Для того, чтобы понять, как действует такая сложная тепловая машина, какой является современное артиллерийское орудие, нужно знать устройство и назначение его важнейших частей.
Всякое артиллерийское орудие независимо от его типа, системы, калибра и веса состоит из ствола с затвором и лафета с механизмами. Познакомимся с каждой из этих частей настолько подробно, насколько нам позволяет объем этой книги.
Часть орудия, которая при выстреле придает снаряду направление полета, поступательную скорость и вращательное движение, называется стволом (рис. 12).
Рис. 12. Ствол.
Ствол представляет собой трубу, закрытую с одного конца затвором. Передняя часть ствола называется дульной, задняя — казенной. На казенную часть навинчивается казенник. Канал ствола разделяется на камору (патронник) и нарезную часть, соединяемые между собой коническим скатом.
На дульном и казенном срезах трубы имеется по две пары взаимно перпендикулярных рисок. Если аккуратно наклеить по ним нити, то образуется два перекрестия. Центры перекрестий соответственно называются центром дульного и казенного срезов. Прямая линия, соединяющая центры дульного и казенного срезов, определяет положение оси канала ствола.
Основным недостатком гладкоствольных орудий, как вы помните, являлось то, что они обладали незначительной дальнобойностью и малой меткостью. Шаровые снаряды — бомбы, вкладываемые с дула, должны были свободно входить в ствол. При этом образовывался зазор между снарядом и стенками канала ствола; в этот зазор при выстреле прорывались пороховые газы, в результате чего начальная скорость шаровых снарядов была мала. Кроме того, эти снаряды быстро теряли скорость при полете в воздухе, ввиду того, что они встречали большое сопротивление воздуха. Все это приводило к тому, что дальность стрельбы была невелика. Поэтому артиллеристы давно стремились заменить шаровые снаряды продолговатыми с заостренной головной частью для уменьшения силы сопротивления возе духа.
Однако, если выстрелить таким снарядом из гладкоствольного орудия, то снаряд будет кувыркаться в воздухе. Что же нужно сделать, чтобы снаряд не кувыркался?
Для этого на поверхности канала ствола делаются желобки, идущие обычно по винтовой линии слева вверх направо. Эти желобки называются нарезами. Часть поверхности канала ствола, заключенную между двумя нарезами, называют полем нареза (рис. 13).
Рис. 13. Калибр, нарез, поле.
На снарядах делаются ведущие пояски из металла более мягкого, чем металл ствола (обычно из меди); пояски прочно закреплены на снарядах. Когда снаряд под действием пороховых газов при выстреле начинает двигаться по каналу ствола, ведущий поясок врезается в нарезы, и так как они идут по винтовой линии, то снаряд поворачивается вокруг своей оси. Таким образом, снаряд, помимо поступательного движения, получает еще и вращательное.
Понять, почему вращательное движение сообщает снаряду устойчивость в воздухе, увеличивает дальность полета и заставляет снаряд лететь вперед головной частью, нам поможет гироскоп.
Гироскоп представляет собой несколько видоизмененный обыкновенный волчок.
Предположим, что снаряд, получивший в канале орудия быстрое вращение, совершает полет в безвоздушном пространстве, где сила сопротивления воздуха отсутствует. Быстро вращающийся снаряд можно рассматривать как свободный от внешних воздействий гироскоп, к центру тяжести которого приложена единственная сила — вес. Допустим, что при выстреле оси канала ствола придали угол возвышения, то есть дуло ствола было приподнято кверху. Такой же угол наклона получит при выстреле из орудия и ось продолговатого снаряда, вращающегося вокруг своей оси. Во все время полета продольная ось снаряда-гироскопа будет сохранять то направление, которое она имела при вылете из канала ствола.
Под действием силы тяжести снаряд будет падать на землю. Такое положение снаряда невыгодно артиллеристам. Для того, чтобы пробить встречаемое препятствие, снаряд должен попасть в него головной частью, а в рассмотренном случае он ударится о преграду боком.
Обратимся теперь к действительным условиям стрельбы. В этом случае на быстро вращающийся вокруг своей оси артиллерийский снаряд действует сила сопротивления воздуха (рис. 14).
Рис. 14. Силы, действующие на снаряд, летящий в воздухе.
Опять воспользуемся для опыта гироскопом. При быстром вращении маховика ось гироскопа сохраняет неизменное положение в пространстве. Для исследования движения вращающегося снаряда сообщим маховику быстрое вращение. Чтобы представить себе действие силы сопротивления воздуха на снаряд, надавим пальцем или палочкой на ось гироскопа (рис. 15).
Рис. 15. Гироскоп.
При быстром вращении маховика ось вовсе не будет изменять своего направления, как это было бы при невращающемся маховике. Вместо этого ось гироскопа начнет медленно поворачиваться так, что все точки этой оси будут двигаться по окружности, а сама ось начнет описывать фигуру, напоминающую правильный конус. Установим далее гироскоп так, чтобы его ось была почти горизонтальна, и снова приложим усилие к концу оси. Мы убедимся в том, что ось гироскопа по-прежнему, не опрокидываясь, будет описывать конус, но более узкий, чем ранее, мало отклоняясь от линии горизонта. Результаты такого опыта показывают, что ось вращающегося гироскопа под действием усилия не увеличивает своего первоначального наклона, гироскоп не опрокидывается и конец его оси остается вблизи от линии горизонта.
Если теперь вместо гироскопа, к оси которого мы приложили усилие, будем рассматривать вращающийся снаряд, к оси которого приложена сила сопротивления воздуха, то мы увидим, что такой снаряд не будет кувыркаться в воздухе и его вершина, описывая конус вокруг касательной к траектории в данной точке, во все время полета останется близкой к траектории. Положение того «послушного» снаряда (рис. 16) вполне удовлетворяет артиллеристов: вращающийся снаряд устойчив в полете и ударяется о преграду заостренной головной частью.
Рис. 16. Полет вращающегося снаряда в воздухе: а — ось снаряда описывает конус; б — вершина снаряда близка к траектории.
Меткость стрельбы становится значительно большей.
При выстреле пороховые газы давят внутри канала ствола по всем направлениям (рис. 17): на дно снаряда, на стенки и на дно канала ствола, стремясь изменить его форму и размеры.
Рис. 17. Силы, действующие на снаряд и на ствол орудия при выстреле.
Но при давлении в толще стенок ствола возникают упругие силы, которые сопротивляются действию пороховых газов.
Давление пороховых газов, умноженное на площадь дна снаряда, представляет собой силу, приложенную к центру снаряда и направленную в сторону выстрела.
Эта сила заставляет снаряд двигаться вперед. Сила, действующая на дно ствола, стремится вырвать дно или разорвать ствол в поперечном сечении. При достаточной прочности ствола эта сила производит откат орудия.
Вследствие волнообразного движения газов в заснарядном пространстве давление газов на стенки ствола в различных точках неодинаково. Разделим внутреннюю поверхность ствола на небольшие участки. Будем считать давление в пределах каждого участка одинаковым. Умножим давление на каждом участке на площадь этого участка. Мы получим силы, направленные перпендикулярно к внутренней поверхности канала ствола. Эти силы стремятся разорвать ствол в продольном направлении.
Таким образом, в результате действия всех этих сил при недостаточной прочности ствола может произойти поперечный или продольный разрыв его.
Для того, чтобы ствол надежно сопротивлялся поперечному разрыву, нужно увеличить толщину его стенок, При этом, чем толще они будут, тем ствол будет прочней. Но достаточно ли этого для прочного сопротивления ствола продольному разрыву? Нет, недостаточно. Опытом установлено, что увеличение толщины стенок свыше одного калибра нецелесообразно, так как это утяжеляет ствол и ведет к нерациональному использованию металла.
Для того, чтобы уяснить действие давления газов на поверхность стенок канала ствола, проделаем следующий опыт. Возьмем плоское резиновое кольцо (рис. 18), начертим несколько концентрических окружностей на равных расстояниях одна от другой.
Рис. 18. Опыт с резиновым кольцом.
Если в канал кольца будем вдвигать деревянный конус, то легко заметим, что диаметры окружностей, прилегающих к каналу, увеличатся в значительно большей степени, чем диаметры окружностей, начерченных ближе к наружной поверхности.
Если мы будем продолжать вдвигать конус, то сначала начнут рваться внутренние слои, а уже после них — наружные.
