – маленький? Займись-ка делом…»
«А я делом и занимаюсь», – ответил тот. И развил такую идею.
Лишь в неспокойной земной атмосфере мыльные пузыри живут недолго. А вот в космосе, в условиях невесомости и абсолютного покоя, такой пузырь будет куда более долговечен. В особенности если вместо обычного мыла и воды использовать для его изготовления специальный пластик, твердеющий после выдувания в условиях космического пространства.
Тут уж всеобщая мысль заработала. И за несколько минут в результате спонтанного мозгового штурма ребята накидали с десяток идей по доработке первоначального предложения. Вот хотя бы некоторые из них.
Если внутри первого шара выдуть еще второй и третий, то получится многослойная конструкция, которой, вероятно, будут не страшны даже микрометеориты: несколько слоев подряд пробить не так-то просто.
Если перед тем, как надувать оболочку, ее заготовку поместить внутри какого-то объема (скажем, куба, грани которого сделаны из проволоки или иного материала), то и шар получится уже не круглым, а кубичным. Аналогично можно получить оболочку в виде параллелепипеда, цилиндра, конуса и т. д.
Если сделать необходимое количество отдельных модулей, «врезав» в их стенки переходные люки, тамбуры и т. д., можно затем собрать их в соответствующую конструкцию: хотите – орбитальную станцию, хотите – космический корабль…
Если отправиться на таком корабле, скажем, к Марсу, то можно продолжить возведение подобных конструкций и на самой планете. Купола, надежно прикрепленные, приклеенные к почве, сделанные из прочного пластика, способного противостоять марсианским бурям, послужат первым прибежищем для марсианских колонистов.
«В общем, размечтались мы, расфантазировались, – вспоминал Хлебников. – Разрисовали все покрасивее, сделали даже модель “пузырчатого” корабля, представили на конкурс. И тут нас словно холодной водой облили. “Не занимайтесь надувательством, – сказали нам. – Где это вы видели такую пластмассу?..” И отвергли наш проект как беспочвенный…»
Честно сказать, не понимаю членов того жюри. Ребячью идею стоило поддержать даже и в том случае, если бы в ней действительно было маловато здравого смысла. Помните, что говорили великие: только из сумасшедших идей получается что-то стоящее. А тут… В общем, отбили людям руки, охоту заниматься данным проектом дальше.
Правда, упорный Хлебников как-то при случае поинтересовался у химиков: можно ли создать пластик, удовлетворяющий предъявляемым требованиям. «В принципе, химия все может, – сказали они. – Только заявок на подобные разработки пока не поступало…» Таким образом, круг замкнулся. Идея не может быть реализована, потому что нет пластика. А пластика нет, поскольку его никто не заказывал…
Тем временем в Америке… В общем, получилось как всегда. Нет пророков в нашем Отечестве… Но вот что интересно. Американцы лет двадцать пять тому назад запускали экспериментальный спутник «Эхо-1». Он представлял собой огромный шар из тонкой металлизированной пленки, отражающей лучи радара. Эксперимент прошел удачно, спутник просуществовал в космосе заданный срок, исполнив свою миссию.
Полученный опыт не забыт и сегодня. В проектах космической станций будущего может стать следующее. Специалисты NASA подумывает о его замене обычных жилых модулей облегченными надувными домами – так называемыми «трансхабами». (Название составлено из первых слогов двух слов «транс» – транспортировка и «хабитата» – жилище.) Он может стать основной квартирой для жильцов орбитальной станции.
Компоновка модуля TransHab
Вместо металлического корпуса «трансхаб» будет состоять из облегченной сердцевины, изготовленной из композитных материалов. Она будет окружена коконом из гибкой, но прочной материи – из такой ныне делают пуленепробиваемые жилеты.
Если конструкция выдержит испытания, то такие же «трансхабы» можно будет использовать в качестве жилых модулей на Луне, Марсе и других планетах Солнечной системы, полагают разработчики этой конструкции из Центра имени Джонсона в Хьюстоне. «Мы проектируем надувное космическое жилище, которое будет надежнее, дешевле и качественнее своих предшественников, – сказала руководительница проекта Донна Фендер. – Мы не проектируем оборудование специально для Марса, но думаем, что наше надувное жилище можно будет использовать без существенной переделки и на Красной планете».
В грузовом отсеке космического «челнока» или иного космолета такой модуль будет находиться в компактном состоянии – его внешнюю оболочку обернут вокруг сердцевины. Получится этакий кокон диаметром чуть более 3 м. В космическом пространстве «трансхаб» расправится под действием поданного внутрь воздуха, раздуется до 7,5 м в диаметре. Длина кокона составит порядка 8 м.
Так в пространстве будет развернуто нечто вроде 3-этажного дома, в котором с удобствами смогут разместиться 6 человек. При весе 5 т такой модуль будет вдвое легче того, который пытались спроектировать специалисты «Боинга», используя традиционные технологии. А поскольку он будет еще и втрое объемнее, то астронавты при таком раскладе смогут получить не только комфортабельные помещения для работы и отдыха, но и собственный спортивный зал. Кроме того, появится возможность значительно усилить радиационную защиту модуля от космических излучений за счет дополнительного экрана.
Проектировщики предлагают окружить центральную часть модуля, где большую часть времени и будет находиться экипаж, водяной рубашкой толщиной 12–15 см. Она преградит путь радиоактивным частицам, входящим в состав космического излучения, и потокам ионов, вылетающих при солнечных вспышках.
Такой щит в особенности понадобится при полете к Красной планете и на самом Марсе. Ибо эта планета, в отличие от Земли, практически лишена магнитосферы, защищающей нас от вредного излучения.
Надувная башня. И «трансхаб» – не единственынй способ использования надувных конструкций в космических целях. Давно уже идут разговоры о том, что нынешний способ доставки грузов на орбиту с помощью ракет, стартующих с наземных космодромов, – далеко не идеален. А потому ныне транспортировка всего одного килограмма груза на орбиту обходится в 10–20 тыс. долларов, а то и более. Специалисты хотели бы снизить стоимость до 200, а еще лучше до 20 долларов за килограмм.
«Традиционный способ – создание более дешевых ракет-носителей, – рассказывает эксперт центра NASA в Кливленде Джефри Лендис. – Однако наш анализ показывает, что этот способ себя практически исчерпал. Пытаясь модернизировать его, специалисты предлагают запускать ракеты не с земли, а, например, с борта самолета-носителя, который поднимается на высоту 10–12 км. Таким образом, удается сэкономить по крайней мере одну ступень».
Впрочем, нынешние самолеты позволяют поднять сравнительно небольшие, легкие носители, которые, в свою очередь, способны транспортировать на орбиту сравнительно компактные и немассивные грузы. Для выведения на орбиту крупных спутников и модулей орбитальных станций Дж. Лендис и его коллеги предлагают модернизировать… сам космодром.
«Надо оснастить стартовую площадку высокой башней, а еще лучше – одновременно перенести ее на какую-нибудь высокую гору, – говорит Лендис. – Наши расчеты показывают, что старт ракеты с высоты в 15 км позволяет увеличить полезную нагрузку в 1,5 раза, а с 20 км – вдвое»…
Эксперты NASA полагают, что современные композитные материалы на основе углерода позволят в скором будущем соорудить «вавилонскую башню» высотой в 25 км. С ее вершины полезную нагрузку можно бы было выводить в космос с помощью всего одноступенчатой ракеты, а не трехступенчатой, как ныне. И если ныне полезная нагрузка составляет примерно 2 % от стартовой массы всего носителя, то с помощью высотных запусков этот показатель удастся существенно повысить.
Строительство же подобного сооружения обойдется примерно столько же, как и возведение обычного небоскреба где-нибудь на Манхэттене.
Кстати, подобную же идею изобретатель из Самары, специалист по ракетно-космической техники В.Н. Пикуль предложил еще в конце 90-х годов прошлого века.
«Особенность моего способа состоит в медленном разгоне особой платформы с ракетой на борту по широколейному железнодорожному спуску (точнее, в данном случае – подъему), – рассказывал он. – По мере возрастания скорости, подъем становится все круче, и, наконец, ракета стартует практически вертикально, используя мощь собственных двигателей».
В свою очередь, Пикуль опирался на идею К.Э. Циолковского, красочно описанную Александром Беляевым в научно-фантастической повести «Звезда КЭЦ».
Причем строить подобные космодромы оба исследователя предлагают где-нибудь в гористых, малонаселенных местах. Горы, как уже говорилось, дают природный выигрыш в высоте – ведь вершины некоторых пиков находятся на высоте 8 км над уровнем моря.
Наконец, еще одни оригинальный подход к строительству космодромов нового поколения предлагают канадские исследователи из Университета Йорка. Они предлагают построить надувную башню высотой около… 15 км! Такая же башня, собранная из модулей, могла бы достичь и высоты в 20 км, если ее возвести на горе.
Ученые полагают, что 15-километровая башня может состоять из 100 модулей, а те из надувных труб двухметрового диаметра, сделанных из композитного материала – кевлар-полиэтилена. Каждый модуль 150 м в высоту и 230 м в диаметре, а весить вся конструкция будет около 800 тыс. т. Надуть ее предлагается гелием или другим легким газом. Сохранять вертикальное положение и противостоять порывам ветра структуре должны помочь гироскопы и системы активной стабилизации в каждом модуле.
Внутри же башни на тросах, сделанных не из сверхпрочных нанотрубок, стоящих ныне бешеных денег, а из более традиционных и дешевых материалов, может курсировать космический лифт, доставляющий части ракетной конструкции, грузы и астронавтов, а также любопытных туристов на вершину башни.
Интересно, что идея канадцев напоминает надувную же 160-километровую башню, придуманную известным нашим специалистом профессором Г.И. Покровским еще в 1959 году.
В марте 2005 года известный американский бизнесмен и путешественник Стив Фоссет, как известно, установил новый рекорд. Ранее он облетел земной шар в одиночку на воздушном шаре, потом проделал то же самое и на самолете за 67 часов и 2 минуты. Как ему это удалось?
Вслед за «Вояджером». Накопив достаточно денег на Чикагской бирже, где он первую половину жизни проработал брокером, Фоссет стал думать, как бы ему поинтереснее потратить приобретенное состояние? И не придумал ничего лучшего, как начать путешествовать. Но не обычно, как то делают миллионы состоятельных туристов, а, так сказать, эксклюзивно.
Сначала он совершил кругосветное путешествие на яхте. Потом в 2002 году после ряда неудачных попыток попал в Книгу рекордов Гиннеса, облетев земной шар в одиночку за 14 суток. И наконец, решил осуществить такое же путешествие на самолете.
Сначала он попытался купить и переоборудовать для этой цели списанный сверхзвуковой пассажирский самолет «Конкорд». Однако сделка не состоялась. Одни говорят, так получилось потому, что продавцы запросили за старый самолет слишком большую цену. Другие – что, поразмыслив, Фоссет отказался от покупки сам – такую махину пилотировать в одиночку сложно; да и уж больно прожорлив этот авиагигант.
И тогда он пошел проторенным путем. Как известно, в 1986 году беспосадочный полет вокруг земного шара за 9 суток уже совершил экипаж в составе Джины Игер и Чака Рутана. Вот к Чаку и обратился Стив Фоссет. И попросил того познакомить со своим братом Бартом Рутаном – конструктором рекордного самолета «Вояджер». А встретившись с ним, спросил, нельзя ли переделать «Вояджер» для одиночного полета.
Поразмыслив, Барт Рутан от идеи переделки отказался, сославшись на то, что одному человеку невозможно будет выдержать более чем недельный перелет. И предложил создать новый, более скоростной самолет, который бы смог совершить подобный перелет в 2–3 раза быстрее.
От цифровой модели к «железу». Обговорив детали контракта, партнеры ударили по рукам. Интересно, что каждая из сторон при этом решила подстраховаться. Фоссет на всякий случай сговорился со своим приятелем и старинным напарником по полетам на воздушных шарах сэром Ричардом Брэнсоном – основателем, генеральным директором и президентом фирмы Virgin Atlantic, что он будет запасным пилотом, а к тому еще и спонсором проекта. А Барт Рутан, занятый подготовкой к первому в мире частному суборбитальному полету на высоту более 100 км, перепоручил новое задание своему заместителю Джону Каркову, который и стал ведущим конструктором проекта.
Конечно, работал он не один. Аэродинамик Джон Ронц разработал профили для крыла (он делал это и для самолета «Вояджер»), Джо Рудди проектировал планер, Чак Колеман разрабатывал системы самолета, а Боб Морган сконструировал шасси…
Стив Фоссет перед полетом вокруг света
В процессе разработки, по словам Каркова, группа не раз меняла саму концепцию самолета. Сначала разработчики хотели было совсем устранить фюзеляж и посадить летчика в одну из балок, соединивших крыло с хвостовым оперением. Но это привело бы к серьезным аэродинамическим проблемам, связанным с дальностью полета и летными качествами самолета. Была рассмотрена и обычная схема самолета, но из него уж за прошедшие десятилетия конструкторы выжали все, что могли. В итоге оптимальной была признана схема тримарана – такая конфигурация самолета позволяет обеспечить дальний полет на большой высоте при сильном ветре.
Современная компьютерная техника позволяет инженерам изучить поведение конструкции, используя теорию динамики жидких течений. Помещая цифровую модель самолета «Глобалфлайер» в виртуальную аэродинамическую трубу, конструкторы оптимизировали его форму, еще даже не приступая к постройке.
На это ушло около двух лет. И лишь убедившись, что лучшего они добиться уж не смогут, создатели Clobal Flayer («Всемирного летуна») приступили непосредственно постройке летательного аппарата.
(Заметим в скобках, что изначально самолет назывался «Козерог», поскольку маршрут полета намечалось проложить вдоль тропика Козерога вместо экватора, что несколько сокращало дистанцию, но позволяло не нарушить требований Международной авиационной федерации (FAI), предъявляемых к маршруту. Но Ричард Брэнсон предложил переименовать проект, напомнив, что «Козерогом-1» в одном из фантастических фильмов назывался космический корабль, на котором экипаж должен был лететь на Марс, но так и не попал туда.)
Не удалось купить и тот двигатель, на который поначалу рассчитывалась конструкция. Оказалось, что таких двигателей промышленность уже не выпускает. Пришлось остановить свой выбор на турбовентиляторном двигателе FJ44—3 фирмы Williams, который оказался менее экономичным. Тем не менее расчеты показали: если проложить трассу перелета с умом и толком горючего должно хватить на облет всего земного шара с посадкой в исходной точке.
Сборка самолета началась в сентябре 2002 года. При этом единственными металлическими конструкциями на самолете (не считая электроники и двигателя) оказались алюминиевые стойки шасси и моторама. Все остальное было изготовлено из углепластика и прочих композитов. В итоге 83 % веса пришлось на топливо. (К слову, «Вояджер» имел весовую составляющую топлива 72 %.)
Смелым иногда везет. Пока шли летные испытания самолета, к полету готовился и сам Стив Фоссет. Во-первых, несмотря на свои 60 лет, он каждое утро пробегал до 8 миль, поддерживая физическую форму, а также регулярно совершенствовал летное мастерство. Во-вторых, по его заказу диетологи разработали для полета специальное меню, состоявшее в основном из шоколадно-белкового витаминизированного коктейля, сухую смесь которого надо было в полете разводить молоком. В кабину был поставлен биотуалет размером с ящик письменного стола, а само пилотское кресло раскладывалось так, что большую часть пути пилот мог управлять полетом лежа. Не был забыт, конечно, и автопилот, который мог самостоятельно вести самолет, запрашивая свои координаты у системы GPS и корректируя маршрут таким образом, чтобы попутные ветры позволяли увеличить скорость полета на 90—180 и более км/ч.
И вот 3 марта 2005 года Стив Фоссет осторожно разогнал «летающий бак» по 5-километровой взлетной полосе аэродрома Салина в Калифорнии и поднял перегруженную машину в воздух. Самая опасная фаза полета была преодолена.
Дальше было уже легче. Хотя тоже не обошлось без неприятностей. То навигационная система забарахлила, то расход горючего оказался больше расчетного (1180 кг вообще непостижимым образом куда-то исчезли – возможно, испарились через микротрещины в баке)… Так что последние сутки пилот совсем не спал. Говорят, он даже принимал специальные медикаменты, чтобы поддерживать свой организм в тонусе. Но на последних литрах горючего все же дотянул до той же самой полосы, где и стартовал, закончив свой полет спустя 67 часов и 2 минуты после старта.
