Последовательные шины позволяют объединять множество устройств, используя всего 1–2 пары проводов. Функциональные возможности этих шин гораздо шире, чем у традиционных интерфейсов локальных сетей, — USB и FireWire способны передавать изохронный трафик аудио- и видеоданных. Последовательные шины по своей организации сильно отличаются от параллельных. В последовательных шинах нет отдельных линий для данных, адреса и управления — все протокольные функции приходится выполнять, пользуясь одной или двумя (в FireWire) парами сигнальных проводов. Это накладывает отпечаток на построение шинного протокола, который в последовательных шинах строится на основе пересылок пакетов — определенным образом организованных цепочек бит. Заметим, что в терминологии USB пакеты и кадры имеют несколько иную трактовку, нежели в сетях передачи данных. В параллельных шинах имеются возможности явной синхронизации интерфейсной части ведущих и ведомых устройств; исполнение каждого шага протокола обмена может быть подтверждено, и, при необходимости, некоторые фазы обмена могут продлеваться по «просьбе» не успевающего устройства. В последовательных шинах такой возможности нет — пакет пересылается целиком, а синхронизация возможна только по принимаемому потоку бит. Эти и другие особенности сближают последовательные шины с локальными сетями передачи данных.
Наибольшую популярность имеют шины USB и FireWire, хотя последняя пока что в PC-совместимых компьютерах используется не повсеместно. Последовательные шины FireWire и USB, имея общие черты, являются, тем не менее, существенно различными технологиями. Обе шины обеспечивают простое подключение большого числа ПУ (127 для USB и 63 для FireWire), допуская коммутации и включение/выключение устройств при работающей системе. По структуре топология обеих шин достаточно близка, но FireWire допускает большую свободу и пространственную протяженность. Хабы USB входят в состав многих устройств и для пользователя их присутствие зачастую незаметно. Обе шины имеют линии питания устройств, но допустимая мощность для FireWire значительно выше. Обе шины поддерживают технологию PnP (автоматическое конфигурирование при включении/выключении) и снимают проблему дефицита адресов, каналов DMA и прерываний. Различаются пропускная способность и управление шинами.
Шина USB ориентирована на периферийные устройства, подключаемые к PC. Изохронные передачи USB позволяют передавать цифровые аудиосигналы, а шина USB 2.0 способна нести и видеоданные. Все передачи управляются централизованно, и PC является необходимым управляющим узлом, находящимся в корне древовидной структуры шины. Адаптер USB пользователи современных ПК получают почти бесплатно, поскольку он входит в состав всех современных чипсетов системных плат. Правда, адаптеры USB.0 первое время будут выпускаться в виде карт PCI. Непосредственное соединение нескольких PC шиной USB не предусматривается, хотя выпускаются «активные кабели» для связи пары компьютеров и устройства-концентраторы.
Шина FireWire ориентирована на устройства бытовой электроники, которые с ее помощью могут быть объединены в единую домашнюю сеть. К этой сети может быть подключен компьютер, и даже не один. Принципиальным преимуществом шины 1394 является отсутствие необходимости в специальном контроллере шины (компьютере). Любое передающее устройство может получить полосу изохронного трафика и начинать передачу по сигналу автономного или дистанционного управления — приемники «услышат» эту информацию. При наличии контроллера соответствующее ПО может управлять работой устройств, реализуя, например, цифровую студию нелинейного видеомонтажа или снабжая требуемыми мультимедийными данными всех заинтересованных потребителей информации.
USB (Universal Serial Bus — универсальная последовательная шина) является промышленным стандартом расширения архитектуры PC, ориентированным на интеграцию с телефонией и устройствами бытовой электроники. Версия 1.0 была опубликована в начале 1996 года, большинство устройств поддерживает версию 1.1, которая вышла осенью 1998 года, — в ней были устранены обнаруженные проблемы первой редакции. Весной 2000 года опубликована спецификация USB 2.0, в которой предусмотрено 40-кратное повышение пропускной способности шины. Первоначально (в версиях 1.0 и 1.1) шина обеспечивала две скорости передачи информации: полная скорость FS (full speed) — 12 Мбит/с и низкая скорость LS (Low Speed) — 1,5 Мбит/с. В версии 2.0 определена еще и высокая скорость HS (High Speed) — 480 Мбит/с, которая позволяет существенно расширить круг устройств, подключаемых к шине. В одной и той же системе могут присутствовать и одновременно работать устройства со всеми тремя скоростями. Шина с использованием промежуточных хабов позволяет соединять устройства, удаленные от компьютера на расстояние до 25 м. Подробную и оперативную информацию по USB (на английском языке) можно найти по адресу http://www.usb.org.
USB обеспечивает обмен данными между хост-компьютером и множеством периферийных устройств (ПУ). Согласно спецификации USB, устройства (devices) могут являться хабами, функциями или их комбинацией. Устройство-хаб (hub) только обеспечивает дополнительные точки подключения устройств к шине. Устройство-функция (function) USB предоставляет системе дополнительные функциональные возможности, например подключение к ISDN, цифровой джойстик, акустические колонки с цифровым интерфейсом и т.п. Комбинированное устройство (compound device), содержащее несколько функций, представляется как хаб с подключенными к нему несколькими устройствами. Устройство USB должно иметь интерфейс USB, обеспечивающий полную поддержку протокола USB, выполнение стандартных операций (конфигурирование и сброс) и предоставление информации, описывающей устройство. Работой всей системы USB управляет хост-контроллер (host controller), являющийся программно-аппаратной подсистемой хост-компьютера. Шина позволяет подключать, конфигурировать, использовать и отключать устройства во время работы хоста и самих устройств.
Шина USB является хост-центрической: единственным ведущим устройством, которое управляет обменом, является хост-компьютер, а все присоединенные к ней периферийные устройства — исключительно ведомые. Физическая топология шины USB — многоярусная звезда. Ее вершиной является хост-контроллер, объединенный с корневым хабом (root hub), как правило, двухпортовым. Хаб является устройством-разветвителем, он может являться и источником питания для подключенных к нему устройств. К каждому порту хаба может непосредственно подключаться периферийное устройство или промежуточный хаб; шина допускает до 5 уровней каскадирования хабов (не считая корневого). Поскольку комбинированные устройства внутри себя содержат хаб, их подключения к хабу 6-го яруса уже недопустимо. Каждый промежуточный хаб имеет несколько нисходящих (downstream) портов для подключения периферийных устройств (или нижележащих хабов) и один восходящий (upstream) порт для подключения к корневому хабу или нисходящему порту вышестоящего хаба. Логическая топология USB — просто звезда: для хост-контроллера хабы создают иллюзию непосредственного подключения каждого устройства. В отличие от шин расширения (ISA, PCI, PC Card), где программа взаимодействует с устройствами посредством обращений по физическим адресам ячеек памяти, портов ввода-вывода, прерываниям и каналам DMA, взаимодействие приложений с устройствами USB выполняется только через программный интерфейс. Этот интерфейс, обеспечивающий независимость обращений к устройствам, предоставляется системным ПО контроллера USB.
В отличие от громоздких дорогих шлейфов параллельных шин AT А и особенно шины SCSI с ее разнообразием разъемов и сложностью правил подключения, кабельное хозяйство USB простое и изящное. Кабель USB содержит одну экранированную витую пару с импедансом 90 Ом для сигнальных цепей и одну неэкранированную для подачи питания (+5 В), допустимая длина сегмента — до 5 м. Для низкой скорости может использоваться невитой неэкранированный кабель длиной до 3 м (он дешевле). Система кабелей и коннекторов USB не дает возможности ошибиться при подключении устройств (рис. 4.1, а и б). Для распознавания разъема USB на корпусе устройства ставится стандартное символическое обозначение (рис. 4.1, в). Гнезда типа «А» устанавливаются только на нисходящих портах хабов, вилки типа «А» — на шнурах периферийных устройств или восходящих портов хабов. Гнезда и вилки типа «В» используются только для шнуров, отсоединяемых от периферийных устройств и восходящих портов хабов (от «мелких» устройств — мышей, клавиатур и т.п. кабели, как правило, не отсоединяются). Кроме стандартных разъемов, показанных на рисунке 4.1, применяются и миниатюрные варианты (рис. 4.2, в, г, д). Хабы и устройства обеспечивают возможность «горячего» подключения и отключения. Для этого разъемы обеспечивают более раннее соединение и позднее отсоединение питающих цепей по отношению к сигнальным, кроме того, предусмотрен протокол сигнализации подключения и отключения устройств. Назначение выводов разъемов USB приведено в табл. 4.1, нумерация контактов показана на рис. 4.2. Все кабели USB «прямые» — в них соединяются одноименные цепи разъемов.
