Я не всегда понимаю, о чем говорю, но всегда уверен, что я прав.
После выполнения всех этапов, описанных в главе 3, должна быть получена рабочая система Asterisk. Если что-то не так, не пожалейте времени, вернитесь назад и еще раз просмотрите все шаги, проконсультируйтесь в Википедии, привлеките сообщество и заставьте свою систему работать.
К сожалению, пока мы не можем никуда позвонить, потому что еще не создан ни один канал. Чтобы оторвать этот самолет от земли, необходима взлетная полоса. Существуют десятки разных типов каналов и различных способов сконфигурировать каждый из них, но мы просто хотим получить возможность позвонить, поэтому давайте сделаем это и не будем пока вдаваться в тонкости. Мы решили привести здесь рекомендации по конфигурации четырех каналов: Foreign eXchange Office (FXO), Foreign eXchange Station (FXS), Session Initiation Protocol (SIP) и Inter-Asterisk eXchange (IAX)[53]. Были выбраны именно эти типы, потому что, бесспорно, они самые популярные из каналов, используемых в малых системах Asterisk, а одной из принципов данной книги является разумная простота. Рассматривая эти каналы, мы не стремимся к тому, чтобы дать исчерпывающий и всесторонний обзор всех типов линий или топологий, а просто представляем основную информацию, необходимую для разработки телекоммуникационной системы. Подробно конфигурация сценариев и каналов рассматривается в приложении D.
Начнем с изучения базовой конфигурации аналоговых интерфейсов, таких как порты FXS и FXO, на примере платы Digium TDM11B (которая является аналоговой платой с одним портом FXS и одним портом FXO)[54].
Далее мы коснемся нескольких интерфейсов для передачи голоса по IP-протоколу (Voice over Internet Protocol, VoIP): рассмотрим локальный канал SIP и IAX2, подключенный к программному телефону или телефонному аппарату, а также соединение двух серверов Asterisk по этим двум популярным протоколам.
Для SIP будут рассмотрены телефонные аппараты Linksys, Polycom, Aastra, Grandstream и Cisco. Приносим извинения, если в этот список не вошла используемая вами модель телефона. Однако важно то, что при всем многообразии предлагаемых этими аппаратами настраиваемых параметров обычно, чтобы устройство заработало, необходимо задать только несколько из них. Это и будет нашей целью, потому что мы считаем, что для первого раза достаточно просто привести устройство в рабочее состояние, а не выполнять полную идеальную настройку. Здесь не будут обсуждаться все функции, которые, возможно, вам хотелось бы использовать (такие, как идентификация вызывающего абонента (Caller ID) или расширенные настройки кодеков и политики безопасности), но с вашего телефона можно будет звонить и принимать звонки, а это должно заставить вас улыбнуться - хорошее состояние духа не помешает, когда мы углубимся в дебри.
Проработав эту главу, вы получите базовую систему, состоящую из нескольких полезных интерфейсов. Они обеспечат основу, необходимую для изучения файла extensions.conf (подробно обсуждаемого в главе 5), в котором хранится диалплан (фактически этот файл содержит инструкции, необходимые Asterisk для построения диалплана). Не имея аналогового оборудования, некоторые примеры будет невозможно реализовать, но все равно у вас будет сконфигурированная система, подходящая для среды, поддерживающей исключительно VoIP.
Символ звездочки (*) используется как символ подстановки во многих приложениях. Это хорошее имя для данной офисной АТС по многим причинам, одна из которых - огромное число типов интерфейсов, с которыми может соединяться Asterisk. К ним относятся:
• Аналоговые интерфейсы, такие как телефонная линия и аналоговые телефоны.
• Цифровые линии, такие как линии T1 и E1.
• Протоколы VoIP, такие как SIP и IAX1.
Asterisk не требует никакого специализированного оборудования - даже звуковой карты, - хотя естественно ожидать, что система телефонной связи должна физически соединяться с телефонной сетью. Существует множество типов канальных плат, которые обеспечивают возможность соединения Asterisk с такими устройствами, как аналоговые телефоны или PSTN-сети, но они не являются обязательным условием функционирования Asterisk. На стороне пользователя (или станции) системы может использоваться любой программный телефон Windows, Linux и других операционных систем или практически любой физический IP-телефон. То есть вопрос с телефонами системы решен. Что касается линии связи, если нет прямого подключения к центральной АТС, можно передавать звонки по Интернету с помощью провайдера сервиса VoIP.
В данной главе будет построена конфигурация Asterisk на платформе, установленной в предыдущей главе. Для первых нескольких разделов, в которых рассматриваются каналы FXO и FXS, предполагается использование комплекта TDM11B производства Digium (который поставляется с одним FXO- и одним FXS-интерфейсом). Он обеспечит возможность подключения к аналоговой сети (FXO) и аналоговому телефону (FXS). Обратите внимание, что этот аппаратный интерфейс не является обязательным; если вы хотите настроить конфигурацию для общения только по IP-протоколу, можете пропустить раздел, посвященный конфигурации SIP.
Сама по себе выполняемая здесь конфигурация не будет иметь особенного практического значения, но она станет основой для дальнейшей работы. Будут рассмотрены следующие файлы: zaptel.conf
1
Здесь будет выполнена низкоуровневая конфигурация аппаратного интерфейса. Будут настроены один канал FXO и один канал FXS. Это сконфигурирует драйвер для ядра Linux.
zapata.conf
В данном файле будет выполнена настройка взаимодействия Asterisk с оборудованием. Этот файл обеспечивает конфигурацию оборудования, используемого в пользовательском процессе Asterisk, на более высоком уровне. extensions.conf
Будут созданы достаточно примитивные диалпланы, но они подтвердят работоспособность системы. sip.conf
Здесь будет сконфигурирован SIP-протокол. iax.conf
Здесь будет выполнена конфигурация входных и выходных IAX-каналов.
Следующие разделы посвящены редактированию нескольких конфигурационных файлов. Чтобы внесенные изменения возымели действие, придется перезагрузить эти файлы. После редактирования файла zaptel.conf понадобится выполнить перезагрузку конфигурации оборудования, используя строку /sbin/ztcfg -vv (-vv можно опустить, если не нужен развернутый вывод). Изменение файла zapata.conf потребует выполнения команды module reload из консоли Asterisk; однако изменение методов обмена сигналами требует перезагрузки системы (команда restart). После редактирования файлов iax.conf и sip.conf необходимо выполнить команды iax2 reload и sip reload соответственно. Для тестирования вновь определенных устройств необходим диалплан, посредством которого могут устанавливаться соединения. Хотя диал- план Asterisk еще не рассматривался (этим мы займемся в следующей главе), для тестирования работы, выполняемой в данной главе, необходимо создать базовый файл extensions.conf.
Создайте резервную копию файла-шаблона extensions.conf (попробуйте команду bash mv extensions.conf extensions.conf.sample), затем создайте пустой файл extensions.conf (используя команду bash touch extensions.conf) и вставьте в него следующие строки:
[globals]
[general]
autofallthrough=yes
[default]
[incoming_calls]
[internal]
[phones]
include => internal
В разделе [general] задано autofallthrough=yes, что указывает Asterisk продолжать выполнение, если все действия для добавочного номера исчерпаны. Если задать этому параметру значение no, Asterisk после выполнения всех предусмотренных приоритетов будет ожидать ввода. Это значение является предпочтительным, если последним приложением, выполняемым для добавочного номера, является приложение Backg round(). Если задано значение yes (которое стало значением по умолчанию в версии 1.4), Asterisk прервет вызов после завершения выполнения Background() (после воспроизведения имеющихся звуковых файлов). Чтобы заставить Asterisk ожидать ввода номера после того, как приложение завершит воспроизведение предоставляемых ему голосовых сообщений, используется приложение WaitExten().
Не пугайтесь, если вышесказанное не имеет сейчас для вас особого смысла. Просто мы еще не рассматривали диалплан, приложения, приоритеты и добавочные номера (все это ожидает нас в следующей главе). Поэтому пока что просто задайте autofallthrough=yes. Безопаснее использовать команду autofallthrough=yes, поскольку мы не хотим, чтобы Asterisk простаивала без дела в ожидании ввода номера, если это не указано ей явно.
Контекст parkedcalls - это внутренний контекст Asterisk, заданный в файле features.conf.
Пока что это все, но данный файл будет использоваться по ходу этой главы для построения тестового диалплана, который поможет убедиться в работоспособности всех наших устройств. Также не забудьте выполнить команду dialplan reload из командной строки Asterisk, чтобы внесенные изменения вступили в силу. Проверьте свои изменения, введя в командной строке команду dialplan show:
*CLI> dialplan show
[ Context 'phones', created by 'pbx_config' ] Include => 'internal' [pbx_config]
[ Context 'internal', created by 'pbx_config' ]
[ Context 'incoming_calls', created by 'pbx_config' ]
[ Context 'default', created by 'pbx_config' ]
[ Context 'parkedcalls', created by 'res_features' ]
'700' => 1. Park((null)) [res_features]
-= 1 extension (1 priority) in 5 contexts. =-Настройка диалплана для выполнения тестовых вызовов
Теперь давайте подробнее остановимся на тестовом диалплане, о котором мы начали разговор в предыдущем разделе, - он позволит выполнять обратный вызов программного телефона, после того как тот будет настроен, и использовать приложение диалплана Echo() для тестирования двусторонней аудиосвязи. Более подробно диалпланы рассматриваются в главе 5, а пока что просто добавим выделенные курсивом строки в существующий файл extensions.conf. Мы будем использовать этот диалплан по ходу данной главы и дополнять его в определенных разделах. После ввода текста в extensions.conf диалплан необходимо перезагрузить, выполнив команду dialplan reload из консоли Asterisk: [globals]
[general]
[default]
exten => s,1,Verbose(1\Unrouted call handler)
exten => s,n,Answer()
exten => s,n,Uait(1)
exten => s,n,Playback(tt-weasels)
exten => s,n,Hangup()
[incoming_calls]
[internal]
exten => 500,1,Verbose(^Echo test application)
exten => 500,n,Echo() extern => 500,n,Hangup()
[phones]
include => internal
Каналы FXO и FXS отличаются друг от друга лишь тем, что один из них обеспечивает тональный сигнал готовности линии. FXO-порт не генерирует тонального сигнала, он его принимает. Самый простой пример - тональный сигнал, поставляемый телефонной компанией. FXS- порт обеспечивает и тональный сигнал, и напряжение сигнала вызова (звонка), предупреждающего пользователя о входящем вызове. Оба интерфейса обеспечивают двустороннюю связь (то есть передачу и прием в обоих направлениях одновременно)[55].
Если у вашего сервера Asterisk есть совместимый FXO-порт, в него можно подключить телефонную линию телефонной компании (или telco), что позволит Asterisk использовать эту телефонную сеть для отправки и приема телефонных звонков. Кроме того, если ваш сервер Asterisk имеет совместимый FXS-порт, в него можно подключить аналоговый телефон. Таким образом, Asterisk сможет направлять поступающие вызовы в телефон и вы будете способны использовать этот телефон для звонков куда-либо.
В конфигурации порты определяются протоколом обмена сигналами, который они используют, а не их физической сущностью. Например, физический FXO-порт будет определен в конфигурации протоколом обмена сигналами FXS, а FXS-порт - протоколом FXO. Это может сбивать с толку до тех пор, пока не станут ясны причины такого явления. Платы FX_ названы так не исходя из их физической сути, а соответственно тому, какие устройства подключаются к ним. Следовательно, плата FXS - это плата, подключаемая к станции (station). Таким образом, можно заметить, что, для того чтобы справится со своими задачами, плата FXS должна вести себя как центральная АТС и использовать протокол обмена сигналами FXO. Аналогично, плата FXO подключается к центральной АТС. Это означает, что она должна будет вести себя как станция и использовать протокол обмена сигналами FXS. Модем в компьютере - классический пример устройства FXO.
Более старая плата X100P производства компании Digium использовала набор микросхем Motorola, а плата X101P (которую Digium продавала до того, как полностью переключилась на TDM400P) базируется на наборе микросхем Ambient/Intel MD3200. Эти платы являются модемами с драйверами, которые можно использовать в качестве отдельного устройства FXO (интерфейс для телефонии не может использоваться как FXS-порт). От поддержки плат X101P отказались в пользу плат TDM-серий.
Эти платы (или их клоны) НЕЛЬЗЯ использовать в средах производственной эксплуатации. Ведь не просто так они стоят на eBay всего $10.
Платы X100P/X101P не годятся для производственной эксплуатации, потому что часто являются причиной возникновения эха и не дают возможности удаленного управления разъединением. Будьте благоразумны и не тратьте время на это оборудование. Если обратиться с вопросом об этих платах к сообществу, многие ответы будут недружелюбными. Мы вас предупредили.
На рис. 4.1 представлена плата TDM400P с модулями FXS и FXO. Фото черно-белое, поэтому невозможно различить цвета, но под номером 1 -FXS-модуль зеленого цвета, а под номером 2 - FXO-модуль, оранжево- красный. В нижнем правом углу рисунка можно увидеть разъем Molex, посредством которого плата подключается к блоку питания компьютера.
Начнем с конфигурации FXO-канала. Сначала сконфигурируем оборудование Zaptel, а затем - устройства Zapata. Зададим очень простой диалплан и покажем, как тестировать канал.
Подключение FXS-порта (зеленый модуль) к PSTN может привести к выходу из строя модуля и платы из-за подачи напряжения в систему, которая предназначена для его производства, а не потребления!
Рис. 4.1. Плата TDM400P с модулем FXS (1 по горизонтали) и модулем FXO (2 по горизонтали)
Если на плате TDM400P есть модули FXS, убедитесь, что вы не забыли подключить питание к разъему Molex, который используется для обеспечения напряжения, необходимого для возбуждения генератора звонка в FXS-портах. Разъем Molex не нужен, если имеются только FXO-модули.
Для конфигурации оборудования используется файл zaptel.conf, который находится в папке /etc/. Приведенная минимальная конфигурация определяет FXO-порт, использующий протокол обмена сигналами FXS:
fxsks=2
loadzone=us
defaultzone=us
В первой строке, кроме указания используемого протокола обмена сигналами (FXO или FXS), для канала 2 задается один из следующих протоколов:
• Loop start (ls)
• Ground start (gs)
• Kewlstart (ks)
Разница между loop start (кольцевая сигнализация) и ground start (сигнализация с заземлением) в том, как оборудование запрашивает тональный сигнал: линия, использующая сигнализацию с заземлением, подает сигнал дальнему концу о том, что хочет получить тональный сигнал, путем мгновенного заземления одного из проводов; линия с сигнализацией по шлейфу для запроса тонального сигнала использует замыкание. Хотя в новых системах их уже практически нет, аналоговые линии с сигнализацией с заземлением по-прежнему применяются во многих областях[56]. Сигнализация с заземлением на самом деле довольно странная штука, потому что в Asterisk нет ее аналоговой формы. Фактически передается не напряжение заземления, а сигнальный бит, предусмотренный для аналоговых сетей, присутствующих на стороне T1. Если вы чего-то здесь не понимаете, не отчаивайтесь; скорее всего, вам никогда не придется использовать сигнализацию с заземлением. Сейчас почти все линии связи (и аналоговые телефоны/модемы/ факсы) используют сигнализацию по шлейфу. Kewlstart, в сущности, - это то же самое, что и кольцевая сигнализация, за исключением того что он обладает более развернутой логикой и, таким образом, может определять отсоединение удаленного конца[57]. Kewlstart является предпочтительным протоколом обмена сигналами для аналоговых линий в Asterisk.
Чтобы определить другой метод обмена сигналами, не kewlstart, замените ks в выражении для fxsks на ls или gs (для кольцевой сигнализации или сигнализации с заземлением соответственно).
Параметр загрузки зоны loadzone задает набор сигналов (которые указаны в файле zonedata.c), используемых для канала. Файл zonedata.c содержит информацию о всевозможных звуках, воспроизводимых телефонной системой в определенной стране: тональный сигнал, сигналы дозвона, сигнал «занято» и т. д. Если применить загруженную тоновую зону к Zap-каналу, этот канал будет воспроизводить сигналы заданной страны. Для разных каналов можно задать различные наборы сигналов. Если для канала зона не задана, используется параметр зоны по умолчанию defaultzone.
После конфигурации zaptel.conf можно загрузить драйверы для платы. Команда modprobe применяется для загрузки модулей, используемых ядром Linux. Например, чтобы загрузить драйвер wctdm, нужно выполнить команду
# modprobe wctdm
Если при загрузке драйверов не выводится никаких сообщений, значит, драйверы загружены успешно[58]. Убедиться в том, что оборудование и порты были загружены и сконфигурированы правильно, можно с помощью программы ztcfg:
# /sbin/ztcfg -vv
На экран будут выведены сконфигурированные каналы и используемый метод обмена сигналами. Например, для TDM400P с одним модулем FXO будет получен такой вывод:
Zaptel Configuration Channel map:
Channel 02: FXS Kewlstart (Default) (Slaves: 02) 1 channels configured.
Если получено сообщение о следующей ошибке, для канала неправильно сконфигурирован используемый метод обмена сигналами (или отсутствует оборудование по этому адресу):
ZT_CHANCONFIG failed on channel 2: Invalid argument (22)
Did you forget that FXS interfaces are configured with FXO signaling and that FXO interfaces use FXS signaling?
(ZT CHANCONFIG дала сбой для канала 2: Недействительный аргумент (22).
Вы забыли, что FXS-интерфейсы конфигурируются на использование протокола обмена сигналами FXO и FXO-интерфейсы используют протокол FXS?) Чтобы выгрузить драйверы из памяти, используйте команду удаления модуля rmmod: # rmmod wctdm
Программа zttool является инструментом диагностики, используемым для определения статуса оборудования. Выполнив ее, мы получаем список всех установленных аппаратных средств. В этом списке можно выбирать то или иное устройство и просматривать информацию о его текущем статусе. Статус OK означает, что устройство загружено успешно:
Alarms Span
OK Wildcard TDM400P REV E/F Board 1
Asterisk использует файл zapata.conf для определения настроек и конфигурации оборудования для телефонии, установленного в системе. Файл zapata.conf также управляет различными возможностями и функциями аппаратных каналов, такими как Caller ID, отложенный вызов, эхоподавление и многие другие.
Во время конфигурации zaptel.conf и загрузки модулей Asterisk не имеет ни малейшего представления о том, что будет конфигурироваться. Необязательно, чтобы оборудование использовалось Asterisk; его с таким же успехом могло бы применять другое ПО, взаимодействующее с модулями Zaptel. С помощью zapata.conf мы сообщаем Asterisk об аппаратных средствах и управляем соответствующими функциями:
[trunkgroups]
; описание всех магистральных групп
[channels]
; аппаратные каналы
; значения по умолчанию
usecallerid=yes
hidecallerid=no
callwaiting=no
threewaycalling=yes
transfer=yes
echocancel=yes
echotraining=yes
; описание каналов
context=incoming ; Используется контекст [incoming], описанный в extensions.conf
signaling=fxs_ks ; Для канала FXO используется протокол обмена сигналами
FXS channel => 2 ; PSTN подключается к порту 2
Раздел [trunkgroups] описывает соединения, в которых множество физических линий используются как одно логическое соединение с телефонной сетью (они не обсуждаются в данной книге). Если вам необходим этот тип функциональности, в вашем распоряжении есть файл zapata.conf.sample и любимый поисковик для получения дополнительной информации.
Раздел [channels] определяет метод обмена сигналами для аппаратных каналов и их параметры. Если параметр задан, он наследуется далее по всему файлу. Для определения канала используется синтаксис channel =>. Каждое описание канала наследует все параметры, определенные в файле выше. Если для разных каналов требуется задать различные параметры, они должны задаваться перед описанием channel =>. Строка usecallerid=yes служит для активации возможности Caller ID, а строка hidecallerid=no определяет, что идентификатор вызывающего абонента не будет скрыт для исходящих вызовов. Отложенный вызов де- активирован для FXO-линии посредством строки callwaiting=no. Активация вызова с подключением третьего абонента (строка threewaycalling=yes) позволяет переводить активный вызов в состояние ожидания путем быстрого нажатия рычажного переключателя (обсуждается в главе 7). При этом текущий вызов будет отложен. После этого можно позвонить третьей стороне и подключить ее к разговору, еще раз нажав переключатель. По умолчанию возможность вызова с подключением третьего абонента деактивирована.
Разрешение переадресации вызова с помощью рычажного переключателя настраивается строкой transfer=yes; для этого требуется, чтобы была активирована возможность вызова с подключением третьего абонента. Для устранения эха, которое может возникнуть в аналоговых линиях, используется эхокомпенсатор Asterisk, он активируется строкой echocancel=yes. Эхокомпенсатору в Asterisk требуется некоторое время на изучение эха, но этот процесс можно ускорить, включив обучение эхоподавления (echotraining=yes). В этом режиме Asterisk посылает тональный сигнал в линию в начале вызова, чтобы измерить эхо, и таким образом, на его изучение уходит меньше времени. При поступлении вызова на интерфейс FXO вы захотите выполнять некоторые действия. Действия, которые будут осуществляться, задаются в блоке инструкций под названием context. Входящие вызовы FXO- интерфейса направляются в контекст incoming (входящие) посредством строки context=incoming. Команды, выполняемые в этом контексте, определены в файле extensions.conf.