В дальнейшем Фоссет намеревался совершить кругосветный перелет на планере, совсем без горючего. Были также идеи проложить маршрут перелета строго по экватору или, напротив, по меридиану через оба полюса. Однако сбыться им было не суждено – в одном из тренировочным полетов Фоссет погиб. А другого такого смельчака пока не нашлось…
Несмотря на то что пассажирские самолеты время от времени терпят аварии и катастрофы, этот вид транспорта остается на сегодня самым надежным. Ну а к завтрашнему дню конструкторы готовят настоящие чудеса техники. Вот тому несколько примеров.
МС-21 просится в небо. Сокращение МС-21 расшифровывается очень просто: «магистральный самолет 21-го века». Проект под таким названием предусматривает создание целого семейства самолетов, конкурентоспособных на мировом уровне. Прежде всего, они предназначены на замену уже уходящему Ту-154, а также самолетам Ту-204 и Ту-214.
Вместимость каждого из перспективных авиалайнеров колеблется от 150 пассажиров (МС-21—200) до 181 (МС-21—300) и 212 (МС-21—400). Причем для каждой модификации предусмотрены версии как с обычной (3500 км), так и увеличенной до 5000 км дальностью. «В дальнейшем могут появиться и дальнемагистральные версии самолетов, способные летать и на 7000 км без посадки», – предполагают конструкторы корпорации «Иркут», которая координирует эту разработку, в которой принимают участие лучшие силы нашей страны и зарубежные корпорации.
Самолет МС-21
Достижение требуемых экономических и экологических характеристик самолетов семейства МС-21 возможно только при использовании силовых установок нового поколения, близких по требованиям к двигателям, которые, по прогнозам, могут появиться к 2013–2014 годам, полагают специалисты. Создатели МС-21 планируют снизить расход топлива по сравнению с нынешними аналогами по крайней мере на 20 %.
По своей компоновке и внешнему виду МС-21 мало отличается от уже летающего самолета Sukhoi SuperJet 100. Это говорит о том, что создатели нового авиалайнера не собираются отказываться от того лучшего, что накоплено за предыдущие десятилетия.
Летающий образец МС-21 появится не раньше 2014 года, а серийный выпуск самолета начнется еще два года спустя. Однако уже ныне появились первые покупатели на будущие самолеты. Так, например, подписан контракт с малайзийской компанией Crecom Burj Resources о поставке 50 машин на сумму более 3,4 млрд долларов.
Самолет «Судного дня», или Тайны «борта № 1». Особенности устройства техники, предназначенной для первых лиц того или иного государства, как правило, стараются держать в секрете. Тем не менее на борту президентских самолетов бывают журналисты, своими достижениями иной раз не прочь блеснуть специалисты, так что постепенно тайное становится явным.
Так, скажем, о некоторых особенностях нового президентского самолета не так давно кое-что рассказал журналистам генеральный директор Государственной транспортной компании «Россия» Н.В. Шипиль. По его словам, в серийный самолет Ил-96—300 на Воронежском авиационном заводе постарались добавить все технические новинки, которые появились за последние годы.
В особенности это касается авионики – приборов и электронных устройств, обеспечивающих взлет и посадку самолета практически при любых погодных условиях. Частично она отечественного производства, частично – зарубежного, поскольку, к сожалению, по части электроники и вычислительной техники наша промышленность во многом утратила главенствующие позиции в мире.
А вот двигатели, несмотря на разные слухи, у самолета отечественные, марки ПС-90А, построенные на Пермском производственном объединении. Они доведены до такой кондиции, что никакие ограничения по шуму и выхлопу, принятые в зарубежных аэропортах, нашей технике уже не страшны.
Есть и некоторые заимствования из лучшего зарубежного опыта. Так, скажем, на новом лайнере – встроенный нижний трап, как и на «Боинге-747—200» американского президента. Так что теперь к самолету не нужно подкатывать в аэропорту трап.
Наибольшие отличия от серийного самолета можно заметить в салоне. На нижней палубе, как обычно, располагаются багажно-грузовые отсеки, а вот верхняя, пассажирская, подверглась кардинальной переделке. Вместо рядов пассажирских кресел тут есть специализированный салон для отдыха экипажа. Дело в том, что с президентом довольно часто летают два экипажа, сменяющие друг друга во время рейса. Ведь иной раз бывает, что президентский самолет летает чуть ли не сутками, а человек за штурвалом не должен быть чересчур уставшим – это отражается на безопасности полета. Интересная деталь: экипажи заслуженных пилотов России С.Е. Анциферова и Г.Н. Белодеда летают не только с президентом. В их составе могут быть и пилоты и стюардессы, которые накануне возили обычных пассажиров.
Далее, на «борту № 1» имеются рабочий кабинет президента, спальня с ванной и туалетом. Есть конференц-зал, где прямо во время полета могут проходить рабочие совещания. Имеются также и помещения для сопровождающих президента лиц, которым тоже созданы нормальные условия для работы и отдыха.
Кроме того, на борту есть место для обслуживающего персонала и охраны, отсеки для спецаппаратуры связи. Словом, с борта самолета президент продолжает руководить страной точно так же, как и из любой другой своей резиденции.
Есть, конечно, своя бортовая кухня, кладовые и холодильники с продуктами. А вот баров и тренажерных залов, вопреки слухам, на борту президентского самолета нет. Ни у нас, ни у американцев. Единственное, что по требованию президента Буша ему ставили «бегущую дорожку», позволяющую размять ноги во время длительных полетов.
В кино иногда показывают, что на борту спецсамолета имеется специальная аварийная капсула с парашютом, куда в случае возникновения нештатной ситуации помещают «пассажира № 1» и эвакуируют его из самолета. Говорят, что такие капсулы действительно имеются на борту американских спецсамолетов. Что же касается наших, то у нас подобная информация считается закрытой.
Зато известно, что вся электроника на борту имеет устройства спецзащиты, не позволяющие хакерам или шпионам вмешаться в работу тех или иных компьютеров, подслушать какие-то переговоры. Говорят также, что в оборудование спецсамолета обязательно входят средства, защищающего его от любого, в том числе и ракетного, нападения.
Самолетом же «Судного дня» журналисты окрестили новый самолет, сконструированный американскими инженерами для президента Барака Обамы. Считается, что он сможет защитить главу государства ото всех мыслимых и немыслимых катастроф, включая метеоритный дождь, ядерную войну и даже Апокалипсис.
Технические его характеристики таковы. Спецборт E-4B, построенный на базе «Боинга-747», способен оставаться в воздухе на протяжении нескольких суток без дозаправки. Он способен развивать скорость до 997 км/ч, что на 65 км/ч больше обычной модели. Кроме того, на самолете установлена постоянная связь с землей и даже с подводными лодками военного флота США.
Капитан «борта № 1» Скотт Райдер сказал на пресс-конференции: «Мы находимся в полной боевой готовности 24 часа в сутки, семь дней в неделю, 365 дней в году. Самолет способен подняться в воздух в считаные минуты. Он не нуждается в дозаправке в течение нескольких дней».
Самолет для президента обошелся правительству США 223 млн долларов. И все же журналисты нашли в нем два недостатка, сразу бросающиеся в глаза: у самолета нет иллюминаторов и отсутствуют душевые кабины.
К сказанному остается добавить, что президентский самолет любой страны, как правило, не летает в одиночестве. Вместе с ним в ту или иную точку земного шара вылетает запасной самолет, а также несколько транспортных авиагигантов, груженных лимузинами, вертолетом (а то и двумя), оружием, транспортом и спецсредствами для охраны и т. д.
В общем, любой президентский вояж – это довольно хлопотное мероприятие, в котором так или иначе задействованы сотни, а то и тысячи людей. Не случайно у американцев каждый полет президента приравнивается к военной операции.
Тем не менее время от времени случаются ЧП и с президентскими самолетами. Скажем, в 60-х годах прошлого века во время визита Н.С. Хрущева в США уже на американской земле обнаружились микротрещины на борту лайнера № 1. Пришлось ему воспользоваться запасным самолетом. Впрочем, и первый, считавшийся аварийным самолет тоже совершил благополучный перелет через океан.
В 1972 году при вылете из Внуково-2 в Киев президента США Ричарда Никсона не запустился один из двигателей. Президента пересадили на резервный самолет. В феврале 1999 года при заруливании на стоянку был поврежден столкновением с другим самолетом лайнер премьер-министра Италии. Из людей никто не пострадал, но руководителю правительственного авиаотряда пришлось уйти в отставку.
А у самолета бывшего президента Дмитрия Медведева в одном из первых же полетов обнаружились неполадки с шасси и двигателями.
Кроме президентов стран, персональными самолетами пользуются также премьер-министры, министры и некоторые другие госслужащие высокого ранга. Кроме того, частные самолеты есть у многих арабских шейхов, бизнесменов-миллиардеров, владельцев крупных фирм и т. д.
Прозрачный аэробус. И в заключение этой главки давайте поговорим о совсем уж фантастичной идее. Европейский авиаконцерн Airbus выступил с идеей создания пассажирского самолета с полностью прозрачным фюзеляжем. Пассажиры, находящиеся внутри такого самолета, смогут во время полета видеть обычное или звездное небо, под ногами наблюдать ландшафты и огни городов.
«Когда вы будете находиться на высоте 12 тысяч метров над Римом или Лондоном, Берлином или Парижем или над Нью-Йорком и Токио, Concept Plane станет прозрачным изнутри: электронные импульсы сделают невидимым фюзеляж, построенный из специальной гиперрезистентной керамики. Вы увидите каждую звезду, каждый огонек городов», – рассказал на пресс-конференции глава исследовательского подразделения Airbus Аксель Крейн.
При пропускании через фюзеляж электрического поля заданной поляризации корпус становится прозрачным, тогда как ток обратной поляризации вновь делает его привычным. Прозрачность обшивки может меняться в зависимости от обстоятельств – днем пропускать поменьше света, зато ночью пассажиры смогут любоваться ночным звездным небом через практически невидимые панели.
Впрочем, новый материал интересен не только подобной экзотикой. Сенсоры, расположенные по всей поверхности самолета, позволят Concept Plane чувствовать любую самую мелкую трещинку, «уставший» фрагмент фюзеляжа или структуры самолета, который сам себя вылечит при помощи разбрызгивания наноклея. Кроме того, уникальные датчики позволят Airbus будущего заранее чувствовать приближение зон турбулентности, или воздушных ям, чтобы избежать их или же сделать полет даже в этих условиях максимально комфортным для своих 300 пассажиров.
Нанотехнологии позволят также проводить автоматическую чистку сидений и кабины после каждого полета без необходимости привлечения персонала и использования типичных, загрязняющих окружающую среду спреев. А сами пассажирские кресла, сделанные из полностью экологичных материалов, будут способны не только самостоятельно очищаться от пыли и грязи, но и принимать форму тела пассажира.
Сами же пассажиры получат удобства, немыслимые сегодня. У них будут не только эксклюзивные кровати и ванные комнаты, но каждый также сможет трансформировать свою кабину в кабинет, спальню или даже виртуальную спорт-площадку, где можно сыграть, например, в гольф.
Concept Plane будет потреблять меньше горючего, чем его предшественники: крылья и фюзеляж будут единым целым, двигатели окажутся полускрыты в фюзеляже, они уже не подвешены к гондоле, потому что они революционные, очень тихие и экономичные, отпадет необходимость иметь к ним постоянный доступ для технического обслуживания. Наконец, самолет будущего будет улавливать человеческое тепло пассажиров, чтобы накапливать его и вновь использовать, экономя таким образом энергию.
Нынешнее разделение интерьера лайнера на салоны первого, бизнес– и эконом-класса будет заменено на разграничение по иному принципу – на зоны «vitalising», «interactive» и «smart tech».
В первой зоне пассажирам обеспечат максимальную релаксацию, воздух насытят витаминами и антиоксидантами, кресла время от времени будут делать массаж, а вентиляция включать систему ароматерапии.
Второй, интерактивный отсек позволит пассажирам погружаться в виртуальную реальность, рассматривать передвижение лайнера на огромной подвижной карте или даже становиться героями трехмерных компьютерных игр.
В «умном салоне» разместятся пассажиры, настроенные больше на деловой лад. Голографические экраны и системы связи позволят им провести время в пути с большей пользой. Таким образом, при желании на борту лайнера можно будет продолжать делать все то, чем каждый из пассажиров занимался бы на земле.
По словам Акселя Крейна, технически создать описанный в концепции самолет будет возможно к 2020 году, но в реальности в воздух такой самолет сможет подняться в воздух примерно к 2050 году. В компании также говорят, что прозрачный самолет – это лишь одна из идей, представленных в рамках концепции The Future by Airbus, когда инженерам предложили просто помечтать, каким бы они хотели видеть авиалайнер будущего.
Эффект разорвавшейся бомбы (хотя и беззвучной) произвела весть о новом изобретении. Американский аэродинамик Леонард Грин запатентовал конструкцию бесшумного сверхзвукового самолета. Когда можно ожидать появления самолетов-призраков?..
Шум давит шум? Одна из причин, почему до сих пор не получили широкого распространения сверхзвуковые пассажирские авиалайнеры – производимый ими гром среди ясного неба. Сверхзвуковому «Конкорду» было разрешено проявлять свою прыть лишь над пустынными районами Атлантики. Иначе создаваемая им даже на 20-километровой высоте ударная волна могла оказаться настолько интенсивной, что у людей на земле полопались бы барабанные перепонки, а из окон повылетали стекла.
Новый же лайнер, не создавая подобного грохота, будет способен за 90 минут перекрыть всю территорию США со скоростью 3М, то есть втрое превышающей быстроту распространения звука в воздухе. «Такие самолеты, – говорит Грин, – быстро вытеснят обычные авиалайнеры с дальних трасс, поскольку намного сократят продолжительность полетов». Однако хитрый изобретатель и словом не обмолвился в своем сообщении, каким же образом ему удалось справиться со своей задачей.
Первое, что приходит на ум, – Грину удалось как-то удалось справиться с шумом двигателей. Звоню приятелю в ЦИАМ – Центральный институт авиационного моторостроения. Когда-то, теперь уже лет двадцать с лишним тому назад, мы вместе принимали участие в испытаниях воздухозаборников для нашего «сверхзвуковика» Ту-144.
«Ну ты оптимист, – смеется в трубку приятель, ставший за прошедшие годы доктором наук. – Ничего принципиально нового за прошедшие годы так и не придумали. Если не считать, конечно, системы активного шумоподавления. Но и она еще не вышла за пределы лаборатории. Ни у них, ни у нас»…
На смену Ту-144 придут новые сверхзвуковые авиалайнеры
Если все осталось по-прежнему, значит, шум авиационных реактивных двигателей уменьшают прежде всего за счет их многоконтурности. «Хотя рев самых больших из них не превышает 100 децибеллов, – отмечалось в свое время, – по удельной мощности они почти вдвое превышают обычные одноконтурные».
А происходит так вот почему. Вместо одного компрессора – самого шумного агрегата – в двигателе теперь ставят несколько. Причем режимы их работы подбирают так, чтобы шумы от механизмов в какой-то мере компенсировали, а не усиливали друг друга. Оказывается, может быть в технике и такое – шум давит шум. Именно на такую, активную систему шумоподавления и намекал мой приятель.
Суть ее работы, так сказать, в чистом виде можно объяснить следующим образом. На выходе работающего и, соответственно, шумящего агрегата ставят микрофон. Записанные им шумы подвергают специальной обработке. Весь спектр разлагается на синусоидальные составляющие, каждая из которых затем сдвигается с таким расчетом. чтобы при наложении на составляющие исходного шума «горб» каждой налагаемой кривой оказывался на месте «провала» исходной. Согласно законам физики при этом должна происходит интерференция акустических волн и их взаимное погашение.
Так гласит теория. Однако на практике достаточно чуть не угадать с наложением, и шумы, вместо того чтобы погасить друг друга, лишь усилят общую какофонию. До сих пор никому не удалось разработать столь точно и быстро действующие анализаторы, которые были бы способны производить точное наложение синусоидальных составляющих друг на друга. Так что даже частичное подавление шумов взаимным влиянием уже можно считать достижением.