Рис. 4.1. Коннекторы USB: a — вилка типа «А», б — вилка типа «В», в — символическое обозначение
Рис. 4.2. Гнезда USB: а — типа «А», б — типа «В» стандартное, в, г, д — миниатюрные типа «В»
Таблица 4.1. Назначение выводов разъема USB
Контакт (рис. 4.2, а — г) | Контакт (рис. 4.2, д) | Цепь |
---|---|---|
1 | 1 | VBus (+5 В) |
2 | 2 | D- |
3 | 3 | D+ |
4 | 5 | GND |
В шине используется дифференциальный способ передачи сигналов
D+
и D-
по двум проводам. Скорость устройства, подключенного к конкретному порту, определяется хабом по уровням сигналов на линиях D+
и D-
, смещаемых нагрузочными резисторами приемопередатчиков: устройства с низкой скоростью «подтягивают» к высокому уровню линию D-
, с полной — D+
. Подключение устройства HS определяется на этапе обмена конфигурационной информацией — физически на первое время устройство HS должно подключаться как FS. Передача по двум проводам в USB не ограничивается дифференциальными сигналами. Кроме дифференциального приемника, каждое устройство имеет линейные приемники сигналов D+
и D-
, а передатчики этих линий управляются индивидуально. Это позволяет различать более двух состояний линии, используемых для организации аппаратного интерфейса.
Введение высокой скорости (480 Мбит/с — всего в 2 раза медленнее, чем Gigabit Ethernet) требует тщательного согласования приемопередатчиков и линии связи. На этой скорости может работать только кабель с экранированной витой парой для сигнальных линий. Для высокой скорости аппаратура USB должна иметь дополнительные специальные приемопередатчики. В отличие от формирователей потенциала для режимов FS и LS, передатчики HS являются источниками тока, ориентированными на наличие резисторов-терминаторов на обеих сигнальных линиях.
Скорость передачи данных (LS, FS или HS) выбирается разработчиком периферийного устройства в соответствии с потребностями этого устройства. Реализация низких скоростей для устройства обходится несколько дешевле (приемопередатчики проще, а кабель для LS может быть и неэкранированной невитой парой). Если в «старой» USB устройства можно было, не задумываясь, подключать в любой свободный порт любого хаба, то в USB 2.0 при наличии устройств и хабов разных версий появились возможности выбора между оптимальными, неоптимальными и неработоспособными конфигурациями.
Хабы USB 1.1 обязаны поддерживать скорости FS и LS, скорость подключенного к хабу устройства определяется автоматически по разности потенциалов сигнальных линий. Хабы USB 1.1 при передаче пакетов являются просто повторителями, обеспечивающими прозрачную связь периферийного устройства с контроллером. Передачи на низкой скорости довольно расточительно расходуют потенциальную пропускную способность шины: за то время, на которое они занимают шину, высокоскоростное устройство может передать данных в 8 раз больше. Но ради упрощения и удешевления всей системы на эти жертвы пошли, а за распределением полосы между разными устройствами следит планировщик транзакций хост-контроллера.
В спецификации 2.0 скорость 480 Мбит/с должна уживаться с прежними, но при таком соотношении скоростей обмены на FS и LS «съедят» возможную полосу пропускания шины без всякого «удовольствия» (для пользователя). Чтобы этого не происходило, хабы USB 2.0 приобретают черты коммутаторов пакетов. Если к порту такого хаба подключено высокоскоростное устройство (или аналогичный хаб), то хаб работает в режиме повторителя, и транзакция с устройством на HS занимает весь канал до хост-контроллера на все время своего выполнения. Если же к порту хаба USB 2.0 подключается устройство или хаб 1.1, то по части канала до контроллера пакет проходит на скорости HS, запоминается в буфере хаба, а к старому устройству или хабу идет уже на его «родной» скорости FS или LS. При этом функции контроллера и хаба 2.0 (включая и корневой) усложняются, поскольку транзакции на FS и LS расщепляются и между их частями вклиниваются высокоскоростные передачи. От старых (1.1) устройств и хабов все эти тонкости скрываются, что и обеспечивает обратную совместимость. Вполне понятно, что устройство USB 2.0 сможет реализовать высокую скорость, только если по пути от него к хост-контроллеру (тоже 2.0) будут встречаться только хабы 2.0. Если это правило нарушить и между ним и контроллером 2.0 окажется старый хаб, то связь может быть установлена только в режиме FS. Если такая скорость устройство и клиентское ПО устроит (к примеру, для принтера и сканера это выльется только в большее время ожидания пользователя), то подключенное устройство работать будет, но появится сообщение о неоптимальной конфигурации соединений. По возможности ее (конфигурацию) следует исправить, благо переключения кабелей USB можно выполнять на ходу. Устройства и ПО, критичные к полосе пропускания шины, в неправильной конфигурации работать откажутся и категорично потребуют переключений. Если же хост-контроллер старый, то все преимущества USB 2.0 окажутся недоступными пользователю. В этом случае придется менять хост- контроллер (менять системную плату или приобретать PCI-карту контроллера). Контроллер и хабы USB 2.0 позволяют повысить суммарную пропускную способность шины и для старых устройств. Если устройства FS подключать к разным портам хабов USB 2.0 (включая и корневой), то для них суммарная пропускная способность шины USB возрастет по сравнению с 12 Мбит/с во столько раз, сколько используется портов высокоскоростных хабов.
Хаб является ключевым элементом системы PnP в архитектуре USB. Хаб выполняет множество функций:
♦ обеспечивает физическое подключение устройств, формируя и воспринимая сигналы в соответствии со спецификацией шины на каждом из своих портов;
♦ управляет подачей питающего напряжения на нисходящие порты, причем предусматривается установка ограничения на ток, потребляемый каждым портом;
♦ отслеживает состояние подключенных к нему устройств, уведомляя хост об изменениях;
♦ обнаруживает ошибки на шине, выполняет процедуры восстановления и изолирует неисправные сегменты шины;
♦ обеспечивает связь сегментов шины, работающих на разных скоростях.
Хаб следит за сигналами, генерируемыми устройствами. Неисправное устройство может не вовремя «замолчать» (потерять активность) или, наоборот, что-то «бормотать» (babble). Эти ситуации отслеживает ближайший к устройству хаб и запрещает восходящие передачи от такого устройства не позже, чем по границе (микро)кадра. Благодаря бдительности хабов эти ситуации не позволят неисправному устройству заблокировать всю шину.
Каждый из нисходящих (downstream) портов может быть разрешен или запрещен, а также сконфигурирован на высокую, полную или ограниченную скорость обмена. Хабы могут иметь световые индикаторы состояния нисходящих портов, управляемые автоматически (логикой хаба) или программно (хост-контроллером). Индикатор может представлять собой пару светодиодов — зеленый и желтый (янтарный) или один светодиод с изменяющимся цветом. Состояние порта представляется следующим образом:
♦ не светится — порт не используется;
♦ зеленый — нормальная работа;
♦ желтый — ошибка;
♦ зеленый мигающий — программа требует внимания пользователя (Software attention);
♦ желтый мигающий — аппаратура требует внимания пользователя (Hardware attention).
Восходящий (upstream) порт хаба конфигурируется и внешне представляется как полноскоростной или высокоскоростной (только для USB 2.0). При подключении порт хаба USB 2.0 обеспечивает терминацию по схеме FS, в режим HS он переводится только по команде контроллера.
На рис. 4.3 приведен вариант соединения устройств и хабов, где высокоскоростным устройством USB 2.0 является только телекамера, передающая видеопоток без компрессии. Подключение принтера и сканера USB 1.1 к отдельным портам хаба 2.0, да еще и развязка их с аудиоустройствами, позволяет им использовать полосу шины по 12 Мбит/с каждому. Таким образом, из общей полосы 480 Мбит/с на «старые» устройства (USB 1.0) выделяется 3×12=36 Мбит/с. Вообще-то можно говорить и о полосе в 48 Мбит/с, поскольку клавиатура и мышь подключены к отдельному порту хост-контроллера USB 2.0, но эти устройства «освоят» только малую толику из выделенных им 12 Мбит/с. Конечно, можно подключать клавиатуру и мышь к порту внешнего хаба, но с точки зрения повышения надежности системные устройства ввода лучше подключать наиболее коротким (по количеству кабелей, разъемов и промежуточных устройств) способом. Неудачной конфигурацией было бы подключение принтера (сканера) к хабу USB 1.1 — во время работы с аудиоустройствами (если они высокого качества) скорость печати (сканирования) будет падать. Неработоспособной конфигурацией явилось бы подключение телекамеры к порту хаба USB 1.1.