Наконец, поскольку канал FXO использует протокол обмена сигналами FXS, это определено в строке signaling=fxs_ks.
Приведенный ниже простейший диалплан использует приложение Echo() для проверки работы двунаправленной связи в канале:
[incoming]
; входящие вызовы, поступающие через порт FXO,
;направляются в этот контекст из zapata.conf
exten => s,1,Answer()
exten => s,n,Echo()
Приложение Echo() будет возвращать все, что вы скажете.
Теперь, когда канал FXO сконфигурирован, протестируем его. Запустите приложение zttool и подключите линию PSTN к FXO-порту на плате TDM400P. Как только телефонная линия будет подключена к FXO-порту, красный световой индикатор погаснет. Теперь наберите номер PSTN с другого внешнего телефона (например, мобильного). Asterisk ответит на вызов и выполнит приложение Echo(). Если вы услышали в трубке свой голос, значит, FXO-канал установлен и сконфигурирован успешно.
Конфигурация канала FXS аналогична настройке канала FXO. Рассмотрим ее подробнее.
Ниже представлена минимальная конфигурация для канала FXS платы TDM400P. Эта конфигурация аналогична приведенной выше конфигурации канала FXO, добавлена только строка fxoks=1. Из наших предыдущих обсуждений вы должны помнить, что для каналов FXO и FXS используются противоположные типы протоколов обмена сигналами, поэтому для канала FXS мы зададим протокол FXO. В приведенном ниже примере канал 1 конфигурируется на использование протокола FXO с протоколом обмена сигналами kewlstart:
fxoks=1
fxsks=2
loadzone=us
defaultzone=us
После загрузки драйверов для своего оборудования можно проверить статус оборудования с помощью команды /sbin/ztcfg -vv:
Zaptel Configuration Channel map:
Channel 01: FXO Kewlstart (Default) (Slaves: 01)
Channel 02: FXS Kewlstart (Default) (Slaves: 02)
Следующая конфигурация аналогична настройке канала FXO, добавлен только раздел для FXS-порта и строка immediate=no. Контекстом FXS-порта является phones, протокол обмена сигналами - fxoks (kewlstart), номер канала - 1.
Каналы FXS можно сконфигурировать на выполнение одного из двух различных действий при снятии трубки телефона. Наиболее часто используемым (и обычно предпочтительным) вариантом для Asterisk является воспроизведение тонального сигнала готовности линии и ожидание ввода пользователя. Это действие конфигурируется строкой immediate=no. Альтернатива для Asterisk - вместо воспроизведения тонового сигнала автоматическое выполнение набора инструкций, заданных в диалплане. Такое поведение определяется строкой immediate=yes[59]. Инструкции, которые должны выполняться для канала, находятся в заданном для него контексте и будут соответствовать добавочному номеру s (обе эти темы будут обсуждаться подробнее в следующей главе).
Вот наш новый файл zapata.conf:
[trunkgroups]
; описание всех магистральных групп
[channels]
; аппаратные каналы
; значения по умолчанию
usecallerid=yes
hidecallerid=no
callwaiting=no
threewaycalling=yes
transfer=yes
echocancel=yes
echotraining=yes
immediate=no
; описание каналов
context=phones ; Используется контекст [internal], описанный в ex.tensions.conf signalling=fxo_ks ; Для канала FXS используется протокол обмена сигналами FXO
channel => 1 ; Телефон подключается к порту 1
context=incoming ; Входящие вызовы направляются в контекст [incoming],
; описанный в extensions.conf signalling=fxs_ks ; Для канала FXO используется протокол обмена сигналами FXS channel => 2 ; PSTN подключается к порту 2
Мы воспользуемся простейшим диалпланом, сконфигурированным ранее в данной главе для тестирования FXS-порта с помощью приложения Echo(). Соответствующий раздел, который уже должен присутствовать в диалплане, выглядит следующим образом:
[internal]
exten => 500,1,Verbose(1|Echo test application) exten => 500,n,Echo() exten => 500,n,Hangup()
[phones]
include => internal Приложение Echo() будет возвращать все, что вы скажете.
Протокол Session Initiation Protocol (SIP)[60], обычно применяемый в VoIP-телефонах (как аппаратных, так и программных), отвечает за установку и разъединение соединения, а также за любые изменения, происходящие во время соединения, такие как переадресации. Назначение SIP - помочь двум конечным точкам поговорить друг с другом (по возможности напрямую). Протокол SIP - это просто протокол обмена сигналами, то есть его задачей является лишь обеспечить возможность двум конечным точкам говорить друг с другом, но не работа с носителем вызова (голосом). Передача голоса осуществляется с помощью другого протокола - Real-Time Transport Protocol (транспортный протокол реального времени - RTP; RFC 3550) - для передачи медиа-данных непосредственно между двумя конечными точками.
Термин «медиа-данные» используется здесь для обозначения данных, передаваемых между конечными точками и используемых для воссоздания голоса на противоположном конце провода. Также он может использоваться в случае воспроизведения музыки или голосовых сообщений офисной АТС.
В мире SIP конечные точки называются агентами пользователя, которые могут быть двух типов: клиент и сервер. Клиент - это конечная точка, формирующая запрос, а сервер обрабатывает этот запрос и формирует ответ. Когда конечная точка желает выполнить вызов другой конечной точки (например, наш программный телефон звонит на другой программный телефон), она формирует запрос и отправляет его на прокси-сервер SIP[61]. Прокси-сервер принимает запрос, определяет его место назначения и направляет его туда. Если два агента пользователя успешно договорились и установили вызов, переносимый сигнал передается по RTP-протоколу и пересылается непосредственно от одного агента пользователя другому. SIP-прокси не обрабатывают медиа-данные; они просто работают с SIP-пакетами.
С другой стороны, Asterisk называют Back-To-Back User Agent (B2BUA). Это означает, что Asterisk действует как агент пользователя или в роли сервера (принимающий), или в роли клиента (посылающий). Итак, когда программный телефон звонит на добавочный номер, соединение устанавливается непосредственно между программным телефоном и Asterisk. Если логика, реализованная в Asterisk, определяет, что вызов адресован другому агенту пользователя, Asterisk действует как клиент и устанавливает другое соединение (известное как канал) с другим телефоном. При этом медиа-информация передается от телефона к телефону прямо через Asterisk[62]. С точки зрения телефонов они взаимодействуют непосредственно с Asterisk.
Конфигурация SIP-телефона для работы с Asterisk не требует много усилий и времени. Однако здесь можно легко запутаться из-за обилия опций как в Asterisk, так и в конфигурации конкретного телефонного аппарата или программного телефона. Добавьте к этому тот факт, что одни и те же вещи могут называться по-разному, - вот и прекрасный повод для того, чтобы впасть в отчаяние. Поэтому мы собираемся рассмотреть лишь самые основные вопросы. У тех, кто последует нашим советам, должно получиться заставить работать рассматриваемые здесь аппараты (а также уверенно справиться с неупомянутыми здесь телефонами). Мы не говорим, что это лучший или даже верный путь, но это самый простой путь. Намного проще взять уже работоспособную базу и настраивать ее, добиваясь необходимого решения.
Точно так же, как мы делали это для файла extensions.conf, выполните следующие команды в оболочке bash:
# mv sip.conf sip.conf.sample
# touch sip.conf
Если внести следующие строки в файл sip.conf, можно будет зарегистрировать телефон в системе.
[general]
[1000] type=friend context=phones host=dynamic
Несимпатично, небезопасно, не обладает гибкостью, неполнофункцио- нально, но это будет работать.
Даже несмотря на то что это SIP-устройство названо 1000 и, вероятно, ему будет присвоен именно этот добавочный номер, следует отметить, что имя устройства может быть произвольным. mysipset, john, 0004f201ab0c - все эти имена действительны, широко используются и даже, возможно, больше отвечают требованиям пользователей1. Главное, чтобы присваиваемое имя было уникальным идентификатором устройства, который станет частью мандата при выполнении вызова по каналу SIP. Поскольку мы хотим как направлять вызовы в программный телефон, так и обеспечить клиенту возможность размещать вызовы, параметр type (тип) был определен как friend (друг). Существует еще два параметра: user (пользователь) и peer (равноправный участник сети). С точки зрения Asterisk user задается для входящих вызовов, а peer - для исходящих звонков (через приложение Dial()). friend - это просто краткая запись, определяющая и пользователя, и равноправного участника. Если есть сомнения, задавайте тип friend.
Опция host (хост) используется для определения местонахождения клиента в сети, когда Asterisk необходимо направить ему вызов. Это значение может быть задано статически, например host=192.168.1.100, или, если клиент имеет динамический IP-адрес, задается host=dynamic. Если для опции host задано значение dynamic и клиент сконфигурирован для автоматической регистрации, Asterisk получит от конечной точки (то есть от телефонного аппарата или программного телефона) пакет REGISTER, из которого Asterisk сможет узнать, какой IP-адрес использует равноправный SIP-участник.
Если вы не доверяете своей сети, вероятно, следует задать пароль. Для этого в описание устройства добавляется следующая строка. Это один из тех параметров, которые не являются обязательными, но желательны:
secret=guessthis
В меню конфигурации телефона (которые могут быть предоставлены через графический веб-интерфейс пользователя, меню самого телефона или, возможно, посредством использования конфигурационных файлов, хранящихся на сервере) уникальный идентификатор (в данном случае 1000) является составной частью мандатов, используемых для процесса аутентификации. Естественно, чтобы соединение было успешным, идентификатор в Asterisk должен совпадать с идентификатором телефонного аппарата. Забавно, что формального названия для этого идентификатора не существует. Мы решили называть его просто уникальным идентификатором.
В SIP RFC (http://www.faqs.org/rfcs/rfc3261.html) в разделе 19.1 этот токен пользователя назван «идентификатором конкретного ресурса хоста, к которому выполняется обращение». Эта формулировка соответствует нашему применению [ 1000 ] в качестве идентификатора аппарата в файле Asterisk sip.conf.
Вероятно, вам привычнее было бы видеть поля user name, auth name, authentication name и т. д. Здесь необходимо помнить, что на стороне Asterisk все сконфигурировано просто и правильно и поэтому можно экспериментировать с настройками телефона, пока не будет найдена работоспособная комбинация. Такой вариант намного лучше, потому что обычно новые пользователи проходят через невероятные мучения, меняя настройки и там и тут, и не могут зарегистрировать телефон.
Повторим еще раз: задайте в sip.conf максимально простую конфигурацию Asterisk и после этого не меняйте ничего. Поверьте, то, что написано здесь, будет работать. Приведите свой телефон в рабочее состояние (то есть чтобы он мог принимать и делать вызовы) и только после этого начинайте экспериментировать с разными настройками. Мы видели слишком много страданий (включая собственные) и хотим положить им конец.
Файл sip.conf (который был скопирован в папку /etc/asterisk с помощью команды make samples в предыдущей главе) содержит большое количество опций и документации, но сам файл на самом деле очень небольшой, если убрать из него все закомментированные параметры. Стандартный файл сводится всего лишь к следующим нескольким строкам, незакомментированным по умолчанию: [general]
context=default ; Контекст по умолчанию для входящих ; вызовов
allowoverlap=noallowoverlap=no | Отключить поддержку набора номера |
в режиме overlap. | |
(Значение по умолчанию - yes) | |
bindport=5060 | Используемый UDP-порт 5060 (стандартный SIP-порт) bindport - локальный UDP-порт, который будет слушать Asterisk |
bindaddr=0.0.0.0 | Используемый IP-адрес 0.0.0.0 (все доступные адреса) |
srvlookup=yes | Активировать поиск DNS SRV-записей для исходящих вызовов Примечание: Asterisk использует только первый хост в SRV-записях Деактивация поиска DNS SRV-записей отключает возможность размещать SIP-вызовы к другим SIP-пользователям в Интернете на основании доменных имен |
[authentication] |
В разделе [general] находятся опции, которые будут применяться ко всем клиентам и каналам SIP. Некоторые настройки задаются только в разделе [general], другие могут задаваться в разделе [general] как применяемые по умолчанию для всех условных инструкций и могут быть переопределены в другом месте. Эти опции перечислены в столбцах [users] и [peers] под заголовком [authentication].
Как правило, закомментированные опции являются используемыми Asterisk по умолчанию или значение по умолчанию указано в описании опции.
Также можно проверить текущее состояние SIP-канала в Asterisk с помощью CLI-команды sip show settings.
Если Asterisk и программный телефон выполняются в одной системе (то есть программный телефон X-Lite и Asterisk выполняются на портативном или настольном компьютере), придется изменить SIP-порт, который слушает клиент. Его надо будет заменить с 5060 на 5061 (или любой другой свободный порт), чтобы Asterisk и программный телефон не мешали друг другу.
Перед тем как углубиться в описание следующих файлов, осталось определить еще несколько параметров на сервере. Выполнение соответствующих сервисов в собственной сети обеспечит возможность автоматической настройки аппаратов Polycom при их подключении. Работыздесь немного, и, поверьте, результат того стоит. Потренируйтесь немного - и в будущем для любой новой системы на это будет уходить лишь несколько минут, что сохранит вам массу времени и избавит от «борьбы» с веб-интерфейсами. Когда вы возьмете новенький телефон Polycom, подключите его в свою сеть, посмотрите, как он сам себя настроит и успешно зарегистрируется на сервере Asterisk, вы испытаете наслаждение, которое доступно только истинным компьютерщикам1. На самом деле все не так сложно. На наш взгляд, можно запутаться только в доступных вам способах, потому что их выбор действительно огромен.
Обычно DHCP-сервер используется для конфигурации основных настроек протокола IP для устройства (IP-адрес, шлюз по умолчанию и DNS), но протокол DHCP (Dynamic Host Configuration Protocol - протокол динамической конфигурации хоста) на самом деле может передавать множество других параметров. В нашем случае мы хотим, чтобы он передал в телефонные аппараты некоторую информацию с указанием, откуда они могут загрузить конфигурационные файлы. Вот пример настроек DHCP-сервера Linux, которые обеспечат то, что нам требуется:
ddns-update-style interim;
ignore client-updates;
subnet 192.168.1.0 netmask 255.255.255.0 { option routers 192.168.1.1; option subnet-mask 255.255.255.0; option domain-name-servers 192.168.1.1; option ntp-servers pool.ntp.org; option time-offset -18000;
range dynamic-bootp 192.168.1.128 192.168.1.254;
default-lease-time 21600;
max-lease-time 43200;
}
Помните, здесь предполагается, что все устройства данной сети относятся к телефонной системе (при такой настройке IP-адрес предоставляется любому запрашивающему его устройству). Для более сложного окружения придется сконфигурировать демон DHCP для обработки различных обслуживаемых им устройств. Например, можно придумать диапазон IP-адресов, которые будут использоваться только для телефонов Polycom в локальной телефонной сети. Поскольку уникальный идентификатор организации (Organizationally Unique Identifier, OUI) всех IP-телефонов Polycom для настольных компьютеров - 00:04: f2, исходя из этого можно выбрать диапазон.
В DHCP-средах Microsoft имя tftp-сервера называют именем хоста сервера загрузки (Boot server host name). Оно определено как опция 66.
DHCP-протокол намного более гибок, чем часто кажется на первый взгляд, потому что в большинстве сред он не используется для выполнения сложных задач подготовки к работе. Приложив немного усилий и внимания, можно разработать такую среду DHCP, которая будет обслуживать и телефонные устройства, и устройства работы с данными и существенно упростит работу по администрированию при введении новых устройств.
В настоящее время мы предпочитаем использовать для конфигурации аппаратов Polycom протокол FTP (File Transfer Protocol - протокол передачи файлов)1. Мы бы рекомендовали выбрать его, а не TFTP и для устройств, которые могут работать с обоими протоколами. В системе CentOS при выполнении следующей команды будет установлен VSFTPD, Very Secure FTP Daemon (очень безопасный демон FTP):
# yum -y install vsftpd
Затем для обеспечения защиты необходимо предотвратить анонимные входы в систему. Для этого вносим простое изменение в конфигурационный файл vsftpd, находящийся в папке /etc/vsftpd/vsftpd.conf:
# anonymous_enable=NO
Перезапустите сервер с помощью команды service vsftpd restart. Чтобы гарантировать запуск демона после каждой перезагрузки, выполняем команду chkconfig vsftpd on.
Теперь необходимо создать пользовательскую учетную запись и группу, которые будут использоваться для телефонных аппаратов. В данном случае мы создадим учетную запись для аппаратов Polycom.
# groupadd PlcmSpIp
# useradd PlcmSpIp -g PlcmSpIp -p PlcmSpIp
# passwd PlcmSpIp
Задаем пароль PlcmSpIp (стандартный пароль FTP для аппаратов Polycom). Его можно изменить, но после этого придется вручную настраивать каждый аппарат, чтобы сообщить ему его нестандартные учетные данные[63].
Для большей безопасности убедимся, что FTP-сервер хранит эту учетную запись в «темнице» chroot:
# echo PlcmSpIp >> /etc/vsftpd/vsftpd.chroot_list
Вот примерно то, что должно быть сделано, чтобы подготовить операционную систему к предоставлению необходимых сервисов телефонам. В следующих нескольких разделах даются рекомендации для различных популярных SIP-телефонов. Выберите самый подходящий раздел исходя из того, какой телефон вы собираетесь использовать (неважно, будет ли это аппаратный или программный телефон). Вы заметите, что всем этим телефонам мы присвоили один и тот же уникальный идентификатор. Если планируется установка нескольких телефонов, каждому из них должно быть дано уникальное имя. И не забудьте внести описания этих устройств в файл sip.conf.
Программный телефон X-Lite компании CounterPath стал очень популярным в сообществе разработчиков Asterisk. Он прост, функционален, приятен на вид и, что самое главное, распространяется бесплатно. В этом разделе мы займемся конфигурацией программного телефона X- Lite для подключения к Asterisk. IP-адрес этого телефона - 192.168.1.250, Asterisk располагается по адресу 192.168.1.100. Доступен X-Lite для Microsoft Windows, Mac и Linux. Копию X-Lite можно скачать по адресу http://www.counterpath.com/index.php?menu=download.
Теперь давайте сконфигурируем программный телефон для установления соединения с сервером Asterisk. Чтобы сконфигурировать X-Lite, нажмите кнопку Settings (Настройки), которая показана на рис. 4.2. Выберите пункты System Settings ^ SIP Proxy ^ [Default] (Настройки системы ^ SIP-прокси ^ [По умолчанию]). При этом на экран будет выведена стандартная конфигурация программного телефона. Измените настройки, как показано на рис. 4.3.
Если система Asterisk не запущена, запустите ее сейчас (информацию по установке и запуску Asterisk можно найти в главе 3). Если Asterisk выполняется в фоновом режиме, вызвать ее CLI можно, выполнив следующую команду:
# asterisk -rvvv
■ Кнопка Settings
Рис. 4.3. Пользовательская конфигурация X-Lite
CLI Asterisk будет предоставлен следующим образом:
*CLI>
Рис. 4.2. Конфигурация X-Lite
Если Asterisk уже была запущена до изменения sip.conf, как рекомендуется в данной главе, перезагрузите диалплан и SIP-канал с помощью следующих двух команд:
*CLI> dialplan reload *CLI> sip reload
В клиенте программного телефона X-Lite закройте окно Settings (Настройки), щелкая по кнопке BACK (НАЗАД) до тех пор, пока не будут закрыты все окна. Вы должны увидеть, что X-Lite пытается зарегистрироваться в Asterisk, и в случае успеха в CLI Asterisk будет выведено следующее:
- Registered SIP '1000' at 192.168.1.250 port 5061 expires 3600 Проверить статус регистрации можно в любой момент следующим образом:
*CLI> sip show peers
Name/username Host Dyn Nat ACL Port Status
1000/1000 192.168.1.250 D N 5061 OK (63 ms)
1 sip peers [1 online , 0 offline]
Более подробная информация, представленная ниже, может быть получена с помощью команды sip show peer 1000: *CLI> sip show peer 1000
* Name | 1000 |
Secret : | |
MD5Secret | |
Context | phones |
Subscr.Cont. | |
Language | |
AMA flags | Unknown |
Transfer mode | open |
CallingPres | Presentation Allowed, Not Screened |
Callgroup : | |
Pickupgroup : | |
Mailbox : | |
VM Extension | asterisk |
LastMsgsSent : | 32767/65535 |
Call limit : | 0 |
Dynamic : | Yes |
Callerid : | "" <> |
MaxCallBR | 384 kbps |
Expire : | 1032 |
Insecure : | no |
Nat : | RFC3581 |
ACL : | No |
T38 pt UDPTL | No |
CanReinvite : | Yes |
PromiscRedir : | No |
User=Phone | No |
Video Support | No |
Trust RPID : | No |
Send RPIDSend RPID | No |
Subscriptions : | Yes |
Overlap dial : | Yes |
DTMFmode | rfc2833 |
LastMsg : | 0 |
ToHost | |
Addr->IP | 192.168.1.250 Port 5061 |
Defaddr->IP : | 0.0.0.0 Port 5060 |
Def. Username | 1000 |
SIP Options : | (none) |
Codecs : | 0x8000e (gsm|ulaw|alaw|h263) |
Codec Order : | (none) |
Auto-Framing : | No |
Status : | Unmonitored |
Useragent | X-Lite release 1105d |
Reg. Contact | sip:1000@192.168.1.250:5061 |
Многие считают, что конфигурировать телефоны Polycom сложно. Насколько нам известно, такие выводы делаются по двум причинам: 1) ужасный веб-интерфейс Polycom, или 2) тяжелый и запутанный процесс автоматической подготовки к работе.