Этот опыт наглядно показывает, что слои принимают не одинаковое участие в сопротивлении растяжению: внутренние — больше, наружные — меньше. При достаточной толщине кольца возможно, что внутренний слой разорвется, а наружный слой не разорвется. Ствол, в котором произойдет разрыв внутреннего слоя, уже не годится для дальнейшей стрельбы.
Подобные явления происходят и в стенках ствола орудия.
Таким образом, вопрос увеличения сопротивления ствола продольному разрыву не мог быть разрешен только путем увеличения толщины стенок ствола.
Необходимо было создать такую конструкцию ствола, при которой все слои металла были бы равномерно напряжены, а напряжения, возникающие на его внутренней поверхности уменьшены. Этого можно достигнуть, составляя ствол из отдельных слоев. Такие стволы называются скрепленными.
Процесс скрепления состоит в следующем: берут две трубы со стенками равной толщины (рис. 19).
Рис. 19. Идея скрепления ствола.
Внутренний диаметр одной трубы несколько меньше наружного диаметра другой. Нагреем большую трубу до температуры 400–450 градусов, наденем ее на меньшую трубу и дадим остыть составной трубе- При остывании наружная труба будет стремиться принять свои первоначальные размеры, то есть она начнет сжиматься. Ее внутренний диаметр будет уменьшаться и сжимать внутреннюю трубу. Но так как внутренняя труба будет оказывать сопротивление, то наружная не примет своих первоначальных размеров. Таким образом, после охлаждения до нормальной температуры наружная труба окажется несколько растянутой, а внутренняя — сжатой. Такое состояние смежных слоев, где внутренний слой сжат наружным, называется взаимным натяжением.
До выстрела в наружной трубе наиболее растянутыми будут внутренние слои, а наименее — наружные. Что касается внутренней трубы, то ее слои будут находиться в сжатом состоянии, при этом наружные слои будут менее сжаты, а внутренние — более сжаты.
При выстреле под давлением пороховых газов внутренняя труба вначале приходит в нормальное состояние, а затем начинает растягиваться вместе с наружной трубой. С этого момента внутренняя и наружная трубы сильнее сопротивляются давлению пороховых газов. Ясно, что при этом в канале такого ствола может быть допущено большее давление, чем в сплошном стволе той же толщины.
Такое расположение слоев металла позволяет увеличить допустимое давление в канале ствола по сравнению с нескрепленным стволом. Составив ствол орудия не из двух, а из четырех, пяти или более слоев, мы можем при заданном допускаемом давлении уменьшить вес ствола или при данном весе — увеличить допускаемое давление в канале ствола.
Следовательно, при данной толщине ствола сопротивление его давлению пороховых газов растет с увеличением числа скрепляющих слоев; скрепленные стволы, имеющие такое же сопротивление, как и однослойные, будут иметь значительно меньшую толщину стенок, и из двух скрепленных стволов с одинаковой толщиной стенок будет больше сопротивляться давлению пороховых газов тот, который имеет большее число скрепляющих слоев.
Вследствие того, что во время выстрела давление пороховых газов по длине ствола неодинаково, скрепление распространяется на ту часть ствола, в которой ожидается наибольшее давление. Начиная с сечения ствола, в котором должно находиться дно снаряда в момент конца горения порохового заряда, и далее до дула число скрепляющих слоев можно уменьшить.
Скрепление орудийных стволов может быть произведено при помощи колец, проволоки, кожуха, путем самоскрепления (автофретирование) и смешанным способом.
Увеличение прочности ствола не устраняет все же быстрого износа поверхности канала ствола.
Износ поверхности канала ствола влечет за собой потерю боевых качеств всего орудия, хотя остальные механизмы и агрегаты его еще совершенно не изношены. Для того, чтобы отремонтировать или сменить ствол, необходимо целиком все орудие отправлять на завод, и, таким образом, орудие надолго выбывает из строя.
Здесь возникает важный и интересный вопрос: какова же общая продолжительность жизни орудия?
После определенного числа выстрелов ствол приходит в состояние, при котором дальнейшее его боевое использование невозможно. Для орудий крупных калибров это состояние наступает уже после 150–200 выстрелов, а для орудий средних и малых калибров — после 10–15 тысяч выстрелов.
Кроме того, необходимо иметь в виду, что переплавка стволов, изготовленных из дорогостоящей стали, невыгодна экономически. Поэтому возникла мысль обновлять орудия, заменяя не весь ствол, а лишь тонкий внутренний слой металла. Для осуществления этой операции растачивают канал ствола. Вместо расточенной части вставляют тонкостенную трубу, называемую лейнером.
Впервые эта идея была осуществлена в 8-дюймовой и 9-дюймовой русских гаубицах, которые участвовали в русско-турецкой войне 1877–1878 гг.
В современных орудиях применяются два вида лейнеров: скрепленные лейнеры и свободные лейнеры.
Скрепленные лейнеры обычно вставляются с очень малым натяжением. В этом случае натяжение создается не столько для скрепления, сколько для обеспечения плотного соприкосновения наружной поверхности лейнера с внутренней поверхностью ствола. Смену скрепленных лейнеров нельзя производить на огневой позиции; для этого орудие нужно отправлять в мастерскую.
Для того, чтобы лейнер можно было заменить на огневой позиции, его обычно вставляют в ствол с зазором (рис. 20).
Рис. 20. Ствол со свободным лейнером.
Наружный диаметр свободного лейнера должен быть меньше внутреннего диаметра ствола. При этом образуется зазор, равный 0,1–0,3 миллиметра. При выстреле лейнер прижимается плотно к внутренней поверхности ствола, который при этом тоже сопротивляется давлению пороховых газов. После выстрела зазор между свободным лейнером и стволом должен быть равен первоначальному зазору. Поэтому свободные лейнеры изготавливаются всегда из высококачественных легированных сталей.
Лейнеры изготавливаются цилиндрической и конической формы. Цилиндрические лейнеры могут быть вставлены в ствол и с дульной части, и с казенной. Конические лейнеры вставляются в ствол только с казенной части. От перемещения в стволе лейнер удерживается специальными приспособлениями.
Так, например, для того, чтобы цилиндрический лейнер, вставленный в ствол с дульной части, не вращался, ставится шпонка, одна часть которой находится в теле ствола, а другая в лейнере. От продольного перемещения назад лейнер удерживается кольцевым уступом ствола в казенной части, а от перемещения вперед — дульной гайкой и т. д.
Кроме лейнеров, в современных артиллерийских орудиях широко применяются так называемые свободные трубы (рис. 21).
Рис. 21. Ствол со свободной трубой.
Свободная труба, в отличие от свободного лейнера, имеет более толстые стенки и вставляется в ствол с большим зазором. Свободную трубу вставляют в ствол с казенной части до упора в кольцевой уступ ствола, затем ее зажимают казенником. Таким образом, исключается возможность перемещения ее в продольном направлении. Вращение трубы в стволе предотвращается шпонкой.
Применение свободной трубы дает возможность использовать менее дорогую сталь, вследствие большей толщины ее стенок; кроме того, не требуется большой точности обработки наружной поверхности трубы. Основным недостатком свободной трубы по сравнению со свободным лейнером можно считать ее большой вес, затрудняющий перевозку запасных труб.
Следовательно, по характеру устройства стволы делятся на нескрепленные, скрепленные, стволы со свободным лейнером и стволы со свободной трубой.
По наружному устройству ствол обычно состоит из казенника, цилиндрической и конической частей. Для соединения с лафетом стволы старых систем снабжались цапфами.
В современных артиллерийских орудиях устройство частей, служащих для соединения ствола с лафетом, зависит от конструкции и расположения противооткатных устройств.
Говоря о канале ствола, мы имели в виду пока лишь цилиндрическую его форму. Но в настоящее время можно встретить орудия, стволы которых имеют канал конической формы (рис. 22).
Рис. 22. Ствол с коническим каналом.
Кроме того, известны опыты по применению стволов с полигональными (многоугольными) каналами.
В современной артиллерии преимущественно применяются стволы с цилиндрическим каналом. В этих стволах площадь поперечного сечения снаряда, на которую действует давление пороховых газов, постоянна на всем пути движения снаряда в канале ствола. Поэтому, для того, чтобы увеличить начальную скорость снаряда, нужно увеличить давление пороховых газов или удлинить путь, на котором пороховые газы действуют на снаряд.