В основном же авиационным конструкторам приходится пока обходиться традиционными средствами шумоглушения. Они ставят на диффузоре и сопле двигателя глушители, используют шумо– и вибропоглощающие прокладки и покрытия моторных гондол… Однако за это приходится расплачиваться суммарным уменьшением тяги. Так что если даже предположить, будто Леонарду Грину действительно удалось сконструировать глушитель, на 100 %; снимающий шум, это всего лишь означало бы, что и тяга такого двигателя равна практически нулю! А кому он такой нужен?..
Нет, разгадку «фокуса» надо, наверное, искать в другом месте. Грин ведь аэродинамик…
Подсказка аэродинамиков. В МАИ, на кафедре аэродинамики летательных аппаратов, начальник одной из лабораторий кафедры, кандидат технических наук Г.Ф.Чернов и его коллеги к моему сообщению отнеслись с интересом. «Ну что же, давайте попробуем прикинуть, в чем заключается “изюминка” гриновского изобретения»…
И дальше я еле поспевал записывать высказываемые предположения. Суммируя их смысл, можно сказать следующее. Бесшумный авиалайнер для аэродинамиков – не новость. Теоретики давно уж показали принципиальную возможность его существования. Для этого надо «всего лишь» сгладить скачок уплотнения, не дать ему оторваться от корпуса самолета.
Физическая картина, в описании которой, кроме одного из основоположников аэродинамики Чаплыгина, приняли участие и другие видные наши ученые – Христианович, Дойцянский, Струминский и др. – в конце концов вырисовалась такая.
Всякое быстролетящее тело испускает звук. Свистят пули и снаряды, свистит камень, выпущенный из пращи, да и лоза при резком взмахе ею… Причина тому – акустические волны или микроскопические уплотнения воздуха, которые производит быстродвижущееся тело. В своем устремлении вперед оно как бы расталкивает молекулы воздуха, и те неохотно поддаются, расходясь в стороны, подобно «усам» от быстро идущей по воде лодки.
Всякое акустическое уплотнение распространяется в атмосфере со скоростью звука. И пока тело летит с дозвуковой скоростью, вызываемое им возмущения воздушной среды обгоняют его, постепенно рассеиваясь в атмосфере. Но вот скорость объекта повысилась, он догнал звук. В этот момент все мелкие уплотнения сливаются воедино, в монолитный фронт – они уж не успевают убежать от источника возмущения и рассеяться. Такой фронт (стена сдавленного воздуха) и получил название скачка уплотнения.
Всякая попытка пробить эту стену, перескочить звуковой барьер, как правило, сопровождается жутким грохотом. Ударная волна обрушивается на землю с такой силой, что при преодолении самолетом звукового барьера на низкой высоте с домов сносит крыши, а людей сшибает с ног. При дальнейшем увеличении скорости самолет обгоняет звук и может промчаться над головой подобно беззвучному привидению. Но это всего лишь значит, что гром обрушится на вас несколькими мгновениями позднее.
И все-таки ударную волну, в принципе, можно укротить, сказали мне специалисты. Для этого надо подобрать самолету такие аэродинамические формы, чтобы он протыкал звуковой барьер с такой же легкостью, с какой иголка проходит сквозь тонкую ткань.
Причем портняжная аналогия тут более глубока, чем может показаться на первый взгляд. Обратите внимание: многие сверхзвуковые самолеты имеют игольчатые носы и острые кромки оттянутых назад крыльев. Так им легче «протыкать» звуковой барьер. Но опытная швея знает: на шитье определенной ткани швейную машину нужно настраивать – иначе будет мука, а не работа. «Настроить» на определенный режим полета самолет сложнее (ведь у него кроме крыльев, фюзеляжа есть еще киль, воздухозаборники и множество других выступающих частей), но все-таки возможно. При этом звуковой конус становится пологим, скачок уплотнения не будет таким резким, а значит, и громким…
Однако акустика – вещь тонкая. Скажем, скрипач перед каждым выступлением вынужден заново настраивать свой инструмент, приспосабливая его, кроме всего прочего, и к характеристикам данного зала, к конкретным атмосферным условиям. А как «настроить» самолет? Изменяемая геометрия крыла, перестраиваемые воздухозаборники и регулируемые сопла, – лишь часть решения проблемы… Сочетание акустики с аэродинамикой, по мнению моих собеседников, настолько капризно, что Леонард Грин мог добиться беззвучности, точнее, малошумности, лишь при каком-то, строго определенном режиме полета. И то, насколько удачно его решение, покажет не сам факт выдачи патента, а конкретная конструкторская практика.
Она же такова. Специалисты корпорации Loched Martin с начала нынешнего столетия занимаются проработкой перспективного 12-местного реактивного самолета QSST (Quiet Supersonic Transport), который сможет развить скорость до 1900 км/ч. Причем, летая со сверхзвуковой скоростью на высоте 14–17 км на расстояния до 7400 км, самолет этот будет необычайно тихим. Во всяком случае, по расчетам, шум, производимый им при преодолении звукового барьера, составит всего лишь 1 % от того грохота, который некогда производил «Конкорд».
Как пояснил куратор программы Курт Хартман, добиться этого удалось с помощью особой аэродинамики летательного аппарата. Она рассчитана таким образом, чтобы контролировать давление, создаваемое при преодолении сопротивления воздуха на сверхзвуковых скоростях и размещать возмущение воздуха вдоль всей длины фюзеляжа. Кроме того, подъемная сила будет распределена по нескольким плоскостям. Ведь наряду с основными крыльями QSST оснастят дополнительными плоскостями в носовой и хвостовой частях фюзеляжа. Вдобавок ко всему перевернутое V-образное хвостовое оперение позволяет повысить эффективность управления самолетом на сверхзвуковых скоростях, а отнесенные поближе к задней части самолета двигатели практически не слышны в салоне.
Предполагается, что первые лайнеры такого типа стоимостью около 80 млн долларов каждый, появятся в небе к 2014 году.
Хотя авиатранспорт по праву считается самым надежным в мире, время от времени катастрофы с самолетами все же происходят, унося десятки, а то и сотни человеческих жизней. Можно ли их избежать?
Один парашют на всех? Предоставить каждому из 300 пассажиров аэробуса индивидуальный парашют – идея не реальная, даже тренированные десантники не успеют все выпрыгнуть за то время, пока самолет падает на землю. Не говоря уже о том, что большинство пассажиров, никогда в жизни не имевших дела с парашютом, наверняка запаникуют и их придется силой выпихивать из авиалайнера…
Проще, видимо, спустить на парашюте сразу весь салон с пассажирам целиком. Не знаю, как вы, а лично я впервые познакомился с подобной идеей в… детской книжке Виктора Некрасова «Приключения капитана Врунгеля»! Помните, в целях экономии капитан посадил помощника себе на плечи, оба прикрылись длинным плащом и по одному билету вдвоем проникли в самолет. Но в полете капитану захотелось покурить. Он достал трубку и, радуясь, что его никто не видит, закурил. Однако из-под плаща пошел дым, распространился по салону, экипаж решил, что на борту начался пожар, и тут же отделил салон с пассажирами, сбросив его на парашюте.
Для малых самолетов парашюты уже есть
Однако не спешите полагать, что писатель заодно оказался и изобретателем. По словам большого специалиста в этом вопросе, заместителя директора НИИ парашютостроения Виктора Морозова, идея коллективного спасения авиапассажиров зародилась еще в 20-х годах XX века. Во всяком случае, известно, что в 1923 году изобретатель первого в мире ранцевого парашюта (кстати, актер по профессии) Глеб Котельников взял патент на изобретение «устройства для спасения пассажиров при аварии самолета».
Видимо, некогда об этом изобретении слыхивал и писатель Некрасов, поскольку его описание практически в точности соответствует идее Котельникова. По замыслу изобретателя при аварийных обстоятельствах от самолета должна была отделяться и спускаться на парашюте вся пассажирская кабина. Члены же экипажа, если в том была нужда, покидали самолет самостоятельно с обычными индивидуальными парашютами.
Однако идее Котельникова не суждено было осуществиться на практике по одной простой причине. Поначалу пассажиров возили по нескольку человек на легких, небольших самолетах, которые при отказе мотора запросто могли спланировать и совершить вынужденную посадку в поле, на дороге или опушке леса. Когда же авиалайнеры стали большими, выяснилось, что нет таких парашютных систем, которые бы могли выдержать соответствующую нагрузку.
Так что лишь во второй половине XX века, когда появились многокупольные парашюты, предназначенные для десантирования тяжелой техники и мягкого приземления спускаемых аппаратов космических кораблей, к этой идее смогли вернуться вновь. И вот недавно общими усилиями научные сотрудники МАИ, НИИ парашютостроения и АНТК имени А.Н. Туполева довели идею до стадии реальной разработки.
Это вам все-таки не поезд… Последователи Котельникова предлагают устанавливать на магистральных широкофюзеляжных аэробусах типа Ил-96 аварийно-спасательную систему модульного типа. Она представляет собой несколько обитаемых отсеков, отделенных друг от друга двойными герметичными переборками и переходными люками-шлюзами, подобными тем, что есть на подводных лодках и орбитальных станциях.
Как только командир экипажа приходит к заключению, что авария самолета неизбежна (или даже в автоматическом режиме), тут же герметично перекрываются переходы между модулями и вступает в действие спасательная система. Прежде всего, отстреливаются крылья с двигателями и хвостовое оперение. После этого на 3–4 модуля разделяется сам фюзеляж. На каждом модуле раскрывается своя собственная парашютная система, которая и опускает его на землю вместе с людьми.
Все, авария состоялась, но катастрофы не произошло.
Аналогичную систему АПАКС (авиационная пассажирская автономная капсула спасения) запатентовал недавно и советник Дагестанского научного центра РАН Гамид Халидов. По его мнению, пассажирский салон должен состоять из нескольких таких капсул. «При малейшей опасности взрываются специальные так называемые кумулятивные заряды, расположенные вокруг пассажирского салона, – объяснил он суть своей разработки. – При этом происходит моментальная разрезка фюзеляжа. Части самолета отделяются от салона, и капсула с помощью парашюта может благополучно доставить пассажиров на землю. А поскольку капсула сделана из жаростойких легких материалов, то людям не грозит ни удушье от огня или дыма, ни опасность утонуть, если капсула опустится на воду»…
Казалось бы, все рассчитано до мелочей, можно приступать к экспериментальному, а потом и серийному выпуску подобных систем. Однако не тут-то было. «Самое сложное в этом проекте – техническая надежность самой аварийной системы, исключающая ее случайное срабатывание, а также ее “защита от дурака”», – полагают эксперты.
Последнее надо понимать так: система должна быть исключительно надежной и не срабатывать в том случае, если кому-то из пассажиров вдруг взбрело в голову сойти с самолета, пролетая над своим поселком. В поездах иногда в таких случаях срывают стоп-краны, но самолет ведь все-таки устроен и функционирует несколько иначе…
Возможны варианты. Кроме того, есть немало технических сложностей и в устройстве самой системы спасения. Скажем, бывший наш, а ныне израильский гражданин Давид Метревели предлагает использовать беспарашютную систему спасения. По существу, он разработал систему «самолет в самолете». То есть в случае аварии отстреливается серединная часть самолета, которая сама по себе представляет собой некий аппарат, который и производит планирующую посадку.
Однако расчеты показывают, что подобная конструкция примерно в 1,5–2 раза утяжеляет и удорожает конструкцию самолета и в то же время не обеспечивает 100-процентной надежности. Ведь, скажем, пожар может начаться и внутри спасательного планера. Тогда что делать?
Предложенная нашими специалистами парашютная система спасения выглядит предпочтительнее хотя бы потому, что она увеличивает массу самолета всего на 3,3 %.
Впрочем, и это не так мало. Скажем, для самолета Ил-96-300 подобная система будет иметь массу более 8 т! Кроме того, модульная конструкция самолета предполагает радикальный пересмотр всех ныне существующих концепций в самолетостроении, а это потребует огромных капиталовложений. Отечественная же авиационная промышленность и так ныне на грани банкротства.
Наконец, введение самой системы спасения, как ни странно, в принципе, увеличивает вероятность аварии. Никто не может дать 100-процентной гарантии, что сама аварийная система не представляет опасности. Не исключен ведь в принципе вариант, что когда-нибудь она вдруг сработает сама по себе, начнет самостоятельно отстреливать крылья и двигатели…
Словом, тут есть еще над чем поразмыслить. Однако будем надеяться, что ежегодно происходящие авиакатастрофы заставят специалистов поторопиться…
Идея эта не такая уж новая. Еще в 70-х годах XX века, когда в одном из всесоюзных НИИ рассматривали наилучшие способы решения транспортных проблем приближающейся Московской Олимпиады, ученым секретарем института, руководителем лаборатории Игорем Колпакчиевым был предложен проект скоростной транспортной системы. Суть ее заключалась в том, что автор предлагал развозить десятки тысяч людей – например, из «Лужников» по окончании соревнований – не только с помощью метро, автотранспорта, но и… по воздуху.
Однако Олимпиада из-за бойкота, как известно, провалилась. Финансирование жестко обрезали, и проект остался на бумаге.
«От двери до двери». С той поры минуло более трех десятилетий. Но столичный транспортный воз и ныне там. Более того, как полагает новый мэр Москвы Сергей Собянин, если не придумать что-то радикально новое, столице грозит транспортный коллапс. И так уж ныне многие ее магистрали каждый день затыкаются многокилометровыми пробками. А что будет завтра?
Хотим мы того или нет, полагает И.Н. Колпакчиев, проблему придется решать радикально. Причем не только для столицы. «Люди стали более подвижны, неизбежно появление нового транспорта, который будет работать по принципу “от двери до двери”», – говорит Игорь Николаевич.
«От двери до двери» – это значит, что не нужно тратить несколько часов, чтобы добраться до аэропорта и там проходить многочасовые процедуры посадки в самолет. Пассажирский транспорт будущего должен подниматься и садиться вертикально, как вертолет, – хоть на крышу дома, но иметь скорости и обычные, и гиперзвуковые, и даже космические.
Впрочем, Колпакчиев, ныне гендиректор Научно-технического центра – НТЦ «Взлет», мыслит куда шире. Подобному тому как Интернет обеспечил всеобщее информационное пространство, так и его проект «Интертранс» призван обеспечить мир единой транспортной системой. Грядет транспортная революция, полагает он.
Чтобы разрешить проблему нынешних транспортных пробок, Колпакчиев предлагает перейти от двухкоординатной транспортной системы, когда автомобили маневрируют только по земле, по осям Х и У, перейти к трехкоординатной, то есть задействовать еще и высоту Z.
Аэротакси без водителя. Помните, в кинофильме Люка Бессона «Пятый элемент» бывший спецназовец, роль которого играет «крепкий орешек» Брюс Уиллис, работает водителем аэротакси. От обычного автомобиля его машина отличается тем, что не ездит по дорогам, а летает между небоскребами.
События в фильме разворачиваются где-то в середине следующего XXII столетия. И вот тут создатели кинокартины, похоже, сильно промахнулись. Первые аэротакси появляются уже в наши дни. Причем, как утверждают их создатели, эти машины уже в 2013–2015 годах смогут обходиться даже без пилота-водителя.
Одним из первых за это дело взялся американский профессор Пол Моллер. Еще в начале 60-х годов XX века он собрал первый экземпляр «тарелки», имевший всего два двигателя и получивший название ХМ-2. На этом аппарате Поль даже смог оторваться от земли, чем доказал себе и окружающим, что его усилия не пропали даром.
Следующая модель ХМ-3, появившаяся в 1966 году, имела уже 8 моторов и способна была поднять в воздух два человека. За ней последовали другие модели «летающих тарелок», которые все больше совершенствовались – ведь прогресс не стоит на месте.
И вот недавно из-за океана пришло очередное сообщение: американская компания Moller International под руководством все того же П. Моллера готовится к серийному выпуску модели M200G Volantor. Аппарат, прошедший все возможные испытания, по утверждению разработчика, абсолютно безопасный, экологически чистый, простой и легкий в управлении. Главные элементы M200G – восемь моторов Rotapower, производящие больше двух лошадиных сил на 450 г своего веса. Эта модернизированная версия двигателей Ванкеля питается смесью 70 % этанола и 30 % воды.
Технические характеристики «летающей тарелки» от Моллера в принципе удовлетворят любого. Ее диаметр – 3 м, высота около метра. В кабине с достаточным комфортом размещаются два человека. Крейсерская скорость аппарата – 80—120 км/ч, максимальная – 160 км/ч. Запас хода тоже 160 км. А высота полета ограничена электроникой на уровне 3 м.