Что касается пункта 1, мы согласны. Веб-интерфейс телефонов Polycom является одним из самых неприятных веб-интерфейсов из всех, когда- либо созданных для IP-телефонов. Мы его не используем и вам не советуем[64].
Итак, нам остается только кое-какая конфигурация с использованием сервера. К счастью, в этом отношении IP-телефоны Polycom просто великолепны, настолько, что им даже можно простить веб-интерфейс. Конфигурации телефонов хранятся в файлах на сервере. Каждый телефон находит сервер, загружает с него соответствующие файлы и применяет их к себе.
Если вы не можете управлять используемым DHCP-сервером, вам придется вручную вводить в телефон информацию о FTP-сервере. Для этого необходимо перезагрузить телефон, нажать кнопку setup (настройка) до того, как телефон начнет процесс загрузки, и задать адрес FTP-сервера в небольшом меню загрузки, предлагаемом этим типом телефонов.
Телефоны Polycom могут загружать свою конфигурацию по одному из трех протоколов: TFTP, HTTP и FTP.
Сразу же хотим попросить избегать TFTP. Он не обеспечивает необходимой безопасности, и телефон не может использовать информацию о дате для определения того, какие версии файлов являются самыми последними. Этот протокол работает, но есть лучшие способы, и мы здесь не собираемся обсуждать TFTP.
Телефоны Polycom могут извлекать свои данные конфигурации и с помощью HTTP, но он не получил широкого распространения, и мы также не собираемся останавливаться на нем.
В настоящее время FTP является предпочтительным методом получения телефонами Polycom своей конфигурации. Он прекрасно работает, его довольно просто конфигурировать, и он получил хорошую поддержку сообщества.
В настоящее время FTP - наш любимый способ конфигурации телефонов Polycom. В системе CentOS при выполнении следующей команды будет установлен VSFTPD, Very Secure FTP Daemon:
# yum -y install vsftpd
Затем для обеспечения защиты необходимо предотвратить анонимные входы в систему. Для этого вносим простое изменение в конфигурационный файл vsftpd, находящийся в папке /etc/vsftpd/vsftpd.conf:
# anonymous_enable=NO
Перезапустите сервер с помощью команды service vsftpd restart. Чтобы гарантировать запуск демона после каждой перезагрузки, выполняем команду chkconfig vsftpd on.
Теперь необходимо создать пользовательскую учетную запись и группу, которые будут использоваться для телефонных аппаратов Polycom:
# groupadd PlcmSpIp
# useradd PlcmSpIp -g PlcmSpIp -p PlcmSpIp
# passwd PlcmSpIp
Задаем пароль PlcmSpIp (стандартный пароль FTP для аппаратов Polycom). Его можно изменить, но после этого придется вручную настраивать каждый аппарат, чтобы сообщить ему его нестандартные учетные данные[65].
Для большей безопасности убедимся, что FTP-сервер хранит эту учетную запись в «темнице» chroot:
# echo PlcmSpIp >> /etc/vsftpd/vsftpd.chroot_list Вот примерно то, что должно быть сделано, чтобы подготовить операционную систему к предоставлению необходимых сервисов телефонам.
Хотя кажется, что разных файлов, которые необходимы для подготовки к работе телефона Polycom, так много, разобраться с ними довольно просто.
bootROM. Лучше всего охарактеризовать этот файл как BIOS и операционную систему телефона. Вероятно, можно дать и более формальное определение, но зачем усложнять? bootROM не нужно регулярно обновлять, но лучше отслеживать выпускаемые версии на тот случай, если в более новом bootROM появятся полезные в вашей среде возможности. Этот файл будет называться bootrom.ld.
Образ приложения. Поскольку телефоны Polycom могут поддерживать другие протоколы VoIP (например, поддерживается MGCP (Media Gateway Control Protocol - протокол контроля медиа-шлюзов)), протокол, который будет использовать данный телефон, является частью образа приложения, загружаемого и выполняемого телефоном. Если в телефоне уже имеется соответствующий образ, этот файл на FTP-сер- вере фактически не нужен; однако обычно он доступен, чтобы обеспечить телефонам возможность получить последнюю версию протокола. К вам могут попасть телефоны, использующие не последнюю версию, поэтому наличие образа с текущей версией протокола гарантирует, что все телефоны будут отвечать самым последним требованиям. Файл sip.cfg file. Обычно в системе имеется только одна версия этого файла, но ему может быть присвоено любое имя, поэтому его версий может быть столько, сколько потребуется. Например, если в организации в ходу два языка, некоторые пользователи могут предпочесть использовать в своих телефонах французский, другие - английский. В этом случае для каждого варианта пришлось бы создать два файла: french.sip.conf и english.sip.conf. Этот файл можно назвать как угодно, но лучше выбирать имя, имеющее смысл, чтобы в будущем администраторы могли понять, почему были приняты именно такие проектные решения.
Основной конфигурационный файл для каждого телефона. Это очень простой и небольшой файл. Его имя соответствует MAC-адресу телефона (то есть у каждого телефона должна быть собственная копия этого файла). Из этого файла телефон получает информацию о том, какие еще файлы необходимо загрузить, чтобы выполнить свою конфигурацию. Этот конфигурационный файл все телефоны читают первым. В нем находится ссылка на образ приложения, который будет использовать данный телефон (в настоящее время названный sip.ld), а также имена XML-файлов, содержащих параметры для этого телефона (файлы .cfg). Основной конфигурационный файл телефона может выглядеть так:
'' ''
'' '' ^APPLICATION APP_FILE_PATH="sip.ld" CONFIG_FILES="phone1.cfg, sip.cfg" MISC_FILES="" LOG_FILE_DIRECTORY="" OVERRIDES_DIRECTORY="" CONTACTS_DIRECTORY="" />'
Обратите внимание на имя файла приложения, которое должен будет использовать данный телефон, и конфигурационные файлы, которые он будет пытаться найти и применить.
Специальный конфигурационный файл телефона. Мы рекомендуем присваивать файлам phone1.cfg имена, имеющие смысл. Например, SET
Сбои. Настройки, заданные непосредственно в телефоне, будут храниться в файловой системе телефона и могут иметь приоритет перед параметрами конфигурационных файлов. Если возникают проблемы с внесением изменений в телефон, попытайтесь переформатировать его. Это заставит его принять параметры, содержащиеся в конфигурационных файлах.
Почтенный старец C7960 - сейчас уже часть истории VoIP. Это один из первых SIP-телефонов, к которому действительно можно было относиться серьезно. Единственное, на что можно пожаловаться, - его цена. Это «Cadillac» среди SIP-телефонов (в том смысле, что у них есть всякие прибамбасы, но это не оправдывает их цены и иногда они немного старомодны).
Если вы можете достать один из них, вы получите превосходный SIP- телефон. Если покупаете новый, будьте готовы выложить кругленькую сумму.
Один из аспектов несоответствия этого телефона духу времени - возможность удаленной подготовки к работе только посредством TFTP. TFTP потерял доверие сетевых специалистов из-за отсутствия поддержки аутентификации и шифрования, но поскольку это единственный способ удаленно настроить данный телефон, нам придется использовать демон tftp-сервера. Установить tftp-сервер можно с помощью следующей команды:
# yum install -y tftp-server После установки TFTP-сервер необходимо активировать. Для этого в файле /etc/xinetd.d/tftp строку disable=yes меняем на disable=no.
service tftp {
socket_type | = dgram |
protocol | = udp |
wait | = yes |
user | = root |
server | = /usr/sbin/in.tftpd |
server_args | = -s /tftpboot |
disable | = no |
per_source | = 11 |
cps | = 100 2 |
flags | = IPv4 |
Затем запускаем TFTP-сервер, выполнив команду
# service xinetd restart
Проверить, выполняется ли сервер, можно с помощью следующей команды:
# chkconfig --list | grep tftp
tftp: on
Поскольку возвращено tftp: on, сервер активирован и выполняется.
Телефоны Cisco по умолчанию загружаются с собственным протоколом связи, SCCP (или Skinny). Мы покажем, как конфигурировать телефон, но из-за узкоспециализированности " Cisco и ее телефонов вам понадобится получить встроенные программы SIP у своего провайдера услуг связи. Также для Asterisk существует две реализации: модули chan_sccp и chan_ skinny, - но их рассмотрение выходит за рамки данной книги.
Мы зарегистрируем наш телефон Cisco как SIP-клиента для станции, которую мы сконфигурировали в разделе «Конфигурация оборудования Zaptel». Следующий конфигурационный файл следует сохранить под именем SIP
# Конфигурация линии 1 line1_name: "1000" line1_authname: "1000" line1_shortname: "Jimmy Carter" line1_password: "" line1_displayname: ""
# Имя телефона, которое отображается в верхнем правом углу дисплея телефона phone_label: "aristotle" ; Не оказывает влияния на обмен сообщениями по протоколу SIP
# Пароль, используемый для доступа к телефону через консоль или по протоколу telnet, не более 31 символа
phone_password: "cisco"
Затем в файле SIPDefault.cnf, также находящемся в папке /tftpboot/ сервера, задаем адрес для регистрации. proxy1_address (адрес прокси1) будет содержать IP-адрес вашего сервера Asterisk, на котором телефон должен зарегистрироваться для линии 1. Параметр image_version (версия образа) указывает версию файлов .loads и .sb2, загружаемую телефоном в память.
image_version: P0S3-08-4-00 proxy1_address: 192.168.1.100
Нам нужен один дополнительный файл, OS79XX.TXT. В нем есть лишь одна строка - версия файлов .bin и .sbn, которая должна быть загружена в память:
P003-08-4-00
Чтобы наш Cisco 7960 использовал эти файлы, мы должны указать ему, откуда он может взять свою конфигурацию. Если используется DHCP-сервер вашего Linux-сервера, сделать это можно, добавив в файл /etc/dhcpd.conf строку
option tftp-server-name "192.168.1.100"; которая содержит IP-адрес сервера, являющегося хостом для TFTP- сервера (предполагается, конечно, что TFTP-сервер сконфигурирован по этому адресу. Этот адрес использовался для нашего Asterisk-серве- ра, и опять мы предполагаем, что TFTP-сервер установлен на одном сервере с Asterisk). Подробнее о конфигурации DHCP-сервера рассказывалось в разделе «DHCP-сервер»: ddns-update-style interim; ignore client-updates;
subnet 192.168.1.0 netmask 255.255.255.0 { option routers 192.168.1.1; option subnet-mask 255.255.255.0; option domain-name-servers 192.168.1.1; option tftp-server-name "192.168.1.100"; option ntp-servers pool.ntp.org; option time-offset -18000;
range dynamic-bootp 192.168.1.128 192.168.1.254; default-lease-time 21600; max-lease-time 43200;
}
В качестве альтернативы можно выполнить настройку с само-Лу го телефона и вручную задать использование альтернативно-I I I' я
" * го, а не предоставляемого DHCP-сервером, TFTP-сервера. Для этого нажмите кнопку settings (настройки) (на моделях G телефонов Cisco она выглядит как квадратик с галочкой внутри; G означает Global). Затем понадобится разблокировать настройки, нажав кнопку 9. Пароль по умолчанию - cisco. Как только телефон будет разблокирован, нажмите кнопку 3 номеронабирателя, чтобы войти в раздел Network Configuration (Настройки сети). С помощью прокрутки перейдите вниз к опции 32, Alternate TFTP (Альтернативный TFTP), и задайте для нее значение YES. Затем поднимитесь к опции 7 и введите IP-адрес TFTP-сервера, с которого вы хотите загружаться. Подтвердите настройки и выйдите из меню, пока телефон перезагружается. Также, используя комбинацию кнопок *+6+settings, можно перезагружать телефон в любое время.
Понаблюдать за тем, как телефон извлекает конфигурацию с TFTP- сервера, можно с помощью команды tshark (yum install ethereal). Задайте фильтрацию по порту 69 следующим образом: # tshark port 69
Это позволит просматривать сетевой трафик телефона, запрашивающего данные с TFTP-сервера.
Если все пройдет успешно, вы увидите, что ваш телефон зарегистрировался в Asterisk!
С момента приобретения Sipura Technologies компания Linksys выпускает недорогие VoIP-телефоны и аналоговые терминальные адаптеры (ATA). Linksys многое позаимствовала у Cisco. Почитайте книгу Клейтона М. Кристенсена (Clayton M. Christensen) «The Innovator's Dilemma» (издательство HarperCollins), и стратегия Cisco относительно Linksys станет для вас яснее.
Продукты Linksys (и Sipura) снискали славу за свое превосходное качество, особенно с учетом цены, но они известны также тем, что их ужасно сложно настраивать.
Это, главным образом, объясняется тем, что их GUI конфигурации предлагает сотни настраиваемых параметров.
Но нас это не волнует. Вот то, что необходимо знать, чтобы настроить SPA-942 (и, надеемся, большинство VoIP-устройств Linksys) для работы с системой Asterisk.
Как выполнить вход в телефон
Прежде всего необходимо получить IP-адрес телефона, чтобы можно было войти в его GUI. На самом телефоне найдите кнопку со значком,
Рис. 4.4. Клавиатура SPA-942
который выглядит как листок бумаги с загнутым углом (сразу под кнопкой с конвертом). Это кнопка Settings (Настройки) - рис. 4.4.
Чтобы получить IP-адрес телефона, нажмите кнопку Settings (Настройки), а затем - кнопку 9 (или используйте кнопку со стрелками и с помощью прокрутки перейдите к пункту Network (Сеть)). После этого нажмите кнопку select (выбрать) (под жидкокристаллическим дисплеем располагается ряд из 4 кнопок, select - крайняя слева). Во втором поле должен быть указан IP-адрес телефона.
Теперь откройте броузер, введите IP-адрес в адресную строку, нажмите кнопку Enter (Ввод) - и вы увидите окно Info (Информация) телефона.
В верхнем правом углу экрана выберите ссылку Admin Login (Вход под учетной записью администратора). При этом появится несколько новых вкладок, таких как Regional (Региональные), Phone (Телефон), Ext 1, Ext 2 и User (Пользователь).
Выберите вкладку Ext 1, с помощью которой мы выполним настройку первой линии. Выберите в меню следующие опции:
# General ^ Line Enable ^ yes (Общие ^ Линия доступна ^ да).
# NAT Settings ^ NAT Mapping Enable ^ no (Настройки NAT ^ Отображение NAT доступно ^ нет).
# NAT Settings ^ NAT Keep Alive Enable ^ no (Настройки NAT ^ Поддержка NAT доступна ^ нет).
# Proxy and Registration ^ Proxy ^ [Введите IP-адрес Asterisk (например, 192.168.1.100)] (Прокси и регистрация ^ Прокси ^ [Введите IP-адрес Asterisk]).
# Proxy and Registration ^ Register ^ yes (Прокси и регистрация ^ Регистрация ^ да).
# Proxy and Registration ^ Make Call Without Reg ^ no (Прокси и регистрация ^ Звонить без регистрации ^ нет).
# Proxy and Registration ^ Ans Call Without Reg ^ no (Прокси и регистрация ^ Отвечать на звонок без регистрации ^ нет).
# Subscriber Information ^ Display Name ^ Caller ID information (Информация об абоненте ^ Отображать имя ^ Информация об ID звонящего).
# Subscriber Information ^ User ID ^ 1000 (Информация об абоненте ^ ID пользователя ^ 1000).
# Subscriber Information ^ Password ^ [Оставьте незаполненным, если используете простую конфигурацию, описанную ранее в этой главе] (Информация об абоненте ^ Пароль ^ [Оставьте незаполненным, если используете простую конфигурацию, описанную ранее в этой главе]).
# Subscriber Information ^ Use Auth ID ^ yes (Информация об абоненте ^ Использовать ID авторизации ^ да).
# Subscriber Information ^ Auth ID ^ 1000 (Информация об абоненте ^ ID авторизации ^ 1000).
# Audio Configuration ^ Preferred Codec ^ G711u (Конфигурация аудио ^ Предпочтительный кодек ^ G711u).
# Audio Configuration ^ Use Pref Codec Only ^ no (Конфигурация аудио ^ Использовать только предпочтительный кодек ^ нет).
# Audio Configuration ^ Silence Supp Enable ^ no (Конфигурация аудио ^ Поддержка тишины доступна ^ нет).
# Audio Configuration ^ DTMF Tx Method ^ Auto (Конфигурация аудио ^ Метод DTMF Tx ^ Автоматически).
# Подтвердите все изменения
И это все! Теперь ваш телефон должен быть зарегистрирован в Asterisk. Вы узнаете об этом по кнопке-индикатору, расположенному рядом с жидкокристаллическим дисплеем, - он изменит цвет с оранжевого на зеленый.
Конфигурация диалплана для выполнения тестирования
Чтобы ваш телефон мог звонить на другие телефоны (или, для многоканального телефона, звонить самому себе), необходимо внести изменения в файл extensions.conf. Взяв за основу то, что было сделано в разделе «Настройка диалплана для выполнения тестовых вызовов», добавим следующие строки в контекст [internal]: exten => 1000,1,Verbose(1|Extension 1000) exten => 1000,n,Dial(SIP/1000,30) exten => 1000,n,Hangup()
Если имеется два телефона или сконфигурировано несколько линий, можно продублировать предыдущие настройки, заменив 1000 на другой добавочный номер.
С появлением интернет-телефонии по всему миру возникло множество телефонных компаний, использующих интернет-технологии! Поэтому выбор у нас огромен. Многие из этих поставщиков сервисов обеспечивают возможность подключения частной Asterisk-системы к их сетям[66], а некоторые даже используют Asterisk сами!
Следующая конфигурация должна обеспечить подключение к поставщику сервисов интернет-телефонии (Internet Telephony Service Provider, ITSP)[67], хотя невозможно предугадать, какую конфигурацию потребует конкретный поставщик. В идеале поставщик сам предоставит вам настройки, которые необходимы для подключения вашей системы. Однако не все поддерживают Asterisk, поэтому мы собираемся предложить универсальную конфигурацию, на выполнение которой уйдет лишь несколько минут и которая должна помочь вам:
[мой_поставщик_услуг]
type=peer
host=10.251.55.100
fromuser=мой_уникальный_id
secret=мой_секретный пароль
context=incoming_calls
dtmfmode=rfc2833
disallow=all
allow=gsm
allow=ulaw
Если межсетевой экран ip-таблиц используется на одном компьютере с сервером Asterisk, выполнив следующие команды, можно открыть порт 5060 для обмена сигналами по протоколу SIP и порты от 10000 до 20000 для RTP-трафика. Также диапазон RTP-портов можно сузить в файле rtp.conf, находящемся в папке /etc/asterisk. Замечательная книга по организации межсетевых экранов с помощью ip-таблиц - «Linux Firewalls» (издательство Novell Press) Стива Суэринга (Steve Suehring) и Роберта Циглера (Robert Ziegler).
# iptables -I RH-Firewall-1-INPUT -p udp --dport 5060 -j ACCEPT
# iptables -I RH-Firewall-1-INPUT -p udp --dport 10000:20000 -j ACCEPT
# service iptables save
Помните, что это откроет порты 5060 и от 10000 до 20000 для всего UDP-трафика из любого источника.
deny=0.0.0.0/0
permit=10.251.55.100/32
insecure=invite
Большинство приведенных настроек должны быть вам знакомы, но если нет, далее дается их краткое описание.
Задавая тип peer, мы указываем Asterisk, что при получении сообщения INVITE (Приглашение) (когда поставщик присылает вызов) нужно сравнивать не имя [мой поставщик сервисов], а IP-адрес, указанный в этом сообщении. Параметр host - это IP-адрес, на который мы будем направлять наши вызовы, и этот IP-адрес будет сопоставляться при получении вызова от поставщика.
Параметр fromuser (от пользователя) влияет на то, как структурировано наше сообщение INVITE при отправке вызова поставщику сервисов.
Некоторые поставщики услуг для отправки своих вызовов могут использовать вместо протокола Session Initiation Protocol множество IP-адресов, требуя от вас создания отдельной учетной записи типа peer для каждого IP-адреса. Если известны не все IP-адреса, вероятно, придется сравнивать имена пользователей. В этом случае потребуется лишь немного изменить формат описания поставщика сервисов. Самое большое изменение, на которое следует обратить внимание, - то, что вам понадобится задать [заголовок_поставщика_услуг] как имя пользователя, которому ваш поставщик сервисов собирается направлять вызовы. Также мы изменили тип peer (равноправный) на friend (дружественный), что с точки зрения Asterisk создает типы и user (пользователь), и peer, где тип user будет сравниваться раньше peer: [мой_уникальный_id] type=friend host=10.251.55.100 fromuser=мой_уникальный_id secreЛ=мой_секретный пароль context=incoming_calls dtmfmode=rfc2833 disallow=all allow=gsm allow=ulaw insecure=invite
Обратите внимание, что удалены параметры deny (отклонить) и permit (разрешить), поскольку IP-адреса, с которых будут поступать вызовы, могут быть неизвестны. Если вдруг эти адреса известны и вы по-прежнему хотите сравнивать их, параметры deny и permit для IP-адресов можно восстановить.