Увеличение давления производится путем увеличения веса заряда с одновременным увеличением объема зарядной каморы.
Удлинение пути, на котором действуют пороховые газы, производится за счет удлинения ствола. Эти методы широко применялись при модернизации артиллерийских орудий.
Противотанковой и зенитной артиллерии необходимо было иметь орудия с большой начальной скоростью, но притом такие орудия, у которых с увеличением начальной скорости не увеличился бы вес орудий, а следовательно, не уменьшилась их подвижность. Это привело к применению стволов с коническим каналом. Благодаря сужению нарезной части к дулу начальная скорость увеличилась до 1500 метров в секунду. Для стрельбы из таких стволов применяются специальные снаряды с мягкой оболочкой; диаметр такого снаряда по мере приближения к дульной части уменьшается.
За счет чего же увеличивается начальная скорость снаряда при стрельбе из орудия, ствол которого имеет конический канал?
Возьмем для примера ствол, калибр которого в казенной части равен 75 миллиметрам, а в дульной — 55 миллиметрам. При стрельбе из такого ствола применяется заряд, соответствующий калибру казенной части, в результате чего давление пороховых газов в начальный момент будет равно давлению газов в стволе 75-миллиметрового орудия. По мере продвижения снаряда по каналу ствола его поперечный размер (площадь поперечного сечения) будет уменьшаться и он приобретет большее ускорение. Но стрельба из такого орудия эффективна лишь на небольшие расстояния, так как легкий снаряд в результате большого сопротивления воздуха быстро теряет свою скорость.
Конические стволы обычно состоят из трубы с цилиндрическим нарезным каналом и насадки с гладкими коническим и цилиндрическим участками, что облегчает их производство и улучшает качество (рис. 23).
Рис. 23. Ствол с цилиндро-коническим каналом.
Насадка соединяется с трубой при помощи винтовой нарезки. Применение конического гладкостенного участка менее выгодно в отношении увеличения могущества орудия, чем применение нарезных цилиндрических каналов.
Мы уже установили, что ствол современного орудия представляет собой трубу. Отверстие в дульной части остается всегда открытым. Отверстие в казенной части должно быть открыто лишь при заряжании; при выстреле оно должно быть плотно закрыто. Это закрывание производится затвором.
Затворами снабжаются стволы орудий, заряжающихся с казенной части. Во время выстрела они принимают на себя давление пороховых газов. Поэтому затвор должен плотно закрывать канал ствола, чтобы не допускать прорыва газов наружу. Кроме того, затвор должен надежно запирать канал ствола, то есть в момент выстрела затвор не должен самопроизвольно открываться.
Надежно запирая канал ствола при выстреле, затвор должен просто и легко открываться после выстрела для нового заряжания орудия и легко и плотно закрываться после заряжания. При этом открывание и закрывание затвора должно производиться или простым движением руки без затраты большого усилия, или автоматически.
В орудиях крупного калибра для открывания и закрывания затворов используется энергия специальных двигателей, так как затворы имеют очень большой вес.
Затвор предназначен не только для того, чтобы закрывать ствол. Он снабжен механизмами для производства выстрела и для выбрасывания гильзы после выстрела.
Типы затворов весьма разнообразны. Наиболее широко применяются клиновые и поршневые затворы (рис. 24).
Рис. 24. Типы затворов: а — клиновой затвор с горизонтальным клиновым гнездом; б — клиновой затвор с вертикальным клиновым гнездом; в — поршневой затвор.
Клиновой затвор имеет форму четырехгранной призмы. Передняя грань такой призмы перпендикулярна оси канала ствола, а задняя опорная грань наклонена по отношению к передней. Это делается для того, чтобы облегчить открывание и закрывание затвора и обеспечить наиболее плотное закрывание ствола. Клиновым гнездом называется сквозная прорезь в затворной части орудия. Форма гнезда в казеннике соответствует форме клина. При выстреле клин опирается на грани пазов клинового гнезда. В зависимости от своего направления клиновое гнездо называется горизонтальным или вертикальным. В первом случае клин выдвигается в сторону, а во втором случае он движется сверху вниз.
Горизонтальное движение клина выгодно, так как в этом случае усилие на открывание и закрывание распределяется равномерно, но при этом требуется место для выхода клина в сторону. У вертикально движущегося клина усилие на рукоятку очень неравномерно и при большом весе клина может оказаться непосильным для человека, поэтому у таких затворов вводятся специальные механизмы в виде пружин, которые взводятся при открывании затвора и уменьшают энергию падения клина, а при закрывании облегчают его подъем.
При закрывании клин вдвигается в гнездо и скользит в нем по направляющим выступам, параллельным задней грани; передняя грань при этом, перемещаясь параллельно самой себе, приближается к заднему срезу ствола и досылает патрон до места.
При открывании наклонные грани выступов позволяют легко выдвинуть клин и открыть канал даже при сильном нажатии дна гильзы на переднюю грань клина.
При выстреле давление пороховых газов на переднюю грань клина через заднюю грань передается заклиновой части казенника. Растягивающее усилие может быть разложено на две составляющие: одна, направленная перпендикулярно задней грани, стремится оторвать заклиновую часть казенника, другая, направленная вдоль наклонной грани, вниз или вбок, стремится выбросить клин из его гнезда (см. рис. 246). Чем больше угол наклона задней грани, тем усилие, стремящееся выбросить клин из его гнезда, больше. В современных орудиях этот угол близок к нулю, следовательно, близка к нулю и сила, действующая вдоль наклонной грани.
Отрыву заклиновой части казенника препятствует сам казенник, а выбрасыванию клина из гнезда противодействует сила трения.
Благодаря наличию клинового гнезда с пазами уменьшается длина затворной части орудия, что, несомненно, выгодно. Однако эта конструкция менее прочна, так как щеки гнезда, не связанные сзади, могут разойтись. Такой тип клинового гнезда применяется преимущественно в орудиях малого калибра. Применение клинового гнезда с фигурными пазами исключает возможность расхождения щек.
В современной артиллерии клиновые затворы, как правило, применяются в орудиях раздельного гильзового и патронного заряжания. В этих случаях обтюрация и предохранение от прорыва газов обеспечивается самой гильзой, которая, расширяясь под давлением пороховых газов, плотно прижимается наружной поверхностью к стенкам каморы, в результате чего устраняется прорыв газов наружу. Поэтому применение клинового затвора при раздельном гильзовом и патронном заряжании не требует применения каких-либо специальных обтюрирующих приспособлений.
В старых системах клиновой затвор применялся в орудиях картузного заряжания. Обтюрация в этих орудиях обеспечивалась особым приспособлением — обтюратором. Но применявшиеся обтюрирующие приспособления не давали хороших результатов. Поэтому клиновой затвор при картузном заряжании в современных артиллерийских орудиях не применяется.
По сравнению с затворами других типов клиновой затвор имеет более простое устройство и надежно запирает канал ствола. Для закрывания и открывания клина требуется одно прямолинейное движение, обеспечивающее простоту и быстроту действия такого затвора, тем более, что углы возвышения не влияют на величину усилия, необходимого для открывания и закрывания, особенно в затворах с горизонтальным расположением клина. Это обстоятельство облегчает автоматизацию клиновых затворов. В современной артиллерии полуавтоматические затворы в большинстве случаев являются клиновыми.
Вертикальные клиновые затворы обычно применяются в орудиях малого калибра, там, где вес клина мал и изменение усилий на рукоятки при открывании и закрывании ничтожно, а также в орудиях, где открывание и закрывание производится автоматически. Применение вертикальных клиновых затворов выгодно в тех случаях, в которых выдвижение клина вбок ограничивает угол горизонтального обстрела вследствие упора в станины лафета или другие части орудия.
Кроме клиновых затворов, действующих вручную, имеются еще полуавтоматические и автоматические. Полная или частичная автоматизация осуществляется за счет использования силы пороховых газов при отдаче.
Полуавтоматические затворы за счет использования этой силы открываются, выбрасывают стреляную гильзу и закрываются. Заряжание и производство выстрела производится вручную. Большинство современных артиллерийских орудий малого и среднего калибров имеют полуавтоматический затвор. К таким орудиям относятся 45-миллиметровая противотанковая пушка обр. 1937 г. и обр. 1942 г., 76-миллиметровая пушка обр. 1939 г. и обр, 1942 г. и др. Встречаются затворы, у которых автоматизировано только закрывание (76-миллиметровая горная пушка обр. 1938 г.).