Рис. 4.3. Пример конфигурации соединений
При планировании соединений следует учитывать способ питания устройств: устройства, питающиеся от шины, как правило, подключают к хабам, питающимся от сети. К хабам, питающимся от шины, подключают лишь маломощные устройства — так, к клавиатуре USB, содержащей внутри себя хаб, подключают мышь USB и другие устройства-указатели (трекбол, планшет).
Управление энергопотреблением является весьма развитой функцией USB. Для устройств, питающихся от шины, мощность ограничена. Любое устройство при подключении не должно потреблять от шины ток, превышающий 100 мА. Рабочий ток (не более 500 мА) заявляется в конфигурации. Если хаб не может обеспечить устройству заявленный ток, оно не конфигурируется и, следовательно, не может быть использовано.
Устройство USB должно поддерживать режим приостановки (suspended mode), в котором его потребляемый ток не превышает 500 мкА. Устройство должно автоматически приостанавливаться при прекращении активности шины.
Возможность удаленного пробуждения (remote wakeup) позволяет приостановленному устройству подать сигнал хост-компьютеру, который тоже может находиться в приостановленном состоянии. Возможность удаленного пробуждения описывается в конфигурации устройства. При конфигурировании эта функция может быть запрещена.
Каждое устройство на шине USB (их может быть до 127) при подключении автоматически получает свой уникальный адрес. Логически устройство представляет собой набор независимых конечных точек (endpoint, ЕР), с которыми хост-контроллер (и клиентское ПО) обменивается информацией. Каждая конечная точка имеет свой номер и описывается следующими параметрами:
♦ требуемая частота доступа к шине и допустимые задержки обслуживания;
♦ требуемая полоса пропускания канала;
♦ требования к обработке ошибок;
♦ максимальные размеры передаваемых и принимаемых пакетов;
♦ тип передачи;
♦ направление передачи (для передач массивов и изохронного обмена).
Каждое устройство обязательно имеет конечную точку с номером 0, используемую для инициализации, общего управления и опроса состояния устройства. Эта точка всегда сконфигурирована при включении питания и подключении устройства к шине. Она поддерживает передачи типа «управление» (см. ниже).
Кроме нулевой точки, устройства-функции могут иметь дополнительные точки, реализующие полезный обмен данными. Низкоскоростные устройства могут иметь до двух дополнительных точек, полноскоростные — до 15 точек ввода и 15 точек вывода (протокольное ограничение). Дополнительные точки (а именно они и предоставляют полезные для пользователя функции) не могут быть использованы до их конфигурирования (установления согласованного с ними канала).
Каналом (pipe) в USB называется модель передачи данных между хост- контроллером и конечной точкой устройства. Имеются два типа каналов: потоки и сообщения. Поток (stream) доставляет данные от одного конца канала к другому, он всегда однонаправленный. Один и тот же номер конечной точки может использоваться для двух поточных каналов — ввода и вывода. Поток может реализовывать следующие типы обмена: передача массивов, изохронный и прерывания. Сообщение (message) имеет формат, определенный спецификацией USB. Хост посылает запрос к конечной точке, после которого передается (принимается) пакет сообщения, за которым следует пакет с информацией состояния конечной точки. Последующее сообщение нормально не может быть послано до обработки предыдущего, но при отработке ошибок возможен сброс необслуженных сообщений. Двусторонний обмен сообщениями адресуется к одной и той же конечной точке.
С каналами связаны характеристики, соответствующие конечной точке (полоса пропускания, тип сервиса, размер буфера и т.п.). Каналы организуются при конфигурировании устройств USB. Для каждого включенного устройства существует канал сообщений (Control Pipe 0), по которому передается информация конфигурирования, управления и состояния.
Все обмены (транзакции) с устройствами USB состоят из двух-трех пакетов. Каждая транзакция планируется и начинается по инициативе контроллера, который посылает пакет-маркер (token packet). Он описывает тип и направление передачи, адрес устройства USB и номер конечной точки. В каждой транзакции возможен обмен только между адресуемым устройством (его конечной точкой) и хостом. Адресуемое маркером устройство распознает свой адрес и готовится к обмену. Источник данных (определенный маркером) передает пакет данных (или уведомление об отсутствии данных, предназначенных для передачи). После успешного приема пакета приемник данных посылает пакет квитирования (handshake packet)? Последовательность пакетов в транзакциях иллюстрирует рис. 4.4.
Рис. 4.4. Последовательности пакетов: а — вывод, б — ввод
Хост-контроллер организует обмены с устройствами согласно своему плану распределения ресурсов. Контроллер циклически (с периодом 1,0±0,0005 мс) формирует кадры (frames), в которые укладываются все запланированные транзакции (рис. 4.5). Каждый кадр начинается с посылки маркера
SOF
(Start Of Frame), который является синхронизирующим сигналом для всех устройств, включая хабы. В конце каждого кадра выделяется интервал времени EOF
(End Of Frame), на время которого хабы запрещают передачу по направлению к контроллеру. В режиме HS пакеты SOF передаются в начале каждого микрокадра (период 125±0,0625 мкс). Хост планирует загрузку кадров так, чтобы в них всегда находилось место для транзакций управления и прерываний. Свободное время кадров может заполняться передачами массивов (bulk transfers). В каждом (микро)кадре может быть выполнено несколько транзакций, их допустимое число зависит от длины поля данных каждой из них.
Рис. 4.5. Поток кадров USB
Для обнаружения ошибок передачи каждый пакет имеет контрольные поля CRC-кодов, позволяющие обнаруживать все одиночные и двойные битовые ошибки. Аппаратные средства обнаруживают ошибки передачи, а контроллер автоматически производит трехкратную попытку передачи. Если повторы безуспешны, сообщение об ошибке передается клиентскому ПО.
Все подробности организации транзакций от клиентского ПО изолируются контроллером USB и его системным программным обеспечением.
Архитектура USB допускает четыре базовых типа передачи данных.
♦ Управляющие посылки (control transfers) используются для конфигурирования устройств во время их подключения и для управления устройствами в процессе работы. Протокол обеспечивает гарантированную доставку данных.
♦ Передачи массивов данных (bulk data transfers) — это передачи без каких- либо обязательств по задержке доставки и скорости передачи. Передачи массивов могут занимать всю полосу пропускания шины, свободную от передач других типов. Приоритет этих передач самый низкий, они могут приостанавливаться при большой загрузке шины. Доставка гарантированная — при случайной ошибке выполняется повтор. Передачи массивов уместны для обмена данными с принтерами, сканерами, устройствами хранения и т.п.
♦ Прерывания (interrupt) — короткие передачи, которые имеют спонтанный характер и должны обслуживаться не медленнее, чем того требует устройство. Предел времени обслуживания устанавливается в диапазоне 10-255 мс для низкой, 1-255 мс для полной скорости, на высокой скорости можно заказать и 125 мкс. При случайных ошибках обмена выполняется повтор. Прерывания используются, например, при вводе символов с клавиатуры или для передачи сообщения о перемещении мыши.
♦ Изохронные передачи (isochronous transfers) — непрерывные передачи в реальном времени, занимающие предварительно согласованную часть пропускной способности шины с гарантированным временем задержки доставки. Позволяют на полной скорости организовать канал с полосой 1,023 Мбайт/с (или два по 0,5 Мбайт/с), заняв 70% доступной полосы (остаток можно заполнить и менее емкими каналами). На высокой скорости конечная точка может получить канал до 24 Мбайт/с (192 Мбит/с). В случае обнаружения ошибки изохронные данные не повторяются — недействительные пакеты игнорируются. Изохронные передачи нужны для потоковых устройств: видеокамер, цифровых аудиоустройств (колонки USB, микрофон), устройств воспроизведения и записи аудио- и видеоданных (CD и DVD). Видеопоток (без компрессии) шина USB способна передавать только на высокой скорости.
Полоса пропускания шины делится между всеми установленными каналами. Выделенная полоса закрепляется за каналом, и, если установление нового канала требует такой полосы, которая не вписывается в уже существующее распределение, запрос на выделение канала отвергается.
Архитектура USB предусматривает внутреннюю буферизацию всех устройств, причем чем большей полосы пропускания требует устройство, тем больше должен быть его буфер. Шина USB должна обеспечивать обмен с такой скоростью, чтобы задержка данных в устройстве, вызванная буферизацией, не превышала нескольких миллисекунд.