Сделано это не только из соображений безопасности. Дело в том, что при соблюдении подобного ограничения отпадает необходимость в получении специального сертификата в Федеральном управлении авиации США (FAA). Другими словами, любой человек, готовый выложить 90 тыс. долларов (такова стоимость серийной модели) за право иметь собственный НЛО, может без всяких ограничений и дополнительных затрат на получение разного рода «корочек» просто сесть и – полететь.
Тем более что управление состоит всего из двух ручек. Левой рукой пилот контролирует высоту, опуская или поднимая при необходимости нос и корму. А правый рычаг применяется для выбора направления полета и движения боком, на нем же (как на мотоцикле) расположены регулятор скорости и тормоз. Педали в «летающей тарелке» отсутствуют.
Вихрелет M200G Volantor
В ограничении высоты полета есть еще один плюс: на таком сравнительно небольшом расстоянии от земли наиболее ярко проявляется экранный эффект, позволяющий несколько увеличить нагрузку. А для посещения мест, недоступных для самого крутого внедорожника, или даже просто для преодоления «пробок» на дорогах 3 м более чем достаточно.
Кроме П. Моллера, по всему миру десятки фирм и конструкторских бюро ведут разработку аэромобилей, аэроджипов, скайкаров и т. д. По оценкам специалистов NASA к середине XXI века четверть личных транспортных средств будет именно летающим.
Еще одна интересная конструкция появилась на свет благодаря выпускнику отделения аэронавтики и астронавтики Массачусетского технологического института Карлу Дитриху. В феврале 2006 года он получил приз в 30 тыс. долларов «за портфель изобретений, включающих новое персональное воздушное транспортное средство, настольный реактор синтеза и ракетный двигатель низкой стоимости».
Реактор с двигателем мы давайте рассмотрим как-нибудь в следующий раз. Что же касается воздушного транспортного средства, то для его постройки шустрый выпускник тут же основал компанию Terrafugia, базирующуюся тут же, в Кембридже. В ее состав вошли еще несколько выпускников отделения аэронавтики – приятели Карла. Общими усилиями они и разработали летающий автомобиль Transition («Переход»).
По замыслу создателей аппарат рассчитан на полеты на расстояние 150–800 км и способен двигаться по асфальту как автомобиль. При этом он должен легко помещаться в стандартном гараже. Для этого Transition имеет автоматически складывающиеся крылья и воздушный винт, приводимый в действие 100-сильным авиационным мотором.
Расход топлива – кстати, обычного автомобильного, а не авиационного бензина – в полете, по расчетам авторов проекта, должен составить 15 л/ч, или в привычных для автомобилистов единицах – 7,84 л на 100 км. Тот же расход топлива обещают конструкторы и при езде в городской толчее..
Основатели компании Terrafugia прекрасно знают, что летающие автомобили обычно и плохо летают и неважно ездят. Однако, как полагают они, им, во-первых, удалось удачно разрешить ряд конструкционных проблем. А во-вторых, похоже, именно теперь пришло время для подобных машин. Недавние изменения в американском законодательстве сделали еще более доступным и простым получение лицензии пилота легкого спортивного самолета (а она потребуется владельцу Transition). К тому же обучение пилотированию новаторы из Кембриджа включают в цену своей машины. С другой стороны, новые процедуры безопасности в аэропортах увеличили общее время, затрачиваемое человеком на путешествие по воздуху. И наконец, многим уже настолько надоели транспортные пробки на дорогах, что они готовы на что угодно, лишь бы их избежать…
В создании таких самолетов-такси оказалось заинтересовано даже NASA. В Национальном управлении США по аэронавтике и исследованию космического пространства обещают 1,6–2,35 млн долларов тому, чей план по созданию нового типа летательных аппаратов окажется наиболее перспективным.
При участии NASA разрабатывается проект сети мини-аэропортов и специально проектируемых летательных аппаратов, которые будут с них взлетать и приземляться. Новое средство передвижения будет называться Suburban Air Vehicles (SAV) – пригородный воздушный транспорт. Основные требования к аппарату – он должен быть достаточно тихим, чтобы не тревожить людей, над домами которых пролетает, и автономным, то есть пилота в кабине не будет, а руководить полетом станут бортовой компьютер и диспетчер на земле.
Важно и то, чтобы SAV был приспособлен для крутого взлета. Это необходимо, поскольку взлетно-посадочные площадки окажутся очень короткими – 10–30,5 м. К тому же каждый аэропорт должен отправлять и принимать порядка 120 такси в час. Сам полет SAV будет проходить не выше 46 м со скоростью 160–195 км/ч. Вдобавок в NASA хотели бы оборудовать такси системами катапультирования в экстренных ситуациях.
Взлететь над суетой и пробками. Итак, похоже, в мире вскоре появится новый вид транспорта. С городских площадей или даже с крыш домов каждые 30 секунд начнут взлетать и садиться воздушные такси с четырьмя пассажирами на борту.
Так, например, еще одну перспективную модель так называемого личного летательного аппарата предлагает израильская компания «Городская авиация» (Urban Aeronautics). Аппарат, сконструированный ее инженерами, поднимается в воздух за счет двух двигателей с вертолетными роторами, укрытыми в шахтных колодцах. А движется вперед еще двумя тяговыми двигателями с самолетными пропеллерами, которые расположены в хвостовой части аппарата. По дороге же машина перемещается на четырех колесах с пневматическими баллонами и эластичной подвеской.
Устройство в первую очередь предполагается использовать при проведении спасательных и ремонтных работ, а также для патрулирования городских улиц. Причем применение в конструкции турбовентиляторов в шахтных колодцах позволяет безопасно причаливать к балконам и лоджиям высотных зданий, что может весьма пригодиться при пожарной эвакуации жильцов.
Заинтересовались этим аппаратом и спецслужбы, которым приходится вести борьбу с террористами. Такой аппарат позволит атаковать нарушителей правопорядка с неожиданной стороны.
Таким образом, получается, что у И.Н. Колпакчиева конкурентов более чем достаточно. Но он, похоже, их не боится. Почему? Да потому, что Игорь Николаевич оказался, по крайней мере, на шаг впереди зарубежных конструкторов.
Его конструкция базируется на вихревых теориях создателя современной аэродинамики Н.Е. Жуковского. «Николай Егорович впервые сформулировал принцип “идеального винта”, – говорит Колпакчиев, – а мы придумали, как его реализовать на практике. Винта в нашей конструкции как такового нет – это совершенно новая система тяги, принципиально отличная от современных авиационных систем. Тяга создается без вращения лопастей, и она равномерно, как у “идеального винта” Жуковского, распределена по рабочей поверхности».
Если снабдить такой «вихрелет» двигателем, способным работать в безвоздушном пространстве, то его можно выводить в космос с грузом или пассажирами на борту, уверяет Колпакчиев. При этом перелет, скажем, из Нью-Йорка в Москву будет отнимать у пассажиров не 10 часов жизни, а на порядок меньше. Всего за полчаса можно будет «проколоть» атмосферу, выйти в околоземное пространство, совершить, скажем, пол-оборота вокруг планеты, а затем «спикировать» на Землю и сесть в нужной точке. Весь полет в таком случае от посадки до высадки пассажиров займет немногим более часа!
Оригинальному виду транспорта требуется и уникальный двигатель. «Необходим накопитель энергии, установленный прямо на транспортном средстве», – полагает Колпакчиев. И предлагает использовать в качестве такого накопителя супермаховик. Причем изобретателю и его коллегам удалось найти материал, который не расслаивается под действием центробежных сил при вращении с сумасшедшими скоростями. Он выполнен на основе нанотехнологий, и из него должно состоять рабочее тело гипермаховика.
Такой маховик пригоден как для наземного транспорта, так и для летательных аппаратов. Расчеты показывают, что с одной заправки аккумулятора электроэнергией (с гипермаховиком стыкуется электромотор-генератор) можно проехать или пролететь до 2 тыс. км! Это как от Москвы до Сочи.
Оригинальна и конструкция самого летательного аппарата. Внешне он будет иметь форму обтекаемого диска или, если хотите, пресловутой «летающей тарелки». Правда, при взгляде сверху видно, что «тарелка» эта не круглая, а ближе по форме к прямоугольнику со скругленными углами.
– Стеклопластиковая оболочка крепится к силовому корпусу, – поясняет изобретатель. – Внутри четыре электровинтовых модуля, которые обеспечивают достаточную подъемную силу…
Тут надо, наверное, сказать хоть несколько слов о самих электровинтовых модулях. В свое время Колпакчиев обратил внимание на такой физический эффект. Если молекулы воздуха, приобретая определенный заряд, взаимодействуют с аналогично заряженным острием, то по закону Кулона между ними происходит интенсивное отталкивание.
Если такими положительно заряженными остриями, а точнее кромками, будут концы пропеллера, заключенного внутри кольца из положительно же заряженной сетки, то такой многолопастный винт, по идее, должен крутиться. И он действительно крутится – Колпакчиев не раз проверял это на моделях.
Итак, четыре модуля создают подъемную силу, вектором которой управляют с помощью жалюзи. Поворачивая их створки над каждым из четырех каналов, отклоняя потоки воздуха, можно не только менять скорость подъема или горизонтального полета, но и осуществлять маневрирование.
Устойчивость же аппарату обеспечивает, кроме всего прочего, и эффект «летающей платформы». Вспомните, как в цирке жонглеры или клоуны бросают друг другу тарелки и шляпы. При броске достаточно подкрутить предмет, чтобы он приобрел устойчивость в полете. А если подкрутку осуществлять за счет маховика, раскрученного до 50 тыс. оборотов в минуту, то такой летательный аппарат – Колпакчиев называет его гироглайдером – вряд ли удастся опрокинуть.
Подобные ДПЛА – дистанционно-пилотируемые летательные аппараты – Колпакчиев предлагает использовать для патрулирования автотрасс, нефте– и газопроводов, для слежения за миграцией рыбы, предупреждения о пожарах, сельхозработ, аэрофотосъемки, экологического контроля…
В общем, работы для ДПЛА предостаточно. Вот только когда в небе появятся первые гироглайдеры? Игорь Николаевич Колпакчиев надеется, что уже скоро. Для их конструирования, строительства им и создана фирма «Взлет». Ее директор торопится, поскольку знает, что за рубежом у него уже появились серьезные конкуренты. Он все же надеется, что мировая транспортная революция начнется именно в России.
На протяжении долгого времени этот, с позволения сказать, летательный аппарат имел распространение в сказках типа «Тысячи и одной ночи» да еще в русских сказаниях, где Иван-дурак получает ковер-самолет от Бабы-Яги. Можно также припомнить, что в роли необычного транспорта выступают ковры у Марка Твена в «Путешествии капитана Стормфилда в рай» и у Лазаря Лагина в книге «Старик Хоттабыч».
Теперь, судя по всему, возможность прокатиться на любимом транспортном средстве волшебников вскоре появится у любого желающего. Группа ученых из Франции и США, возглавляемая лауреатом Игнобелевской премии Лакшминараянаном Махадеваном из Гарварда, разработала проект самого настоящего ковра-самолета, сообщает журнал Nature.
Трясите, профессор, трясите!.. Для начала исследователи провели эксперимент с гибким вибрирующим листом, погруженным в жидкость. Выяснилось, что лист, если ему при помощи электрических импульсов задать определенную амплитуду колебаний, не тонет и даже передвигается в жидкой среде.
Далее расчеты показали, что вибрирующий «ковер» может точно так же вести себя и в воздухе. Для этого он должен располагаться достаточно близко к горизонтальной поверхности, к примеру земле или воде. Подталкиваемый электрическими разрядами предмет сможет левитировать благодаря тому, что между ним и поверхностью возникнет зона пониженного давления. А разница в давлениях снизу и сверху создает подъемную силу.
В настоящее время, по выкладкам ученых, в воздухе сможет удержаться ковер со стороной около 10 см и 0,1 мм в толщину, при частоте вибраций 10 Гц и амплитуде 0,25 мм. Скептики утверждают, что увеличить площадь подобного летательного аппарата практически невозможно – для этого потребуется слишком тяжелый и мощный двигатель. Да и летать на постоянно вибрирующем ковре будет не очень удобно из-за постоянной тряски.
Тем не менее ковер сможет двигаться вперед, если направлять волны колебаний от одного края к другому. Тогда он будет немного наклоняться, как, например, вертолет, но, в отличие от него, двигаться в сторону более высоко расположенного края. (Любопытно, что в сказках у летящих ковров-самолетов приподнят именно передний край.)
А пока суд да дело, другая группа гарвардских ученых создала тонкие полимерные листы, покрытые клетками из мышечной ткани крыс. Воздействуя на такие листы электрическим током, можно заставлять их периодически сокращаться и за счет этих колебаний передвигаться в жидкости.
«Морские скаты совершают более сложные движения, когда скользят над морским дном, но идея та же», – пояснил профессор Махадеван. Он полагает, что законы физики позволяют заставить «летать» и более тяжелый ковер.
Дело в том, что за последние 100 с лишним лет был сделан ряд открытий, говорящих о том, что звук может быть источником больших сил и энергий. Речь идет о том, что при правильном учете свойств среды и подборе частоты звук способен вызвать появление дополнительной энергии.
Таинственные эксперименты музыканта. Одним из первых, как ни странно, столкнулся с проявлением этой энергии американский музыкант Джон Кили (1837–1898). Он публично демонстрировал свои достижения и утверждал, что для каждого тела существует мелодия, способная изменить его вес как в сторону уменьшения, так и увеличения.
Профессор Махадеван полагает, что законы физики позволяют заставить летать и тяжелый ковер
«В доме, где жил Кили, сохранилась его лаборатория, – сообщает историк А.Н. Ильин. – В ней когда-то находились многочисленные и непонятные устройства с не менее странными названиями – либратор, симпатический передатчик, дезинтегратор. Они состояли из музыкальных инструментов, органных труб, камертонов и объемных резонаторов в виде сфер, конусов и цилиндров. То тут, то там попадались диски с тонкими спицами из золота и платины. Отдельные элементы соединялись свободно висящими шелковыми нитями. Одна из них тянулась к большому механизму с колесами, цилиндрами и шестернями. Когда Кили трогал смычком струны цитры, вся система, представлявшая собой сложный и точно настроенный акустический резонатор, откликалась, и в углу лаборатории приходил сам собою в движение массивный механизм с колесами и поршнями. То есть, говоря иначе, от звуков в огромном механизме рождалась энергия неизвестной природы»…
А вот вам еще опыт Кили. Стеклянный сосуд высотой более метра он заполнял водой. «Металлическая крышка сосуда была соединена со сферой симпатического передатчика толстой проволокой из золота, серебра и платины. На дно сосуда Кили помещал металлические шары. Изобретатель приводил в действие симпатический передатчик – начинали петь камертоны. Труба издавала короткий звук, и шар на дне сосуда начинал покачиваться, затем медленно отрывался от дна и устремлялся вверх. Труба звучала снова, всплывал второй металлический шар, затем – третий»… Когда музыка стихала, шары продолжали плавать. Их вес явно уменьшился.
Говорят, в начале 90-х годов XIX века Джон Уоррелл Кили продемонстрировал журналистам и военному ведомству США небольшую летающую платформу. На ней располагалось кресло пилота, а перед ним приборный щиток, похожий на клавиатуру пианино. С нижней стороны платформы были установлены резонаторы. Их звучание отрывало платформу от земли.
Сохранились воспоминания очевидцев, в которых говорится о том, что платформа летала с большой скоростью, мгновенно изменяла направление полета, но пилот (это был сам Д. Кили) не испытывал при этом действия ускорения.
Однако в то время нужды в скоростных и высокоманевренных летательных аппаратах не было, и военное ведомство отказалось финансировать работу Кили. Жаль, но еще обиднее, что ни сама платформа, ни ее чертежи не сохранились. Изобретатель очень опасался кражи своих идей. Опасался настолько, что не посвятил в них ни друзей, ни соратников. Внезапная кончина изобретателя предала забвению все его достижения.
На основе эффекта Казимира. Есть ли что-то общее у работ Махадевана и Кили? Поживем – узнаем. Пока, по словам профессора Махадевана, «если хотите прокатиться без тряски, нужно сделать много маленьких ковриков. Но в таком случае скорость будет невелика».