Автоматический затвор во время стрельбы без всяких усилий орудийного расчета в результате действия пороховых газов открывается, заряжает орудие, закрывается, производит выстрел и выбрасывает стреляную гильзу. Зенитные орудия малого калибра, как правило, имеют автоматические затворы.
Кроме клиновых затворов, у некоторых артиллерийских орудий сохранились еще и поршневые затворы.
Поршневые затворы применяются в орудиях среднего и крупного калибров. Главная часть запирающего механизма поршневого затвора представляет собой цилиндр с винтовой нарезкой на наружной поверхности, называемый поршнем. При закрывании затвора поршень ввинчивается в нарезное затворное гнездо ствола, обеспечивая надежное запирание ствола при выстреле. Большое давление пороховых газов на поршень вызывает необходимость большего числа витков. Устройство такого поршня, в виде обыкновенного винта, потребовало бы много времени на открывание и закрывание затвора. Для ускорения работы затвора на поршне и в затворном гнезде витки нарезки делаются не по всей окружности, а чередуются с гладкими участками. Наиболее часто применяются поршни с двумя нарезными и двумя гладкими участками. В таком поршне каждый участок соответствует сектору с углом в 90 градусов. Бывают поршни с тремя и четырьмя парами нарезных и гладких участков.
При закрывании поршень устанавливается нарезными секторами против гладких секторов затворного гнезда и в таком положении вдвигается в гнездо на всю длину. После вдвигания поршня он поворачивается на определенный угол (90, 60, 45 градусов), при этом витки поршня входят в зацепление с витками затворного гнезда. Таким образом, вместо большого количества оборотов поршня вокруг оси закрывание производится путем поворота его на небольшой угол.
Срезание части витков ускоряет работу затвора, но вместе с тем уменьшает прочность закрепления поршня в стволе. Для увеличения прочности зацепления увеличивают число витков на поршне, что вызывает увеличение длины поршня, а следовательно, и увеличение его веса. Оба эти фактора уменьшают скорострельность орудия.
Для уменьшения длины и веса поршня и увеличения прочности его соединения с казенником иногда применяют так называемые ступенчатые поршни. Такие поршни имеют секторы различной высоты, то есть нарезка делается разных диаметров, соответственно которым нарезается и затворное гнездо.
В некоторых затворах применяются конические ступенчатые поршни. Диаметр такого поршня увеличивается по направлению к казенной части. Это дает возможность сократить длину поршня, так как благодаря увеличению диаметра витков прочность поршня увеличивается. Однако конические поршни мало применяются из-за сложности их изготовления. Силы трения, возникающие в месте соприкосновения поверхностей витков поршня и затворного гнезда, препятствуют повороту поршня под действием пороховых газов. Кроме того, затвор в закрытом положении стопорится специальными приспособлениями, что также устраняет возможность открывания затвора при выстреле.
Обтюрация в поршневых затворах орудий раздельного гильзового и патронного заряжания, как и в клиновых затворах, обеспечивается гильзой, Несколько иначе обстоит дело при картузном заряжании. При закрытом затворе в месте соприкосновения его с телом орудия образуется небольшая щель, через которую могут прорваться сильно нагретые газы. Газы, проходящие через щель с большой скоростью, могут оплавить металл и, таким образом, привести затвор в негодность. Кроме того, эти газы, вырываясь назад, могут нанести сильные повреждения орудийному расчету. И, наконец, разрушительное действие газов может повредить и другие детали затвора, не рассчитанные на большие усилия. Прорыв газов не может быть устранен тщательной обработкой, точной пригонкой соприкасающихся поверхностей, потому что газы постоянно стремятся вырвать затвор из орудия и проникнуть в сколько-нибудь свободное пространство. Так как прорыв газов совершенно недопустим, то в самом затворе должно быть специальное приспособление, препятствующее протеканию газов. Такое приспособление называется обтюратором.
Обтюратор должен быть сделан из пластического материала, чтобы под действием давления он мог принимать форму окружающих поверхностей. Обтюратор помещается в казеннике так, чтобы прикрыть щель между затвором и телом орудия при выстреле.
В современных затворах применяют только автоматически действующие обтюраторы, то есть такие, у которых плотное запирание производится исключительно под действием давления пороховых газов. Автоматически действующие обтюраторы можно подразделить на две группы: первая — обтюраторы, действие которых основано на сжатии, вторая — обтюраторы, действие которых основано на растяжении. К первой группе относится грибовидный обтюратор, ко второй группе — металлические гильзы и поддоны.
Грибовидный обтюратор (рис. 25) состоит в основном из кольцевой подушки и грибовидного стержня.
Рис. 25. Затвор с грибовидным обтюратором.
Кольцевая подушка делается из холста, набивается асбестом, пропитывается бараньим салом и прессуется под большим давлением. Она помещается на переднем срезе поршня и удерживается грибовидным стержнем, имеющим сквозной запальный канал. Грибовидный стержень имеет возможность несколько перемещаться вдоль оси.
В момент выстрела под действием пороховых газов грибовидный стержень продвигается назад и расплющивает подушку, которая прижимается к стенкам каморы, устраняя возможность прорыва газов. Для того, чтобы материал подушки не вдавливался в зазоры между затвором и стволом, в обтюраторе имеются стальные разрезные кольца, которые под давлением подушки при выстреле разжимаются и прижимаются к соответствующим поверхностям. Вследствие упругости подушки и колец они после выстрела принимают первоначальные размеры и не затрудняют открывания затвора.
Для закрывания затвора поршень устанавливается нарезными секторами против гладких секторов затворного гнезда и вдвигается на всю длину, после чего поршень повертывается на некоторый угол так, чтобы его витки сцепились с витками затворного гнезда. Следовательно, поступательное и вращательное движения поршня при открывании и закрывании выполняются простым действием на рукоять. Для удобства открывания и закрывания поршень укрепляется в раме, шарнирно связанной с казенником ствола при помощи оси. На конце оси насажена рукоять. Чтобы закрыть затвор, необходимо повернуть рукоять до упора в казенник. При этом затвор полностью закроется.
По количеству простых движений поршня, совершаемых при открывании и закрывании затвора, различаются двух- и трехтактные поршневые затворы.
В двухтактных поршневых затворах поршень при закрывании движется вместе с рамой по дуге до полного ввода его в затворное гнездо, а затем поворачивается вокруг оси, ввинчиваясь в гнездо. При открывании затвора движение производится в обратном порядке.
В трехтактных поршневых затворах поршень при закрывании затвора вместе с рамой подводится к казенному срезу, двигаясь по дуге окружности, затем выдвигается из рамы и вдвигается в поршневое гнездо, двигаясь по оси канала ствола, и поворачивается до полного зацепления нарезных участков, иными словами поршень ввинчивается в затворное гнездо. При открывании затвора движение совершается в обратном порядке.
По расположению оси рамы поршневые затворы, так же как и клиновые, бывают горизонтальными и вертикальными. В первом случае ось рамы располагается вертикально, а вращение рамы вместе с поршнем происходит в горизонтальной плоскости. Во втором случае ось рамы располагается горизонтально, а вращение поршня вместе с рамой производится в вертикальной плоскости.
Мы уже говорили, что затвор предназначен не только для запирания канала ствола, поэтому в конструкцию современного затвора, кроме запирающего устройства, входит еще несколько механизмов.
Основным механизмом любого затвора является запирающий механизм.
В клиновых затворах запирающий механизм состоит в основном из клина, передвигающегося при помощи кривошипов и рукоятки, укрепленных на одной оси (рис. 26а). Ролики кривошипов входят в пазы на клине. При движении рукоятки вперед ролики кривошипов надавливают на грани пазов, заставляя опуститься клин, в результате чего канал ствола открывается. Чтобы закрыть затвор, рукоятку необходимо повернуть назад.
Рис. 26. а — запирающий механики клинового затвора; б — запирающий механизм поршневого затвора; в — ударный механизм клинового затвора; г — стреляющее приспособление поршневого затвора.