Изохронная передача данных связана с синхронизацией устройств, объединяемых в единую систему. Возьмем пример использования USB, когда к компьютеру подключен микрофон USB (источник данных) и колонки USB (приемник данных), и эти аудиоустройства связаны между собой через программный микшер (клиентское ПО). Каждый из этих компонентов может иметь собственные «понятия» о времени и синхронизации: микрофон, к примеру, может иметь частоту выборки 8 кГц и разрядность данных 1 байт (поток 64 Кбит/с), стереоколонки — 44,1 кГц и разрядность 2×2 байта (176,4 Кбит/с), а микшер может работать на частоте выборок 32 кГц. Микшер в этой системе является связующим звеном, и его источник синхронизации будем считать главным (master clock). Программный микшер обрабатывает данные пакетами, сеансы обработки выполняются регулярно с определенным периодом обслуживания (скажем, в 20 мс — частота 50 Гц). В микшере должны быть модули согласования частот выборки, которые объединяют несколько выборок в одну, если входная частота выше выходной, или «сочиняют» (интерполируют) новые промежуточные выборки, если выходная частота выше. В системе с USB приходится иметь дело со следующими частотами:
♦ частота выборки (sample rate) для источников (source) и приемников (sink) данных;
♦ частота шины USB — частота кадров (1 кГц) для полной скорости и микрокадров (8 кГц) для высокой (с этой частотой все устройства USB «видят» маркеры начала (микро)кадров
SOF
);
♦ частота обслуживания — частота, с которой клиентское ПО обращается к драйверам USB для передачи и приема изохронных данных.
В системе без общего источника синхронизации между парами синхросигналов возможны отклонения следующих типов:
♦ дрейф (drift) — отклонения формально одинаковых частот от номиналов (не бывает двух абсолютно одинаковых генераторов);
♦ дрожание (jitter) — колебание частот относительно номинала;
♦ фазовый сдвиг, если сигналы не связаны системой фазовой автоподстройки ФАПЧ (PLL).
В цифровой системе передачи данных эти отклонения выливаются в то, что у источника или приемника данных может образовываться излишек или недостаток данных, колеблющийся или прогрессирующий во времени. В USB по способу синхронизации конечных точек (источников или получателей данных) с системой различают асинхронный, синхронный и адаптивный классы устройств (точнее, конечных точек), каждому из которых соответствует свой тип канала USB.
Асинхронные устройства не имеют возможности согласования своей частоты выборок с метками
SOF
или иными частотами системы USB. Частота передачи данных у них фиксированная или программируемая. Число байт данных, принимаемых за каждый (микро)кадр USB, не является постоянным. Источник данных неявно сообщает свою скорость передачи данных числом выборок, генерируемых им за один (микро)кадр (клиентское ПО будет обрабатывать столько данных, сколько реально поступило). Приемник данных должен обеспечивать обратную связь для адаптивного драйвера клиентского ПО, чтобы согласовать темп выдачи потока (см. ниже). Примерами асинхронного устройства-источника может быть CD-плейер с синхронизацией от кварцевого генератора или приемник спутникового телевещания. Пример приемника — дешевые колонки, работающие от внутреннего источника синхронизации.
Синхронные устройства имеют внутренний генератор, синхронизируемый с метками
SOF
(системная частота 1 кГц); на высокой частоте передачи более точную синхронизацию обеспечивает связь с микрокадрами. Источники и приемники за каждый (микро)кадр генерируют (потребляют) одинаковое количество байт данных, которое устанавливается на этапе программирования каналов. Примером синхронного источника может быть цифровой микрофон с частотой выборки, синтезируемой по SOF
.
Адаптивные устройства имеют возможность подстройки своей внутренней частоты под требуемый поток данных (в определенных границах). Адаптивный источник позволяет менять скорость под управлением приемника, обеспечивающего обратную связь. Для адаптивного приемника информацию о частоте задает входной поток данных. Он определяет мгновенное значение частоты по количеству данных, принятых за некоторый интервал усреднения. Примером адаптивного источника является CD-плейер со встроенным согласователем частоты SRC (sample rate converter) приемника — высококачественные колонки или наушники USB.
Обратная связь позволяет согласовать значения частот устройств с частотой шины. Асинхронный приемник должен явным образом сообщать хост-контроллеру желаемую частоту передачи данных относительно частоты (микро)кадров. Это позволит хост-контроллеру постоянно корректировать число передаваемых байт за каждый (микро)кадр, не допуская переполнения или опустошения буфера устройства-приемника. Адаптивный передатчик должен воспринимать информацию обратной связи, чтобы за каждый (микро)кадр генерировать ровно столько данных, сколько требуется хост-контроллеру. Для обратной связи в устройстве выделяется специальная конечная точка, через которую периодически передается информация о текущем значении желаемой относительной частоты.
В принципе контроллер USB может подстраивать частоту кадров, но, естественно, под частоту внутренней синхронизации только одного устройства. Подстройка осуществляется через механизм обратной связи, который позволяет изменять период кадра в пределах ±1 битового интервала.
У каждой шины USB должен быть один (и только один!) хост — компьютер с контроллером USB. Хост делится на три основных уровня.
♦ Интерфейс шины USB обеспечивает физический интерфейс и протокол шины. Интерфейс шины реализуется хост-контроллером, имеющим встроенный корневой хаб, обеспечивающий точки физического подключения к шине (гнезда USB типа «А»). Хост-контроллер отвечает за генерацию (микро)кадров. На аппаратном уровне хост-контроллер обменивается информацией с основной памятью компьютера, используя прямое управление шиной (bus-mastering) с целью минимизации нагрузки на центральный процессор.
♦ Система USB, используя хост-контроллер(ы), транслирует клиентское «видение» обмена данными с устройствами в транзакции, выполняемые с реальными устройствами шины. Система отвечает и за распределение ресурсов USB — полосы пропускания и мощности источников питания (для устройств, питающихся от шины). Система состоит из трех основных частей:
• Драйвер хост-контроллера — HCD (Host Controller Driver) — модуль, привязанный к конкретной модели контроллера, обеспечивающий абстрагирование драйвера USB и позволяющий в одну систему включать несколько разнотипных контроллеров.
• Драйвер USB — USBD (USB Driver) — обеспечивает основной интерфейс (USBDI) между клиентами и устройствами USB. Интерфейс HCDI (Host Controller Driver Interface) между USBD и HCD спецификацией USB не регламентируется. Он определяется разработчиками ОС и должен поддерживаться разработчиками хост-контроллеров, желающих иметь поддержку своих изделий конкретными ОС. Клиенты не могут пользоваться интерфейсом HCDI; для них предназначен интерфейс USBDI. USBD обеспечивает механизм обмена в виде пакетов
IRP
(I/O Request Packet — пакет запроса ввода-вывода), состоящих из запросов на транспортировку данных по заданному каналу. Кроме того, USBD отвечает за некоторое абстрактное представление устройства USB клиенту, которое позволяет выполнять конфигурирование и управление состоянием устройств (включая и стандартное управление через конечную точку «0»). Реализация интерфейса USBDI определяется операционной системой; в спецификации USB излагаются только общие идеи.
• Программное обеспечение хоста реализует функции, необходимые для функционирования системы USB в целом: обнаружение подключения и отключения устройств и выполнение соответствующих действий по этим событиям (загрузки требуемых драйверов), нумерацию устройств, распределение полосы пропускания и потребляемой мощности и т.п.
♦ Клиенты USB — программные элементы (приложения или системные компоненты), взаимодействующие с устройствами USB. Клиенты могут взаимодействовать с любыми устройствами (их конечными точками), подключенными к системе USB. Однако система USB изолирует клиентов от непосредственного обмена с какими-либо портами (в пространстве ввода-вывода) или ячейками памяти, представляющими интерфейсную часть контроллера USB.
В совокупности уровни хоста имеют следующие возможности:
♦ обнаружение подключения и отсоединения устройств USB;
♦ манипулирование потоками управления между устройствами и хостом;
♦ манипулирование потоками данных;
♦ сбор статистики активности и состояний устройств;
♦ управление электрическим интерфейсом между хост-контроллером и устройствами USB, включая управление электропитанием.
Хост-контроллер является аппаратным посредником между устройствами USB и хостом. Программная часть хоста в полном объеме реализуется операционной системой. До загрузки ОС может функционировать лишь усеченная часть ПО USB, поддерживающая только устройства, требующиеся для загрузки. Так, в BIOS современных системных плат имеется поддержка клавиатуры USB, реализующая функции сервиса
Int 10h
. При загрузке системы USB эта «дозагрузочная» поддержка игнорируется — система начинает работу с контроллером «с чистого листа», то есть со сброса и определения всех подключенных устройств. По окончании работы ОС передача состояния USB «дозагрузочной» поддержке не предусматривается, так что для нее это событие тоже может рассматриваться как первоначальное включение. В спецификации РС'2001 выдвигается требование к BIOS поддержки USB в такой мере, чтобы обеспечивалась загрузка ОС с устройств USB. USB поддерживает динамическое подключение и отключение устройств.
Нумерация (перенумерация) устройств шины идет постоянно, отслеживая изменения физической топологии.