Что касается ковра, способного нести человека, то «согласно расчетам и закону масштабирования он останется в сфере волшебного, таинственного и теоретического», ковер придется соткать из ультралегких материалов и добавить к нему супермощный мотор. Махадеван надеется, что его усилия будут способствовать продвижению этой работы и «кто-нибудь сможет реализовать эту мечту, претворить теорию в реальность».
Тем более что в своем исследовании Махадеван идет по стопам команды ученых из Университета Святого Эндрюса (Шотландия), которые сообщили о «поразительных эффектах левитации». С ними они столкнулись в процессе моделирования силы, заставляющей предметы слипаться, отмечает газета Daily Telegraph. Профессор Ульф Леонард и доктор Томас Филбин нашли способ обратить это явление, получившее название «эффект Казимира», в результате чего предметы не притягиваются, а отталкиваются. Их открытие может в конечном итоге привести к разработке работающих без трения микромеханизмов, движущиеся детали которых будут подвешены в воздухе.
По словам ученых, этот принцип можно использовать и для поднятия в воздух более крупных объектов – вплоть до человека, что снова приближает нас к ковру-самолету. Таким образом получается, что создание ковра-самолета все же реально! И доктор Махадеван может составить компанию своим предшественникам, которые получали сначала Игнобелевскую, а потом и Нобелевскую премии.
Взлететь, подобно Ариэлю… Это мечта не только фантастов, но и многих ученых. Явление, позволяющее материальному телу свободно перемещаться в пространстве, они издавна называют левитацией (от греч. levitas – «подъем»).
Магнитная левитация. Этот термин появился еще в начале прошлого века. Однако придумать название – вовсе еще не значит понять суть явления. Всеобщей теории левитации нет и по сию пору, но наука не стоит на месте.
За это время исследователи довольно подробно разобрались, например, в магнитной левитации, могут проделать, скажем, такой фокус – повесить в воздухе вращающийся волчок.
Суть фокуса проста. Для его выполнения нужно сделать волчок из ферромагнетика – небольшого кольцевого магнитика. Такое магнитное кольцо, только побольше, служит основанием. Прикройте его плоской пластиной их плексигласа или, на худой конец, просто фанеркой и крутаните волчок. И у вас на глазах произойдет маленькое чудо – волчок поднимется в воздух и провисит около минуты, а то и больше.
Магнитная левитация теперь с успехом применяется на железнодорожном транспорте. Уже пущены первые линии, где поезда обходятся без колес – они как бы летят над дорогой, опираясь на невидимые силовые линии магнитного поля.
Следующий вероятный шаг на этом пути – освоение электростатической левитации. Как известно, разноименные электростатические заряды тоже имеются свойство притягиваться друг к другу, а одноименные – отталкиваться. Словом, тут намечается почти полная аналогия с левитацией магнитной.
Эффект Казимира. А недавно исследователи обратили внимание и на уже упоминавшийся эффект Казимира, названный так по имени голландского физика Хендрика Казимира (1909–2000), предсказавшего его еще 1948 году, и позднее подтвержденный экспериментально.
Понять, в чем суть эффекта Казимира, нам поможет такой наглядный пример. Еще в XVIII веке французские моряки наблюдали такое явление. Когда два судна, раскачивающиеся из стороны в сторону в условиях сильного волнения, но слабого ветра, оказывались на расстоянии меньше приблизительно 40 м, то в результате интерференции волн в пространстве между кораблями прекращалось волнение. Спокойное море между кораблями создавало меньшее давление, чем волнующееся с внешних сторон. В результате возникала сила, стремящаяся столкнуть суда.
Сила притяжения, названная силой Казимира, прямо пропорциональна площади пластин и обратно пропорциональна 4-й степени расстояния между ними
Голландец Хендрик Казимир, как уже говорилось, был не моряком, а физиком. Он понял, что аналогичная сила должна возникать и между двумя параллельными зеркальными пластинами в вакууме. «Вследствие флуктуаций электромагнитного поля здесь возникает сила притяжения, – рассуждал он. – Давление флуктуаций поля снаружи пластин оказывается больше давления между пластинами»…
Сила притяжения, позднее названная силой Казимира, прямо пропорциональна площади пластин и обратно пропорциональна 4-й степени расстояния между ними. Возникает же она вот откуда. Согласно квантовой теории поля, физический вакуум представляет собой не абсолютную пустоту. В нем постоянно рождаются и исчезают па́ры виртуальных частиц и античастиц – происходят постоянные колебания (флуктуации) связанных с этими частицами полей. В частности, происходят колебания связанного с фотонами электромагнитного поля.
Причем обычно в вакууме рождаются и исчезают виртуальные фотоны, соответствующие всем длинам волн электромагнитного спектра. Однако в пространстве между близко расположенными зеркальными поверхностями ситуация меняется. На определенных резонансных длинах электромагнитные волны усиливаются. На всех остальных же длинах, которых больше, напротив, подавляются. В результате давление виртуальных фотонов изнутри на две поверхности оказывается меньше, чем давление на них извне, где рождение фотонов ничем не ограничено.
Чем ближе друг к другу поверхности, тем меньше длин волн между ними оказывается в резонансе и больше – подавленными. Как следствие, растет сила притяжения между поверхностями.
Правда, с нашей обыденной точки зрения сила Казимира чрезвычайно мала. Если держать зеркала друг от друга на расстоянии хотя бы пары миллиметров, она незаметна. Расстояние, на котором она начинает ощущаться, составляет порядка нескольких микрон.
Однако, будучи обратно пропорциональной 4-й степени расстояния, она очень быстро растет с уменьшением последнего. На расстояниях порядка 10 нанометров – сотни диаметров типичного атома – давление, создаваемое эффектом Казимира, оказывается сравнимым с атмосферным.
На практике проявляется эта сила подобно «сухому клею». Например, если прижать друг к другу два металлических, тщательно отполированных брусочка, они слипаются.
Из брусочков строго определенных размеров, соединяя их вместе, собирали сверхточные линейки нужной длины для калибровки измерительных приборов. Теперь, правда, надобность в том отпала – лазерные эталоны и дальномеры оказались еще точнее.
Сила отталкивания. Однако история с силой Казимира на том не кончается. Более тщательные исследования, проведенные уже в конце XX века, показали, что, если мы будем использовать не просто плоские пластины, а прибегнем к взаимодействию, например сферы и плоскости или объектов еще более сложных форм, можно добиться, что сила притяжения в какой-то момент поменяет свой знак и станет силой отталкивания. Причем на сегодняшний день согласие между наблюдаемыми результатами и теорией удостоверено с точностью более 99 %.
Этим результатами, в свою очередь, воспользовались профессор Ульф Леонард и доктор Томас Филбин из Университета Святого Эндрюса в Шотландии. Они разработали теорию, которая позволяет выявить те условия, при которых сила Казимира меняет свой знак. На основании этого, полагают ученые, можно будет создавать антифрикционные покрытия для микромашин с движущимися частями.
Как пояснил профессор Леонард, такие микромеханические системы уже используются на практике. Например, крошечные механические датчики перегрузок, которые приводят в действие надувные подушки безопасности в автомобиле, станут еще более чувствительными и надежными.
И это лишь первый шаг. В будущем, как полагают исследователи, на основе эффекта Казимира можно ожидать создания левитирующих устройств, которые могут совершить подлинную революцию в мире транспорта.
Исследователям вполне можно верить. Ведь они уже зарекомендовали себя в ученом мире как весьма перспективные и авторитетные специалисты. Тот же профессор Леонард возглавляет одну из четырех команд, которые ныне занимаются также проблемами невидимости. И создали уже прототипы покрытия, которое световые волны определенной длины волны или ультразвук будут обтекать точно так же, как речные потоки беспрепятственно огибают гладкую скалу.
А там, глядишь, очередь дойдет и до освоения левитации в полном объеме с опорой на силы антигравитации. Ведь, как известно, гравитация или сила тяжести обеспечивается наличием больших масс. Например, мы притягиваемся к Земле силой гравитации нашей планеты, а та, в свою очередь, совершается свой бег вокруг Солнца, удерживаемая на орбите опять-таки силой гравитации нашего светила…
Однако сравнительно недавно астрофизики сделали открытие. Оказывается, на окраинах нашей Вселенной небесные тела разбегаются от центра со скоростью большей, чем то предписывает теория гравитации. Такое впечатление, что на небесные тела или действует какая-то неизвестная нам скрытая масса, или (теоретики предвидят и такой вариант) на них действует некая темная материя или энергия, которая обладает некоей антигравитацией, то есть не притягивает, а отталкивает от себя массивные тела.
Что же это за материя или энергия, теоретики пока еще имеют очень слабое представление. Быть может, открытие, сделанное группой профессора Леонарда, поможет разобраться и в этом феномене?..
Говорят, однажды на наш автозавод приехала японская делегация. Ее члены внимательно осмотрели новый вездеход высотой с двухэтажный дом, с огромными колесами и мощнейшим мотором.
«Зачем нужна такая машина?» – поинтересовались гости.
«Она преодолеет любое бездорожье», – с гордостью ответили хозяева.
«И чего только не придумают эти русские, чтобы только не строить хорошие дороги»…
Сага о снежном крейсере. Впрочем, если говорить серьезно, с дорогами не только у нас проблемы. На планете бездорожья еще хватает – пустыни, тундра, ледяные равнины Антарктиды… Словом, вездеходам еще есть где разгуляться.
Кстати, первые из них появились на нашей планете около 5000 лет тому назад. И представляли собой предшественников среднеазиатской арбы. Такие повозки с двумя огромными колесами, которые таскают за собой безотказные ослики, и поныне можно увидеть где-нибудь в районе Бухары.
В начале прошлого века арбу не раз пытались моторизовать, делая из нее то тягач для транспортировки пушек, то транспортер для пустыни… А 70 с лишним лет назад за дело взялись американцы. Со свойственным им размахом они создали уникальный антарктический вездеход.
Чтобы заинтересовать общественность и правительство в проекте, сначала был снят рекламный ролик. В его первых кадрах показано, как отважный полярный исследователь, контр-адмирал Ричард Бэрд обреченно ждет смерти в хижине, отрезанный от всего мира страшной непогодой, какая у Южного полюса случается регулярно. Тем временем его друг и заместитель профессор Томас Поултер отчаянно пытается прорваться к адмиралу через 123 мили снежного бездорожья на тракторах-снегоходах. Лишь третья попытка чудом увенчалась успехом, когда уж и у спасателей, и у спасаемых не осталось почти никаких надежд…
Такая история и в самом деле случилась в начале XX века. Но она никогда не повторится, утверждали авторы фильма, если общество раскошелится на создание уникального вездехода. Потому как в 1934 году все тот же профессор Поултер создал проект транспортного средства, которому, по идее, не страшны ни снежные бури, ни 80-градусные морозы, ни коварные бездонные трещины, прикрытые тонким слоем смерзшегося снега-фирна.
Поултер был типичным американцем, то есть не только ученым и инженером, но и оборотистым бизнесменом. Во всяком случае, он убедил Конгресс в том, что такой Snow Cruiser («Снежный крейсер») построить не только можно, но и нужно. Причем обойдется вся затея в какие-то 150 тыс. долларов, которые к тому же дадут частные инвесторы. Правительство же Поултер просил всего лишь оплатить расходы по переброске левиафана в Антарктиду и снабжение экспедиции.
Вскоре необходимые средства и в самом деле удалось собрать за счет частных пожертвований. Было получено и решение правительства о снаряжении новой антарктической экспедиции. И 8 августа 1939 года на чикагском заводе Pullmann началось строительство Snow Cruiser. Причем на постройку, испытания и доставку в порт уникальной машины отвели всего… 11 недель! Поултер отчаянно торопился, пока у общественности и Конгресса США не пропал интерес к этой затее.
Между тем по ходу дела создателям «крейсера» предстояло решить немало технических проблем. Как, например, лучше всего привести во вращении колеса диаметром по 3 м каждое? Привод с карданным валом тут не годился – как его ремонтировать в случае аварии на 80-градусном морозе?
Инженеры выкрутились, соорудив электропривод. Два двигателя внутреннего сгорания по 150 лошадиных сил вращали роторы генераторов, а колеса приводили во вращение встроенные в каждое электромоторы по 75 лошадиных сил. Так впервые на практике была опробована довольно распространенная ныне на сверхтяжелых грузовиках схема «мотор – колесо».
Неплохо показала она себя поначалу и на снежном вездеходе – на шоссе Snow Cruiser развивал 48 км/ч. Правда, моторы оказались на редкость прожорливыми. А потому пришлось поставить на машину огромные баки вместимостью около 10 т солярки; этого должно было хватить на все 8000 км пробега. Что же касается других припасов, то внутри своего передвижного жилища экипаж из пяти человек и одной собаки мог прожить автономно целый год.
И вот 24 октября «крейсер» своим ходом отправился в путь длиной 1700 км – из Чикаго в Бостон, где уже стояло под погрузкой судно North Star. На всем пути через Америку «красного монстра» встречали толпы восторженных зевак. Такое название автомобиль получил потому, что был действительно красного цвета – так он наиболее заметен на фоне белого снега. А еще потому, что махина была длиной 17 м, высотой 4,9 м и шириной 6 м.
Считалось, что этот пробег заодно станет и ходовым испытанием Snow Cruiser. Но тут создатели монстра просчитались – условия Антарктиды оказались совсем не похожи на американские хайвеи. Неприятности начались сразу же после выгрузки Snow Cruiser на ледовом континенте. Оказалось, что колеса тяжелой машины, погрузившиеся в снег почти на метр, беспомощно прокручивались, буксуя.
Впрочем, находчивые янки и тут нашли выход из положения. Машину заставили двигаться задним ходом. Как ни странно, она двинулась с места и даже смогла пройти таким образом 148 км.
После этого крейсер встал на прикол в качестве стационарной базы для полярников. Вскоре его так занесло снегом, что лишь длинный бамбуковый шест радиомачты выдавал место «подснежного» лагеря.
Вторая мировая война отодвинула полярные исследования на второй план, и на десять с лишним лет о «крейсере» забыли. Лишь в 1958 году машину откопали, смотрели и уехали, собираясь вернуться к ней еще через пару лет. А когда вернулись, то выяснилось, что машина вдруг исчезла! По одной из версий, Snow Cruiser откололся вместе с ледником, уплыл в море и там утонул. Вторая, более экзотическая, предполагала, что «крейсер» умыкнули коварные русские и увезли его в Сибирь. Во всяком случае, так писали некоторые американские газеты той поры.
А может быть, его просто не слишком хорошо искали? И с ним случилось то же, что и с нашим луноходом относительно недавно? Он тоже как будто пропадал, а потом вдруг снова нашелся. Или, быть может, все это происки инопланетян. Ведь, говорят, их базы есть как на Луне, так и в Антарктиде?..
Там, где кончается асфальт… Так или иначе, но больше американцы подобных монстров не создавали. Эпицентр подобного строительства переместился в СССР. Где-то в 60-х годах в нашей стране на базе мощного трактора ХТЗ был создан гусеничный вездеход «Харьковчанка», специально предназначенный для ледовых походов по Антарктиде.
Гусеничный вариант какое-то время казался предпочтительнее колесных вездеходов. Так продолжалось до тех пор, пока в 70-х годах некоторые американские умельцы стали на потеху публике модернизировать легковые автомобили, приделывая к ним огромные колеса от большегрузных машин и тракторов. Получившиеся монстры забавно перелезали через заторы из других машин. Их даже несколько раз снимали в кино, в основном в комедиях, героям которых нужно было как-то выпутаться из очередной передряги.
Зрители хохотали, а люди серьезные задумались: а ведь подобные машины годятся не только для подобных фокусов… Так на свет появился особый класс вездеходов – автомобили на шинах сверхнизкого давления, оказывающие весьма малую нагрузку на почву. А потому и не проваливающиеся глубоко ни в снег, ни в песок, ни даже в трясину…
«У нас в стране изготовлением таких машин сначала занимались лишь отдельные энтузиасты-умельцы, а потом дело дошло и до промышленного производства», – рассказал представитель ООО НПФ «ТРЭКОЛ» из подмосковных Люберец Михаил Владимирович Ширин.
На сегодняшний день в стране несколько центров по производству подобных машин. Так специалисты ассоциации «Арктиктранс» разрабатывают и выпускают малыми сериями новые конструкции колесных вездеходов особого назначения. Речь прежде всего о снегоболотоходе «Лопасня» и вездеходе «Лось».