В двухтактном поршневом затворе запирающий механизм состоит из поршня (рис. 26б), рамы, гребенки и рукоятки, укрепленной на оси. При повороте рукоятки назад шип рукоятки потянет гребенку, которая своими зубьями сцеплена с зубчатым сектором поршня. Поршень будет поворачиваться вокруг своей оси до тех пор, пока нарезные секторы его не расцепятся с нарезными участками поршневого гнезда. В момент полного расцепления выступ на оси рукоятки упрется в грань дугового паза на раме. Дальнейшее движение рукоятки будет связано с движением самой рамы, которая вместе с поршнем повернется вокруг оси рамы и выведет поршень из гнезда. Закрывание затвора производится движением рукоятки в обратном направлении.
В вертикальных затворах для устранения влияния веса клина или поршня при открывании и закрывании затвора применяется уравновешивающий механизм. При открывании затвора рычаг, насаженный на ось рукоятки, сжимает пружину механизма. Сила сжатой пружины уравновешивает вес затвора, поэтому закрывание его производится легко и без особых усилий. В клиновых затворах сила сжатой пружины превышает вес затвора; в этом случае затвор закрывается автоматически.
Для того, чтобы не произошло самопроизвольного открывания затвора, имеется специальное замыкающее устройство, которое входит в запирающий механизм. В клиновом затворе таким устройством является дуговой участок паза и выемка для ролика кривошипа. Клин не может сдвинуться с места до тех пор, пока рукоятка с кривошипами не повернется на некоторый угол и ролик не выйдет на прямолинейный участок паза.
В поршневом затворе запирание производится при помощи зуба ручки. Чтобы открыть затвор, необходимо надавить на ручку вниз, при этом зуб выйдет из зацепления с рамой и рукоятку можно будет повернуть.
На рис. 24 показан открытый клиновой затвор и горизонтальное клиновое гнездо.
Для производства выстрела в затворе имеется стреляющее приспособление. В клиновых затворах наибольшее распространение получили стреляющие приспособления, состоящие из ударного и спускового механизмов.
Ударный механизм состоит из ударника, взвода, боевой пружины и крышки (рис. 26в). Боевая пружина помещается между перегородкой ударника и крышкой, закрепленной в гнезде ударного механизма. Для производства выстрела ударник необходимо оттянуть назад и тем самым сжать боевую пружину; затем отпустить его. Под действием разжимающейся боевой пружины ударник резко двинется вперед и ударит своим бойком по капсюлю гильзы.
Стреляющее приспособление поршневого затвора помещается внутри патрубка рамы, вокруг которого вращается поршень (рис. 26а). Главными частями приспособления являются ударник с бойком, взводом и опорной муфтой или гайкой, боевая пружина, трубка ударника и курок с роликом.
Как же действует стреляющее приспособление? Потяните на себя длинное плечо курка. Курок начнет поворачиваться вокруг своей оси и своим зацепом потянет ударник назад. Одновременно короткое плечо курка своим роликом начнет давить на хвост трубки ударника, посылая ее вперед. Боевая пружина, заключенная между опорной муфтой ударника и кольцевым уступом трубки, сжимается. Но вот взвод ударника срывается с зацепа курка и ударник с муфтой под действием сжатой боевой пружины начинает двигаться вперед; встретив на своем пути уступ поршня, муфта останавливается. Ударник по инерции продвигается дальше, боек ударника выходит за передний срез поршня и разбивает капсюль гильзы. Если поршень не полностью сцепился с витками затворного гнезда, то есть затвор не вполне закрыт, произвести выстрел невозможно. В этом случае трубка ударника своим хвостом упирается в дуговой выступ поршня.
Оттягивание курка для производства выстрела производится при помощи спускового шнура или механизмом спускового стержня.
Изредка бывают такие случаи: вы спускаете ударник, а выстрела нет. Через некоторое время совершенно неожиданно раздается выстрел. Что произошло? Произошел, как говорят артиллеристы, затяжной выстрел. Преждевременное открывание затвора при затяжных выстрелах очень опасно и может привести к ранению номеров орудийного расчета или вывести из строя орудие. Во избежание этого в современных орудиях применяются предохранители инерционного типа на случай затяжных выстрелов.
Основной частью такого предохранителя является массивное тело, которое помещается или в затворе, или в казеннике и может перемещаться в своем гнезде вдоль оси ствола. При закрывании затвора предохранитель перемещается так, что связывает какую-либо часть затвора с казенником. Следовательно, обычным движением открыть затвор уже нельзя. Во время отката или наката вследствие инерции предохранитель освобождает ту часть затвора, которую он связал с казенником во время закрывания, и тогда затвор можно открыть простым движением. Но если выстрела не произошло, то открыть затвор можно только после выключения предохранителя.
Для выбрасывания стреляной гильзы после выстрела у затворов обоих типов имеются специальные выбрасывающие приспособления, действие которых основано на принципе рычага первого рода. Обычно выбрасыватель состоит из одной или двух ветвей, надетых на одну общую ось. Ось служит опорой при действии выбрасывателя.
Кроме описанных выше механизмов, у затворов современных орудий имеются откидные лотки, которые служат для направления тяжелых снарядов при заряжании. Чтобы при заряжании не задеть за выступы и неровности в затворном гнезде головной частью снаряда или ведущим пояском, имеются направляющие планки. Направляющая планка должна обеспечить свободное скольжение снаряда при заряжании; для того, чтобы убрать направляющую планку при закрывании затвора, не нужно дополнительных движений: поднимание и опускание планки производится при помощи рычага, надетого на ось, связанную с рукояткой затвора. При повороте рычага планка поднимается и подается несколько вперед. При обратном повороте рычага она опускается и не мешает закрыванию затвора.
В верхней части затворного гнезда иногда помещается удержник, назначение которого не допустить выпадения гильзы или патрона при заряжании под большими углами возвышения. При открывании затвора под действием собственного веса длинный конец удержника опускается и остается в наклонном положении, свободно пропуская снаряд и гильзу при заряжании, но не позволяя им выпасть. При закрывании затвора поршень поднимает удержник.
В начале этой книги было указано, что энергия пороховых газов используется для выталкивания снаряда из канала ствола орудия. Когда начала развиваться скорострельная артиллерия, возник вопрос: нельзя ли использовать часть энергии пороховых газов для выполнения всех или некоторых действий, необходимых для производства выстрела? Творческая мысль наших артиллеристов нашла несколько решений этого трудного вопроса. Теперь мы имеем ряд затворов автоматических и полуавтоматических.
Если все действия (открывание затвора, выбрасывание гильзы, заряжание, закрывание затвора, взведение ударника и производство выстрела) совершаются в орудии за счет энергии газов при выстреле, то затвор называется автоматическим. Если же только несколько действий или хотя бы одно из них выполняется за счет энергии газов, то затвор называется полуавтоматическим. В этом разделе мы остановимся лишь на полуавтоматических затворах.
Благодаря простоте открывания и закрывания клиновых затворов полуавтоматика нашла широкое применение в затворах именно этого типа. Полуавтоматические затворы имеют весьма разнообразное устройство. Действие полу-автоматики, грубо говоря, основывается на взведении каким-либо способом пружины и на использовании энергии взведенной пружины для выполнения того или иного действия. По принципу действия полуавтоматика обычно подразделяется на инерционную, механическую и полуавтоматику смешанного типа.
Полуавтоматика инерционного типа основана на использовании силы инерции: во время отката тяжелое тело, стремясь остаться на месте, сжимает пружину. Такая полуавтоматика характеризуется совершенным отсутствием механической связи затвора с неподвижными частями орудия, Открывание и закрывание затвора в этом случае производится за счет энергии сжатой пружины, накопленной в результате движения тяжелого тела.
Недостатком полуавтоматики инерционного типа является сложность механизма. В настоящее время полуавтоматика, основанная на использовании только силы инерции, не применяется.
Перейдем к рассмотрению полуавтоматики, использующей энергию наката (рис. 27).
Рис. 27. Схема полуавтоматики.
Чтобы открыть затвор при первом заряжании орудия, снабженного такой полуавтоматикой, необходимо вручную повернуть рукоять. При этом будет двигаться назад шарнирно связанный с ней стержень, шайба которого начнет сжимать пружину, заключенную в коробке на стволе орудия. Клин в открытом положении удерживается ветвями выбрасывателя. При досылке патрона ветви сбиваются ударом закраины гильзы и пружина, разжимаясь, посылает вперед стержень, который заставляет вращаться рукоять в обратном направлении и тем самым закрывает затвор.