Если имя пользователя задано в параметре fromuser, при отправке вызова поставщику меняются поля From: (От:) и Contact: (Контакт:) сообщения INVITE. Этого может требовать сам поставщик, если он использует эти поля в процедуре аутентификации. То, где Asterisk меняет заголовок, можно увидеть в следующих двух фрагментах кода.
Без параметра fromuser:
Audio is at 66.135.99.122 port 18154
Adding codec 0x2 (gsm) to SDP
Adding codec 0x4 (ulaw) to SDP
Adding non-codec 0x1 (telephone-event) to SDP
Reliably Transmitting (no NAT) to 10.251.55.100:5060:
INVITE sip:15195915119@10.251.55.100 SIP/2.0
Via: SIP/2.0/UDP 66.135.99.122:5060;branch=z9hG4bK32469d35;rport
From: "asterisk"
To:
Contact:
Call-ID: 58e3dfb2584930cd77fe989c00986584@66.135.99.122
CSeq: 102 INVITE
User-Agent: Asterisk PBX
Max-Forwards: 70
Date: Fri, 20 Apr 2007 14:59:24 GMT
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY Supported: replaces Content-Type: application/sdp Content-Length: 265
С параметром fromuser:
Audio is at 66.135.99.122 port 11700
Adding codec 0x2 (gsm) to SDP
Adding codec 0x4 (ulaw) to SDP
Adding non-codec 0x1 (telephone-event) to SDP
Reliably Transmitting (no NAT) to 10.251.55.100:5060:
INVITE sip:15195915119@10.251.55.100 SIP/2.0
Via: SIP/2.0/UDP 66.135.99.122:5060;branch=z9hG4bK635b0b1b;rport
From: "asterisk"
To:
Contact:
Call-ID: 0c7ad6156f92e70b1fecde903550a12f@66.135.99.122
CSeq: 102 INVITE
User-Agent: Asterisk PBX
Max-Forwards: 70
Date: Fri, 20 Apr 2007 15:00:30 GMT
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY Supported: replaces Content-Type: application/sdp Content-Length: 265
Параметры deny и permit используются для отклонения всех входящих вызовов к этому участнику сети от всех IP-адресов, кроме заданного параметром permit. Это просто мера безопасности, которая обеспечивает поступление к данному участнику сети трафика только с ожидаемого IP-адреса.
В конце видим выражение insecure=invite, которое может быть необходимо для вашего поставщика, потому что источник сообщения INVITE может находиться на платформе сервера, но передаваться через его прокси-сервер SIP. По сути, это означает, что в строке Contact (Контакт) (поле сообщения INVITE, которое вы проверяете при приеме вызова от своего поставщика) может быть совсем не тот IP-адрес, по которому находится участник сети. Это выражение указывает Asterisk игнорировать данное несоответствие и принимать приглашение в любом случае.
Возможно, понадобится задать и invite=invite,port, если адрес порта также не соответствует тому, что ожидает Asterisk.
Теперь в разделе [general] файла sip.conf требуется задать один дополнительный параметр: register. register (реестр) укажет поставщику сервисов, куда направлять адресованные нам вызовы. Так Asterisk говорит поставщику сервисов: «Эй! Если ты получил вызов ко мне, пошли его на IP-адрес 10.251.55.100». Параметр register имеет следующий вид:
register => имяпользователя:секрет@мой.поставщик_сервисов.Ш Теперь осталось только сконфигурировать простой диалплан для обработки входящих вызовов и отправки вызовов через поставщика сервисов. Мы собираемся внести коррективы в диалплан, который начали создавать в разделе «Настройка диалплана для выполнения тестовых вызовов» данной главы. Строки, выделенные курсивом, - это новые части, добавленные в диалплан. Все остальное взято без изменений из предыдущего раздела[68].
[globals] [general] [default]
exten => s,1,Verbose(1|Unrouted call handler)
exten => s,n,Answer()
exten => s,n,Wait(1)
exten => s,n,Playback(tt-weasels)
exten => s,n,Hangup()
[incoming_calls]
exten => _X.,1.NoOp()
exten => _X.,n,Dial(SIP/1000)
[outgoing_calls] exten => _X.,1,NoOp()
exten => X.,n,Dial(SIP/мой поставщик сервисов/${EXTEN})
[internal]
exten => 1000,1,Verbose(1|Extension 1000)
exten => 1000,n,Dial(SIP/1000,30)
exten => 1000,n,Hangup()
exten => 500,1,Verbose(1|Echo test application)
exten => 500,n,Echo()
exten => 500,n,Hangup()
[phones]
include => internal include => outgoing_calls
Соединение двух серверов Asterisk по протоколу SIP
Может настать время, когда у вас появится два сервера Asterisk и вам захочется передавать вызовы между ними. К счастью, здесь нет особых сложностей, хотя имеются некоторые странности, с которыми придется справляться, но с точки зрения конфигурации на самом деле это совсем не так уж трудно.
Конфигурация локального межсетевого экрана
Если ip-таблицы используются на одном компьютере с сервером Asterisk, с помощью следующих команд можно открыть порт 5060 для обмена сигналами по протоколу SIP и порты от 10000 до 20000 для RTP-трафика. Также диапазон RTP-портов можно сузить в файле rtp.conf, находящемся в папке /etc/asterisk. Замечательная книга по межсетевым экранам для ip-таблиц - «Linux Firewalls» (издательство Novell Press) Стива Суэринга (Steve Suehring) и Роберта Циглера (Robert Ziegler).
# iptables -I RH-Firewall-1-INPUT -p udp --dport 5060 -j ACCEPT
# iptables -I RH-Firewall-1-INPUT -p udp --dport 10000:20000 -j ACCEPT
# service iptables save
Помните, что это откроет порты 5060 и от 10000 до 20000 для всего UDP-трафика из любого источника.
Наша топология будет состоять из SIP-телефона (Элис (Alice)), зарегистрированного в Asterisk A (Торонто (Toronto)), и SIP-телефона (Боб (Bob)), зарегистрированного в Asterisk B (Осака (Osaka)). К концу данного раздела вы сможете с помощью пары серверов Asterisk производить звонки от Элис к Бобу (и наоборот) - рис. 4.5. Это типовой сценарий, когда имеется два физических местоположения, например ком-
Рис. 4.5. Топология объединения каналов SIP
пания с несколькими офисами, и требуется обеспечить единую логическую топологию расширения.
Прежде всего давайте сконфигурируем серверы Asterisk.
Конфигурация серверов Asterisk
У нас есть пара серверов Asterisk, назовем их Торонто и Осака, и мы собираемся зарегистрировать их друг на друге. В этом сценарии будем использовать самый элементарный файл sip.conf. Как и в случае с рассматриваемой ранее в данной главе конфигурацией SIP-телефона, это не лучший способ, но он работает.
Вот конфигурация сервера Торонто:
[general]
register => toronto:welcome@192.168.1.101/osaka
[osaka]
type=friend
secret=welcome
context=osaka_incoming
host=dynamic
disallow=all
allow=ulaw
И конфигурация сервера Осака:
[general]
register => osaka:welcome@192.168.2.202/toronto
[toronto]
type=friend
secret=welcome
context=toronto_incoming
host=dynamic
disallow=all
allow=ulaw
Многие из приведенных опций могут быть вам знакомы, но давайте на всякий случай остановимся на них подробнее.
Вторая строка файла указывает серверу Asterisk зарегистрироваться на другом сервере. Таким образом мы сообщаем удаленному серверу
Asterisk, куда направлять вызовы, когда он пожелает обратиться к нашему локальному серверу Asterisk. Помните, мы предупреждали о небольших странностях в конфигурации? Видите в конце строки регистрации слэш и имя удаленного сервера Asterisk? Так удаленный сервер Asterisk получает информацию о том, какое краткое имя использовать при вызове. Если не добавить этого, при попытке дальнего конца сделать вызов в окне командной строки Asterisk появится следующее сообщение:
[Apr 22 18:52:32] WARNING[23631]: chan_sip.c:8117 check_auth: username
mismatch, have
Таким образом, добавляя слэш и имя, мы сообщаем противоположному концу, что должно быть указано в качестве краткого имени пользователя в поле Proxy Authorization (Авторизация прокси) SIP-сообщения INVITE.
Весь остальной файл занимает блок авторизации, используемый для управления входящими и исходящими вызовами другого сервера Asterisk. Сервер Торонто использует блок авторизации [osaka], и сервер Осака использует блок [toronto]. Определен тип friend, что позволяет принимать и направлять вызовы к другому серверу Asterisk. Параметр secret (секрет) - это пароль, который должна использовать другая система при аутентификации. Параметр context (контекст) указывает, в какой части диалплана (extensions.conf) обрабатываются входящие вызовы. Для параметра host задано значение dynamic (динамический), это указывает серверу Asterisk на то, что противоположный конец сообщит свой IP-адрес, на который следует направлять адресованные ему звонки, при регистрации. Наконец, с помощью параметров disallow (запретить) и allow (разрешить) можно определять, какие кодеки будут использоваться при общении с противоположным концом. После сохранения файла и перезагрузки SIP-канала на обоих серверах Asterisk (выполнение команды sip reload из консоли Asterisk) в окне командной строки должно быть выведено примерно следующее сообщение, что свидетельствует об успешной регистрации удаленного сервера:
*CLI> -- Saved useragent "Asterisk PBX" for peer toronto (Для равноправного участника сети торонто сохранен агент пользователя "офисная АТС Asterisk") После выполнения команды sip show peers статус хоста Unspecified (Не определен) должен быть замен IP-адресом удаленного сервера: *CLI> sip show peers
Name/username Host Dyn Nat ACL Port Status
toronto/osaka 192.168.2.202 D 5060 Unmonitored
Убедиться в успешности собственной регистрации можно, выполнив команду sip show registry из консоли Asterisk: *CLI> sip show registry
Host Username Refresh State Reg.Time
192.168.1.101:5060 osaka 105 Registered Sun, 22 Apr 2007 19:13:20
Теперь, когда оба сервера Asterisk довольны друг другом, займемся конфигурацией пары SIP-телефонов, чтобы иметь возможность позвонить.
Конфигурация SIP-телефона
Подробнее о конфигурации SIP-телефонов в Asterisk рассказывается в разделе «Конфигурация канала FXS для аналогового телефона» данной главы. Ниже представлена конфигурация SIP-телефона в файле sip.conf для каждого из двух серверов, которые будут использоваться в диалплане в следующем разделе, предоставляющая нам две конечные точки для установления соединения. Эти строки должны быть добавлены в конце файла sip.conf для каждого соответствующего сервера.
Файл sip.conf для сервера Торонто:
[1000] type=friend host=dynamic context=phones
Файл sip.conf для сервера Осака:
[1001] type=friend host=dynamic context=phones
Теперь для сервера Торонто должен быть зарегистрирован добавочный номер 1000, а для сервера Осака - 1001. Убедиться в этом можно с помощью команды sip show peers. Далее мы собираемся сконфигурировать логику диплплана, что позволит производить звонки с одного добавочного номера на другой.
Конфигурация диалплана
Теперь можно сконфигурировать простой диалплан для каждого сервера, который позволит выполнять звонки между зарегистрированными телефонами: один для Торонто, а другой - для Осаки. В разделе «Работа с конфигурационными файлами интерфейсов» данной главы мы создали простой файл extensions.conf. Теперь давайте на базе этой конфигурации создадим диалплан. Диалпланы обоих серверов будут очень похожи, но для ясности здесь приведены оба. Новые строки, добавленные в существовавший до этого файл, выделены курсивом:
Файл extensions.conf для Торонто:
[globals]
[general]
autofallthrough=yes
[default]
[incoming_calls]
[phones]
include => internal include => remote
[internal]
exten => _2XXX,1,NoOp()
exten => _2XXX,n,Dial(SIP/${EXTEN},30)
exten => _2XXX,n,Playback(the-party-you-are-calling&is-curntly-unavail) exten => _2XXX,n,Hangup()
[remote]
exten => _1XXX,1,NoOp()
exten => _1XXX,n,Dial(SIP/osaka/${EXTEN})
exten => _1XXX,n,Hangup()
[osaka_incoming] include => internal
Файл extensions.conf для Осаки:
[globals]
[general]
autofallthrough=yes [default] [incoming_calls] [phones]
include => internal include => remote
[internal]
exten => _1XXX,1,NoOp()
exten => _1XXX,n,Dial(SIP/${EXTEN},30)
exten => _1XXX,n,Playback(the-party-you-are-calling&is-curntly-unavail) exten => _1XXX,n,Hangup()
[remote]
exten => _2XXX,1,NoOp()
exten => _2XXX,n,Dial(SIP/toronto/${EXTEN})
exten => _2XXX,n,Hangup()
[toronto_incoming] include => internal
После того как файл extensions.conf сконфигурирован, можно выполнить его перезагрузку из консоли Asterisk с помощью команды dialplan reload. Удостовериться в том, что диалплан загружен, поможет команда dialplan show.
Вот и все! Теперь можно звонить с одного сервера Asterisk на другой.
Конфигурация программного телефона IAX
Протокол IAX2 создан для обеспечения удобства работы с сетями, имеющими необычную конфигурацию, особенно с использованием технологии NAT (Network Address Translation - трансляция сетевых адресов). Это является его основным преимуществом и делает IAX2 превосходным протоколом для программных телефонов, выступающих в роли клиентов, поскольку они часто используются на портативных компьютерах, которые подключаются к различным сетям, зачастую без возможности управления самой сетью (например, при подключении к сети в разных гостиницах).
Протокол Inter-Asterisk eXchange (IAX) обычно используется для связи сервер-сервер; по сравнению с SIP его поддерживает большее число аппаратных телефонов. Есть и программные телефоны, поддерживающие протокол IAX, и работа по обеспечению поддержки аппаратных телефонов во встроенном ПО продолжается по нескольким направлениям. Основное различие между протоколами IAX и SIP - способ передачи медиа-данных между конечными точками.
При использовании протокола SIP для передачи трафика RTP (голоса) используются порты, отличные от тех, что работают с методами обмена сигналами. Например, Asterisk получает сигналы SIP через порт 5060, а трафик RTP (голос) проходит через порты от 10000 до 20000 по умолчанию. IAX-протокол отличается тем, что и обмен сигналами, и трафик медиа-данных выполняется через один порт: 4569. Следствие такого подхода - протокол IAX лучше подходит для топологий с использованием NAT.
Существует множество программных телефонов на базе IAX, но не так много аппаратных. Наиболее очевидная причина этому - IAX2 до сих пор не стандартизован IETF (Internet Engineering Task Force - Комитет по стандартизации интернет-протоколов), хотя многие уже перешли на него и пользуются предоставляемыми им преимуществами.
Превосходный программный телефон на базе IAX2 - idefisk. Он доступен бесплатно для скачивания по адресу http://www.asteriskguru.com На сайте Asterisk Guru можно также найти большое количество превосходной документации! Пожалуйста, обратите внимание, что пробел не входит в список допустимых символов. Не используйте пробелы в именах контекстов, потому что результат вам не понравится!. Авторы данной книги добились замечательных результатов с этим программным телефоном, и, поскольку он выполняется в Microsoft Windows, Mac OS X и Linux, он является отличным примером для применения межплатформенных программных телефонов. Здесь будет продемонстрирована версия 1.31, хотя в апреле 2007 была выпущена версия 2.0, но пока не вышла ее реализация для Linux.
Настройка конфигурационного файла канала (iax.conf)
Как всегда, постараемся наладить все быстро с минимальной настройкой конфигурационного файла, чтобы максимально сократить проблемы, которые могут возникнуть при конфигурации устройств. Как это было с файлом sip.conf, для регистрации IAX-телефона в Asterisk, в файл iax.conf необходимо добавить лишь несколько простых строк. Давайте посмотрим:
[general] autokill=yes
[idefisk] type=friend host=dynamic context=phones
Да, действительно, это все, что необходимо для настройки программного телефона. Это не самая безопасная или функциональная конфигурация (даже не использует ся пароль), но она будет работать. В разделе [general] файла iax.conf имеется единственная опция - autokill=yes. Она используется для того, чтобы предотвратить задержку в системе, когда участник сети не отвечает (ACK) на пакет NEW (запрос на установление нового соединения) в течение 2000 мс. Вместо значения yes здесь можно задать время (в миллисекундах) ожидания ACK на пакет NEW. Управлять опцией autokill (автоуничтожение) для каждого отдельного равноправного участника сети можно, определяя параметр qualify (качество) для тех участников, о возможном недостаточном качестве используемых сетевых соединений которых известно заранее.
Весь остальной файл - описание программного телефона. Мы определяем для него тип friend, указывая Asterisk на то, что будем производить звонки на это устройство, а также принимать звонки с него. friend является сокращенной записью для одновременного определения peer (отправляющего вызовы программному телефону) и user (принимающего вызовы от программного телефона). Можно было бы дать отдельные описания для peer и user:
[idefisk] type=user context=phones
[idefisk] type=peer host=dynamic
Сконфигурировав файл iax.conf, сохраняем его и перезагружаем модуль канала IAX2 из консоли Asterisk с помощью команды module reload chan_iax2.so. Подтверждаем существование нового равноправного участника сети, выполнив команду iax2 show peers.
localhost*CLI> iax2 show peers
Name/Username Host Mask Port Status
idefisk (Unspecified) (D) 255.255.255.255 0 Unmonitored
1 iax2 peers [0 online, 0 offline, 1 unmonitored]
Конфигурация программного телефона
Рис. 4.7. Окно Account Options (Опции учетной записи) программного телефона idefisk
После установки программного телефона idefisk откройте клиентское приложение. На экран будет выведено окно, представленное на рис. 4.6.
Рис. 4.6. Программный телефон idefisk
После запуска программного телефона, чтобы можно было выполнять с него звонки, его необходимо настроить. Также, чтобы можно было принимать звонки, этот телефон должен быть зарегистрирован в Asterisk. Для этого щелкните правой кнопкой мыши по иконке в верхнем левом углу экрана. Откроется меню. Выберите в нем пункт Account Options (Опции учетной записи), что обеспечит открытие окна, показанного на рис. 4.7.
Начните с создания новой учетной записи для программного телефона, щелкнув по кнопке New (Новая) и введя соответствующую информацию. В поле Host (Хост) должен быть указан IP-адрес или доменное имя вашей системы Asterisk, при этом имя пользователя должно совпадать с именем, указанным в квадратных скобках [] в файле iax.conf. Поле Password (Пароль) оставляем незаполненным, потому что мы не задавали параметр secret в файле iax.conf, а в полях Caller ID (ID звонящего) и Number (Номер) можно задать любые значения. Чтобы idefisk зарегистрировал эту учетную запись при запуске, поставьте флажок Register on startup (Зарегистрировать при запуске). Введя все необходимые данные, щелкните по кнопке OK, чтобы сохранить новую учетную запись.
Если был установлен флажок Register on startup (Зарегистрировать при запуске), телефон попытается зарегистрироваться в Asterisk. В консоли Asterisk будет выведена информация о том, что телефон зарегистрирован:
-- Registered IAX2 'idefisk' (UNAUTHENTICATED) at 127.0.0.1:32771 Проверить регистрацию можно из консоли Asterisk с помощью команды iax2 show peers:
localhost*CLI> iax2 show peers
Name/Username Host Mask Port Status
idefisk 127.0.0.1 (D) 255.255.255.255 32771 Unmonitored
1 iax2 peers [0 online, 0 offline, 1 unmonitored]
Конфигурация диалплана для тестирования
Осталось только подтвердить возможность выполнения вызовов с помощью нашего телефона, задав простой диалплан в файле extensions. conf. Можно просто проверить наличие аудиосигнала в обоих направлениях, позвонив на добавочный номер 500, или настроить диалплан, созданный в разделе «Настройка диалплана для выполнения тестовых вызовов» данной главы, чтобы выполнить ряд тестовых вызовов. Если добавочный номер 1000 задан для SIP-телефона, что мы делали в предыдущих разделах, обеспечим, чтобы данная конфигурация не перекрывала его, и используем добавочный номер 1001 (если вы сконфигурировали несколько добавочных номеров для SIP, просто задайте здесь для программного телефона IAX2 уникальный добавочный номер): [globals]
[general]
[default]
exten => s,1,Verbose(1|Unrouted call handler)
exten => s,n,Answer()
exten => s,n,Wait(1)
exten => s,n,Playback(tt-weasels)
exten => s,n,Hangup()
[incoming_calls]
[internal]
exten => 500,1,Verbose(1|Echo test application)
exten => 500,n,Echo()
exten => 500,n,Hangup()
exten => 1001,1,Verbose(1\Extension 1000)
exten => 1001,n,Dial(IAX2/idefisk,30)
exten => 1001,n,Hangup()
[phones]
include => phones
Подключение к поставщику сервисов IAX
Некоторые поставщики сервисов интернет-телефонии (ITSP) предоставляют возможность начинать и завершать соединения с помощью протокола IAX2. Кроме сведения до минимума количества портов, которые необходимо открыть в межсетевом экране (для IAX2 требуется лишь один порт, через который ведется и обмен сигналами, и передача медиа-данных), способность объединения каналов этого протокола привлекательна как для поставщиков сервисов, так и для их клиентов из- за сохранения полосы пропускания, которое возможно при выполнении множества одновременных соединений между конечными точками. Если ITSP предлагает завершение соединения с использованием IAX2, очень высока вероятность, что он использует Asterisk; таким образом, конфигурация для подключения к этому поставщику сервисов, скорее всего, будет аналогична той, которую мы приводим здесь. Следующая конфигурация - это шаблон для подключения к поставщику сервисов IAX2:
[general] autokill=yes
register => имяпользователя:пароль@мой.провайдер-сервиса.Ш
[мой_уникальный^]
type=user
secret=мой_уникальный_пароль
context=incoming_calls
trunking=yes
disallow=all
allow=gsm
allow=ulaw
deny=0.0.0.0/0.0.0.0 permit=10.251.100.1/255.255.255.255
[мой_уникальный^]
type=peer
host=10.251.100.1
trunking=yes disallow=all allow=gsm allow=ulaw
Чтобы принимать входящие вызовы по прямому номеру (номеру прямого набора внутренних абонентов - Direct Inward Dialing, DID), присвоенному вам поставщиком сервисов, необходимо откорректировать файл extensions.conf. Возможно, вы хотите направлять звонки на автоответчик или просто на телефон у себя на столе. В любом случае звонки от поставщика услуг можно принимать и сопоставлять с входящим DID с помощью следующей реализованной в диалплане логики: [globals]
[general]
autofallthrough=yes
[default]
[incoming_calls]
exten => 14165551212,1,NoOp()
exten => 14165551212,n,Dial(SIP/1000,30)
exten => 14165551212, n, Playback(the-party-you-are-calling&is-curntly-unavail) exten => 14165551212,n,Hangup()
exten => 4165551212,1,Goto(1${EXTEN})
[internal]
[phones]
include => internal
Соединение двух серверов Asterisk по протоколу IAX
Часто желательно объединить два физических сервера Asterisk по протоколу IAX, чтобы иметь возможность обмениваться вызовами между двумя физическими местоположениями (расстояние между этими точками можем быть ничтожно мало, а может измеряться и километрами). Одно из преимуществ использования протокола IAX для этого - его способность, называемая объединением каналов, в которой используется метод отправки голосовых данных множества звонков под одним заголовком. Для одного или двух одновременных вызовов эффект от этой возможности невелик, но если между двумя точками выполняются десятки или сотни звонков, выигрыш в пропускной способности за счет использования объединения каналов может быть огромным.