Снегоболотоход «Лопасня»
Снегоболотоход «Лопасня» имеет полностью герметичный, утепленный кузов объемом около 9 куб. м. Кроме того, имеется грузовой отсек объемом 6,3 куб. м. Независимая подвеска всех 6 колес позволяет преодолевать препятствия высотой до 400 мм, а привод на четырех ведущих колесах не дает застрять даже на самом тяжелом бездорожье. Во всяком случае, в условиях Арктики «Лопасня» спокойно преодолевает заструги и сугробы, на более-менее ровных участках пути развивая скорость до 35 км/ч. При этом специальные покрышки «обеспечивают проходимость выше, чем даже у гусеничных вездеходов», сказано в протоколе испытаний.
Эти машины эксплуатируются с 1989 года. Причем используются в самых различных климатических поясах и природных условиях – на дрейфующей полярной станции СП-33, в плавнях Кубани, горах Алтая, озерах Эстонии, бездорожье Чукотки и Камчатки…
И по воде, и по суше… И на том наша история вовсе не заканчивается. Помните, как американцы сетовали, что, дескать, русские умыкнули Snow Cruiser в Сибирь? Теперь у их появился еще один повод для такого рода заключений.
Дело в том, что специалисты Института нефти и газа при Сибирском федеральном университете, что базируется в г. Красноярске, вот уже несколько лет работают над проектом всепогодного транспортного средства «Санный вездеход-амфибия», специально приспособленного для климатических условий Крайнего Севера и Заполярья.
По словам представителя разработчиков Кирилла Башмура, всепогодное транспортное средство, модель СТС-30 грузоподъемностью 30 т, плюс еще 20 и 30 т на прицепах, аккумулирует в своей конструкции весь тот опыт, который накоплен за десятилетия движения автотранспорта по сибирским «зимникам».
В итоге была разработана конструкция специализированного автопоезда, который способен преодолевать холмистый ландшафт с углами подъема до 25° и боковыми наклонами такой же величины. При этом удельное давление на грунт составляет 0,1 кг/см2, что позволяют двигаться, например, по тонкому речному льду около 40 см толщиной.
Уникальный движитель с мощными грунтозацепами, расположенный на каждой платформе, обеспечивает надежное сцепление с поверхностью, позволяет не буксовать даже в раскисшем грунте или в глубоком снегу. На воде же грунтозацепы выполняют роль своеобразных плиц колесного парохода. А весь автопоезд держится на плаву с помощью понтонов.
Таким образом новый транспортер способен осуществлять всепогодную доставку людей, грузов в любой район Заполярья и перевозки по ледовому шельфу Арктики или Антарктиды. На материке зимой – по «зимникам», проложенным по руслам замерзших рек, тундре, лесному бездорожью, по береговой арктической линии; летом – прямо по воде глубиной от 0,5 м и бездорожью.
Причем сразу проектируется целая линейка СТС – малой и большой грузоподъемности, от 10–15 до 300 т и более.
Интересная деталь: контроль параметров работы узлов, агрегатов, навигация по маршрутам осуществляются через российскую систему ГЛОНАСС. Таким образом, в принципе, автопоезд может двигаться по своему маршруту и без участия людей, автоматически.
Наши инженеры запатентовали основные узлы конструкции и давно бы уже сделали опытный образец, приступив к его испытаниям. Все упирается в извечную российскую беду – отсутствие денег на что-либо полезное. Вот на Олимпиаду в Сочи или на футбольный чемпионат средства быстренько нашлись, а на решение проблемы северного завоза денег почему-то нет…
Между тем за рубежом, видимо, что-то уже прознали о нашем проекте. Во всяком случае, теперь канадские инженеры приступили к проектированию машины с колесами диаметром 17 (!) м. Такой «Мамонт», как полагают, способен взять барьер высотой в одноэтажный дом. Кроме того, вездеход будет способен и плавать, неся на себе груз не менее 850 т. Конечно, такое фантастическое водоизмещение нужно разве что для похода на Северный или Южный полюс…
Вековой спор, что лучше для сельского хозяйства – колесные машины или гусеничные, – кажется, подошел к своему логическому завершению. На долю гусеничных машин остается самая тяжелая работа. Основную же нагрузку возьмет на себя даже не колесный трактор, а мобильное малогабаритное транспортное средство (ММТС).
На первый взгляд ММТС похож не на трактор, а на автомобиль. Этакий грузовичок с кузовом и двумя ведущими мостами. История же создания его такова.
После окончания Второй мировой войны, когда в Германии остро ощущалась нехватка техники в сельском хозяйстве, немецкими конструкторами в 1946–1948 годах были созданы первые «унимоги». Колесные трактора автомобильной компоновки (тогда это так называлось) представлялись некоей панацеей, способной спасти сельское хозяйство.
«Унимоги» выпускают до сих пор, но их почти не используют в сельском хозяйстве. Сейчас сфера их применения – жилищно-коммунальный сектор, где они наводят чистоту в городах. Для селян мощность двигателя в 25 лошадиных сил оказалась недостаточной.
Наши конструкторы из Центрального научно-исследовательского автомобильного и автомоторного института (НАМИ) воспользовались зарубежным опытом. Но стали решать ту же задачу «от противного». По словам генерального директора ФГУП НАМИ Алексея Платова, анализ ситуации показал, что в сельской местности России нужнее именно грузовичок-вездеход, а не трактор.
Раньше необозримые просторы нашей страны и ее бездорожье механизаторы преодолевали на грузовиках ГАЗ-53 и ГАЗ-66, но ныне они уж сняты с производства. Гонять же трактор типа «Беларусь», а тем более «Кировец» из конца в конец района – при нынешних ценах на топливо непозволительная роскошь. Да и трактор никогда не отличался особыми скоростными качествами.
ММТС НАМИ
ММТС же является компактным автомобилем высокой проходимости с колесной формулой 4×4. В условиях бездорожья он способен устойчиво двигаться со скоростью от 3,5 до 50 км/ч. Это, кстати, дает возможность эксплуатировать машину не только в сельской местности, но и на дорогах общего пользования – ММТС не будет тормозить транспортный поток своей медлительностью.
Машина прежде всего предназначается для личного пользования. А потому и стоить будет относительно недорого – около 300 тыс. рублей. По исследованиям экономистов НАМИ, спрос на ММТС на отечественном рынке составляет около 30 тыс. машин в год.
В 2007 году шесть образцов ММТС уже прошли госиспытания. В результате их специалисты Минсельхоза пришли к выводу, что основную ставку надо делать на самую мощную машину, так как она годится и для сельскохозяйственных операций – например, пахоты.
«Мы считаем, что самым ходовым может оказаться самосвал с опрокидывающейся на три стороны платформой, с гидрофицированной задней навеской для тракторных агрегатов и задним же валом отбора мощности, – сказал Платов. – Популярностью будет пользоваться и базовое шасси, на которое можно установить цистерну или фургон»…
Новый грузовик в первую очередь предназначен для сельхозработ, в основном в фермерских хозяйствах. Однако разработчики и производители уверены, что грузовики пригодятся для коммунального, сельского и лесного хозяйства, милиции, ГИБДД, МЧС, скорой помощи, пожарных, газовых и энергослужб. Тракторомобили могут стать фургонами, молоковозами, вахтовыми и экспедиционными автомобилями, их можно также оборудовать бурильной установкой, автовышкой.
С помощью универсального транспортного чуда можно сеять, боронить на небольших участках, копать ямы для установления столбов, убирать снег, разравнивать землю… Кроме того, можно использовать грузовик и для транспортировки грузов по бездорожью.
Машина спроектирована по модульному принципу. Кабина каркасно-панельной конструкции с несущим каркасом и навесными пластмассовыми панелями, большой площадью остекления.
На сегодняшний день в Новгородской области, на заводе «Автоспецоборудование», уже началось серийное производство тракторомобилей под названием SILAN. Как рассказал директор предприятия Андрей Мелехин, эти машины будут выпускаться по 5000 экземпляров ежегодно.
Представьте себе картину: из небольшой рощицы на приморский пляж неслышно выкатился блестящий шар высотой с двухэтажный дом. Легко подминая кустарник, он направился к берегу, с негромким всплеском вошел в воду и поплыл, а точнее, покатился по невысоким гребням волн. Через некоторое время развернулся, приблизился к берегу, выбрался на сушу и остановился. С пляжа, из поселка сбежались любопытные, кто-то вспомнил пришельцев, только на «летающую тарелку» странный предмет отнюдь не походил, да и взлетать, судя по всему, он не собирался.
В нижней части шара открылся люк, выдвинулся трап, и наружу вышли… обыкновенные люди. Они-то и разъяснили собравшимся, что проводят испытания нового вездеходного транспортного средства – шаромобиля, или шарохода.
Устройство шарохода. Корпус его выполнен из высокопрочного и радиопрозрачного композиционного материала на основе углеродных волокон. Наружная поверхность кажется гладкой, но внутренняя, напротив, шероховатая, ибо соприкасается с ведущим колесом и должна обеспечить хорошее сцепление.
В самом корпусе, выше его диаметрального сечения, расположена площадка, покоящаяся на трех шаровых опорах и оснащенная гироскопом, оттого и на стоянке, и в движении она сохраняет строго горизонтальное положение. На ней размещены кабина с пультом управления, радиостанция, радар и т. д.
Схема шарохода
Под платформой смонтированы электродвигатель, аккумуляторы, редуктор и ведущее колесо – при движении оно вращается, заставляя перемещаться и корпус шарохода. Все эти агрегаты представляют собой комплекс, шарнирно закрепленный на оси в центре шара, выполняющий роль своего рода физического маятника. Словом, по своему принципу движения шароход весьма напоминает белку в колесе. Если все же возникнет опасность опрокидывания, автоматически срабатывают концевые выключатели, и электромотор выключается.
А вот дополнительный штрих к конструкции. Наружная обшивка ее только кажется гладкой, на самом же деле она состоит из множества шестиугольников. Они обеспечивают надежное сцепление с дорогой. На плаву же из-за смачивания скорость передвижения заметно уменьшается. Внутренность шаровидной станции разделена на ряд уютных, хорошо оборудованных помещений. Поверхность полусферы заканчивается палубой, с которой всегда возможен выход наружу.
От идеи к конструкции. Рассказав о своем проекте, изобретатель Александр Викторович Волков, к сожалению, не успел воплотить задуманное в жизнь. Между тем, как выясняется, он был не одинок в своих устремлениях – у изобретателя есть как предшественники, так и последователи.
Например, известный в 30-х годах изобретатель и конструктор Павел Игнатьевич Гроховский разработал и тогда же опубликовал описание конструкции подобного вида научно-исследовательского и транспортного средства для тяжелых условий Заполярья.
В своей статье он напоминал, что исследователи Арктики не раз совершали дрейфы на судах во льдах Полярного бассейна. И не всегда они оканчивались благополучно – многие суда были раздавлены льдами. Между тем для прохождения судов по Северному морскому пути и для организации трансарктических перелетов в Америку весьма важны данные о погоде. Стало быть, в Арктике необходима сеть постоянно действующих научно-исследовательских станций и метеопостов. Это доказала экспедиция Папанина.
«Но такие станции должны быть абсолютно безопасными, не боящимися никакого сжатия, которые могли бы дрейфовать во льдах в течение нескольких лет подряд, – писал Павел Игнатьевич. – Одна из форм, гарантирующих безопасность во время давления и сжатия льдов, – шар. Попробуем представить себе, как будет выглядеть такая шаровидная дрейфующая станция.
Шар может быть изготовлен из стали, из легких сплавов, наконец, из дерева. Для большей гарантии швы его заделываются заклепками или сваркой. Внутри шара для увеличения прочности пропускаются шпангоуты. По всей поверхности шара расположен ряд герметических люков, которые могут открываться и закрываться. Шар не должен погружаться в воду выше центра. Только при таких условиях он при сжатии льдов всегда будет вытесняться кверху»…
Далее Гроховский описал примерную компоновку и устройство шара-станции. Правда, в стороне остались многие насущные вопросы. Например, ничего не было сказано о том, как шар будет доставляться к месту зимовки полярников и эвакуироваться по ее окончании. Вероятно, Павел Игнатьевич предполагал, что к его разработке подключатся и другие энтузиасты и всеобщими усилиями проект будет доведен до практической реализации.
Увы, этого не случилось. В 1937 году П.И. Гроховский был снят с должности главного конструктора Экспериментального института Наркомата тяжелой промышленности по вооружениям РККА. Затем был арестован, расстрелян и реабилитирован лишь в годы хрущевской оттепели, спустя четверть века.
Между тем конструкторская мысль все же не дремала. Аналогичную конструкцию в 70-х годах разработали французские изобретатели. За основу они взяли всем известное перекати-поле. Это растение отличает шаровидная крона. По осени этот сорняк отрывается от своего корня и перекатывается ветром с места на место, разбрасывая повсюду свои семена.
Французы и предложили создать оболочку из тонкого металла или прочного пластика, внутри которой (или по бокам) на своеобразной «жердочке» могут быть подвешены контейнеры с научной аппаратурой или даже капсулы с экипажем. Подгоняемая ветром или вращаемая мотором, оболочка катится по ледовому полю или по разводьям примерно так же, как это предлагал А. Волков.
Еще одна шаровая конструкция предложена американскими исследователями из NASA. Опять-таки внутри полой оболочки из пластика подвешена на тягах капсула с научной аппаратурой или экипажем. Одна из тяг может укорачиваться с помощью лебедки. Центр тяжести конструкции при этом смещается, и шар катится даже при полном безветрии. Говорят, что такой «шарик» американцы намерены отправить с одним из автоматических зондов на Марс для более детального обследования поверхности Красной планеты.
Этой истории скоро будет «в обед сто лет». Однако с каждым годом она обрастает все новыми удивительными подробностями и героями. И теперь уж очень трудно разобраться, где правда, а где вымысел. Но давайте мы все-таки попробуем отделить зерна истины от плевел неправды…
От фантазий к реальности. Вообще-то идея давно витала в воздухе. Она так и просилась на перо Жюля Верна, который вслед за «Наутилусом» мог отправить в путешествие уже не подводный, а подземный крейсер, расписать приключения его героев. Однако, увы, Жюль поверил современным ему ученым, которые утверждали, что в Земле есть обширные полости. Некоторые даже говорили, что наша планета вообще полая! И писатель отправил своих героев в путешествие пешком, без всякой подземной лодки.
Лишь когда теория полой Земли потерпела крах, а это случилось уже в XX веке, фантасты и ученые один за другим повели разговоры о том, что хорошо бы наряду с подводными лодками создать этакие субтеррины, которые бы могли столь же свободно бороздить не только водные, но и земные просторы.
Однако если вода в 800 раз плотнее воздуха, то твердь нашей планеты такова, что далеко не всюду ее берет лопата – приходится прибегать к помощи кирки и отбойного молотка. А буры, с помощью которых в недрах делают скважины, как известно, снабжают алмазными коронками. Алмаз же, между прочим, одно из самых твердых веществ на нашей планете.
Тем не менее желающие пофантазировать все-таки находились. Одним из таких фантазеров был наш соотечественник Петр Рассказов. Причем надо отметить, что он, несмотря на свою фамилию, был вовсе не литератором, а инженером и свою идею выразил не словами, а набросками чертежей.
За что, говорят, и был убит в смутные времена Первой мировой войны. А его чертежи таинственным образом исчезли. Всплыли они через некоторое время не где-нибудь, а в Германии. Но в дело так и не пошли, поскольку войну ту немцы вскоре проиграли, им пришлось заплатить победителям огромные контрибуции. Тут уж не до каких-то там подземных лодок.
Между тем мозги изобретателей продолжали работать. Аналогичную конструкцию в США попытался запатентовать Питер Чалми – сотрудник «фабрики изобретений», которую возглавлял не кто-нибудь, а сам знаменитый Томас Эдисон.
В списке изобретателей подземной лодки значится и Евгений Толкалинский, в 1918 году эмигрировавший из революционной России на Запад вместе со многими другими учеными, инженерами, изобретателями.
«Крот» под горой Благодать. Впрочем, и среди тех, кто остался в Советской России, нашлись светлые умы, взявшиеся за это дело. В 30-х годах XX века изобретатель А. Требелев, конструкторы А. Баскин и А. Кириллов создали проект некоего «подземохода», область применения которого обещала быть просто фантастичной. Например, подземная лодка доходит до нефтяного пласта и плывет от одного «озера» к другому, разрушая на своем пути горные перемычки. За собой она тянет трубопровод и, достигнув, наконец, нефтяного «моря», начинает оттуда качать черное золото.