При выстреле ствол вместе с коробкой и стержнем движется назад, упор же остается на месте, так как не укреплен на люльке. При накате стержень доходит до выступа упора и останавливается, а ствол продолжает накатываться. Вследствие этого стержень нажимает на рукоять, заставляет ее повернуться назад, в результате чего затвор открывается. Одновременно с этим шайба стержня сжимает пружину.
Когда ствол накатится на место, затвор уже будет открыт и ветви выбрасывателя, выбросив гильзу, своими захватами удержат клин в открытом положении. Пружина в этот момент будет сжата. Коническая часть коробки при накате, нажимая на ролик упора, опустит его вниз, и стержень освободится. При откате упор поднимается вверх под действием своей пружины. Представьте себе, что упор не поднялся. В этом случае затвор не откроется, и стреляющему придется перед каждым выстрелом открывать затвор вручную.
В современных полевых и зенитных орудиях среднего калибра наибольшее распространение получила полуавтоматика копирного (смешанного) типа.
Применение полуавтоматики дало возможность увеличить скорострельность огнестрельного оружия и облегчило работу заряжающего.
Для того, чтобы можно было наводить орудие в цель и передвигать его с одного места на другое, орудийный ствол закрепляется на лафете. Лафет состоит из двух частей, связанных между собой: станка и повозки.
Лафеты старых систем обычно состояли из одного станка. Они назывались лафетами однобрусного типа (рис. 28а).
В этом случае станок принимал на себя всю силу отдачи выстрела. Лобовая часть такого однобрусного станка опиралась на боевую ось, а хоботовая часть при помощи сошника упиралась в грунт.
Рис. 28. Орудия с различными лафетами.
Кроме того, на хоботовой части при стрельбе укреплялось правило для грубой горизонтальной наводки. Большинство современных орудий изготовляется с раздвижными станинами (рис. 286). Это позволило увеличить угол горизонтального обстрела без перемещения станка. Каждая из раздвижных станин снабжена отдельным сошником. Станки зенитных орудий имеют четыре лапы (откидные упоры), которые в боевом положении образуют крестовину. На этой крестовине укреплена тумба (станок), обеспечивающая круговой обстрел (рис. 28в).
Лафеты современных орудий имеют верхний и нижний станки. Таким устройством наиболее удачно разрешен вопрос о подвижности ствола орудия в горизонтальной плоскости при стрельбе по быстро движущимся целям.
Нижний станок является основой всего орудия; он состоит из лобовой коробки и двух шарнирно соединенных с ней станин. В лобовой коробке помещается боевая ось, на которую опирается орудие через систему подрессоривания. В хоботовой (задней) части станка имеется шворневая лапа для соединения орудия с передком или трактором.
Верхний станок опирается на лобовую коробку нижнего станка.
Для того, чтобы ствол устойчиво лежал на лафете, его накладывают на особую часть лафета — люльку. Люлька своими цилиндрическими цапфами закрепляется в специальных гнездах верхнего станка. Таким образом, люлька со стволом составляет качающуюся часть артиллерийского орудия.
Но недостаточно только закрепить ствол на станке, ему необходимо обеспечить возможность перемещения в вертикальной и горизонтальной плоскостях. Для этого каждый станок современного орудия обязательно снабжается поворотным и подъемным механизмами. Само название этих механизмов говорит о том, что первый предназначается для наведения орудия в цель в горизонтальной плоскости, а второй — в вертикальной.
Подъемные механизмы орудий по своей конструкции подразделяются на два типа: винтовой и секторный (рис. 29).
Рис. 29. Подъемные механизмы: а — винтовой; 6 — секторный.
Наиболее простую схему имеет подъемный механизм винтового типа (рис. 29а). Непосредственно к стволу или к люльке шарнирно прикрепляется винт, который может качаться в плоскости качания ствола. На этот винт навинчена матка, закрепленная в станке. Вращательное движение маховика подъемного механизма через ряд промежуточных передач передается матке. В зависимости от направления ее вращения винт будет ввинчиваться или вывинчиваться. В соответствии с этим казенная часть ствола будет опускаться или подниматься. Такой подъемный механизм применялся в старых системах, в современных же орудиях он применяется очень редко.
В современных орудиях подъемные механизмы делаются секторного типа (рис. 296). К нижней части люльки прикрепляется зубчатый сектор, который сцепляется с цилиндрической шестерней, закрепленной на валу в станке орудия. Вращательное движение маховика подъемного механизма через систему передач сообщается валу с боевой шестерней. Шестерня, перекатываясь по зубчатому сектору, заставляет поворачиваться ствол вокруг цапф люльки, обеспечивая наводку орудия в вертикальной плоскости.
Поворот ствола в горизонтальной плоскости производится путем вращения всего орудия или части его. В первом случае обычно прибегают к помощи правила или длинных рычагов, подкладываемых под хоботовую часть. Правило представляет собой откидной или съемный рычаг, укрепляемый на хоботовой части орудия. Оно предназначено для поворота легких орудий усилием одного человека. Для поворота тяжелых орудий, когда требуется усилие двух-трех человек, применяются длинные рычаги.
В современных орудиях с раздвижными станинами для наведения орудия в цель производится поворот лишь верхнего станка (рис. 30).
Рис. 30. Поворотные механизмы: а — винтовой; б — секторный.
Поворот верхнего станка производится при помощи поворотного механизма с зубчатой или винтовой передачей. Верхний станок вращается вокруг боевого штыря. Для того, чтобы верхний станок не опрокинулся вместе со стволом при выстреле, имеется целый ряд приспособлений.
В настоящее время в орудиях крупного калибра и в зенитных применяется поворотный механизм с зубчатой передачей. Зубчатый сектор неподвижно укрепляется на нижнем станке. Сцепленная с ним шестерня вращается на одном валу с червячным колесом, которое сцепляется с червяком. Червячная передача с шестерней собраны в одной коробке, укрепленной на верхнем станке. Вращение червяку от маховика передается через коническую передачу. При вращении шестерни ее зубья, обкатываясь по неподвижному сектору, заставляют вращаться верхний станок вместе со стволом вокруг штыря.
В орудиях малого и среднего калибра применяется поворотный механизм с винтовой передачей. В этом случае к верхнему станку шарнирно прикрепляется вал с маткой. На свободном конце пустотелого вала закреплен маховик. В матку ввинчивается винт, один конец которого помещается в пустотелом валу, а другой закрепляется на нижнем станке. Таким образом, вращая маховик, мы тем самым навинчиваем матку на винт или свинчиваем с него. В результате этого расстояние между шарниром вала и вилкой нижнего станка будет изменяться, что вызовет поворот верхнего станка относительно нижнего.
Несмотря на простоту устройства, поворотный механизм этого типа имеет довольно существенный недостаток: усилие на маховике в процессе поворота не постоянно, а это создает большие неудобства при работе для наводчика. Кроме того, угол поворота ствола орудия, снабженного поворотным механизмом винтового типа, не превышает 40 градусов в ту и другую сторону, в то время как поворотный механизм секторного типа, при замене сектора круговым погоном, обеспечивает круговое ведение огня, без изменения положения лафета.
Развитие дальнобойной артиллерии, приведшее к удлинению ствола орудия, и появление быстро движущихся целей, вследствие чего необходимо было увеличить скорость наводки, настойчиво потребовали уменьшить усилие на маховике подъемного механизма. Для облегчения работы на подъемном механизме орудия стали снабжать уравновешивающими механизмами. В современных артиллерийских орудиях широко применяются уравновешивающие механизмы тянущего и толкающего типа (рис. 31).
Рис. 31. Уравновешивающие механизмы: а — толкающий; б — тянущий.
Уравновешивающий механизм толкающего типа (см. рис. 31а) обычно состоит из двух пар цилиндров с пружинами, расположенными впереди цапф. Иногда орудия имеют два цилиндра с одной пружиной, которые располагаются под люлькой, также впереди цапф. Такая конструкция уменьшает диапазон углов возвышения, так как расположение под люлькой ограничивает длину цилиндра.