Конфигурация локального межсетевого экрана
Если ip-таблицы используются на одном компьютере с сервером Asterisk, можно выполнить следующие команды для открытия порта 4569 для протокола IAX2. Замечательная книга по организации межсетевых экранов с помощью ip-таблиц - «Linux Firewalls» (Novell Press) Стива Суэринга (Steve Suehring) и Роберта Циглера (Robert Ziegler).
# iptables -I RH-Firewall-1-INPUT -p udp --dport 4569 -j ACCEPT
# service iptables save
Помните, что это откроет порт 4569 для всего UDP-трафика из любого источника.
Системе понадобится интерфейс синхронизации - или аппаратный, производства Digium, или программный, использующий ядро драйвера ztdummy. Для этого в системе должен быть установлен и запущен драйвер Zaptel. Подробно об установке Zaptel рассказывается в главе 3.
Конфигурация серверов Asterisk
Мы будем использовать простую схему из двух серверов Asterisk, зарегистрированных непосредственно друг на друге, и отдельных телефонов, зарегистрированных на каждом из серверов Asterisk. Будем называть серверы Asterisk Торонто и Осака (см. раздел «Соединение двух серверов Asterisk по протоколу SIP»). Телефон Боба будет зарегистрирован и подключен к Торонто, а телефон Элис - к серверу Осака.
Прежде всего создадим новый файл канала (iax.conf). Для этого переименуем текущий файл шаблона в iax.conf.sample и создадим новый пустой файл iax.conf:
# cd /etc/asterisk
# mv iax.conf iax.conf.sample
# touch iax.conf
Далее откроем файл iax.conf и введем следующие настройки для сервера Asterisk Торонто:
[general] autokill=yes
register => toronto:welcome@192.168.1.107
[osaka]
type=friend
host=dynamic
trunk=yes
secret=welcome
context=incoming_osaka
deny=0.0.0.0/0.0.0.0
permit=192.168.1.107/255.255.255.255
Пояснения к параметру autokill=yes приведены в предыдущем разделе, а его назначение - гарантировать, что новые соединения, устанавливаемые с удаленной системой и не получившие подтверждения приема в течение заданного времени (по умолчанию - две секунды), корректно завершаются. Это спасает от возникновения множества подвешенных каналов, просто ожидающих подтверждения приема, которое, возможно, никогда не будет получено.
Строка register используется для указания удаленному серверу Asterisk нашего местоположения, чтобы, когда сервер по адресу 192.168.1.107 будет готов послать нам вызов, он отправлял его на наш IP-адрес (в данном случае наш IP-адрес - 192.168.1.104, его мы увидим в конфигурационном файле iax.conf сервера Осака). Имя пользователя Toronto и пароль welcome посылаются на сервер Осака, который проверяет нашу регистрацию. Если аутентификация пройдена успешно, он записывает в память местоположение нашего сервера Asterisk и будет использовать эту информацию при отправке нам вызовов.
Описание [Osaka] используется для управления аутентификацией удаленного сервера и доставки на него нашего диалплана. Osaka - это имя пользователя, используемое для аутентификации при поступлении вызовов. Для параметра type задано значение friend, потому что мы хотим иметь возможность отправлять вызовы на сервер Осака и принимать от него вызовы. Для параметра host задано значение dynamic, что указывает Asterisk направлять вызовы на IP-адрес, полученный при регистрации противоположной конечной точки.
В начале данного раздела был упомянут потенциальный выигрыш в пропускной способности при использовании возможности объединения каналов, предоставляемой IAX2. В Asterisk эту функциональность активировать просто, надо лишь добавить строку trunk=yes в описание сервера типа friend. Если интерфейс синхронизации (то есть dummy) установлен и запущен, можно использовать преимущества объединения каналов IAX2.
Параметр secret ясен - это пароль, используемый для аутентификации. Контекст [incoming_osaka] - это раздел файла extensions.conf, где будут обрабатываться входящие звонки для этого сервера (friend). Наконец, параметр deny запрещает все IP-адреса, кроме явно разрешенного 192.168.1.107.
Конфигурация iax.conf для Осаки практически идентична, за исключением IP-адреса и имен:
[general] autokill=yes
register => osaka:welcome@192.168.1.104
[toronto]
type=friend
host=dynamic
trunk=yes
secret=welcome
context=incoming_toronto
deny=0.0.0.0/0.0.0.0
permit=192.168.1.104/255.255.255.255
Конфигурация телефона IAX
В разделе «Конфигурация программного телефона» мы занимались настройкой нашего первого программного телефона IAX2 на примере idefisk. Конфигурация, которая будет использоваться здесь, практически аналогична, за исключением незначительных изменений, связанных с необходимостью обеспечения уникальности участников сети. Если вы уже настроили программный телефон SIP, можете также использовать его в качестве одного (или обоих) равноправных участников сети. Не забывайте, что Asterisk - приложение, работающее с множеством протоколов, и вызов к Asterisk может быть послан с SIP-теле- фона, передан по магистральному каналу IAX2 и затем направлен на другой SIP-телефон (или H.323, MGCP и т. д.). Для Осаки: [1001] type=friend host=dynamic context=phones
Для Торонто:
[2001] type=friend host=dynamic context=phones
Далее сконфигурируем программный телефон IAX2 для регистрации в Asterisk. Если телефон успешно зарегистрирован, в командной строке будет выведено примерно следующее сообщение:
*CLI> -- Registered IAX2 '1001' (UNAUTHENTICATED) at 192.168.1.104:4569
Конфигурация диалплана
Чтобы обеспечить возможность установления соединения между двумя серверами Asterisk по магистральному каналу IAX2, необходимо сконфигурировать простой диалплан. Представленный диалплан будет направлять вызовы на все добавочные номера в диапазоне 1000 (от 1000 до 1999) на сервер Осака и вызовы на все добавочные номера в диапазоне 2000 (от 2000 до 2999) на сервер Торонто. В данном примере предполагается, что сконфигурирована пара программных телефонов IAX2, но если в вашем распоряжении имеется SIP-телефон (или
два), можно использовать и его. Просто помните, что в этом случае понадобится изменить приложение Dial() так, чтобы вызовы направлялись на SIP-телефон по SIP-протоколу, а не IAX2 (то есть строку
Dial(IAX2/${EXTEN},30) необходимо заменить на Dial(SIP/${EXTEN},30)). Файл extensions.conf для Торонто:
[globals]
[general]
autofallthrough=yes [default] [incoming_calls] [phones]
include => internal include => remote
[internal]
exten => _1XXX,1,NoOp()
exten => _1XXX,n,Dial(IAX2/${EXTEN},30)
exten => _1XXX,n,Playback(the-party-you-are-calling&is-curntly-unavail) exten => _1XXX,n,Hangup()
[remote]
exten => _2XXX,1,NoOp()
exten => _2XXX,n,Dial(IAX2/toronto/${EXTEN}) exten => _2XXX,n,Hangup()
[toronto_incoming] include => internal
Файл extensions.conf для Осаки:
[globals]
[general]
autofallthrough=yes [default] [incoming_calls] [phones]
include => internal include => remote
[internal]
exten => _2XXX,1,NoOp()
exten => _2XXX,n,Dial(IAX2/${EXTEN},30)
exten => _2XXX,n,Playback(the-party-you-are-calling&is-curntly-unavail) exten => _2XXX,n,Hangup()
[remote]
exten => _1XXX,1,NoOp()
exten => _1XXX,n,Dlal(IAX2/osaka/${EXTEN})
exten => _1XXX,n,Hangup()
[osaka_lncomlng] include => internal
Использование шаблонов в конфигурационных файлах
С конфигурационными файлами Asterisk связан один очень малоизвестный факт, но он настолько замечательный, что заслуживает отдельного небольшого раздела.
Скажем, имеется 20 SIP-телефонов, практически идентичных с точки зрения конфигурации. Согласно документации они должны описываться путем задания параметров для каждого телефона в отдельности. Фрагмент подобного файла sip.conf мог бы выглядеть так:
[1000]
type=friend
context=internal
host=dynamic
disallow=all
allow=ulaw
dtmfmode=rfc2833
maibox=1000
secret=AllYourSetsAreBelongToUs
[1001]
type=friend
context=internal
host=dynamic
disallow=all
allow=ulaw
dtmfmode=rfc2833
maibox=1001
secret=AllYourSetsAreBelongToUs
[1002]
type=friend
context=internal
host=dynamic
disallow=all
allow=ulaw
dtmfmode=rfc2833
maibox=1002
secret=AllYourSetsAreBelongToUs
Слишком много ввода текста, копирования и вставки, правда? А что если требуется изменить имя контекста для телефонов. Не очень удобно, не так ли?
Вводим шаблон. Давайте создадим таких же участников сети типа friend, как делали выше, только на этот раз используя шаблон:
[sets](!) ; <== обратите внимание, восклицательный знак ; взят в круглые скобки. Это признак шаблона. type=friend context=internal host=dynamic disallow=all allow=ulaw dtmfmode=rfc2833 secret=AllYourSetsAreBelongToUs
1000] (sets) ; <== обратите внимание, имя шаблона взято
; в круглые скобки. Все настройки этого шаблона ; будут унаследованы.
maibox=1000
1001] (sets) maibox=1001
1002] (sets) maibox=1002
Это одна из самых малоизвестных возможностей создания конфигурационного файла. Очень немногие пользуются этой возможностью, но лишь потому, что мало кто знает о ней. Итак, пришло время перемен. С этого момента мы хотим видеть, что шаблонами пользуются все; и да, мы будем проверять.
Отладка
В Asterisk предлагается несколько методов отладки. Подключившись к консоли, можно управлять отладкой и уровнем детальности сообщений, а также трассировкой пакетов протокола. В данном разделе рассмотрим доступные варианты.
Подключение к консоли
Чтобы подключиться к консоли Asterisk, можно или запустить сервер непосредственно из консоли (в этом случае невозможно будет выйти из консоли, не завершив работу Asterisk), или запустить Asterisk как демон и затем подключиться к удаленной консоли.
Чтобы запустить процесс Asterisk непосредственно из консоли, используйте флаг консоли: # /usr/sbin/asterisk -c
Чтобы подключиться к удаленной консоли, сначала запустите демон, а затем выполните подключение, используя флаг -r:
# /usr/sbin/asterisk
# /usr/sbin/asterisk -r
Если какой-то модуль не загружается или Asterisk не загружается из- за какого-то модуля, запустите Asterisk с флагом -c, чтобы отслеживать статус загружаемых модулей. Например, если при попытке загрузить драйвер канала OSS (который позволяет использовать канал CONSOLE (консоль)) Asterisk не может открыть /dev/dsp, при запуске будет получено сообщение о такой ошибке:
WARNING[32174]: chan_oss.c:470 soundcard_init: Unable to open /dev/dsp:
No such file or directory
== No sound card detected -- console channel will be unavailable
== Turn off OSS support by adding 'noload=chan_oss.so' in /etc/asterisk/ modules.conf
WARNING[32174]: chan_oss.c:470 soundcard_init: Не получается
открыть /dev/dsp:
Файл или каталог не существует
== Звуковая карта не найдена - канал консоли будет недоступен
== Отключите поддержку OSS, добавив 'noload=chan_oss.so' в /etc/asterisk/modules.conf
Изменение детальности сообщений и включение отладки
Asterisk может выводить отладочную информацию в форме сообщений WARNING (предупреждение), NOTICE (извещение) и ERROR (ошибка). Эти сообщения предоставляют информацию о системе, такую как регистрационные данные, статус, последовательность вызовов и другие полезные сведения. Обратите внимание, что сообщения WARNING и NOTICE не являются сообщениями об ошибках; а вот к сообщениям ERROR необходимо относиться внимательно. Уровень детальности сообщений можно задать с помощью команды set verbose и числового значения. Диапазон допустимых значений - от 3 до 10. Например, чтобы задать самый высокий уровень детальности, используется команда
# set verbose 10
Также можно активировать вывод основных сообщений отладки с помощью команды set debug и числового значения. Чтобы активировать вывод сообщений DEBUG (отладка) в консоли, возможно, понадобится в файле logger.conf добавить debug в выражение console =>:
console => warning,notice,error,event,debug Диапазон допустимых значений для set debug - от 3 до 10. Например:
# set debug 10
Заключение
Проработав все разделы данной главы, вы должны получить пару сконфигурированных аналоговых интерфейсов, локальные каналы SIP и IAX2, подключенные к программному и/или аппаратному телефону, и иметь возможность передавать вызовы через серверы по протоколам SIP и IAX2. Эти настройки элементарны, но благодаря им мы имеем функциональные каналы, с которыми можно работать. Мы будем использовать их в следующих главах, пока не научимся создавать более функциональные диалпланы.5
Основы диаллана
Все должно быть сделано настолько просто, насколько это возможно, но не проще. - Альберт Эйнштейн (1879-1955)
Диалплан, поистине, - сердце любой системы Asterisk, поскольку он определяет, как Asterisk обрабатывает входящие и исходящие вызовы. По сути, он состоит из списка инструкций или шагов, которым будет следовать Asterisk. В отличие от традиционных систем телефонной связи, диалплан Asterisk является полностью настраиваемым. Чтобы добиться успеха в построении собственной системы Asterisk, необходимо понять концепцию диалплана.
Если вы пытались прочитать некоторые примеры диалпланов и сочли их невыполнимыми или пробовали написать диалплан Asterisk и не достигли успеха, не отчаивайтесь, помощь близка. Данная глава шаг за шагом объяснит, как работает диалплан. Прочитав ее, вы приобретете навыки, необходимые для создания собственного диалплана. Все примеры дополняют друг друга, поэтому можно свободно вернуться назад и перечитать раздел, если что-то непонятно. Однако, пожалуйста, обратите внимание, что данная глава ни в коем случае не является исчерпывающим обзором всех возможностей диалплана; наша цель - рассмотреть только основы. Более глубокие аспекты настройки диал- плана будут затронуты в последующих главах.
Синтаксис диалплана
Диалплан Asterisk определен в конфигурационном файле extensions. conf.
Файл extensions.conf обычно находится в папке /etc/asterisk/, но его местоположение может меняться в зависимости от того, как установлена Asterisk. Этот файл часто размещается в папках /usr/local/asterisk/etc/ и /opt/asterisk/etc/.
Диалплан состоит из четырех основных элементов: контекстов, добавочных номеров, приоритетов и приложений. В следующих нескольких разделах будут рассмотрены все эти части и то, как они работают вместе. После объяснения роли каждого из этих элементов в диалпла- не перейдем к процессу поэтапного создания базового функционального диалплана.
Образцы конфигурационных файлов
Если при установке Asterisk были установлены и образцы конфигурационных файлов, скорее всего, у вас имеется файл extensions.conf. Но мы предлагаем начинать не с файла-образца, а создать собственный файл extensions.conf с нуля. Это будет крайне полезно, поскольку обеспечит лучшее понимание основных элементов и принципов диалплана.
Но надо сказать, что образец файла extensions.conf остается фантастическим ресурсом, полным примеров и идей, которые можно использовать после изучения базовых элементов. Мы предлагаем переименовать его и назвать, например, extensions.conf. sample. Таким образом оригинальный файл будет сохранен, и к нему можно будет обратиться в будущем. Образцы конфигурационных файлов также можно найти в подпапке /configs/ папки исходного кода Asterisk.
Контексты
Диалпланы разбиты на разделы, называемые контекстами. Контексты - это именованные группы добавочных номеров, которые выполняют несколько функций.
Контексты изолируют разные части диалплана, предотвращая возможность их взаимодействия. Добавочный номер, определенный в одном контексте, полностью изолирован от добавочных номеров другого контекста, если только взаимодействие не разрешено специально. (То, как разрешить взаимодействие контекстов, будет рассмотрено ближе к концу данной главы.)
В качестве простого примера возьмем две компании, совместно использующие один сервер Asterisk. Если разместить голосовое меню каждой компании в собственном контексте, они будут эффективно отделены друг от друга. Это позволяет независимо определять действия, выполняемые, скажем, при наборе номера 0: при нажатии кнопки 0 в голосовом меню компании А вы попадете к секретарю компании А, а при нажатии кнопки 0 в голосовом меню компании В - к секретарю компании В. (Эти примеры предполагают, конечно же, что мы задали для Asterisk перенаправление вызовов на секретарей при нажатии кнопки 0 вызывающими абонентами.)
Контексты различаются по именам. Имена контекстов заключаются в квадратные скобки ([ ]). Допустимыми символами для образования имени являются буквы от A до Z (верхнего и нижнего регистра), цифры от 0 до 9, дефис и символ подчеркивания1. Например, контекст для входящих вызовов выглядит так: [incoming]
Максимальная длина имени контекста - 79 символов (80 символов - 1 завершающий нуль).
Все инструкции, размещаемые после описания контекста и до описания следующего контекста, являются частью данного контекста. В начале диалплана находятся два специальных контекста, [general] и [globals]. Раздел [general] содержит список общих настроек диалплана (о которых, вероятно, вам никогда не придется беспокоиться), а контекст [globals] мы будем обсуждать в разделе «Глобальные переменные». Пока что достаточно знать, что эти два контекста являются специальными. Созданные вами контексты можно называть как угодно, только не используйте имена [general] и [globals].
При описании канала (а именно так выполняется подключение элементов к системе) одним из параметров этого описания является контекст. Иначе говоря, контекст - это точка диалплана, с которой будет начинаться обработка соединений, выполняемых через этот канал.
Другое важное применение контекстов (возможно, самое важное) - обеспечение безопасности. Правильно применяя контексты, определенным абонентам можно предоставить доступ к функциям (таким, как междугородная связь), которые недоступны для других. Если ди- алплан разработан неаккуратно, пользователи по вашей оплошности могут получить возможность мошенничать в вашей системе. Пожалуйста, помните об этом при построении системы Asterisk.
В подпапке doc/ папки исходного кода Asterisk находится очень важный файл, security.txt, в котором определено несколько шагов для обеспечения безопасности системы Asterisk. Вам чрезвычайно важно прочитать и понять этот файл. Если проигнорировать меры предосторожности, описанные там, все может закончиться тем, что кто угодно сможет делать междугородные и платные звонки за ваш счет!
Если не отнестись к безопасности своей системы Asterisk серьезно, может дойти до того, что вам придется за это дорого расплатиться в буквальном смысле этого слова! Пожалуйста, выделите время и силы на то, чтобы защитить свою систему от мошенничества с оплатой.
Добавочные номера
в мире телекоммуникаций термин «оооавочныи номер» (extension) обычно обозначает числовой идентификатор, который присвоен линии, идущей к конкретному телефону. Однако в Asterisk это намного более широкое понятие, поскольку оно определяет уникальные последовательности шагов (каждый шаг включает приложение), которые Asterisk будет применять к вызову по этой линии. В каждом контексте может быть задано столько добавочных номеров, сколько требуется. При вызове конкретного добавочного номера (входящим или внутренним звонком) Asterisk будет выполнять шаги, определенные для этого добавочного номера. Поэтому именно добавочные номера определяют, что происходит со звонками при их обработке соответственно диалпла- ну. Хотя, конечно, добавочные номера могут использоваться в их традиционном значении (то есть вызов добавочного номера 153 заставит зазвонить SIP-телефон на столе Джона), но в диалплане Asterisk они могут означать намного большее.