В качестве прототипа для своей конструкции инженеры взяли… крота. Несколько месяцев они старательно изучали, как тот проделывает подземные ходы, и создали свой аппарат «по образу и подобию» этого животного. Только кое-что, конечно, пришлось переделать. Так, скажем, лапы с когтями пришлось заменить более привычными фрезами – примерно такими же, как у угледобывающих комбайнов.
Первые испытания лодки-крота прошли на Урале, в рудниках под горой Благодать. Аппарат вгрызался внутрь горы, своими фрезами крошил крепчайшие породы. Но конструкция лодки оказалась все же недостаточно надежной, ее механизмы часто отказывали, и дальнейшие разработки в данном направлении были признаны несвоевременными. Ведь на носу уже была Вторая мировая война.
Тем временем в Германии. Однако та же война, начавшаяся 1 сентября 1939 года, в Германии как раз послужила катализатором возрождения интереса к давней идее. До сих пор толком неизвестно, сам ли изобретатель В. фон Верн додумался до этой идеи, или ему кто-то помог отыскать старые документы в архивах немецкой разведки, однако в 1933 году он запатентовал свой вариант «подземохода».
Изобретение на всякий случай засекретили и отправили в архив. И неизвестно, сколько бы оно там пролежало, если бы на него в 1940 году случайно не наткнулся граф Клаус фон Штауфенберг. Несмотря на свой титул, он с восторгом принял идеи, изложенные в книге «Майн камф» Адольфом Гитлером. И когда новоявленный фюрер пришел к власти, среди его соратников был и фон Штауфенберг. Он быстро сделал карьеру при новом режиме, и когда ему на глаза попалось изобретение Верна, он понял его ценность.
Он довел суть дела до влиятельных чинов генштаба вермахта. Изобретателя вскоре разыскали и создали все условия, чтобы он мог реализовать свою идею на практике.
Дело в том, что в 1940 году генштаб разработал операцию «Морской лев», главной целью которой было вторжение нацистов на Британские острова. Вот тут бы подземная лодка и пригодилась бы. Пропахав землю под Ла-Маншем, такие лодки могли бы беспрепятственно доставлять в Великобританию отряды диверсантов, которые бы посеяли панику среди британцев.
Подземная лодка нацистов
Изобретатель пообещал сделать аппарат вместимостью до 5 человек, способный двигаться под землей со скоростью 7 км/ч, и нести боезаряд массой 300 кг. Согласитесь, этого вполне достаточно, чтобы провести внушительную диверсию.
Однако время шло, изобретатель продолжал возиться в своей лаборатории. Тут инициативу перехватил Герман Геринг, шеф люфтваффе. Он убедил фюрера, что не стоит заниматься «мышиной возней», когда доблестные асы Третьего рейха могут в считаные дни разбомбить Британию с воздуха.
По приказу Гитлера работы над подземной лодкой были свернуты. В небе Британии началась знаменитая воздушная война, которую, в конце концов, выиграли англичане. Солдатам вермахта так и не было суждено ступить на британскую землю.
Но это уже другая история.
Мечта Никиты Сергеевича. Ну а что же с подземной лодкой? Идея ее создания вовсе не канула в Лету. По крайней мере, в нашей стране.
Говорят, в 1945 году, когда после разгрома фашистской Германии вовсю рыскали трофейные команды бывших союзников, в руки спецагентов из ведомства Л.П. Берии попали чертежи и остатки странного механизма. Тут же были вызваны эксперты, которые и пришли к выводу, что перед ними аппарат, предназначенный для проделывания ходов под землей.
Проект отправили на доработку. Говорят, в 50-х годах ленинградский профессор Г. Бабат предлагал использовать для снабжения энергией «подземохода» сверхвысокочастотное излучение. А московский профессор Г. Покровский примерно в те же годы произвел расчеты, показывающие принципиальную возможность использования процессов кавитации не только в жидкой, но и в твердой среде. Пузырьки газа или пара, по его мнению, способны весьма эффективно разрушать горные породы.
Говорил о возможности создания «подземных торпед» и академик А.Д. Сахаров. По его мнению, можно создать условия, при которых подземный снаряд будет двигаться не в толще пород, а в облаке распыленных частиц, что обеспечит сказочную скорость продвижения – десятки, а то и сотни километров в час!
В общем, о разработке Требелева вспомнили снова. И с учетом трофейных добавок дело обещало выгореть. Тем более что проектом заинтересовался лично Н.С. Хрущев, сменивший у руля государства умершего И.В. Сталина.
Для серийного производства подземных лодок, испытания которых, по существу, еще и не начинались, в крымских степях срочно стали возводить огромный завод. А сам Никита Сергеевич публично пообещал в одной из своих речей достать империалистов не только из космоса, но и из-под земли!
Было создано несколько вариантов «подземохода», которые отправили для испытаний все туда же, на Урал. Первый цикл испытаний прошел удачно – подземная лодка со скоростью пешехода уверенно проделала ход с одного склона горы на другой. О чем, естественно, тут же было доложено правительству.
Возможно, именно эта весть и дала Никите Сергеевичу основания для его публичного заявления. Но он, как всегда, поторопился. Во время второй серии испытаний произошел загадочный взрыв, и подземная лодка погибла со всем своим экипажем, оказавшись замурованной глубоко в земной толще.
А тут и самого Никиту Сергеевича неожиданно попросили из Кремля. В одночасье из первого лица государства он превратился в обыкновенного пенсионера «по состоянию здоровья», на которое никогда не жаловался.
Пришедший на смену генсек Л.И. Брежнев стал закрывать все проекты, пользовавшиеся благосклонностью Хрущева. Так было прекращено строительство центра микроэлектроники в Зеленограде, постарались забыть и о подземной лодке. Тем более что никому не хотелось брать на себя ответственность за взрыв.
Глухой отзвук об этих работах остался лишь в романе Э. Тополя «Чужое лицо», где мастер детективного жанра описывает, как подземную лодку намеревались уж испытывать не где-нибудь, а у берегов США. Туда должна была отправиться ядерная субмарина, имея на борту новинку отечественного военно-промышленного комплекса. Там, по идее, подземную лодку должны были выгрузить, и она своим ходом собиралась добраться до самой Калифорнии, где, как известно, довольно часто случаются землетрясения. Лодка должна была оставить в заранее рассчитанном месте ядерный боезаряд, который мог быть взорван в нужный момент. А все его последствия затем бы списали на стихийное бедствие…
На счастье, ничего такого не случилось. Испытания подземной лодки, как уже говорилось, так и не были доведены до конца.
Недра штурмуют… ракеты?! Впрочем, даже многих энтузиастов создания «подземоходов» не устраивает идея дробления пород механическим способом. Как показывают современные проходческие щиты, при такой проходке тратится огромное количество энергии. И тем не менее щит движется со скоростью несколько метров в сутки. Это не «плавание», а скорее «ползание».
Ускорить процессы проходки пытались не раз. Так, в 1948 году инженер М. Циферов получил авторское свидетельство СССР на изобретение подземной торпеды – аппарата, способного самостоятельно двигаться в толще земли со скоростью 1 м/с. (Для сравнения: скорость агрегата Требелева – 12 м/ч.)
Циферов предложил способ бурения с помощью скрытого взрыва. Для этого им была сконструирована специальная головка бура, напоминающая гигантское сверло. Его режущими кромками служили две радиальные щели. Далее следовал пороховой отсек, в котором располагался заряд, взрывавшийся от электрического запала. В момент взрыва пороховые газы создавали в камере сгорания давление в 2000–3000 атмосфер! С огромной силой они вырывались из узких щелей головки, их реактивные потоки вращали бур. Как только отгорала одна шашка, из специального отсека через затвор, похожий по своему устройству на орудийный замок, подавалась новая.
С помощью подобного бура, как показали расчеты, можно пройти в глубь Земли на 12 км. Почему не больше? Штанга или трос, на которых висит бур, при больших глубинах погружения могут оборваться, не выдержав собственного веса.
Тогда, чтобы не связываться с тросом, Циферов предложил еще и подземную… ракету. Она была «перевернута вверх тормашками», чтобы выжигать и активно выталкивать грунт из проделываемой скважины. Со времени первой заявки прошло уже более полувека. Подземные ракеты ныне совершенствует сын изобретателя. Но в широкую практику они так и не внедрились. Почему?
Дело в том, что таким процессом очень трудно управлять. Запущенная ракета действительно в считаные секунды уходит вглубь на десятки метров. Но будет ли этот путь прямым? Ведь даже в воде торпеды, случается, уходят в сторону. Недра же куда более неоднородны, чем вода. Очень велик шанс, что при проходке снаряд «поведет» в сторону. А как говорит кавказская пословица, даже хромой, бредущий верной дорогой, обгонит всадника, скачущего не туда…
А вот и «ядерный крот». В конце XX века все больше энтузиастов, разрабатывавших идею создания подземного крейсера, склонялись к тому, что такой корабль должен быть атомным. Эту идею подхватили доктор технических наук Виктор Феодоров и его коллега, кандидат экономических наук Мухамед Кокоев, разработавшие проект «ядерного крота». Они подсчитали, что для проходки туннеля диаметром 1 м со скоростью 0,05 м/с нужно за секунду нагревать до температур 800—1000 оС 120–140 кг породы, что требует не менее 200–250 МВт тепловой мощности.
Это огромная мощность. Поэтому для экономии авторы предлагают не оставлять за проходческим комплексом свободный канал, а заполнять его разрушенной породой, перемещая ее с помощью специальных транспортеров. Тогда подвергать термообработке придется лишь относительно небольшую часть породы.
Устройство «ядерного крота» они видят примерно таким. Самоходный аппарат длиной в несколько десятков метров должен состоять из шарнирно-сочлененных блоков: ядерного реактора тепловой мощностью 4–5 МВт, парогазогенератора и турбогенератора мощностью 600–800 кВт. Кроме того, нужны секции навигации, связи, управления… Конечно, не обойдемся мы и без оборудования для разрыхления пород, транспортеров для их перемещения.
Интересная деталь проекта состоит в следующем. Верхняя часть земной коры состоит в основном из осадочных пород с относительно невысокой прочностью. И самое замечательное – в них всегда содержится много кристаллогидратной и адсорбированной воды, которая при нагреве породы до 300–500 °C интенсивно выделяется в виде паров.
Но это не все. Карбонаты и сульфаты, содержащиеся в породе, при нагреве до 900 °C и выше разлагаются с выделением не только воды, но и диоксида углерода и сернистых газов, которые тоже можно использовать для разрыхления недр.
Кроме того, из пород в результате термообработки получаются вяжущие материалы. Уплотняя их, «ядерный крот» создаст подземный канал длиной в сотни километров с укрепленными стенками.
Поддерживать связь с комплексом и управлять им дистанционно можно с помощью сверхдлинных радиоволн, подобно тому как ныне устанавливают связь с субмаринами, находящимися в подводном положении. А морская вода, между прочим, поглощает такие волны намного сильнее, чем обычные грунты.
Чтобы аппарат не сбивался с маршрута, на его борту должна быть предусмотрена навигационная система. Она же поможет обогнуть твердые породы, встретившиеся на пути.
Достигнув конечной цели, «крот» направится домой либо по ранее проложенному каналу, либо по новому маршруту.
Причем для экономичного и эффективного разрушения горных пород можно использовать результаты исследований, недавно проведенных, например, кандидатом технических наук В.М. Петровым. Он экспериментально показал целесообразность разрыхления горных пород с помощью микроволнового излучения.
Механика процесса такова. В горных породах практически всегда содержатся молекулы воды. Микроволновое же излучение, как известно на примере печей-микроволновок, весьма быстро и с малыми энергетическими потерями позволяет довести воду до кипения. Образующийся пар и произведет требуемые разрушения.
Такой способ не только досконально рассмотрен теоретически, но и проверен в ряде экспериментов, проведенных в Московском горном институте. Они показали, что при КПД современных магнетронов, доходящем до 85 %, такой способ вполне выгоден экономически, обладает рядом преимуществ перед механическими способами разрушения пород.
…Таким образом, получается, уже сегодня есть все предпосылки для создания подземной лодки. Надо только сообща взяться за дело и довести его до логического конца. И тогда, наконец, осуществится мечта фантастов прошлых столетий. А человечество получит возможность освоить еще один «океан» – подземный.
В мире ведутся разработки не только скоростных, но и сверхзвуковых поездов. Когда и как можно будет перемещаться по земле с той же скоростью, что и по небу?
Быстрее 1000 км/ч? Очередной бум, пожалуй, начался с того, что осенью 2010 года китайские инженеры объявили о начале разработки поезда, который сможет передвигаться со скоростью до 1000 км/ч. Причем, как рассказал один из участников работ, член Академии наук Китая Шень Чжиюнь, исследователи надеются воплотить проект в жизнь в течение 10 лет. Более того, такая скорость, по их мнению, не предел. Специалисты уверены: 4 и даже 6 тыс. км/ч – не фантастика, а дело не столь отдаленного будущего.
Чтобы достичь скоростей, свойственных скорее самолетам, чем поездам, китайские инженеры предлагают совершенно отказаться от колес и перейти к магнитной левитации, при которой поезда будут как бы парить над рельсами. Кроме того, двигаться они будут по трубам, закопанным под землю, почти как в туннеле метро. С той лишь разницей, что эти туннели будут вакуумными, то есть из них будет выкачан воздух, позволит уменьшить аэродинамическое сопротивление поезда.
В настоящее время в Юго-Западном Транспортном университете КНР полным ходом ведется разработка прототипа с рабочей скоростью в 500–600 км/ч. А через два-три года настанет черед более скоростного поезда, которому и предстоит побить рекордные 1000 км/ч.
Впрочем, не надо думать, что одни китайцы такие умные. Еще в начале 90-х годов XX века сотрудники японской строительной компании «Фудзита» замыслили построить геоплан – самолет, способный летать по подземному туннелю со скоростью 600 км/ч и более!
Подземная 400-километровая трасса между Токио и Осакой, двумя крупнейшими промышленными центрами Страны восходящего солнца, согласно проекту, будет иметь три яруса. На двух смогут летать геопланы, третий намечается использовать для движения поездов на магнитной подвеске. Ширина туннеля – 50–56 м – вполне достаточна, чтобы не только разместить задуманное, но и провести телекоммуникационные сети, трубопроводы. Закладка туннеля мыслится на глубине не менее 50 м, чтобы он был надежно защищен от сейсмических воздействий.
Геоплан станет разгоняться турбовинтовым двигателем. До скорости 300 км/ч воздушный лайнер будет скользить по специальной эстакаде, подобно современному железнодорожному суперэкспрессу. А превысив этот рубеж, оторвется от полотна и весь остальной путь совершит в полете.
По оценкам, строительство одного 400-местного геоплана обойдется в 15 млрд иен, а на сооружение трассы понадобится почти 30 трлн! Однако колоссальные расходы особо не пугают. Ведь быстрота, всего 50 минут, с которой можно преодолеть немалое расстояние между двумя городами, привлечет к новому виду транспорта множество пассажиров.
От идеи к реальности. Тут, видимо, стоит заметить, что о подобном транспорте мечтал еще в начале прошлого века петербургский доцент Борис Вейнберг. В 20-х годах он разработал проект поезда на электромагнитной подвеске, который должен был двигаться внутри специального трубопровода. Но в те годы стране нашей было не до скоростных подземных поездов.
Да и ныне, впрочем, железнодорожники бывшего СССР не могут похвастаться особыми успехами. Пока что поезда только в четырех странах мира – Китае, Японии, Германии и Франции – способны двигаться быстрее 500 км/ч. Да и то подобные скорости зафиксированы лишь во время испытаний.
Сверхзвуковой поезд на испытаниях
Тем не менее в этих странах ныне, похоже, всерьез нацелились на преодоление 1000-километрового барьера скорости. Для этого специалисты намерены использовать маглевы, то есть поезда, использующие магнитную левитацию. Принцип ее заключается в том, что при движении состав, в отличие от своих колесных аналогов, не касается поверхности рельса, а висит над ним на высоте 12–15 мм благодаря сильному электромагнитному полю.
В результате сила трения колес по рельсам не мешает развитию скорости, и поезда достигают 580 км/ч. Чисто теоретически состав можно разогнать и до первой космической скорости – 7,9 км/с. Однако для этого нужны и космические условия – прежде всего отсутствие аэродинамического сопротивления.