Пружина, находящаяся между двумя цилиндрами, подпирает переднюю часть люльки и тем самым уменьшает влияние веса дульной части ствола на подъемный механизм. Кроме того, уравновешивающий механизм толкающего типа, действуя на люльку снизу, уменьшает давление цапф на цапфенные гнезда верхнего станка, а значит и трение при наводке. Основным недостатком такого механизма является его уязвимость, кроме того, этот механизм расположен почти вертикально, вследствие чего увеличивается общая высота орудия.
Схема уравновешивающего механизма тянущего типа следующая (см. рис. 316). К станку орудия прикреплена коробка уравновешивающего механизма так, что она может вращаться в вертикальной плоскости. В коробке находится сжатая между дном коробки и шайбой пружина. Конец тяги, соединенной с шайбой, при помощи цепи закреплен на люльке позади цапф. Вследствие такого расположения деталей пружина через шток тянет люльку, создавая тем самым момент, который и уравновешивает перевес качающейся части.
Горизонтальное или почти горизонтальное расположение цилиндров в механизмах тянущего типа представляет большие удобства. Основным же недостатком данных механизмов является большое трение в цапфах при работе подъемным механизмом.
В некоторых новейших орудиях применяются гидропневматические уравновешивающие механизмы. Идея их устройства такая же, как и идея устройства уравновешивающего механизма толкающего типа, но пружина заменена сильно сжатым (до 50 атмосфер) воздухом, заключенным в цилиндре механизма. Чтобы сжатый воздух не просочился наружу и давление не упало, нижняя часть цилиндра уравновешивающего механизма заполняется специальной жидкостью, которая принимает на себя давление воздуха и в силу своей несжимаемости передает его на нижний цилиндр.
Основным достоинством этого уравновешивающего механизма является его компактность. Основным недостатком является то, что его работа в большой степени зависит от изменения температуры окружающего воздуха.
В момент выстрела под действием пороховых газов снаряд с большой скоростью вылетает из канала ствола вперед, а ствол начинает двигаться назад. Если бы ствол не был закреплен на лафете, он полетел бы на некоторое расстояние в направлении, обратном движению снаряда.
Для того, чтобы ясно представить себе явление отката, проделайте простой опыт. Возьмите обыкновенную стеклянную пробирку, налейте в нее немного воды и заткните пробкой. Пробирку нагревайте до тех пор, пока не закипит вода. Образующиеся водяные пары выбьют пробку, которая полетит в одну сторону, а пробирка в тот же момент полетит в противоположную.
Сила отдачи, толкающая ствол орудия назад, очень велика; она достигает примерно 112 тонн у 76-миллиметровой пушки и превосходит 400 тонн у 152-миллиметровой гаубицы-пушки. Старые орудия, стволы которых были жестко закреплены на лафете, после каждого выстрела откатывались назад. Приходилось тратить много времени и много сил, чтобы возвратить орудие на место и восстановить наводку. Скорострельность таких пушек была, конечно, небольшой. Особенно трудно было накатывать тяжелые орудия. Поэтому артиллеристы всегда стремились затормозить откат орудия и облегчить накатывание его на прежнее место. Сначала они применяли для этого простые приспособления в виде клиньев, которые подкладывались под колеса орудия. При откате орудие накатывается на эти клинья, а затем скатывается по наклонной плоскости и занимает первоначальное положение. Позднее в дополнение к клиньям к лафету орудия присоединяли пружинный тормоз, который поглощал часть энергии отката. Этот тормоз еще не составлял одного целого с лафетом. Понятно, что и клинья и тормоз отката значительно сокращали время подготовки орудия к следующему выстрелу. Но все же оно оставалось значительным, так как наводка орудия сильно сбивалась при откате и накате. Чтобы затормозить откат всего орудия, нужно было построить прочную платформу. Это можно было сделать для крепостных орудий или для тяжелых осадных орудий, но это лишило бы подвижности полевую артиллерию. Все это поставило перед конструкторами задачу изобрести такой лафет, который при выстреле оставался бы на месте.
В результате плодотворной работы выдающемуся русскому изобретателю В. С. Барановскому удалось сконструировать скорострельную горную пушку, у которой при выстреле лафет оставался на месте, а ствол сначала откатывался, а затем накатывался на прежнее место. Такого результата В. С. Барановский достиг, применив гидравлический тормоз отката и пружинный накатник. Его идеи, заложенные в основу проектирования скорострельных артиллерийских орудий, были использованы не только в России, но и за границей.
Откат ствола современного орудия тормозится при помощи гидравлического тормоза, а накат его на свое место производится пружинным, пневматическим или гидропневматическим накатником.
Тормоз отката (рис. 32) состоит из двух основных частей — цилиндра и вставленного в него штока с поршнем — и целого ряда других деталей.
Рис. 32. Тормоз отката.
Цилиндр заполнен жидкостью — веретенным маслом или глицериновой жидкостью.
Он может закрепляться на стволе при помощи специальных обойм. При выстреле ствол орудия под действием пороховых газов откатывается назад, вместе с ним откатывается цилиндр тормоза отката. Шток, закрепленный в крышке люльки, остается на месте. Поэтому при откате ствола с цилиндром поршень штока сильно давит на жидкость, которая под этим давлением начинает пробрызгиваться через отверстия, имеющиеся в поршне. Пройдя эти отверстия, жидкость пойдет по двум направлениям: в заднюю часть цилиндра через кольцевой зазор между регулирующим кольцом и веретеном и в переднюю полость штока через отверстия в модераторе, сдвигая клапан модератора. Незначительное количество жидкости проходит в переднюю полость штока по канавкам переменной глубины на внутренней поверхности штока.
По мере отката величина кольцевого зазора между веретеном и регулирующим кольцом меняется, так как веретено имеет переменное сечение.
На преодоление сопротивления жидкости пробрызгиванию и расходуется главным образом энергия откатных частей.
У некоторых орудий тормоз устроен несколько иначе: цилиндр тормоза закреплен неподвижно в люльке, а шток тормоза при помощи специальной детали, называемой бородой, прикрепляется к казеннику.
При откате люлька, а следовательно, и цилиндр остаются неподвижными, ствол же, откатываясь, тянет за собой шток тормоза. Несмотря на некоторое различие в конструктивном отношении, принцип действия этого тормоза остается прежним.
В некоторых описаниях пушек вы можете встретить в разделе «Противооткатные устройства» название «тормоз отката и наката». Это означает, что в данном тормозе имеется специальное приспособление, которое принимает участие в торможении наката. Чаще всего встречаются тормозы наката веретенного типа. При накате часть жидкости, попавшая в замодераторное пространство, давит на клапан модератора, сдвигает его и закрывает отверстия в модераторе, вследствие чего жидкость пробрызгивается только через канавки переменной глубины, находящиеся на внутренней поверхности штока.
Сопротивление жидкости пробрызгиванию через канавки переменной глубины и создает необходимое торможение наката. Плавность наката достигается тем, что в конце наката канавки переменного сечения сходят на нет.
В результате работы, происходящей в тормозе отката во время стрельбы, температура жидкости в цилиндре увеличивается. При каждом выстреле она увеличивается примерно на один градус. Как вы знаете, при нагревании тела расширяются, следовательно, расширится и жидкость, которая заполняет внутреннюю полость цилиндра тормоза отката. В результате этого ствол орудия не сможет возвратиться в свое первоначальное положение, или, как говорят артиллеристы, произойдет «недокат». При большом же недокате сильно уменьшится длина той части цилиндра, в которой поршень штока тормозит откат, что может вызвать резкий удар деталей в конце отката и поломку противооткатных устройств.
Для того, чтобы уменьшить объем жидкости, достаточно выпустить часть жидкости из цилиндра, и тогда можно было бы продолжать стрельбу. Но в этом случае при охлаждении противооткатных устройств пришлось бы доливать выпущенную жидкость в цилиндр. Между тем в бою не всегда можно вовремя отбавить жидкость и добавить ее. Необходимо специальное приспособление, которое могло бы автоматически регулировать количество жидкости в рабочем пространстве цилиндра тормоза отката.
В современных орудиях с успехом применяются приспособления, называемые компенсаторами. Компенсатор отделяется от рабочего объема цилиндра тормоза тонкой перегородкой — диафрагмой — с очень узкими отверстиями и крышкой компенсатора с одним отверстием, в которое вварена изогнутая трубка. Компенсатор частично заполняется жидкостью. Во время стрельбы, при расширении жидкости в цилиндре, часть жидкости через отверстия в диафрагме перетекает из цилиндра в пространство между диафрагмой и крышкой компенсатора и дальше по трубке в корпус компенсатора, сжимая находящийся над жидкостью воздух. При перерывах в стрельбе жидкость в цилиндре тормоза охлаждается и объем ее уменьшается. Сжатый в компенсаторе воздух, стремясь расшириться до первоначального объема, вытесняет жидкость в цилиндр тормоза отката.