Синтаксис добавочного номера - это слово exten, за которым следует стрелка, образованная знаками равенства и «больше чем»:
exten =>
Далее указывается имя (или номер). В традиционных системах телефонной связи под добавочными номерами мы понимаем цифры, которые надо набрать, чтобы другой телефон зазвонил. В Asterisk это понятие намного шире; например, в качестве имени добавочного номера может использоваться любая комбинация цифр и букв. В данной главе и далее будут использоваться как цифровые, так и буквенно-цифровые добавочные номера.
Присвоение имен добавочным номерам может показаться революционной идеей, но если вспомнить, что многие транспортные протоколы VoIP поддерживают (или даже активно поощряют) вызовы по имени или адресу электронной почты, а не просто по номеру, это действительно имеет смысл. Это одно из свойств, делающих Asterisk такой гибкой и мощной системой.
Полный добавочный номер состоит из трех компонентов:
• Имени (или номера).
• Приоритета (каждый добавочный номер может включать множество шагов; порядковый номер шага называется его приоритетом).
• Приложения (или команды), которое выполняет некоторое действие
над вызовом. Эти три компонента разделяются запятыми:
exten => имя,приоритет,приложение() Вот пример того, как может выглядеть настоящий добавочный номер:
exten => 123,1,Answer() В этом примере имя добавочного номера - 123, приоритет - 1, а приложение - Answer(). Теперь пойдем дальше и рассмотрим, что такое приоритеты и приложения.
Приоритеты
Каждый добавочный номер может включать множество шагов, называемых приоритетами. Каждый приоритет пронумерован последовательно, начиная с 1, и выполняет одно определенное приложение. Например, следующий добавочный номер отвечает на звонок (в приоритете под номером 1) и затем выполняет разъединение (в приоритете под номером 2):
exten => 123,1,Answer() exten => 123,2,Hangup()
Не переживайте, если вы не понимаете, что такое Answer() и Hangup(), мы очень скоро их рассмотрим. Здесь главное - запомнить, что для отдельного добавочного номера Asterisk выполняет приоритеты по порядку.
Ненумерованные приоритеты
В более старых версиях Asterisk нумерация приоритетов вызывала множество проблем. Представьте, что в добавочном номере 15 приоритетов и требуется добавить что-то в шаге 2. Номера всех последующих приоритетов пришлось бы менять вручную. Asterisk не обрабатывает пропущенные шаги или неправильно пронумерованные приоритеты, и отладка ошибок такого типа превращалась в бесцельную и досадную трату времени.
Начиная с версии 1.2 Asterisk решила эту проблему. Был введен приоритет n, что означает «следующий». Каждый раз, когда Asterisk встречает приоритет n, она берет номер предыдущего приоритета и добавляет 1. Это упрощает внесение изменений в диалплан, поскольку теперь не надо изменять номера всех шагов. Например, диалплан может быть таким:
exten => | 123,1 | Answer() | |
exten => | 123,n | выполнить | что-то |
exten => | 123,n | выполнить | что-то еще |
exten => | 123,n | выполнить | последнее |
exten => | 123,n | Hangup() |
Asterisk будет самостоятельно вычислять номер следующего приоритета при каждой встрече с приоритетом n[69]. Однако следует отметить, что приоритет под номером 1 должен быть задан обязательно. Если случайно для идущего первым приоритета задать n вместо 1, добавочный номер будет недоступен.
Метки приоритетов
Начиная с версии 1.2 в Asterisk стало общепринятой практикой присваивать приоритетам текстовые метки. Это обеспечивает возможность ссылаться на приоритет не по номеру, который может быть неизвестен, потому что теперь в диалпланах, как правило, используются ненумерованные приоритеты. Чтобы присвоить приоритету текстовую метку, просто добавляем ее в круглых скобках после приоритета: exten => 123,г\(метка)1приложение()
Очень распространенной ошибкой является использование запятой между символами n и (, как в данном примере:
exten => 123,n,(метка),приложение() ;<-- ЭТО НЕ БУДЕТ РАБОТАТЬ Это приведет к нарушению данной части диалплана, будет выдано сообщение об ошибке, из-за того что приложение не найдено.
В следующей главе мы рассмотрим, как переходить с одного приоритета на другой, используя логику диалплана. Вы будете встречать множество меток приоритетов и станете очень часто использовать их в своих диалпланах.
Приложения
Приложения - это рабочие лошадки диалплана. Каждое приложение выполняет определенное действие над данным каналом, например воспроизведение звука, прием тонального ввода, вызов канала, разрыв соединения и т. д. В предыдущем примере было представлено два простых приложения: Answer() и Hangup(). Сейчас мы подробнее рассмотрим, как они работают.
Для выполнения некоторых приложений, таких как Answer() и Hangup(), не требуется никаких дополнительных инструкций. Некоторым приложениям необходима дополнительная информация. Эти данные, называемые аргументами, могут передаваться в приложения, чтобы оказывать влияние на то, как они выполняют свои действия. Чтобы передать аргументы в приложение, разместите их через запятую в круглых скобках, следующих за именем приложения.
Иногда вместо запятой в качестве разделителя между аргументами можно увидеть символ вертикальной черты (|). Допускается использование любого из этих символов. В примерах данной книги для разделения аргументов приложения будет применяться запятая, поскольку авторы предпочитают такой синтаксис. Однако при синтаксическом разборе диалплана Asterisk преобразует все запятые в аргументах приложений в символы вертикальной черты.
Когда мы создадим наш первый диалплан в следующем разделе, вы научитесь использовать приложения и связанные с ними аргументы.
Простой диалплан
Теперь мы готовы создать наш первый диалплан. Давайте начнем с очень простого примера. Asterisk должна будет ответить на звонок, воспроизвести звуковой файл и разорвать соединение. Используем этот простой пример, чтобы обозначить наиболее важные концепции диал- плана.
Предложенные в данной главе примеры разработаны исходя из предположения, что был создан и сконфигурирован (соответственно описанию в предыдущей главе) по крайней мере один канал (Zap, SIP или IAX2 - неважно) и что все вызовы, поступающие на этот канал, направляются в контекст диалплана [incoming]. Если к какому-то из предыдущих примеров вы подошли творчески, вероятно, вам придется вносить некоторые поправки, чтобы обеспечить соответствие имен каналов.
Добавочный номер s
В наших каналах мы применяем определенную технологию, и поэтому, прежде чем приступить к настройке диалплана, придется остановиться еще на одном вопросе. Необходимо рассмотреть добавочный номер s. Когда в контекст поступают вызовы, для которых не указан конкретный добавочный номер (например, вызов FXO-линии), они передаются на добавочный номер s. (s - сокращение от start (начало), поскольку именно здесь начнется обработка вызова, если с ним не передана информация о добавочном номере.)
Поскольку это именно то, что требуется для нашего диалплана, перейдем к делу. Для каждого вызова будет выполняться три действия (ответ на него, воспроизведение звукового файла и разъединение), поэтому добавочному номеру s понадобится три приоритета. Поместим три приоритета в контекст [incoming], поскольку было принято решение о том, что все входящие вызовы должны обрабатываться в этом контексте[70].
[incoming]
exten => s,1,приложение() exten => s,n,приложение() exten => s,n,приложение()
Теперь осталось только вставить приложения - и наш первый диал- план готов.
Обратите внимание, что можно было бы пронумеровать каждый приоритет, как показано ниже, но теперь так делать не рекомендуется, поскольку это сильно усложняет внесение изменений в диалплан впоследствии:
[incoming]
exten => s,1,приложение() exten => s,2,приложение() exten => s,3,приложение()
Приложения Answer(), Playback() и Hangup()
Прежде чем мы будем отвечать на звонок, воспроизводить звуковой файл и затем выполнять разъединение вызова, нам нужно научиться это делать. Приложение Answer() (Ответ) используется для ответа каналу, по которому выполняется звонок. Оно выполняет исходную настройку для канала, получающего входящий вызов. (Некоторые приложения не требуют обязательного ответа каналу, но соответствующий ответ на звонок перед тем, как выполнять какие-либо действия над каналом, является очень хорошей практикой.) Как упоминалось ранее, Answer() не принимает аргументов.
Приложение Playback() (Воспроизведение) воспроизводит в канале предварительно записанный звуковой файл. При использовании приложения Playback() ввод, поступающий от пользователя, просто игнорируется.
С Asterisk поставляется множество профессионально записанных звуковых файлов, которые должны находиться в папке, используемой для хранения звуков по умолчанию (обычно это /var/lib/asterisk/sounds/). При компиляции Asterisk можно выбрать для установки различные наборы образцов звуков, записанных на разных языках и в разных форматах файлов. Во многих примерах данной книги будут использоваться эти файлы, а также несколько файлов из Extra Sound Package, поэтому, пожалуйста, потратьте немного времени и установите этот пакет (см. главу 3). Также, посетив сайт http://thevoice. digium.com/, можно создать собственные голосовые сообщения, записанные тем же голосом, что и предоставляемые стандартные сообщения.
Чтобы использовать Playback(), задайте в качестве аргумента имя файла (без расширения). Например, Playback(filename) обеспечит воспроизведение звукового файла filename.gsm, предполагая, что он размещен в стандартной папке для звуковых файлов. Обратите внимание, что по желанию можно указать полный путь к файлу, как это сделано в данном примере:
Playback(/home/john/sounds/filename) Этот пример обеспечит воспроизведение файла filename.gsm из папки /home/john/sounds/. Также можно использовать относительные пути из папки для звуковых файлов Asterisk: Playback(custom/filename)
Этот пример обеспечит воспроизведение filename.gsm из подпапки custom/ стандартной папки для звуковых файлов (вероятно, это будет /var/lib/asterisk/sounds/custom/filename.gsm). Заметьте, что, если в указанной папке содержится несколько файлов под одним именем, но с разными расширениями файлов, Asterisk автоматически воспроизводит лучший из них[71].
Приложение Hangup() (Разъединить) выполняет именно то, что подразумевается под его именем: оно разъединяет активный канал. Это приложение должно применяться в конце контекста для завершения текущего вызова, что защитит от несанкционированного использования диалплана абонентами. Приложение Hangup() не принимает аргументов.
Наш первый диалплан
Теперь, когда добавочный номер готов, сведем все вместе и создадим наш первый диалплан. Как принято во многих технических книгах (особенно в книгах по программированию), первый пример будет называться «Hello World!» (Здравствуй, мир!).
В первом приоритете нашего добавочного номера мы будем отвечать на звонок, во втором - воспроизводить звуковой файл hello-world.gsm, а в третьем будет выполнен разрыв соединения. Вот как выглядит диал- план:
[incoming]
exten => s,1,Answer()
exten => s,n,Playback(hello-world)
exten => s,n,Hangup()
Если у вас уже имеется один или несколько сконфигурированных каналов - вперед[72]! Просто создайте файл extensions.conf (например, в папке /etc/asterisk) и вставьте в него четыре строки кода диалплана, которые мы только что написали. Если ничего не получается, проверьте, нет ли в консоли Asterisk сообщений об ошибках, и убедитесь, что для ваших каналов задан контекст [incoming].
Даже несмотря на то что этот пример очень мал и прост, он раскрывает основные принципы контекстов, добавочных номеров, приоритетов и приложений. Если все получилось и этот диалплан заработал, значит, вы разобрались с основами, на базе которых создаются все диалпланы. Теперь давайте дополнять наш пример. В конце концов, в телефонной системе, просто воспроизводящей звуковой файл и затем разъединяющей канал, очень немного пользы!
Создание интерактивного диалплана
Созданный в предыдущем разделе диалплан был статическим; он всегда выполняет одни и те же действия для всех вызовов. Теперь мы собираемся добавить некоторую логику в диалплан, чтобы он осуществлял разные действия на основании ввода пользователя. Для этого необходимо рассмотреть еще некоторые приложения.
Приложения Background(), WaitExten() и Goto()
Один из самых важных ключей к построению интерактивных диал- планов Asterisk - приложение BackgroundQ[73] (Фон). Как и Playback(), это приложение воспроизводит записанный звуковой файл. Однако, в отличие от Playback(), если пользователь нажимает кнопку (или последовательность кнопок) на клавиатуре телефона, оно прерывает воспроизведение и переходит к добавочному номеру соответственно нажатым цифрам. Например, если абонент нажмет кнопку 5, Asterisk прекратит воспроизводить звуковое сообщение и передаст управление вызовом первому приоритету добавочного номера 5.
Чаще всего приложение Background() используется для создания голосовых меню (которые часто называют автоответчиками или интерактивными секретарями). Многие компании используют голосовые меню для направления абонентов на соответствующий добавочный номер, таким образом освобождая своих секретарей от необходимости отвечать на все звонки.
Синтаксис Background() аналогичен синтаксису Playback():
exten => 123,1,Answer()
exten => 123,n,Background(main-menu)
В более ранних версиях Asterisk, если приложение Background() завершало воспроизведение звукового сообщения и в текущем добавочном номере больше не было приоритетов, Asterisk ничего не делала и ожидала ввода абонента. Такое поведение больше не является для Asterisk принятым по умолчанию. Если требуется, чтобы Asterisk ожидала ввода абонента после завершения воспроизведения звукового сообщения, можно вызвать приложение WaitExten() (Ожидание добавочного номера). Приложение WaitExten() ожидает от абонента набора телефонного номера и часто вызывается сразу после приложения Background(), как в данном фрагменте диалплана:
exten => 123,1,Answer()
exten => 123,n,Background(main-menu)
exten => 123,n,WaitExten()
Если требуется, чтобы приложение WaitExten() ожидало ответа в течение определенного времени (вместо использования времени ожидания по умолчанию), просто укажите число, соответствующее необходимому количеству секунд, в качестве первого аргумента в WaitExten():
exten => 123,n,WaitExten(5)
И Background(), и WaitExten() позволяют абоненту производить набор номера. После этого Asterisk пытается найти в текущем контексте добавочный номер, соответствующий введенным абонентом цифрам. Если Asterisk находит однозначное соответствие, она направляет вызов на этот добавочный номер. Продемонстрируем это, добавив несколько строк в наш пример:
exten => 123,1,Answer()
exten => 123,n,Background(main-menu)
exten => 123,n,WaitExten()
exten => 2,1,Playback(digits/2)
exten => 3,1,Playback(digits/3)
exten => 4,1,Playback(digits/4) Если вызвать добавочный номер 123 из примера выше, он воспроизведет звуковое сообщение с фразой «main menu» (главное меню) и после этого будет ожидать ввода цифр 2, 3 или 4. Если нажать одну из этих цифр, Asterisk воспроизведет ее для вас. Также вы обнаружите, что, если ввести другую цифру (например, 5), Asterisk не обеспечит ожидаемого результата.
Также возможна ситуация, когда Asterisk обнаружит неоднозначное соответствие. Это можно легко продемонстрировать, введя в предыдущий пример добавочный номер под именем 1:
exten => 123,1,Answer()
exten => 123,n,Background(main-menu)
exten => 123,n,WaitExten()
exten => 1,1,Playback(digits/1)
exten => 2,1,Playback(digits/2)
exten => 3,1,Playback(digits/3)
exten => 4,1,Playback(digits/4) Наберите добавочный номер 123 и затем по подсказке главного меню введите 1. Почему Asterisk сразу же не воспроизводит этот номер? Потому, что цифра 1 неоднозначна; Asterisk не понимает, какой добавочный номер вызывается, 1 или 123. Он ожидает несколько секунд ввода другой цифры (например, 2 для вызова добавочного номера 123). Если набора никаких других цифр не последовало, по завершении времени ожидания Asterisk направляет вызов на добавочный номер 1. (Задавать собственные значения времени ожидания мы научимся в главе 6.) Прежде чем двигаться дальше, посмотрим, что было сделано на данный момент. Вызвав наш диалплан, абоненты услышат приветствие. Если они нажмут 1, то услышат номер 1, если 2 - то номер 2 и т. д. Для начала это неплохо, но давайте это все немного усовершенствуем. С помощью приложения Goto() (Перейти к) заставим диалплан повторять приветствие после воспроизведения номера.
Как следует из его имени, приложение Goto() используется для перенаправления вызова в другую часть диалплана. Синтаксис Goto() требует передачи в него в качестве аргументов целевого контекста, добавочного номера и приоритета:
exten => 123)n)Goto(к.онтек.ст,добавочныйномер,приоритет)
Теперь давайте применим приложение Goto() в нашем диалплане:
[incoming]
exten => 123,1,Answer()
exten => 123,n,Background(main-menu)
exten => 1,1,Playback(digits/1) exten => 1,n,Goto(incoming,123,1)
exten => 2,1,Playback(digits/2) exten => 2,n,Goto(incoming,123,1)
Две новые строки (выделенные курсивом) обеспечат возвращение управления над вызовом добавочному номеру 123 после воспроизведения выбранного номера.
Если вы внимательно посмотрите на приложение Goto(), то поймете, что в него на самом деле можно передавать один, два или три аргумента. Если передается только один аргумент, Asterisk предположит, что это основной приоритет текущего добавочного номера. Если передано два аргумента, Asterisk будет трактовать их как добавочный номер и приоритет, к которым надо перейти в текущем контексте. В данном примере были переданы все три аргумента для наглядности, но, если бы мы задали только добавочный номер и приоритет, результат был бы аналогичным.
Обработка ошибочных вводов и времени ожидания
Теперь, когда создание нашего первого голосового меню уже близится к завершению, введем специальные добавочные номера. Во-первых, нам необходим добавочный номер для недействительных вводов; когда абонент нажимает не ту кнопку (например, 9 для предыдущего примера), вызов направляется на добавочный номер i. Во-вторых, необходим добавочный номер для обработки ситуаций, когда абонент не производит ввод вовремя (время ожидания по умолчанию - 10 с). Если абонент слишком долго не нажимает кнопку после запуска приложения WaitExten(), вызовы направляются на добавочный номер t. Вот как будет выглядеть диалплан после введения этих двух добавочных номеров: [incoming]
exten => 123,1,Answer()
exten => 123,n,Background(enter-ext-of-person) exten => 123,n,WaitExten()
exten => 1,1,Playback(digits/1)1,1,Playback(digits/1) |
exten => 1,n,Goto(incoming,123,1) |
exten => 2,1,Playback(digits/2) |
exten => 2,n,Goto(incoming,123,1) |
exten => 3,1,Playback(digits/3) |
exten => 3,n,Goto(incoming,123,1) |
exten => i,1,Playback(pbx-invalid) |
exten => i,n,Goto(incoming,123,1) |
exten => t,1,Playback(vm-goodbye) |
exten => t,n,Hangup() |
Использование добавочных номеров i и t делает диалплан несколько более надежным и практичным. Но надо сказать, он по-прежнему довольно примитивен, потому что внешние абоненты не имеют возможности соединения с реальным живым человеком. Для этого нам придется ознакомиться с еще одним приложением - Dial() (Звонить).
Использование приложения Dial()
Одно из самых ценных свойств Asterisk - это возможность установления соединения между разными абонентами. Это особенно полезно, когда абоненты используют разные методы связи. Например, абонент А может звонить по традиционной аналоговой телефонной линии, тогда как пользователь В может сидеть в кафе в другой части света и говорить по IP-телефону. К счастью, большую часть тяжелой работы по установлению соединения и выполнению преобразований между разными сетями Asterisk берет на себя. От вас требуется лишь научиться использовать приложение Dial().
Синтаксис Dial() немного сложнее, чем синтаксис приложений, которые применялись до сих пор, но не пугайтесь. Dial() принимает четыре аргумента. Первый - получатель вызова. Он состоит (в самой простой форме) из названия технологии (или транспортного протокола), с помощью которой выполняется вызов, символа слэш и имени удаленной конечной точки или ресурса. Самыми широко используемыми типами технологий являются Zap (для аналоговых каналов и каналов T1/E1/ J1), SIP и IAX2. Например, допустим, требуется вызвать конечную точку Zap, определенную как Zap/1, которая представляет собой FXS- канал с подключенным к нему аналоговым телефоном. Технология - Zap, ресурс - 1. Аналогично, для вызова устройства SIP (описанного в sip.conf) получателем вызова может быть SIP/Jane, а для устройства IAX (описанного в iax.conf) - IAX2/Fred. Если бы потребовалось, чтобы при вызове добавочного номера 123 диалплана Asterisk звонил по каналу Zap/1, мы бы ввели следующий добавочный номер: exten => 123,1,Dial(Zap/1)
Также можно звонить по нескольким каналам одновременно, объединяя получателей вызова с помощью символа амперсанда (&):
exten => 123,1,Dial(Zap/1&Zap/2&SIP/Jane) Приложение Dial() будет дозваниваться всем заданным получателям вызовов одновременно и установит связь с любым из заданных каналов, который ответит первым. Если приложение не может связаться ни с одним вызываемым абонентом, Asterisk задаст переменной DIALSTATUS (статус звонка) значение, соответствующее ситуации невозможности дозвониться на вызываемые номера, и продолжит выполнение следующего приоритета добавочного номера1.