Все устройства подключаются через порты хабов. Хабы определяют подключение и отключение устройств к своим портам и сообщают состояние портов при запросе от контроллера. Хост разрешает работу порта и адресуется к устройству через канал управления, используя нулевой адрес — USB Default Address. При начальном подключении или после сброса все устройства адресуются именно так.
Хост определяет, является новое подключенное устройство хабом или функцией, и назначает ему уникальный адрес USB. Хост создает канал управления (control pipe) с этим устройством, используя назначенный адрес и нулевой номер точки назначения.
Если новое устройство является хабом, хост определяет подключенные к нему устройства, назначает им адреса и устанавливает каналы. Если новое устройство является функцией, уведомление о подключении передается диспетчером USB заинтересованному ПО.
Когда устройство отключается, хаб автоматически запрещает соответствующий порт и сообщает об отключении контроллеру, Который удаляет сведения о данном устройстве из всех структур данных. Если отключается хаб, процесс удаления выполняется для всех подключенных к нему устройств. Если отключается функция, уведомление посылается заинтересованному ПО.
Благодаря своей универсальности и способности эффективно передавать разнородный трафик, шина USB применяется для подключения к PC самых разнообразных устройств. Она призвана заменить традиционные порты PC — СОМ и LPT, а также порты игрового адаптера и интерфейса MIDI. Спецификация USB 2.0 позволяет говорить и о подключении традиционных «клиентов» шин ATA и SCSI, а также захвате части ниши применения шины FireWire. Привлекательность USB придает возможность подключения/отключения устройств на ходу и возможность их использования практически сразу, без перезагрузки ОС. Удобна и возможность подключения большого количества (до 127) устройств к одной шине, правда, при наличии хабов. Хост-контроллер интегрирован в большинство современных системных плат. Выпускаются и карты расширения с контроллерами USB (обычно для шины PCI). Однако повсеместное применение USB сдерживается недостаточной активностью разработчиков ПО (производителей оборудования): просматривая перечни устройств, мы видим, что для всех указывается поддержка в Windows 98/SE/ME, а вот в графах Linux, MacOS, Unix и даже Windows 2000 часто стоят неприятные пометки N/A (Not Allowed — «не дозволено»).
Для того чтобы система USB заработала, необходимо, чтобы были загружены драйверы хост-контроллера (или контроллеров, если их несколько). При подключении устройства к шине USB ОС Windows выдает сообщение «Обнаружено новое устройство» и, если устройство подключается впервые, предлагает загрузить для него драйверы. Многие модели устройств уже известны системе, и драйверы входят в дистрибутив ОС. Однако может потребоваться и драйвер изготовителя устройства, который должен входить в комплект поставки устройства, или его придется искать в Сети. К сожалению, не все драйверы работают корректно — «сырой» драйвер начальной версии, возможно, потребуется заменить более «правильным», чтобы устройство нормально опознавалось и хорошо работало. Но это общее горе пользователей любых устройств, а не только устройств для шины USB. Перечислим основные области применения USB.
♦ Устройства ввода — клавиатуры, мыши, трекболы, планшетные указатели и т.п. Здесь USB предоставляет для различных устройств единый интерфейс. Целесообразность использования USB для клавиатуры неочевидна, хотя в паре с мышью USB (подключаемой к порту хаба, встроенного в клавиатуру) сокращается количество кабелей, тянущихся от системного блока на стол пользователя.
♦ Принтеры. USB 1.1 обеспечивает примерно ту же скорость, что и LPT-порт в режиме ECP, но при использовании USB не возникает проблем с длиной кабеля и подключением нескольких принтеров к одному компьютеру (правда, требуются хабы). USB 2.0 позволит ускорить печать в режиме высокого разрешения за счет сокращения времени на передачу больших массивов данных. Однако есть проблема со старым ПО, которое непосредственно работает с LPT-портом на уровне регистров, — на принтер USB оно печатать не сможет.
♦ Сканеры. Применение USB позволяет отказаться от контроллеров SCSI или от занятия LPT-порта. USB 2.0 при этом позволит еще и повысить скорость передачи данных.
♦ Аудиоустройства — колонки, микрофоны, головные телефоны (наушники). USB позволяет передавать потоки аудиоданных, достаточные для обеспечения самого высокого качества. Передача в цифровом виде от самого источника сигнала (микрофона со встроенным преобразователем и адаптером) до приемника и цифровая обработка в хост-компьютере позволяют избавиться от наводок, свойственных аналоговой передачи аудиосигналов. Использование этих аудио-компонентов позволяет в ряде случаев избавиться от звуковой карты компьютера — аудиокодек (АЦП и ЦАП) выводится за пределы компьютера, а все функции обработки сигналов (микшер, эквалайзер) реализуются центральным процессором чисто программно. Аудиоустройства могут и не иметь собственно колонок и микрофона, а ограничиться преобразователями и стандартными гнездами («Джеками») для подключения обычных аналоговых устройств.
♦ Музыкальные синтезаторы и MIDI-контроллеры с интерфейсом USB. Шина USB позволяет компьютеру обрабатывать потоки множества каналов MIDI (пропускная способность традиционного интерфейса MIDI уже гораздо ниже возможностей компьютера).
♦ Видео- и фотокамеры. USB 1.1 позволяет передавать статические изображения любого разрешения за приемлемое время, а также передавать поток видеоданных (живое видео) с достаточной частотой кадров (25–30 Кбит/с) только с невысоким разрешением или сжатием данных, от которого, естественно, страдает качество изображения. USB 2.0 позволяет передавать поток видеоданных высокого разрешения без сжатия (и потери качества). С интерфейсом USB выпускают как камеры, так и устройства захвата изображения с телевизионного сигнала и TV-тюнеры.
♦ Коммуникации. С интерфейсом USB выпускают разнообразные модемы, включая кабельные и xDSL, адаптеры высокоскоростной инфракрасной связи (IrDA FIR) — шина позволяет преодолеть предел скорости СОМ-порта (115,2 Кбит/с), не повышая загрузку центрального процессора. Выпускаются и сетевые адаптеры Ethernet, подключаемые к компьютеру по USB. Для соединения нескольких компьютеров в локальную сеть выпускаются специальные устройства, выполняющие коммутацию пакетов между компьютерами. Непосредственно (без дополнительных устройств) портами USB соединить между собой даже два компьютера нельзя — на одной шине может присутствовать лишь один хост-контроллер (см. выше). Специальное устройство для связи пары компьютеров выглядит как «таблетка», врезанная в кабель USB с двумя вилками типа «А» на концах. Объединение более двух компьютеров осложняется и топологическими ограничениями USB: длина одного сегмента кабеля не должна превышать 5 м, а использовать хабы для увеличения дальности неэффективно (каждый хаб дает всего 5 м дополнительного удаления).
♦ Преобразователи интерфейсов позволяют через порт USB, имеющийся теперь практически на всех компьютерах, подключать устройства с самыми разнообразными интерфейсами: Centronics и IEEE 1284 (LPT-порты), RS-232C (эмуляция UART 16550A — основы СОМ-портов) и другие последовательные интерфейсы (RS-422, RS-485, V.35…), эмуляторы портов клавиатуры и даже Game-порта, переходники на шину ATA, ISA, PC Card и любые другие, для которых достаточно производительности. Здесь USB становится палочкой-выручалочкой, когда встает проблема 2-го (3-го) LPT- или СОМ-порта в блокнотном ПК и в других ситуациях. При этом ПО преобразователя может обеспечить эмуляцию классического варианта «железа» стандартных портов IBM PC, но только под управлением ОС защищенного режима. Приложение MS-DOS может обращаться к устройствам по адресам ввода-вывода, памяти, прерываниями, каналами DMA, но только из сеанса MS-DOS, открытого в ОС с поддержкой USB (чаще это Windows). При загрузке «голой» MS-DOS «палочка-выручалочка» не работает. Преобразователи интерфейсов позволяют продлить жизнь устройствам с традиционными интерфейсами, изживаемыми из PC спецификациями РС'99 и РС'2001. Скорость передачи данных через конвертер USB — LPT может оказаться даже выше, чем у реального LPT-порта, работающего в режиме SPP.
♦ Устройства хранения — винчестеры, устройства чтения и записи CD и DVD, стриммеры — при использовании USB 1.1 получают скорость передачи, соизмеримую со скоростью их подключения к LPT, но более удобный интерфейс (как аппаратный, так и программный). При переходе на USB 2.0 скорость передачи данных становится соизмеримой с ATA и SCSI, а ограничений по количеству устройств достичь трудно. Особенно интересно использование USB для электронных устройств энергонезависимого хранения (на флэш-памяти) — такой накопитель может быть весьма компактным (размером с брелок для ключей) и емким (пока 16-256 Мбайт, в перспективах — гигабайт и более). Выпускаются устройства для мобильного подключения накопителей с интерфейсом ATA-ATAPI — по сути, это лишь преобразователи интерфейсов, помещенные в коробку-отсек формата 5" или 3,5", а иногда выполненные прямо в корпусе 36-контактного разъема ATA. Имеются и устройства чтения-записи карт SmartMedia Card и CompactFlash Card.