Таким образом, тормоз отката представляет собой довольно сложную тепловую машину, в которой энергия механическая переходит в тепловую. После того, как энергия отдачи целиком израсходуется на преодоление силы сопротивления жидкости пробрызгиванию, начинает действовать накатник, задача которого возвратить откатившиеся части в первоначальное положение.
В современных орудиях можно встретить накатники двух типов: пружинный и гидропневматический. Пружинный накатник действует так. В момент отката ствола пружины накатника сжимаются, принимая частично на себя силу отдачи. Сжатие пружины при откате равно длине отката. После остановки ствола в заднем крайнем положении пружины, разжимаясь, возвращают откатившиеся части в первоначальное положение, в результате чего происходит накат. Такие накатники применяются преимущественно в орудиях малого калибра и редко в артиллерии среднего калибра.
Гидропневматический, или, как его называют, воздушный, накатник устроен следующим образом. В обоймах ствола закреплены сообщающиеся между собой цилиндры (рис. 33); один цилиндр и часть другого цилиндра заполнены жидкостью.
Рис. 33. Накатник.
Свободная часть верхнего цилиндра заполнена воздухом, сжатым до 25–40 атмосфер. В нижнем, или рабочем, цилиндре помещен шток с поршнем, причем в поршне нет никаких отверстий.
При выстреле ствол орудия с цилиндрами откатывается назад. Поршень перегоняет жидкость из рабочего цилиндра в воздушный. Так как жидкость практически несжимаема, то сжимается воздух в верхнем цилиндре до 80—100 атмосфер. Когда откат окончен, сильно сжатый воздух выгоняет жидкость из верхнего цилиндра в нижний; жидкость передает давление к поршню; последний, оставаясь на месте, заставляет двигаться цилиндры, а вместе с ними и ствол. В результате ствол возвращается на место.
Таким образом, всю работу по возвращению ствола на место выполняет воздух. Жидкость в накатнике необходима лишь для герметизации, иначе воздух сможет проникнуть через сальники и выйти наружу.
В современных орудиях, помимо противооткатных устройств, уменьшают скорость отката еще другим способом: напору газов, давящих на затвор назад, противопоставляют силу, которая толкает ствол вперед. Для этого на дульную часть ствола навинчивают дульный тормоз.
Если вы посмотрите на любое современное орудие, то увидите, что оно имеет стальной щит. За щитом может укрыться от пуль и осколков весь орудийный расчет. Но не всегда орудия имели такие щиты. Когда существовали орудия, которые при каждом выстреле откатывались назад, щиты не были нужны: все равно артиллеристы должны были во время отката отбегать от орудия. Не имело смысла увеличивать вес орудии (что было неизбежно при установке щитов), так как расчет мот укрыться за щитом лишь на короткое время.
Но как только на вооружении русской армии появились новые скорострельные пушки с противооткатными устройствами, вопрос о щите встал совершенно по-иному. Орудийному расчету уже не было надобности отбегать при выстреле от орудия, так как откатывался только ствол, а лафет оставался на месте. При таких условиях щит мот принести только пользу. Однако эта мысль, как и многие другие гениальные предложения русских артиллеристов, встретила ожесточенные возражения со стороны многочисленных консерваторов и рутинеров, которые имелись в старой русской армии.
Среди высших кругов русских офицеров нашлось немало таких, которые считали, что артиллеристам позорно прятаться за щитами в то время, когда пехота наступает без всяких щитов.
И только во время русско-японской войны, благодаря энергии и настойчивости выдающихся русских артиллеристов, была доказана необходимость щитов. Первыми орудийными щитами были щиты, поставленные на орудиях батареи талантливого русского артиллериста подполковника Кугиак. Эти щиты были изготовлены из котельного железа толщиной почти в 3 миллиметра. Японские винтовочные пули не могли пробить их даже с дальности в 700 шагов. Блестящие действия батареи подполковника Кугиак со всей убедительностью доказали огромную пользу щитов.
К концу русско-японской войны по примеру, поданному русскими артиллеристами, все государства снабдили свои полевые орудия щитами.
Щитовое прикрытие современных полевых орудий обычно состоит из двух щитов: неподвижного и подвижного. Неподвижный щит в свою очередь состоит из средней части, верхнего и нижнего откидных щитов. Средняя часть щита при помощи специальных кронштейнов прикрепляется к верхнему станку и имеет вырез, через который проходит ствол с люлькой. Величина выреза должна быть такой, чтобы был обеспечен горизонтальный и вертикальный обстрел, допускаемый механизмами наводки.
Если в целях маскировки необходимо уменьшить высоту орудия, верхний щит опускается. Нижний щит опускается лишь в том случае, когда орудие находится в боевом положении. Подвижная часть щита укрепляется на качающейся части орудия и служит для укрытия расчета от пуль и осколков, которые могут попасть в вырез в неподвижном щите. Толщина щитов возросла с 3 миллиметров до 10. Кроме основного щитового прикрытия, на современных орудиях имеется целый ряд щитков, предназначенных для защиты хрупких деталей и механизмов.
Для уменьшения пробиваемости щитов применяют так называемые экранированные щиты. Сущность экранирования состоит в том, что вместо одного щита используют два, поставленных на расстоянии 20–25 миллиметров друг от друга и жестко скрепленных распорками. После пробивания первого щита пуля или осколок теряет часть своей энергии, изменяет направление своего полета и деформируется. Следовательно, условия для пробивания второго щита ухудшаются. В настоящее время щитовое прикрытие применяется также и в зенитных пушках. Это нововведение вызвано тем, что, как показал опыт Великой Отечественной войны, зенитные пушки могут успешно применяться для борьбы с танками противника. Конструкция щитового прикрытия в значительной степени зависит от назначения, типа и калибра орудия.
Если вы посмотрите на старые орудия с жестким лафетом, то увидите, что колеса этих орудий надевались прямо на ось, которая жестко соединялась со станком. В этом случае оси должны быть очень прочными, так как при перевозке орудия резкие толчки передаются непосредственно на ось, а от оси передаются на остальные части орудия. С появлением механической тяги скорости перевозки артиллерийских орудий увеличились. При таких скоростях перевозки толчки усиливаются и, следовательно, артиллерийские орудия могли бы быстро прийти в негодность.
Для уменьшения вредного действия толчков и ударов на механизмы и приборы орудия в современных артиллерийских системах используют специальные механизмы, которые называются подрессориванием. Для подрессоривания в основном применяют рессоры (пружины) и резиновые буферы.
Если произвести выстрел из подрессоренного орудия, то верхний станок со стволом будет колебаться на рессорах. Следовательно, будет нарушено основное требование, предъявляемое к орудию, — устойчивость. Это привело к необходимости использовать особый механизм, который автоматически связывает ось орудия с нижним станком при переходе в походное положение.
Вначале в качестве упругого элемента использовались пластинчатые рессоры и цилиндрические пружины. Позднее было использовано свойство упругого сопротивления цилиндрического стержня. Работа такого механизма подрессоривания заключается в следующем. Один конец цилиндрического стержня жестко закреплен в лафете (рис. 34), а второй конец при помощи балансира и оси соединен с колесом.
Рис. 34. Схема стержневого подрессоривания.
Если колесо во время движения попадет на какое-либо препятствие, то балансир поднимется, а стержень будет закручиваться. Так как сталь обладает упругостью, то при сходе колеса с препятствия стержень раскрутится. Следовательно, в этом механизме стержень играет роль рессоры, работающей на скручивание.
Подрессоривание пластинчатыми рессорами производится путем подвески нижнего станка к боевой оси при помощи рессоры, составленной из пластин, подобно тому, как это делается при изготовлении обыкновенной автомобильной рессоры. Средняя часть рессоры укрепляется на нижнем станке орудия, а концы — на боевой оси. Удары и толчки при этом подрессоривании смягчаются за счет работы этих пластин на изгиб. Подрессоренные орудия можно перевозить с большой скоростью по любым дорогам.