Приложение Dial() также позволяет устанавливать связь с удаленной конечной точкой VoIP, которая не была предварительно описана в конфигурационных файлах канала. Вот полный синтаксис такого типа соединения:
Dial(технология/пользователь[:пароль]@удаленный_хост[:порт][/удаленный_доба- вочный_номер])
В качестве примера можно позвонить на демонстрационный сервер Digium, который использует протокол IAX2, по следующему добавочному номеру:
exten => 500,1,Dial(IAX2/guest@misery.digium.com/s)
Полный синтаксис приложения Dial() для звоноков по каналам Zap немного иной, как показано ниже:
Dial(Zap/[gGrR]канал_или_группа[/удаленный_добавочный_номер]) Например, вот как описывался бы вызов номера 1-800-555-1212 по Zap-каналу под номером 4.
exten => 501,1,Dial(Zap/4/18005551212) Второй аргумент приложения Dial() - время ожидания, задаваемое в секундах. Если время ожидания задано, Dial() будет пытаться дозвониться по заданным номерам в течение этого количества секунд, а потом перейдет к следующему приоритету добавочного номера. Если время ожидания не задано, Dial() будет дозваниваться на вызываемые каналы до тех пор, пока кто-нибудь не ответит или пока вызывающий абонент не повесит трубку. Введем для нашего добавочного номера время ожидания 10 с:
exten => 123,1,Dial(Zap/1,10) Если ответ на звонок получен до истечения времени ожидания, связь между каналами устанавливается и диалплан выполнен. Если вызываемый номер просто не отвечает, занят или недоступен по какой-то другой причине, Asterisk задаст переменную DIALSTATUS и перейдет к следующему приоритету добавочного номера.
Не беспокойтесь, позже мы рассмотрим переменные (в разделе «Использование переменных») и покажем, как заставить диалплан принимать решения на основании значения переменной DIALSTATUS.
Давайте применим то, что изучили на данный момент, в другом примере:
exten => 123,1,Dial(Zap/1,10)
exten => 123,n,Playback(vm-nobodyavail)
exten => 123,n,Hangup()
Как видите, этот пример будет воспроизводить звуковой файл vm- nobodyavail.gsm в случае, если звонок остается без ответа. Третий аргумент Dial() - строка опций. Она может содержать один или более символов, влияющих на поведение приложения Dial(). Список возможных опций слишком велик, чтобы приводить его здесь; рассмотрим лишь самую популярную из них - опцию m. Если указать m в качестве третьего аргумента, вызывающая сторона, пока выполняется дозвон до вызываемого абонента, будет слышать во время ожидания вместо гудков музыку (конечно, если эта музыка сконфигурирована правильно). Чтобы добавить опцию m в наш последний пример, просто изменим первую строку:
exten => 123,1,Dial(Zap/1,10,m) exten => 123,n,Playback(vm-nobodyavail) exten => 123,n,Hangup()
Теперь, когда мы научились использовать приложение Dial(), добавочные номера 1 и 2 в диалплане стали бесполезными. Давайте заменим их новыми добавочными номерами, которые позволят внешним абонентам дозваниваться до Джона (John) и Джейн (Jane):
[incoming] | |
exten => | 123,1,Answer() |
exten => | 123,n,Background(enter-ext-of-person) |
exten => | 123,n,WaitExten() |
exten => | 1,1,Dial(Zap/1,10) |
exten => | 1,n,Playback(vm-nobodyavail) |
exten => | 1,n,Hangup() |
exten => | 2,1,Dial(SIP/Jane,10) |
exten => | 2,n,Playback(vm-nobodyavail) |
exten => | 2,n,Hangup() |
exten => | i,1,Playback(pbx-invalid) |
exten => | i,n,Goto(incoming,123,1) |
exten => | t,1,Playback(vm-goodbye) |
exten => | t,n,Hangup() |
Четвертый и последний аргумент приложения Dial() - URL. Если вызываемый канал поддерживает прием URL в момент вызова, заданный URL будет передан (например, если используется IP-телефон, поддерживающий прием URL, этот URL появится на дисплее телефона; аналогично, если используется программный телефон, URL может быть выведен на экран монитора). Этот аргумент применяется очень редко.
Обратите внимание, что второй, третий и четвертый аргументы могут быть опущены. Например, если требуется определить опцию, но при этом вы не собираетесь задавать время ожидания, просто оставьте пропуск на месте аргумента времени ожидания, как в данном примере:
exten => 1,1,Dial(Zap/1,,m)
Добавление контекста для внутренних вызовов
До сих пор в наших примерах мы ограничивались одним контекстом, но, вероятно, справедливо предполагать, что в диалпланах практически всех установок Asterisk будет не один контекст, а больше. Как упоминалось в начале данной главы, одна из важных функций контекстов - разделение прав доступа (таких, как осуществление междугородних вызовов или звонков на определенные добавочные номера) для разных классов абонентов. В следующем примере наш диалплан будет дополнен созданием двух внутренних добавочных номеров, для которых будет настроена возможность звонить друг другу. Для этого создадим новый контекст, [employees] (служащие).
Как и в предыдущих примерах, предполагаем, что аналоговый канал FXS (Zap/1 в данном случае) уже сконфигурирован и что настройки файла zapata.conf таковы, что все вызовы, берущие начало в Zap/1, обрабатываются в контексте [employees]. В нескольких примерах в конце главы также будет предполагаться, что Zap-канал FXO сконфигурирован как Zap/4 и вызовы, поступающие на этот канал, направляются в контекст [incoming].
Также мы предположили, что имеется по крайней мере один SIP-канал (названный SIP/Jane), который используется в контексте [employees]. Это было сделано, чтобы показать пример использования других типов каналов.
Если вы не располагаете оборудованием для организации перечисленных выше каналов (таких, как Zap/4) или если используете другие имена каналов (например, не SIP/Jane), просто скорректируйте примеры соответственно конфигурации своей системы.
Теперь наш диалплан выглядит так:
[incoming]
exten => 123,1,Answer()
exten => 123,n,Background(enter-ext-of-person) exten => 123,n,WaitExten()
exten => 1,1,Dial(Zap/1,10)
exten => 1,n,Playback(vm-nobodyavail)
exten => 1,n,Hangup()
exten => 2,1,Dial(SIP/Jane,10) exten => 2,n,Playback(vm-nobodyavail) exten => 2,n,Hangup()
exten => i,1,Playback(pbx-invalid) exten => i,n,Goto(incoming,123,1)
exten => t,1,Playback(vm-goodbye) exten => t,n,Hangup()
[employees]
exten => 101,1,Dial(Zap/1)
exten => 102,1,Dial(SIP/Jane) В этом примере в контекст [employees] было добавлено два новых добавочных номера. Таким образом, человек, использующий канал Zap/1, может поднять трубку телефона и позвонить человеку, находящемуся на линии SIP/Jane, набрав номер 102. Точно так же телефон, зарегистрированный как SIP/Jane, может позвонить Zap/1, если пользователь наберет 101.
Добавочные номера 101 и 102 выбраны для примера произвольно, для своих добавочных номеров вы можете использовать любые другие цифры. Также необходимо помнить, что вы не ограничены трехзначными добавочными номерами; номер может включать столько угодно цифр. (Скажем так, почти сколько угодно. Добавочные номера не должны быть длиннее 80 символов, и нельзя использовать добавочные номера длиной в один символ для собственных нужд, поскольку они зарезервированы.) Не забывайте, что могут применяться и имена, как в данном примере: [incoming]
exten => 123,1,Answer()
exten => 123,n,Background(enter-ext-of-person) exten => 123,n,WaitExten()
exten => 1,1,Dial(Zap/1,10)
exten => 1,n,Playback(vm-nobodyavail)
exten => 1,n,Hangup()
exten => 2,1,Dial(SIP/Jane,10) exten => 2,n,Playback(vm-nobodyavail) exten => 2,n,Hangup()
exten => i,1,Playback(pbx-invalid) exten => i,n,Goto(incoming,123,1)
exten => t,1,Playback(vm-goodbye) exten => t,n,Hangup()
[employees]
exten => 101,1,Dial(Zap/1) exten => john,1,Dial(Zap/1)
exten => 102,1,Dial(SIP/Jane) exten => jane,1,Dial(SIP/Jane)
Конечно, не помешало бы добавить именные добавочные номера, если предполагается, что пользователи могут получать звонки по VoIP-про- токолу, такому как SIP, который поддерживает вызов по имени. Также нетрудно заметить, что в диалплане могут быть разные добавочные номера для вызова одной конечной точки, например добавочный номер 200 с выходом на канал SIP/George и добавочный номер 201, который воспроизводит некоторое сообщение, а затем звонит SIP/George. Теперь, когда наши внутренние абоненты могут звонить друг другу, мы значительно продвинулись на пути к созданию полного диалплана. Далее будет показано, как можно сделать диалплан более масштабируемым и пригодным к внесению изменений в будущем.
Использование переменных
Переменные, используемые в диалплане Asterisk, способствуют сокращению объема вводимого текста, делают код более понятным или вводят дополнительную логику. Тем, кто имеет опыт разработки программного обеспечения, вероятно, понятие переменной уже знакомо. Если нет, не стоит беспокоиться; мы объясним, что такое переменные и как они используются.
Переменные можно рассматривать как контейнер, в котором в данный момент времени может храниться одно значение. Например, мы могли бы создать переменную JOHN и присвоить ей значение Zap/1. Теперь при написании диалплана можно ссылаться на канал Джона по имени, а не запоминать, что Джон использует канал, названный Zap/1. Существует два способа использования переменной. Чтобы сослаться на имя переменной, просто вводится ее имя, например JOHN. Если, с другой стороны, требуется сослаться на ее значение, необходимо ввести знак доллара, открывающую фигурную скобку, имя переменной и закрывающую фигурную скобку. Вот как используется переменная в приложении Dial():
exten => 555,1,Dial(${JOHN}) В нашем диалплане Asterisk будет автоматически заменять все ссылки ${JOHN} значением, присвоенным переменной под именем JOHN.
Обратите внимание, что имена переменных чувствительны к регистру. JOHN и John - это разные переменные. Для удобства чтения все имена переменных в примерах будут записываться в верхнем регистре. Также следует помнить, что все переменные, заданные Asterisk, тоже будут записаны прописными буквами. Некоторые переменные, такие как CHANNEL или EXTEN, зарезервированы Asterisk. Не надо пытаться задавать их.
В диалплане используется три типа переменных: глобальные переменные, переменные канала и переменные среды. Кратко рассмотрим каждый из этих типов.
Глобальные переменные
Как следует из их названия, глобальные переменные применяются ко всем добавочным номерам во всех контекстах. Глобальные переменные полезны тем, что могут использоваться в любом месте диалплана, повышая читабельность и обслуживаемость кода. Предположим, имеется большой диалплан и несколько сотен ссылок на канал Zap/1. Теперь представим, что необходимо пересмотреть весь диалплан и изменить все эти ссылки на Zap/2. Это был бы, мягко выражаясь, долгий и чреватый ошибками процесс.
Но если бы в начале диалплана была определена переменная со значением Zap/1 и далее использовались лишь ссылки на нее, потребовалось бы изменить только одну строку.
Глобальные переменные объявляются в контексте [globals] в начале файла extensions.conf. Их можно также задать программно с помощью функции диалплана GLOBALQ[74]. Вот пример использования обоих методов задания переменных в диалплане. В первом варианте глобальной переменной JOHN присваивается значение Zap/1. Эта переменная задается в момент, когда Asterisk выполняет синтаксический разбор диал- плана. Второй пример представляет, как можно задать глобальную переменную в процессе выполнения диалплана. В этом случае переменной George присваивается значение SIP/George при выполнении звонка на добавочный номер 124 в контексте [employees]: [globals] JOHN=Zap/1
[employees]
exten => 124,1,Set(GLOBAL(GEORGE)=SIP/George)
Переменные канала
Переменная канала - это переменная, связанная только с конкретным вызовом. В отличие от глобальных переменных, переменные каналов определяются только на время текущего вызова и доступны лишь для каналов, участвующих в нем.
Для использования в диалплане предопределено множество переменных каналов. Они описаны в файле channelvariables.txt, находящемся в подпапке doc папки исходного кода Asterisk. Переменные каналов задаются с помощью приложения Set():
exten => 125,1,Set(MAGICNUMBER=42) Многие варианты использования переменных каналов будут рассмотрены в главе 6.
Переменные среды
Переменные среды - это средство организации доступа к переменным среды UNIX из Asterisk. Для их использования служит функция диалплана ENV(). Ее синтаксис выглядит следующим образом: ${ENV(var)}, где var - переменная среды UNIX, на которую выполняется ссылка. Переменные среды используются в диалпланах Asterisk не часто, но они доступны на случай необходимости.
Добавление переменных в диалплан
Теперь, ознакомившись с переменными, применим их в нашем диалплане. Добавим глобальные переменные для двух людей, Джона и Джейн:
[globals][globals] |
JOHN=Zap/1 |
JANE=SIP/Jane |
[incoming] |
exten => 123,1,Answer() |
exten => 123,n,Background(enter-ext-of-person) |
exten => 123,n,WaitExten() |
exten => 1,1,Dial(${JOHN},W) |
exten => 1,n,Playback(vm-nobodyavail) |
exten => 1,n,Hangup() |
exten => 2,1,Dial(${JANE},10) |
exten => 2,n,Playback(vm-nobodyavail) |
exten => 2,n,Hangup() |
exten => i,1,Playback(pbx-invalid) |
exten => i,n,Goto(incoming,123,1) |
exten => t,1,Playback(vm-goodbye) |
exten => t,n,Hangup() |
[employees] |
exten => W1,1,Dial(${JOHN}) |
exten => john,1,Dial(${JOHN}) |
exten => 102,1,Dial(${JANE}) |
exten => jane,1,Dial(${JANE}) |
Сопоставление с шаблонами
Если мы хотим предоставить людям возможность осуществлять звонки через Asterisk и желаем, чтобы Asterisk обеспечивала соединение абонента с внешним ресурсом, нам необходим механизм сопоставления любого телефонного номера, который может быть набран абонентом. Можете себе представить, как утомительно было бы вручную писать диалплан с добавочными номерами для всех возможных вариантов? К счастью, у Asterisk есть как раз то, что надо для таких случаев: сопоставление с шаблонами. Благодаря возможности сопоставления с шаблонами в диалплане можно создать один добавочный номер, который будет соответствовать множеству разных номеров.
Синтаксис сопоставления с шаблонами
Используемые в шаблонах буквы и символы представляют определенные группы символов. Шаблоны всегда начинаются с символа подчеркивания (_). Он указывает Asterisk, что выполняется сопоставление с шаблоном, а не с явно заданным добавочным номером. (Безусловно, это означает, что имена добавочных номеров нельзя начинать с символа подчеркивания.)
Если не поставить символ подчеркивания в начале шаблона, Asterisk посчитает, что это просто именованный добавочный номер, и не будет выполнять сопоставления с шаблоном. Это одна из самых распространенных ошибок среди новичков в Asterisk.
После подчерка может использоваться один или более символов из перечисленных ниже.
X
Соответствует любому одиночному числу от 0 до 9.
Z
Соответствует любому одиночному числу от 1 до 9.
N
Соответствует любому одиночному числу от 2 до 9.
[15-7]
Соответствует любому однозначному числу из заданного диапазона. В данном случае шаблон соответствует одиночной цифре 1, 5, 6 или 7.
. (точка)
Универсальное соответствие; соответствует одному или более символам, любым.
1 Если не быть осторожным, сопоставления с групповым символом могут привести к тому, что диалплан будет делать совсем i не то, что предполагается (например, сопоставление с встроен- ными добавочными номерами, такими как i или h). Универсальное соответствие должно использоваться в шаблоне только после того, как сопоставлено максимально возможное количество цифр. Например, следующий шаблон, наверное, не должен применяться никогда:
На самом деле Asterisk предупредит в случае попытки его применения. Лучше по возможности используйте такой шаблон:
_X.
! (восклицательный знак)
Универсальное соответствие; соответствует нулю или более символам, любым.
Чтобы использовать сопоставление с шаблонами в своем диалплане, просто вставьте шаблон на место добавочного номера (или его имени):
exten => _NXX,1,Playback(auth-thankyou) В этом примере шаблон соответствует трехзначному добавочному номеру в диапазоне от 200 до 999 (N соответствует любой цифре от 2 до 9, а каждый X - от 0 до 9). То есть, если бы абонент набрал любой трехзначный добавочный номер в диапазоне от 200 до 999 в данном контексте, он бы услышал звуковой файл auth-thankyou.gsm. Еще одна важная деталь, которую необходимо знать о сопоставлении с шаблонами: если Asterisk находит более одного шаблона, соответствующего набранному добавочному номеру, она будет использовать наиболее точный из них (слева направо). Скажем, задано два следующих шаблона и абонент набирает 555-1212:
exten => _555XXXX,1,Playback(digits/1) exten => _55512XX,1,Playback(digits/2)
В данном случае был бы выбран второй добавочный номер, потому что он более точно соответствует набранному номеру.
Примеры сопоставления с шаблонами
Прежде чем продолжить, рассмотрим еще несколько примеров сопоставления с шаблонами. В каждом из них проверьте, сможете ли вы сказать, чему соответствует шаблон, до того, как прочитаете объяснения. Начнем с простого:
_NXXXXXX
Этот шаблон соответствует любому семизначному номеру, начинающемуся с двойки и выше, то есть любому локальному семизначному номеру по североамериканскому плану нумерации. В зонах, где используются 10-значные номера, этот шаблон выглядел бы так:
_NXXNXXXXXX
NANP и мошенничество с оплатой звонков
Североамериканскийплан нумерации (North AmericanNumbering Plan, NANP) - это общая схема телефонной нумерации, используемая 19 странами в Северной Америке и Канаде. Код страны для стран NANP - 1.
В США и Канаде нормы и правила электросвязи довольно похожи (и удобны), поэтому на большинство междугородних номеров можно звонить, используя код страны 1, по разумной цене.
Однако многие даже не догадываются, что NANP используют 19 стран, подчас с очень разными правилами электросвязи. (Более подробную информацию об этом можно найти по адресу http://www.nanpa.com.)
Очень популярно мошенничество с использованием NANP, когда наивных американцев обманным путем заставляют звонить в страны Карибского бассейна по номерам, звонок по которым оплачивается поминутно, как междугородний; абоненты верят, что, если набрать 1-NPA-NXX-XXXX, звонок будет оплачиваться по стандартным национальным тарифам на междугородние звонки. Поскольку в данном государстве могут действовать правила, допускающие такого рода мошенничество, абоненту в итоге приходится оплачивать телефонные счета.
Единственный способ предотвратить такого рода деятельность - блокировать определенные междугородние коды (например, 809) и снимать ограничения только в случае необходимости.
Обратите внимание, что ни один из данных шаблонов не станет обрабатывать междугородние звонки. Скоро мы рассмотрим этот вопрос. Попробуем другой шаблон:
_1NXXNXXXXXX
Данный шаблон немного сложнее. Он соответствует 1, за которой следует код города от 200 до 999, а затем - любой семизначный номер. В зоне действия NANP этот шаблон будет использоваться для сопоставления с любым междугородним номером[75]. Теперь еще более хитрый пример: _011.
Если, увидев этот шаблон, вы лишь почесали затылок, посмотрите на него еще раз. Заметили точку в конце? Этот шаблон соответствует любому номеру, начинающемуся с 011 и имеющему по крайней мере еще одну цифру. В NANP это соответствует международному телефонному номеру. (Мы будем использовать эти шаблоны в следующем разделе для добавления в наш диалплан возможностей выполнения исходящих звонков.)
Использование переменной канала ${EXTEN}
Мы знаем, о чем вы думаете... Вы сидите и задаете себе вопрос: «Так что же делать, если я хочу использовать сопоставление с шаблонами, но мне надо знать, какие цифры набираются?» К счастью, у Asterisk есть ответ. При каждом звонке на добавочный номер Asterisk сохраняет набранный номер в переменной канала ${EXTEN}. Чтобы протестировать ее, можно использовать приложение SayDigits():
exten => _XXX,1,SayDigits(${EXTEN})
В этом примере приложение SayDigits() будет воспроизводить для вас набранный вами трехзначный добавочный номер.
Часто переменную ${EXTEN} удобно использовать для удаления определенного количества цифр в начале добавочного номера. Это осуществляется с помощью синтаксиса ${EXTEN:x}, где x - разряд, с которого должна начинаться возвращаемая строка, считая слева направо. Например, если значение EXTEN - 95551212, ${EXTEN:1} равно 5551212. Рассмотрим другой пример:
exten => _XXX,1,SayDigits(${EXTEN:1})
В этом примере приложение SayDigits() начнет воспроизведение со второй цифры, таким образом, будут воспроизведены только две последние цифры набранного добавочного номера.
Более сложные операции с номерами
Полный синтаксис переменной ${EXTEN} - ${EXTEN: x: у}, где x - начальное положение, а у - количество цифр, которое должно быть возвращено. Пусть задана строка набора:
94169671111
Используя конструкцию ${EXTEN:x:y}, можно извлечь следующие цифровые строки:
${EXTEN:1:3} - будет возвращена строка 416. ${EXTEN:4:7} - будет возвращена строка 9671111. ${EXTEN:-4:4} - строка будет начинаться с четвертого символа с конца и включает четыре символа, что даст 1111. ${EXTEN:1} - будет возвращено все после первой цифры, 4169671111 (если количество цифр, которое должно быть возвращено, не задано, будет возвращена вся оставшаяся строка). Это очень мощная структура, но большинство из приведенных ее вариантов используются редко. Чаще всего вы будете применять ${EXTEN:1}, чтобы отбросить внешний код доступа.