♦ Игровые устройства — джойстики всех видов (от «палочек» до автомобильных рулей), пульты с разнообразными датчиками (непрерывными и дискретными) и исполнительными механизмами (почему бы не сделать кресло автогонщика с вибраторами и качалками?) — подключаются унифицированным способом. При этом исключается ресурсопожирающий интерфейс старого игрового адаптера (упраздненного уже в спецификации РС'99).
♦ Телефоны — аналоговые и цифровые (ISDN). Подключение телефонного аппарата позволяет превратить компьютер в секретаря с функциями автодозвона, автоответчика, охраны и т. п.
♦ Мониторы — здесь шина USB используется для управления параметрами монитора. Монитор сообщает системе свой тип и возможности (параметры синхронизации) — это делалось и без USB по шине DDC. Однако USB-мониторы позволяют системе еще и управлять ими — регулировки яркости, контраста, цветовой температуры и т. п. могут теперь выполняться программно, а не только от кнопок лицевой панели монитора. В мониторы, как правило, встраивают хабы. Это удобно, поскольку настольную периферию не всегда удобно включать в «подстольный» системный блок.
♦ Электронные ключи — устройства с любым уровнем интеллектуальности защиты — могут быть выполнены в корпусе вилок USB. Они гораздо компактнее и мобильнее аналогичных устройств для СОМ- и LPT-портов.
Конечно же, перечисленными классами устройств сфера применения шины USB не ограничивается.
Хабы USB выпускаются как в виде отдельных устройств, так и встраиваются в периферийные устройства (клавиатуры, мониторы). Как правило, хабы питаются от сети переменного тока (они должны питать подключаемые устройства). Выпускают и хабы, устанавливаемые внутрь системного блока компьютера и питающиеся от его блока питания. Такие хабы дешевле внешних и не требуют дополнительной питающей розетки. Один из вариантов исполнения — установка хаба на скобку, монтируемую в окно для дополнительных разъемов. Доступ к их разъемам со «спины» системного блока не очень удобен для пользователей. Другой вариант — хаб, устанавливаемый в 3"-отсек. Его разъемы легкодоступны, индикаторы состояния портов хорошо видны, но не всегда удобны кабели, выходящие с передней панели системного блока. С другой стороны, для подключения электронных ключей (если их приходится часто менять) или миниатюрных накопителей этот вариант — самый удобный.
Недавно появились и новые вспомогательные устройства, увеличивающие дальность связи (distance extender). Это пара устройств, соединяемых между собой обычным кабелем «витая пара» (или оптоволокном), включаемая между периферийным устройством и хабом. «Удлинитель» со стороны периферии может иметь и хаб на несколько портов. К сожалению, увеличение дистанции упирается в ограничения на время задержки сигнала, свойственные протоколу шины USB, и достижимо лишь удаление до 100 м. Но даже и эта длина позволяет расширить сферу применения USB, например для удаленного видеонаблюдения.
Несмотря на довольно сложный протокол обмена, интерфейсом USB можно снабдить и периферийные устройства собственной разработки. Для этого выпускается широкий ассортимент микросхем, со стороны USB различающихся скоростями обмена (LS, FS или HS), числом и возможностями конечных точек (тип передач, размер буфера). Функциональное назначение этих микросхем различно. С портом USB выпускаются микроконтроллеры на ядре MCS51, М68НС05, М68НС11 или RISC-архитектуры; они различаются объемом памяти (оперативной и энергонезависимой), производительностью, питанием, потреблением. Микроконтроллеры могут иметь встроенные устройства АЦП/ЦАП, дискретные линии ввода-вывода общего назначения, последовательные и параллельные порты различных типов. Их можно использовать для подключения устройств с любыми интерфейсами, сигнальных процессоров и т. п. Из этого ассортимента можно выбрать подходящую микросхему, на базе которой разрабатываемое устройство будет реализовано с минимальным числом дополнительных элементов. К микроконтроллерам прилагаются и средства разработки их встроенного ПО (firmware) — самой сложной части такого устройства. Есть микроконтроллеры с USB, способные работать без программирования энергонезависимой памяти; микроконтроллеры серии EzUSB фирмы Cypress Semiconductor каждый раз загружают свою программу в ОЗУ по шине USB из хост-компьютера в процессе подключения. Конечно, такая гибкость нужна не всегда, и до подключения к компьютеру устройство остается «мертвым».
Есть и периферийные микросхемы — порты USB, подключаемые к микроконтроллерам параллельной 8/16-битной шиной данных с обычным набором управляющих сигналов (
CS#
, RD#
, WR#
…), линией запроса прерывания и, возможно, сигналами канала DMA. Выпускаются и специализированные преобразователи интерфейсов USB в последовательный (RS-232, RS-422/485) и параллельный, не требующие программирования (нужно лишь записать в EEPROM идентификатор устройства). Есть и микросхемы USB, сочетающие в себе и функции, и хабы. Все варианты не перечислить, тем более что все время появляются новые микросхемы. Информацию о них можно найти в Сети (www.cypress.com, www.devasys.com, www.iged.com, www.microchip.com, www.netchip.com, www.motorola.com, www.semiconductor.philips.com, www.natsemi.com, www.intel.com, www.ftdichip.com, www.gigatechnology.com).
Немаловажная часть разработки собственных устройств — программное обеспечение для хост-компьютера, которое доносит до пользователя всю пользу устройства. В ряде случаев удается воспользоваться готовыми драйверами (например, драйвером виртуального СОМ-порта для преобразователя интерфейса). В других случаях ПО приходится писать самостоятельно, и хорошо, когда изготовитель микросхем с USB заботится о предоставлении инструментальных средств разработки всех частей ПО.
Стандарт для высокопроизводительной последовательной шины (High Performance Serial Bus), получивший официальное название IEEE 1394, был принят в 1995 году. Целью являлось создание шины, не уступающей параллельным шинам при существенном удешевлении и повышении удобства подключения (за счет перехода на последовательный интерфейс). Стандарт основан на шине FireWire, используемой Apple Computer в качестве дешевой альтернативы SCSI в компьютерах Macintosh и PowerMac. Название FireWire («огненный провод») теперь применяется и к реализациям IEEE 1394, оно сосуществует с кратким обозначением 1394. Другое название того же интерфейса — iLink, а иногда и Digital Link — используется фирмой Sony применительно к устройствам бытовой электроники. MultiMedia Connection — имя, используемое в логотипе 1394 High Performance Serial Bus Trade Association (1394TA).
Стандарт 1394 определяет три возможные частоты передачи сигналов по кабелям: 98,304, 196,608 и 393,216 Мбит/с, которые округляют до 100, 200 и 400 Мбит/с. Частоты в стандарте обозначаются как S100, S200 и S400 соответственно. В последней утвержденной ревизии стандарта, Р1394-2000, новых скоростей (S800, S1600 и S3200) еще не появилось, и сейчас 1394 сосуществует с шиной USB, для которой в спецификации USB 2.0 уже определена скорость 480 Мбит/с.
Основные свойства шины FireWire перечислены ниже.
♦ Многофункциональность. Шина обеспечивает цифровую связь до 63 устройств без применения дополнительной аппаратуры (хабов). Устройства бытовой электроники — цифровые камкордеры (записывающие видеокамеры), камеры для видеоконференций, фотокамеры, приемники кабельного и спутникового телевидения, цифровые видеоплейеры (CD и DVD), акустические системы, цифровые музыкальные инструменты, а также периферийные устройства компьютеров (принтеры, сканеры, устройства дисковой памяти) и сами компьютеры могут объединяться в единую сеть.
♦ Высокая скорость обмена и изохронные передачи. Шина позволяет даже на начальном уровне (S100) передавать одновременно два канала видео (30 кадров в секунду) широковещательного качества и стерео-аудиосигнал с качеством CD.
♦ Низкая цена компонентов и кабеля.
♦ Легкость установки и использования. FireWire расширяет технологию PnP. Система допускает динамическое (горячее) подключение и отключение устройств. Устройства автоматически распознаются и конфигурируются при включении/отключении. Питание от шины (ток до 1,5 А) позволяет подключенным устройствам общаться с системой даже при отключении их питания. Управлять шиной и другими устройствами могут не только PC, но и другие «интеллектуальные» устройства бытовой электроники.