Причем если на дозвуковых скоростях движению мешает лишь трение о воздух, то на сверхзвуковых добавляется эффект скачка уплотнения. Например, перед летящим на сверхзвуковой скорости снарядом или самолетом виден полукруглый ободок, а внутри его нечто вроде линзы. Этот ободок и есть фронт скачка уплотнения, а эффект линзы создается более плотным воздухом, находящимся между этим фронтом и летящим телом. В результате потери энергии на преодоление сопротивления очень велики.
Чтобы избежать излишних потерь, конструкторы и собираются пускать сверхзвуковые поезда по вакуумным трубам. Белорусский дизайнер Павел Коняев даже разработал свой проект вакуумной дороги. Оболочка туннеля, внутри которого поедут поезда, должна будет представлять собой многослойную долговечную конструкцию из особо прочного железобетона с поперечными кольцами и продольными ребрами жесткости, а также компенсаторами для уменьшения продольных деформаций.
Внешне туннели будут выглядеть как серебристые трубы на бетонных опорах, полагает Коняев. И разместятся они на высоте около 6 м от поверхности грунта на особых опорах. При этом земли под дорогой можно осваивать как угодно – засевать, прокладывать обычные автодороги и т. д. Чтобы не огибать крупные водоемы или неровности рельефа местности, частично трубы можно будет проложить под водой или под землей.
Что же касается влияния на здоровье людей электромагнитных полей, наводимых при движении маглева, то, как показывают первые опыты, влияние выхлопных автомобильных газов намного вреднее. Между тем, по расчетам экологов, даже современные поезда на магнитной подушке выбрасывают в атмосферу в 112 раз меньше углекислого газа, оксидов натрия и прочих вредных веществ, чем автомобили, и в 29 раз меньше, чем обычные поезда.
Какие проблемы? Конечно, устройство такого пути намного сложнее, чем обычной стальной магистрали. В разрезе труба должна выглядеть так – обхватывающая оболочка вокруг шины с электромагнитами, подводящими кабелями и вспомогательным оборудованием. Оболочка трубы полностью закроет все внутренние коммуникации и предохранит их от природных осадков, ураганов, жары и холоды, от птиц, падения деревьев и т. д. Причем для каждого пути в целях безопасности должна использоваться отдельная оболочка-труба.
Однако закрытость может пойти и во вред. Что, если случится ЧП внутри туннеля, как это, например, произошло сравнительно недавно в железнодорожном туннеле, проложенном под Ла-Маншем? Чтобы люди при возникновении экстренных ситуаций (авария, пожар, теракт и т. д.) не оказались запертыми в безвоздушном пространстве, в трубе через каждые 3–4 км пути предусмотрены шлюзы, которые автоматически перекроют аварийный участок. В самом же поезде сработает автоматическая система торможения. И как только он остановится, начнет работать вентиляция. Вакуум в туннеле сменится обычной земной атмосферой.
Когда давление в трубе сравняется с внешним, откроются люки туннеля и поезда и люди смогут подняться на поверхность или выйти в эвакуационные подземные туннели. Шлюзы запланированы и на станциях. При въезде поезда в привокзальный шлюз туда подается воздух, давление выравнивается, и состав выезжает на перрон.
Единственное ограничение для прокладки вакуумных путей Павел Коняев видит в сейсмической опасности. Над этим думают и японские инженеры, для которых проблема землетрясений – одна из основных. Поэтому они предлагают прокладывать транспортные магистрали поглубже в недрах Земли. А это потребует огромных вложений. Так, по расчетам Павла Коняева, километр трубы, проложенной даже на поверхности, обойдется примерно в 60 млн долларов. Пока меценатов, готовых рискнуть огромными деньгами для строительства хотя бы опытного участка, в мире не нашлось.
Разговоры о них ведутся давно. В середине XX века, например, многие эксперты всерьез полагали, что именно атомные локомотивы, автомобили, корабли, самолеты и ракеты станут основой транспорта XXI века. Однако очередного «чуда техники» пока не получилось. Почему? Давайте попробуем разобраться.
Планов громадье. Как только в Обнинске в 1947 году заработала первая в мире стационарная АЭС, ученые и конструкторы стали мечтать о оснащении «ядерными котлами» транспортных средств. Определенная логика в том была. Заправил ядерную силовую установку один раз, и можно отправлять в кругосветное путешествие, не заботясь более о запасах топлива.
Первыми эту мечту начали осуществлять моряки. Атомные подлодки и ледоколы, как известно, верой и правдой служат вот уже многие десятилетия. Хотя и здесь, как стало известно относительно недавно, после снятия пелены секретности, реакторы на атомные подлодках несколько раз были на грани взрыва.
Да и ныне, когда многие атомоходы выработали свой ресурс, никто толком не знает, что с ними делать, как их утилизировать с наименьшим вредом для экологии? Вот и стоят они пока в затонах, подальше от людских глаз и постепенно ржавеют.
С атомолетами дела пошли и того хуже. Проект ядерной установки открытого типа, когда продукты радиоактивного распада выбрасывались в атмосферу, был забракован И.В. Курчатовым еще на стадии предварительного проекта. Он понимал, что такой, с позволения сказать, транспорт даже без всяких аварий за пару десятилетий превратит планету в радиоактивную пустыню.
Установки же закрытого типа, подобные тем, что стоят на атомных подлодках, требуют мощной свинцовой защиты для экипажа, что делает ее практически неподъемной. Кроме того, даже одетая в свинцовый кокон, такая установка все же несет немалую опасность для окружающей среды в случае аварии или катастрофы самолета.
Поэтому ядерные реакторы прижились лишь в космосе. Да и то их стараются применять как можно реже, памятуя, как однажды очередной советский «Космос» с ядерной установкой на борту свалился на территорию Канады и руководству СССР пришлось изрядно раскошелиться, а дипломатам немало потрудиться, чтобы замять скандал. А в США дело дошло даже до суда, когда общественность обнаружила изотопный реактор на борту межпланетного зонда, отправляющегося к окраинам Солнечной системы. Запустить его удалось, лишь клятвенно заверив судью, что никакой аварии на старте не будет. Дескать, все предусмотрено до мелочей…
Попытки поставить ядерные реакторы на атомные локомотивы и автомобили тоже, по существу, завершились провалом на самой ранней стадии. Уже первый образец мобильной АЭС «Памир», созданной сотрудниками Института ядерной энергетики Белорусской АН на базе двух тягачей МАЗ-5637, показал низкую надежность конструкции и был законсервирован.
Плавучий атомный энергоблок
Куда более пафосно выглядела идея мегапоездов на ядерной тяге. Как сообщала газета «Гудок» в 1956 году, они должны были состоять из могучего атомного локомотива и гигантских вагонов, поставленных на сверхширокую колею, которая в 2,5–3 раза превышала бы по ширине принятый в нашей стране стандарт – 1520 мм. При этом грузовместимость товарных вагонов этого класса могла бы быть сравнима с аналогичным показателем речного грузового судна, а двухэтажные пассажирские вагоны предложили бы путникам небывалый простор и комфорт.
Однако до строительства сверхшироких магистралей дело не дошло и по сей день. А вместе с ними увяла и идея создания мегапоездов.
Возвращение к былому? Тем не менее ядерщики на том не успокоились. И лет десять тому назад исподволь начали кампанию по проталкиванию концепции строительства плавучих атомных теплоэлектростанций (ПАЭС). При этом концерн Росэнергоатом намеревался до 2015 года построить флотилию из 8 плавучих атомных теплоэлектростанций. Вот что рассказывал об этом тогда журналистам заместитель генерального директора концерна Сергей Крысов.
Еще в 70-х годах XX века в нашей стране были созданы плавучие электростанции «Северное сияние». Ток они вырабатывали с помощью авиационных турбин, отработавших свой ресурс в небе. Однако опыт эксплуатации таких станций показал: работают они крайне шумно и потребляют большое количество топлива, которое в условиях Крайнего Севера – немалый дефицит.
А потому энергетики задумались, как можно получать тепло и электричество и без особого шума и при малом расходе топлива. Необходимость же в подобных теплостанциях большая. По подсчетам статистиков, население двух третей территории России каждую зиму испытывает нехватку света и тепла, согреваясь с помощью мазутных и угольных котельных, топливо для которых приходится доставлять корабельными караванами, а в экстренных случаях – и самолетами. Плавучие атомные электростанции позволят покончить с такой практикой.
Весной 2007 года на стапелях завода «Севмаш» в Северодвинске, где раньше обычно строились подводные атомные лодки, должна была состояться закладка первого плавучего теплоэнергоблока с реактором КЛТ4 °C. Завершение строительства намечалось на 2010 год.
Было объявлено, что есть уже и первые потенциальные покупатели ПАЭС. Одними из первых высказали свою заинтересованность в новых источниках энергоснабжения представители Газпрома. Администрация Чукотского автономного округа тоже не прочь заполучить такую станцию и поставить ее в районе г. Певек. Здесь дополнительная энергия требуется для дальнейшего наращивания золотодобычи.
Обнаружились возможные покупатели и за рубежом, Например, в подобных электростанциях весьма нуждается Индия, которой нужны энергетические мощности для опреснения морской воды. Кроме Индии, в подобных установках заинтересованы Китай, Индонезия, страны Персидского залива и Африки.
И для севера, и для юга. В обоих вариантах, и в южном, и в северном, основу ПАЭС составляют один или два реактора, а точнее – энергетических блока с реакторными установками типа КЛТ4 °C, которыми обычно оснащают ледоколы и подводные лодки. Только в данном случае их монтируют на металлической или даже железобетонной барже. Причем в последнем варианте корпус получается дешевле и не так подвержен коррозии. Прочность же и мореходные качества его таковы, что это специфическое сооружение можно буксировать даже через океаны.
По соседству с энергетическими блоками расположится хранилище ядерного топлива, отсеки с подсобным оборудованием. На корме – помещения, где с удобствами будет находиться персонал станции, порядка 50 человек, работающих вахтовым методом.
В условиях энергетического кризиса, затрагивающего многие регионы страны и мира, плавучая АЭС может предоставить недорогую энергию, а мобильность позволяет относительно легко перемещать ее с места на место. Причем стоимость создания такой станции значительно ниже, чем стационарной АЭС, утверждают разработчики. Ведь ее можно построить прямо на заводе и доставить на место уже в готовом виде.
Далее мощные океанские буксиры в сопровождении конвоя ВМФ оттащат станцию в то место, где ей предстоит работать. Там ее пришвартуют к заранее подготовленному пирсу, подсоединят провода, включат реактор, и на 10–12 лет местные власти могут забыть о проблемах с теплом и электричеством. По истечении этого срока ПАЭС просто отбуксируют на завод для профилактики, а на ее место встанет новая «ядерная баржа».
Технические же параметры станции как раз хорошо подходят для небольших городов: ее реакторы способны выдавать порядка 70 МВт электроэнергии и около 140 Гкал/ч тепла. Этого хватит на то, чтобы осветить и обогреть город с населением примерно 200 тыс. человек или большое промышленное предприятие.
А если террористы? Таковы хозяйственные плюсы проекта. Но есть у него и минусы. Во-первых, не опасно ли иметь у себя под боком в том или ином городе, по существу, плавучую ядерную бомбу? А если авария? А если террористы?..
Специалисты рассеивают подобные опасения следующим образом. Ныне Финляндия, Франция и Япония усердно наращивают мощности атомной энергетики. По тому же пути идут Иран, Индия и Китай. Естественно, Россия, одна из основных ядерных держав, тоже не желает оставаться в стороне.
У российских проектировщиков ПАЭС энтузиазм, кроме всего прочего, вызывает и тот факт, что большинство стран, желающих получить атомную энергию и пресную воду, не входят в Договор о нераспространении ядерного оружия, а следовательно, им не «светит» получение «ядерной баржи» в собственность. Они могут попросить пригнать ее к своим берегам при условии, что обслуживать ПАЭС будут российские специалисты и все отработанное ядерное топливо будет возвращаться в Россию. Таким образом, в перспективе мы можем получить неплохой выход на международный рынок.
Впрочем, противников у проекта все равно немало. В первую очередь это экологические организации. Так, скажем, эксперты знаменитой норвежской «Белуны» утверждают, что защита ПАЭС от возможных аварий и от угрозы теракта проработана недостаточно. Ведь реакторы ледокольного типа, которые планируется поставить на плавучих станциях, никогда еще не эксплуатировались в течение 40 лет (а именно таков заявленный срок службы плавучей станции), и, значит, предусмотреть все варианты их «поведения» просто невозможно.
«Реакторная установка типа КЛТ4 °C работает на высокообогащенном уране, который без особой дальнейшей переработки можно использовать для создания ядерного взрывного устройства атомной бомбы, – сказано в заключении “Белуны”. – Для производства атомной бомбы нужно не менее 3 кг урана-235 с обогащением в 20 %. Только в одном реакторе ПАЭС содержится, таким образом, расщепляющийся материал, достаточный для создания многих десятков атомных бомб».
Однако у наших специалистов, связанных с проектированием станции, мнение прямо противоположное. Как сообщил журналистам Сергей Крысов, ПАЭС имеет 5 барьеров радиационной защиты – это даже больше, чем на атомных подлодках. Станция, по расчетам, способна выдержать землетрясение до 6 баллов, жесточайший шторм и имеет защиту реактора, способную выдержать даже падение на нее самолета.
Что же касается возможности создания атомной бомбы из украденного с ПАЭС урана, то давайте рассуждать логически, сказал он. Во-первых, до сих пор не было ни одного случая захвата террористами АЭС. Они все-таки не дураки и знают, что, во-первых, с охраной атомной станции лучше не связываться – службу там несут профессионалы высочайшей пробы. Во-вторых, надо быть самоубийцей, чтобы вскрыть работающий реактор. Да и при вскрытии все равно из полученного топлива атомную бомбу никогда не сделать, поскольку на АЭС используют уран все-таки малопригодный для оружейного применения.
Что касается кражи отработанного ядерного топлива, то его даже на «грязную» бомбу вряд ли хватит. Просчитано, что эффект от такого применения будет примерно такой, как от неисправной рентгеновской установки в поликлинике – облучиться можно, лишь оказавшись в непосредственной близости от очага радиации, подчеркнул Крысов.
Гладко было на бумаге… Казалось бы, все, инцидент исчерпан. Однако на исходе уже 2011 год, а первой ПАЭС, успевшей получить даже собственное имя «Михаил Ломоносов», как не было, так и нет. И похоже, уже и не будет. В чем дело?
Началось все с того, что по мере строительства ПАЭС стоимость ее росла «не по дням, а по часам». Если в декабре 2006 года проект оценивался в 2 млрд 609 млн рублей, то через несколько месяцев стоимость возросла до 5,5 млрд. В марте 2007 года она составляла уже 9 млрд. А в мае 2007 года «плавучка» потянула на 11,2 млрд рублей. Ныне цена водоплавающей АЭС зашкаливает уже за 27 млрд рублей.
В итоге «Севмаш» отказался от строительства станции. Заказ передали на Балтийский завод Санкт-Петербурга. Но и там, судя по всему, дела идут ни шатко ни валко. Во-первых, завод вроде бы собираются переводить за черту города, и ему пока не до новых заказов. Во-вторых, в немалой степени затягиванию работ, кроме чисто технических и финансовых трудностей, способствует и политическая обстановка как внутри страны, так и за рубежом. Сначала разразился скандал в Иране вокруг Бушерской АЭС. Не успел он толком затихнуть, как в Японии цунами, по существу, развалило два реактора АЭС «Фукусима-1», которую теперь частенько называют «вторым Чернобылем».
Далее, участившиеся выходки террористов вызывают справедливое опасение: «А что будет, если они выберут в качестве объекта атаки именно ПАЭС?» Охранять плавучую станцию, как говорят эксперты, все намного сложнее, чем наземный объект. И тут ничего не спрячешь под землю. Наконец, штормы на море происходят все же намного чаще, чем землетрясения на суше…
В таких условиях надо ждать, что многие потенциальные покупатели откажутся от своих первоначальных намерений. В общем, не случайно многие СМИ уже прозвали ПАЭС «ядерной погремушкой Росатома». Обидно, но справедливо. Хотя и жаль все-таки хорошей идеи, которая заложена в конструкцию. Хотели же как лучше…