FireWire по инициативе VESA позиционируется как шина «домашней сети», объединяющей всю бытовую и компьютерную технику в единый комплекс. Эта сеть является одноранговой (peer-to-peer), чем существенно отличается от USB.
Кабельная сеть 1394 собирается по простым правилам — все устройства соединяются друг с другом кабелями по любой топологии (древовидной, цепочечной, звездообразной). Каждое «полноразмерное» устройство (узел сети) обычно имеет три равноправных соединительных разъема. Некоторые малогабаритные устройства могут иметь только один разъем, что ограничивает возможные варианты их местоположения. Стандарт допускает и до 27 разъемов на одном устройстве, которое будет играть роль кабельного концентратора. Допускается множество вариантов подключения устройств, но со следующими ограничениями:
♦ между любой парой узлов может быть не более 16 кабельных сегментов;
♦ длина сегмента стандартного кабеля не должна превышать 4,5 м;
♦ суммарная длина кабеля не должна превышать 72 м (применение более качественного кабеля позволяет ослабить влияние этого ограничения);
♦ топология не должна иметь петель, хотя в последующих ревизиях предполагается автоматическое исключение петель в «патологических» конфигурациях.
Стандартный кабель 1394 содержит 6 проводов, заключенных в общий экран, и имеет однотипные 6-контактные разъемы на концах (рис. 4.6, а). Две витые пары используются для передачи сигналов (TPA и TPB) раздельно для приемника и передатчика, два провода задействованы для питания устройств (8-40 В, до 1,5 А). В стандарте предусмотрена гальваническая развязка устройств, для чего используются трансформаторы (напряжение изоляции развязки до 500 В) или конденсаторы (в дешевых устройствах с напряжением развязки до 60 В относительно общего провода). Некоторые бытовые устройства имеют только один 4-контактный разъем меньшего размера (рис. 4.6, б), у которого реализованы только сигнальные цепи. Эти устройства подключаются к шине через специальный переходной кабель только как оконечные (хотя возможно применение специальных адаптеров- разветвителей). В кабелях FireWire сигнальные пары соединяются перекрестно (табл. 4.2), поскольку все порты равноправны.
Рис. 4.6. Разъемы FireWire: а — 6-контактное гнездо, б — 4-контактное гнездо
Таблица 4.2. Соединительные кабели FireWire
Разъем А | Провод | Разъем Б | ||||
---|---|---|---|---|---|---|
4-конт. | 6-конт. | Цепь | Цепь | 6-конт. | 4-конт. | |
- | 1 | Power | Белый | Power | 1 | |
- | 2 | GND | Черный | GND | 2 | |
1 | 3 | TPB- | Красный | TPA- | 5 | 3 |
2 | 4 | TPB+ | Зеленый | TPA+ | 6 | 4 |
3 | 5 | TPA- | Оранжевый | TPB- | 3 | 1 |
4 | 6 | TPA+ | Синий | TPB+ | 4 | 2 |
Экран | Экран | Экран | Экран | Экран | Экран | Экран |
В грядущей версии, которая пока называется P1394b, предусматриваются и новые варианты среды передачи:
♦ кабель UTP категории 5 со стандартными коннекторами RJ-45 (используются две пары проводов), длина сегмента до 100 м — дешевый вариант для S100;
♦ пластиковое оптоволокно (два волокна POF для небольших расстояний и HPCF для больших дистанций) — дешевый вариант для S200;
♦ многомодовое оптоволокно (два волокна 50 мкм) — более дорогой вариант для будущих скоростей вплоть до S3200.
Каждое устройство, имеющее более одного разъема 1394, является повторителем. Сигнал, обнаруженный на входе приемника с любого разъема, ресинхронизируется по внутреннему тактовому генератору и выводится на передатчики всех остальных разъемов. Таким образом осуществляется доставка сигналов от каждого устройства ко всем остальным и предотвращается накопление «дрожания» (jitter) сигнала, ведущее к потере синхронизации.
Стандарт 1394 определяет две категории шин: кабельные шины и кросс-шины (Backplane). Под кросс-шинами подразумеваются обычно параллельные интерфейсы, объединяющие внутренние подсистемы устройства, подключенного к кабелю 1394. Сеть может состоять из множества шин, соединенных мостами — специальными устройствами, осуществляющими передачу пакетов между шинами, фильтрацию трафика, а для соединения разнородных шин еще и необходимые преобразования интерфейсов. Интерфейсная карта шины FireWire для PC представляет собой мост PCI — 1394. Мостами являются также соединения кабельной шины 1394 с кросс-шинами периферийных устройств. Мосты могут соединять и кабельные шины, что расширяет топологические возможности соединения устройств.
Протокол 1394 реализуется на трех уровнях (рис. 4.7).
♦ Уровень транзакций (Transaction Layer) преобразует пакеты в данные, предоставляемые приложениям, и наоборот. Он реализует протокол запросов-ответов, соответствующий стандарту ISO/IEC 13213:1994 (ANSI/IEEE 1212, редакции 1994 г.) архитектуры регистров управления и состояния CSR (Control and Status Register) для микрокомпьютерных шин (чтение, запись, блокировка). Это облегчает связь шины 1394 со стандартными параллельными шинами.
♦ Уровень связи (Link Layer) из данных физического уровня формирует пакеты и выполняет обратные преобразования. Он обеспечивает обмен узлов датаграммами с подтверждениями. Уровень отвечает за передачу пакетов и управление изохронными передачами.
♦ Физический уровень (Physical Layer) вырабатывает и принимает сигналы шины. Он обеспечивает инициализацию и арбитраж, предполагая, что в любой момент времени работает только один передатчик. Уровень передает потоки данных и уровни сигналов последовательной шины вышестоящему уровню. Между этими уровнями возможна гальваническая развязка, при которой микросхемы физического уровня питаются от шины. Гальваническая развязка необходима для предотвращения паразитных контуров общего провода, которые могут появиться через провода защитного заземления блоков питания.
Рис. 4.7. Трехуровневая структура FireWire
Аппаратная часть FireWire обычно состоит из двух специализированных микросхем — трансиверов физического уровня PHY Transceiver и моста связи с шиной LINK Chip. Связь между ними возможна, например, по интерфейсу IBM-Apple LINK-PHY. Микросхемы уровня связи выполняют все функции своего уровня и часть функций уровня транзакций; остальная часть уровня транзакций выполняется программно.
Для передачи асинхронных сообщений используется 64-битная адресация регистров устройств 1394. В адресе выделяется 16 бит для адресации узлов сети: 6-битное поле идентификатора узла допускает до 63 устройств в каждой шине; 10-битное поле идентификатора шины допускает использование в системе до 1023 шин разного типа (включая внутренние), соединенных мостами. Протокол шины позволяет обращаться к памяти (регистрам) устройств в режиме DMA. В адресном пространстве каждого устройства имеются конфигурационные регистры, в которых содержится вся информация, необходимая для взаимодействия с ним других устройств. Данные передаются пакетами, в начале каждого пакета передаются биты состояния арбитража. Устройство может передавать данные только после успешного прохождения арбитража. Имеются два основных типа передач данных — изохронный, ради которого и строилась шина, и асинхронный. Изохронные передачи обеспечивают гарантированную полосу пропускания и время задержки, асинхронные передачи обеспечивают гарантированную доставку.
Асинхронные сообщения передаются между двумя устройствами. Инициатор посылает запрос требуемому устройству, на который оно сразу (через короткий интервал зазора, в котором шина находится в покое) отвечает подтверждением приема, положительным (ACK) или отрицательным (NACK), если обнаружена ошибка данных. Содержательный ответ на запрос (если требуется) будет передан обратно аналогичным способом (получатель должен послать подтверждение). Если подтверждение ACK не получено, передачи будут повторяться несколько раз до достижения успеха или фиксации ошибки.
Изохронные передачи ведутся широковещательно. В сети может быть организовано до 64 изохронных каналов, и каждый пакет изохронной передачи, кроме собственно данных, несет номер канала. Целостность данных контролируется CRC-кодом. Изохронные передачи всех каналов «слышат» все устройства шины, но из всех пакетов принимают только данные интересующих их каналов. Устройство-источник изохронных данных (камера, приемник, проигрыватель) на этапе конфигурирования получает номер и параметры выделенного ему канала.
Шина поддерживает динамическое реконфигурирование — возможность «горячего» подключения и отключения устройств. Когда устройство включается в сеть, оно широковещательно передает короткий асинхронный пакет самоидентификации. Все уже подключенные устройства, приняв такой пакет, фиксируют появление новичка и выполняют процедуру сброса шины. По сбросу производится определение структуры шины, каждому узлу назначается физический адрес и производится арбитраж мастера циклов, диспетчера изохронных ресурсов и контроллера шины (см. ниже). Через секунду после сброса все ресурсы становятся доступными для последующего использования, и каждое устройство имеет полное представление обо всех подключенных устройствах и их возможностях. Отключение устройства от шины также обнаруживается всеми устройствами. Благодаря наличию линий питания интерфейсная часть устройства может оставаться подключенной к шине даже при отключении питания функциональной части устройства.
Мастер циклов — устройство, посылающее каждые 125 мкс короткие широковещательные пакеты начала циклов. В каждом таком пакете мастер циклов передает значение 32-битного счетчика времени, инкрементируемого с частотой 24,576 МГц, для каждого узла, поддерживающего изохронный обмен. В каждом цикле сначала передается по одному пакету каждого активного изохронного канала, затем на некоторое время зазора шина находится в состоянии покоя. После этого зазора начинается часть цикла, отводящаяся для передачи асинхронных пакетов. Каждое устройство, нуждающееся в асинхронной передаче, в этой части цикла может передать по одному пакету. Устройство, не имеющее пакета для передачи, шину и не занимает. После того как все нуждающиеся устройства передадут по одному пакету, в оставшееся время до конца цикла устройства могут передать и дополнительные пакеты.
Диспетчер изохронных ресурсов — устройство, ведающее распределением номеров каналов и полосы шины для изохронных передач. Диспетчер требуется, когда на шине появляется хоть одно устройство, способное к изохронной передаче. Диспетчер выбирается посредством арбитража из числа устройств, поддерживающих изохронный обмен. После сброса устройства, нуждающиеся в изохронной передаче, запрашивают требуемую полосу. Полоса измеряется в специальных единицах распределения, число которых в 125-микросекундном цикле составляет 6144. Единица занимает около 20 нс, что соответствует времени передачи одного квадлета (quadlet, 32-битное слово) на частоте 1600 Мбит/с. Такой способ измерения полосы учитывает возможность совместной работы устройств с разными скоростями — в одном цикле соседние пакеты могут передаваться на разных скоростях. Как минимум 25 мкс цикла резервируется под асинхронный трафик, поэтому суммарная распределяемая полоса изохронного трафика составляет 4915 единиц. Для цифрового видео, например, требуется полоса 30 Мбит/с (25 Мбит/с на видеоданные и 3–4 Мбит/с на аудиоданные, синхронизацию и заголовки пакетов). В S100 устройства цифрового видео запрашивают около 1800 единиц, в S200 — около 900. Если требуемая полоса недоступна, диспетчер откажет устройству и не выделит ему номер канала. Устройство, не получившее канал, будет периодически повторять запрос. Когда изохронный обмен становится ненужным узлу, он должен освободить свою полосу и номер канала, чтобы этими ресурсами смогли воспользоваться другие устройства. Обмен управляющей информацией устройств с диспетчером производится асинхронными сообщениями.
Контроллер шины (Bus Master) — необязательный элемент сети 1394, который осуществляет управление устройствами. Им может являться компьютер, редактирующее устройство цифровой записи или специальный интеллектуальный пульт управления. Контроллер шины, реализующий карты топологии и скоростей (Topology_Map и Speed_Map), допускает использование нескольких частот в одной шине, в соответствии с возможностями конкретной пары устройств, участвующих в обмене. Иначе при подключении устройств, рассчитанных на разные скорости, все передачи будут происходить на скорости, доступной для всех активных устройств.
В PC-совместимом компьютере (в отличие от Macintosh) интерфейс 1394 пока не так распространен, как ставшая уже обязательной шина USB. Адаптеры FireWire чаще всего встречаются в виде карт расширения, но они уже встраиваются в некоторые модели системных плат. Адаптер 1394 для PC является мостом PCI — 1394, поскольку только шина PCI способна пропустить максимальный поток шины FireWire. Микросхемы для FireWire выпускает ряд фирм. Поначалу в основном использовались пары микросхем: LINK chip (микросхема уровня связи) и PHY chip (кристалл физического уровня). Это было связано со сложностью производства высокоскоростных микросхем физического уровня (на уровне связи S400 достигли быстро, а физический уровень на некоторое время «застрял» на S100 и S200). Модернизация такого адаптера сводилась лишь к последующей замене одного компонента. Сейчас применяют и однокристальные решения. Например, микросхема VIA Fire II (VT6306) представляет собой трехпортовый адаптер S400 для шины PCI, поддерживающий и шину Card Bus (для мобильных компьютеров).
Интерфейс 1394 становится общепринятым для современной цифровой бытовой аудио-, видео- и фототехники, которые используют эту шину и без участия компьютера. Кроме цифровых устройств, имеющих встроенные адаптеры 1394, к шине FireWire возможно подключение и традиционных аналоговых и цифровых устройств (плейеры, камеры, мониторы) через адаптеры-преобразователи интерфейсов и сигналов.
С интерфейсом 1394 выпускаются и устройства хранения данных — приводы CD и DVD, AV-диски (винчестеры, оптимизированные для записи и чтения мультимедийных данных). Выпускаются и преобразователи интерфейсов 1394-IDE, оформленные в виде корпусов для стандартных IDE-устройств форматов 5" или 3,5". В эти корпуса можно установить обычные винчестеры, приводы CD и DVD (включая и рекордеры), получая переносные устройства хранения данных. Для ОС и приложений устройства хранения выглядят как SCSI-устройства соответствующих классов. Это обеспечивается протоколом SBP-2 (Serial Bus Protocol), инкапсулирующим пакеты SCSI-3 в пакеты 1394.
Принципиальным преимуществом шины 1394 является отсутствие необходимости в контроллере. Любое передающее устройство может получить полосу изохронного трафика и начинать передачу по сигналу автономного или дистанционного управления — приемник «услышит» эту информацию. При наличии контроллера соответствующее ПО может управлять работой устройств, реализуя, например, цифровую студию нелинейного видеомонтажа или снабжая требуемыми мультимедийными данными всех заинтересованных потребителей информации.
Для шины 1394 наиболее привлекательна возможность соединения устройств бытовой электроники (имеется в виду пока что не «наш», а «их» быт) в «домашнюю сеть», причем как с использованием PC, так и без. При этом стандартные однотипные кабели и разъемы 1394 заменяют множество разнородных соединений устройств бытовой электроники с PC. Разнотипные цифровые сигналы (сжатые видеосигналы, цифровые аудиосигналы, команды MIDI и управления устройствами, данные) мультиплексируются в одну шину, проходящую по всем помещениям. Используя одни и те же источники данных (приемники вещания, устройства хранения, видеокамеры и т.п.), можно одновременно в разных местах просматривать (прослушивать) разные программы с высоким качеством, обеспечиваемым цифровыми технологиями. Применение компьютера с адаптером 1394 и соответствующим ПО значительно расширяет возможности этой сети. Компьютер становится виртуальным коммутатором домашней аудио-видеостудии. Приложения для аудио- и видеоустройств используют логические «вилки» (plugs) и «розетки» (sockets), которые являются аналогами разъемов, применяемых в обычной аппаратуре. Вилки соответствуют выходам, розетки — входам соответствующих устройств. «Вставляя» эти «вилки» в «розетки» можно собрать требуемую систему. Конечно, для того чтобы она заработала, в устройствах должна быть реализована спецификация Digital Interface for Consumer Electronic Audio/Video Equipment — расширение стандарта IEEE-1394, предложенная DVC (Digital Video Consortium). Co временем она должна стать стандартом ISO/IEC.
Адаптер FireWire, например AHA-8940 фирмы Adaptec, может устанавливаться в любой PC (или Mac), имеющий свободный слот PCI. Для редактирования видео хватает мощности рядового современного ПК (минимальные требования — Pentium 133,32 Мбайт ОЗУ, 256 кбайт кэш, желательно быстрый SCSI-диск).
Поддержка 1394 имеется в ряде ОС, среди которых Windows 98, Windows 95 OSR 2.1 и более новые. Для редактирования аудио-видеофайлов (AVI) применимы, например, пакеты Adobe Premiere, Asymetrix Digital Video Producer, Ulead MediaStudio, MGI Video Wave. Кодек-конвертор цифровых видеоданных (DV), передаваемых по шине 1394, в AVI-файл поставляется фирмой Adaptec.
Одной из проблем цифровой передачи мультимедийной информации является защита авторских прав. Пользователь должен иметь возможность высококачественного воспроизведения принимаемых программ или приобретенных дисков, но их авторы (производители) должны иметь возможность защитить свои права, по своему усмотрению вводя ограничения на цифровое копирование. Для этих целей объединение «5C» (5 компаний: Sony, Matsushita, Intel, Hitachi и Toshiba) разрабатывает спецификацию шифрования данных.