Активация исходящих вызовов
Теперь, когда мы ознакомились с шаблонами, можно переходить к тому, как обеспечить абонентам возможность осуществлять исходящие звонки. Первое, что мы сделаем, - добавим переменную в контекст [globals], чтобы определить, какой канал будет использоваться для исходящих вызовов:
[globals] JOHN=Zap/1 JANE=SIP/Jane OUTBOUNDTRUNK=Zap/4
Далее добавим в диалплан контекст для исходящих вызовов. Возможно, сейчас вы задаетесь вопросом: «Зачем нужен отдельный контекст для исходящих звонков?» Это делается для того, чтобы иметь возможность управлять тем, какие абоненты имеют право делать исходящие звонки и какого типа могут быть эти звонки. Сначала создадим контекст для локальных вызовов. Не будем отступать от традиций и первой цифрой в наших шаблонах поставим 9, чтобы пользователи для звонка на внешний номер набирали 9: [outbound-local]
exten => _9NXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1}) exten => _9NXXXXXX,n,Congestion() exten => _9NXXXXXX,n,Hangup()
Обратите внимание, что цифра 9 на самом деле не обеспечивает выхода на внешнюю линию, как это происходит во многих традиционных системах офисных АТС. После набора цифры 9 в аналоговой линии сразу же пропадет тональный сигнал готовности линии. Если вам хочется, чтобы зуммер продолжался даже после набора цифры 9, добавьте следующую строку (сразу после описания контекста): ignorepat => 9
Согласно данной директиве Asterisk будет продолжать давать тональный сигнал в аналоговую линию даже после набора указанного шаблона. Это не будет работать с телефонами VoIP, поскольку обычно они не передают отдельные цифры номера в систему во время их ввода; они отправляют Asterisk весь номер сразу. К счастью, большинство популярных VoIP-телефо- нов можно настроить на имитацию такой функциональности.
Повторим, что было сделано. Мы добавили глобальную переменную OUTBOUNDTRUNK, которая просто определяет канал, используемый для исходящих вызовов1. Также был введен контекст для локальных исходя-Это обеспечивает то преимущество, что, если однажды будет принято решение передавать вызовы по какому-то другому каналу, надо будет отредактировать имя канала, заданное как значение переменной OUTBOUNDTRUNK только в контексте [globals], а не менять вручную все ссылки на этот канал по всему диалплану.
щих вызовов. В приоритете 1 с помощью синтаксиса ${EXTEN:1} от набранного добавочного номера отбрасывается цифра 9 и делается попытка дозвониться на этот номер по каналу, указанному переменной OUTBOUNDTRUNK. Если удается дозвониться, абонент соединяется с исходящим каналом. Если вызов заканчивается неудачей (например, канал занят или невозможно набрать номер по какой-то другой причине), вызывается приложение Congestion() (перегрузка), которое воспроизводит «короткие гудки» (тональный сигнал перегрузки линии), сообщая абоненту, что дозвониться не удалось.
Прежде чем двигаться дальше, убедимся, что наш диалплан позволяет выполнять исходящие звонки на номера экстренного вызова:
[outbound-local]
exten => _9NXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1}) exten => _9NXXXXXX,n,Congestion() exten => _9NXXXXXX,n,Hangup()
exten => 911,1,Dial(${OUTBOUNDTRUNK}/911)
exten => 9911, 1, Dial (${OUTBOUNDTRUNK}/911) ; Чтобы тот, кто набрал первую "9",
; тоже мог дозвониться
Опять же, в данном примере предполагается, что мы находимся в США или Канаде. Если вы проживаете в другой стране, замените, пожалуйста, 911 номером экстренных служб, используемым в вашем регионе. Это то, о чем ни в коем случае нельзя забывать при создании своего ди- алплана!
Далее добавим контекст для междугородних звонков:
[outbound-long-distance]
exten => _91NXXNXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1}) exten => _91NXXNXXXXXX,n,Playtones(congestion) exten => _91NXXNXXXXXX,n,Hangup()
Теперь, когда у нас есть два новых контекста, как предоставить возможность внутренним абонентам их использовать? Необходим какой-то способ использовать функциональность одного контекста из другого.
Выражения include
Asterisk предоставляет возможность использовать добавочные номера из одного контекста в другом контексте с помощью директивы include (включить). Так можно управлять доступом к различным разделам диалплана. Мы будем применять функциональность включения, чтобы дать возможность пользователям из контекста [employees] делать исходящие звонки. Но сначала давайте рассмотрим синтаксис. Выражение include имеет следующий вид, где контекст - имя удаленного контекста, который требуется включить в текущий: include => контекст
При включении контекстов друг в друга необходимо внимательно продумать порядок их включения. Asterisk сначала будет пытаться найти
соответствие набранному добавочному номеру в текущем контексте. В случае неудачи она будет рассматривать контекст, включенный первым (в том числе все включенные в него контексты), а затем будет переходить от одного контекста к другому в порядке их включения. На данный момент в нашем диалплане есть два контекста для исходящих вызовов, но абоненты из контекста [employees] не могут их использовать. Исправим это, включив оба исходящих контекста в контекст [employees], как показано в примере: [globals] JOHN=Zap/1 JANE=SIP/Jane OUTBOUNDTRUNK=Zap/4
[incoming]
exten => 123,1,Answer()
exten => 123,n,Background(enter-ext-of-person) exten => 123,n,WaitExten()
exten => 1,1,Dial(${JOHN},10) exten => 1,n,Playback(vm-nobodyavail) exten => 1,n,Hangup()
exten => 2,1,Dial(${JANE},10) exten => 2,n,Playback(vm-nobodyavail) exten => 2,n,Hangup()
exten => i,1,Playback(pbx-invalid) exten => i,n,Goto(incoming,123,1)
exten => t,1,Playback(vm-goodbye) exten => t,n,Hangup()
[employees]
include => outbound-local include => outbound-long-distance
exten => 101,1,Dial(${JOHN}) exten => john,1,Dial(${JOHN}) exten => 102,1,Dial(${JANE}) exten => jane,1,Dial(${JANE})
[outbound-local]
exten => _9NXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1}) exten => _9NXXXXXX,n,Congestion() exten => _9NXXXXXX,n,Hangup()
exten => 911,1,Dial(${OUTBOUNDTRUNK}/911) exten => 9911,1,Dial(${OUTBOUNDTRUNK}/911)
[outbound-long-distance]
exten => _91NXXNXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1})
exten => _91NXXNXXXXXX,n,Playtones(congestion) exten => _91NXXNXXXXXX,n,Hangup()
Эти два выражения include обеспечивают абонентам из контекста [employees] возможность осуществлять исходящие вызовы. Также нужно заметить следующее: в целях безопасности всегда необходимо убедиться в том, что контекст [inbound] (входящие) не допускает возможности исходящих звонков. (Если вдруг это стало бы возможным, люди могли бы дозваниваться в вашу систему, а затем делать исходящие платные звонки за ваш счет!)
Заключение
И вот он готов - базовый, но вполне функциональный диалплан. Это не совсем полный набор возможных свойств, но основные из них были рассмотрены. В следующих главах наш базовый диалплан будет дополнен новыми функциями.
Если какие-то части данного диалплана вызывают у вас вопросы, вероятно, вам следует вернуться немного назад и перечитать раздел или два, прежде чем переходить к следующей главе. Крайне важно понимать все эти основные принципы и их применение, потому что они являются основой для изучения следующих глав.6
Дополнительные концепции диалплана
Чтобы получить список всех направлений, в которых технологии не смогли улучшить качество жизни, пожалуйста, нажмите три.
- Элис Кан
Отлично. Основные принципы диалплана рассмотрены, но многое впереди. Если вы еще не до конца разобрались с предыдущей главой, пожалуйста, вернитесь назад и перечитайте ее. Мы собираемся переходить к более сложным вопросам.
Выражения и работа с переменными
Поскольку мы начинаем погружение в более глубокие аспекты диал- плана, пришло время представить несколько инструментов, которые могут значительно увеличить его мощь. Эти структуры невероятно усложнят логику диалплана, обеспечив ему возможность принимать решения на основании различных задаваемых критериев. Итак, собрались с мыслями - и начнем.
Элементарные выражения
Выражения - это сочетания переменных, операторов и значений, объединяемые для получения результата. Выражение может тестировать значения, изменять строки или выполнять вычисления. Допустим, имеется переменная COUNT. Возьмем два возможных выражения, составленных с использованием этой переменной: «COUNT плюс 1» и «COUNT разделить на 2». Каждое из этих выражений имеет конкретный результат или значение, зависящие от значения данной переменной.
В Asterisk выражения всегда начинаются со знака доллара ($) и открывающей квадратной скобки и заканчиваются закрывающей квадратной скобкой:
$[выражение]
Таким образом, упомянутые выше примеры будут записаны так:
$[${COUNT} + 1] $[${COUNT} / 2]
Когда Asterisk встречает в диалплане выражение, она заменяет его результирующим значением. Важно отметить, что это происходит после подстановки переменных. Чтобы продемонстрировать это, посмотрим на следующий фрагмент кода1:
exten => 321,1,Set(COUNT=3)
exten => 321,n,Set(NEWCOUNT=$[${COUNT} + 1])
exten => 321,n,SayNumber(${NEWCOUNT})
В первом приоритете переменной COUNT присваивается значение 3. Во втором приоритете участвует только одно приложение, Set(), но фактически выполняется три действия:
1. Asterisk подставляет в выражении вместо ${COUNT} число 3. Выражение, в сущности, превращается в следующее:
exten => 321,n,Set(NEWCOUNT=$[3 + 1])
2. Asterisk вычисляет выражение, суммируя 1 и 3, и заменяет его вычисленным значением, 4:
exten => 321,n,Set(NEWCOUNT=4)
3. Приложение Set() присваивает значение 4 переменной NEWCOUNT. Третий приоритет просто вызывает приложение SayNumber(), которое воспроизводит текущее значение переменной ${NEWCOUNT} (ей было присвоено значение 4 во втором приоритете).
Попробуйте это в своем диалплане.
Операторы
Код диалплана Asterisk записывается на специальном языке сценариев. Это означает, что язык диалплана Asterisk, как любой язык программирования, распознает символы, называемые операторами, которые позволяют оперировать переменными. Рассмотрим типы операторов, используемые в Asterisk: Логические (булевы) операторы
Эти операторы оценивают истинность выражения. С точки зрения вычислений это, по сути, означает, является ли выражение чем-то или оно является ничем (отличный от нуля или нуль, истина или ложь, включен или выключен и т. д.). К логическим операторам относятся:
Помните, что при ссылке на переменную используется просто ее имя, но при ссылке на значение переменной ее имя должно быть заключено в квадратные скобки и перед ними должен стоять знак доллара.
expr1 | expr2
Этот оператор (называемый оператором ИЛИ) в случае истинности выражения expr1 (не пустая строка и не нуль) возвращает результат его вычисления. В противном случае он возвращает результат вычисления выражения expr2.
expr1 & expr2
Это оператор (называемый оператором И) возвращает результат вычисления expr1, если оба выражения истинны (то есть если ни одно из выражений не дает в результате пустой строки или нуля). В противном случае возвращается нуль. expr1 {=, >, >=, <, <=, ! = } expr2
Эти операторы возвращают результаты сравнения целых чисел, если оба аргумента являются целыми числами; в противном случае возвращаются результаты сравнения строк. В результате сравнения получаем 1, если заданное отношение выполняется, или 0, если отношение не выполняется. (Сравнение строк выполняется соответственно текущим локальным настройкам операционной системы.)
Арифметические операторы
Хотите выполнить вычисление? Вам потребуется один из следующих операторов: expr1 {+, -} expr2
Эти операторы возвращают результаты сложения или вычитания целочисленных аргументов. expr1 {*, /, %} expr2
Эти операторы возвращают результаты умножения, целочисленного деления или остаток от деления целочисленных аргументов соответственно.
Оператор регулярного выражения
Также в Asterisk может использоваться оператор регулярного выражения:
expr1 : expr2
Этот оператор сравнивает выражение expr1 с expr2, где последнее должно быть регулярным выражением1. Регулярное выражение привязывается к началу строки посредством явного задания 2.
Больше информации о регулярных выражениях можно найти в полном справочнике Джеффри Е. Ф. Фридла (Jeffrey E. F. Friedl) «Mastering Regular Expressions» (издательство O'Reilly) или по адресу http://www.regula.r- expressions.info.
Если вы не знаете, что делает ~ с регулярными выражениями, вы просто обязаны достать экземпляр книги «Mastering Regular Expressions». Она изменит вашу жизнь!
Если соответствие установлено и шаблон содержит по крайней мере одну подстроку регулярного выражения, \( ... \), возвращается строка, соответствующая \1; в противном случае оператор сопоставления возвращает число совпавших символов. Если соответствия не выявлено и шаблон не содержит подстроку регулярного выражения, возвращается нулевая строка; в противном случае, возвращается 0. Синтаксический анализатор Asterisk версии 1.0 был довольно прост, поэтому обязательным требованием было отделение операторов от всех остальных значений как минимум одним пробелом. Соответственно, следующая запись не обеспечивала бы желаемого результата:
exten => 123,1,Set(TEST=$[2+1]) Такая запись привела бы к присвоению переменной TEST строки 2+1, а не значения 3. Чтобы исправить это, надо поставить пробелы перед оператором и после него:
exten => 234,1,Set(TEST=$[2 + 1]) В Asterisk 1.2 или 1.4 это уже не является обязательным требованием, потому что синтаксический анализатор выражений был доработан с учетом таких типов сценариев. Однако ради удобства чтения по-прежнему рекомендуется отделять операторы пробелами. Чтобы добавить текст в начало или конец переменной, просто поместите его в выражении рядом:
exten => 234,1,Set(NEWTEST=$[blah${TEST}])
Функции диалплана
Функции диалплана делают выражения более мощными; их можно рассматривать как интеллектуальные переменные. Функций диалпла- на позволяют вычислять длины строк, даты и время, контрольные суммы MD5 и т. д., и все в рамках выражения диалплана.
Синтаксис
Функции диалплана имеют следующий основной синтаксис:
ИМЯ_ФУНКЦИИ( аргумент) Как и для переменных, ссылка на имя функции выполняется, как показано выше, а чтобы использовать значение функции, необходимо поставить впереди знак доллара и заключить функцию в фигурные скобки:
$ {ИМЯ_ФУНКЦИИ( аргумент)} Также функции могут инкапсулировать (содержать в себе) другие функции:
${ ИМЯ_ФУНКЦИИ(${ ИМЯ_ФУНКЦИИ( аргумент)})}
2 3 4 4321
Как вы, вероятно, уже заметили, необходимо быть очень внимательным с открывающими и закрывающими скобками. В примере выше парные открывающие и закрывающие круглые и фигурные скобки обозначены одинаковыми числами.
Примеры функций диалплана
Часто функции используются в сочетании с приложением Set() для получения или задания значения переменной. В качестве простого примера рассмотрим функцию LEN(). Эта функция вычисляет длину строки, заданной в качестве ее аргумента. Вычислим длину строки переменной и воспроизведем это значение для абонента: exten => 123,1,Set(TEST=example) exten => 123,n,SayNumber(${LEN(${TEST})})
Приведенный пример определит, что строка example содержит семь символов, задаст это значение как длину переменной и воспроизведет это число пользователю с помощью приложения SayNumber().
Рассмотрим еще один простой пример. Если бы мы захотели задать время ожидания для одного из каналов, то могли бы использовать функцию TIMEOUT(). Функция TIMEOUT() принимает один из трех аргументов: absolute (абсолютное), digit (между цифрами) и response (ответ). Чтобы задать максимальный промежуток времени между вводом цифр с помощью функции TIMEOUT(), можно воспользоваться приложением Set():
exten => s,1,Set(TIMEOUT(digit)=30) Обратите внимание на то, что функция не заключена в символы ${ }. Как и присвоение значения переменной, присвоение значения функции выполняется без использования символов ${ }.
Полный список доступных функций можно получить, введя команду core show functions в интерфейсе командной строки Asterisk. Также они представлены в приложении F.
Выполнение переходов по условию
После краткого ознакомления с выражениями и функциями пришло время использовать их на практике. Применение выражений и функций позволяет усложнить логику диалплана. Возможность принятия решений в диалплане обеспечивается выполнением переходов по условию. Остановимся на этом подробнее.
Приложение GotoIf()
Ключ к выполнению переходов по условию - приложение GotoIf(). GotoIf() вычисляет выражение и отправляет абонента в соответствующее место назначения в зависимости от истинности или ложности выражения.
GotoIf() использует особый синтаксис, который часто называют условным:
GotoIf(выражение?местоназначения1:местоназначения2) Если выражение истинно (возвращает значение true), абонент направляется на местоназначения1. Если выражение ложно (возвращает значение false), абонент направляется по второму адресу. Итак, что обеспечивает возвращение значения true или false? Пустая строка и номер 0 обеспечивают false, все остальное - true. В качестве места назначения может быть задано следующее:
• Метка приоритета в рамках того же добавочного номера, например weasels.
• Добавочный номер и метка приоритета в рамках того же контекста, например 123,weasels.
• Контекст, добавочный номер и метка приоритета, например incoming,123,weasels.
Любое из мест назначения может быть опущено, но не оба одновременно. Если согласно вычислениям переход должен осуществляться по месту назначения, которое не задано, Asterisk просто переходит к следующему приоритету текущего добавочного номера.
Применим GotoIf() в примере:
exten => 345,1,Set(TEST=1)
exten => 345,n,GotoIf($[${TEST} = 1]?weasels:iguanas)
exten => 345,n(weasels),Playback(weasels-eaten-phonesys)
exten => 345,n,Hangup()
exten => 345,n(lguanas),Playback(office-iguanas)
exten => 345,n,Hangup()
Вы заметите, что за каждым приложением Playback() следует приложение Hangup(). Это делается для того, чтобы при переходе на метку weasels вызов заканчивался до того, как начинается воспроизведение звукового файла office-ig'uanas. Все чаще можно увидеть добавочные номера, разбитые на несколько компонентов (разделенных между собой командой Hangup()), каждый из которых представляет собой этапы, выполняемые следом за GotoIf().
Обычно при такой схеме, когда требуется оградить Asterisk от выполнения следующего приоритета после выполнения перехода, вероятно, лучше в качестве места назначения использовать другие добавочные номера, а не метки приоритетов. Во всяком случае, это делает диал- план несколько понятнее. Предыдущий фрагмент диалплана можно было бы переписать следующим образом: exten => 345,1,Set(TEST=1)
exten => 345,n,GotoIf($[${TEST} = 1]?weasels,1:iguanas,1); теперь переход
; выполняется к добавочному номеру,приоритету
exten => weasels,1,Playback(weasels-eaten-phonesys); это НЕ метка.
Предоставление условного перехода только на случай ложности выражения
Предыдущий пример можно было бы записать следующим образом:
exten => 345,1,Set(TEST=1)
exten => 345,n,GotoIf($[${TEST} = 1]?:iguanas) ; здесь больше нет ; метки weasels, но это будет по-прежнему работать exten => 345,n,Playback(weasels-eaten-phonesys) exten => 345,n,Hangup()
exten => 345,n(iguanas),Playback(office-iguanas) exten => 345,n,Hangup()
Между символами ? и : ничего не указано, таким образом, если выражение оказывается истинным, выполнение диалплана перейдет на следующую строку. Поскольку это именно то, что требуется, указывать метку необязательно.
На самом деле мы не рекомендуем этого делать, потому что такая запись сложна для понимания. Но подобные диалпланы встречаются, поэтому надо просто знать, что данный синтаксис тоже является абсолютно правильным.
; Это другой добавочный номер
exten => weasels,n,Hangup()
exten => iguanas,1,Playback(office-iguanas)
exten => iguanas,n,Hangup()
При изменении значения, присваиваемого TEST в первой строке, сервер Asterisk должен воспроизводить разные приветствия. Рассмотрим другой пример выполнения переходов по условию. На этот раз будем использовать оба приложения, и Goto(), и GotoIf(). Выполним счет в обратном направлении от 10 и повесим трубку: exten => 123,1,Set(COUNT=10)
exten => 123,n(start),GotoIf($[${COUNT} > 0]?:goodbye)
exten => 123,n,SayNumber(${COUNT})
exten => 123,n,Set(COUNT=$[${COUNT} - 1])
exten => 123,n,Goto(start)
exten => 123,n(goodbye),Hangup()
Проанализируем этот пример. В первом приоритете переменной COUNT присваивается значение 10. Далее COUNT сравнивается с 0. Если ее значение больше нуля, мы переходим к следующему приоритету. (Не забываем, что, если место назначения в приложении GotoIf() опущено, управление передается вниз следующему приоритету.) С этого момента воспроизводится номер, из COUNT вычитается 1 и управление опять возвращается к приоритету start (начало). Если значение COUNT меньше или равно 0, управление передается приоритету goodbye (до свидания) и вызов завершается.
Классический пример выполнения переходов по условию с нежностью называют «логикой для защиты от любимой девушки». Если номер Caller ID (ID звонящего) входящего вызова совпадает с номером телефона бывшей девушки абонента, Asterisk выдает сообщение, отличающееся от того, которым он обычно встречает звонки от других абонентов. Несмотря на простоту и примитивность, это хороший пример для изучения переходов по условию в диалплане Asterisk. В этом примере используется функция CALLERID, которая позволяет извлекать информацию о Caller ID (ID звонящего) входящего вызова. Пусть для данного случая номер телефона жертвы будет 888-555-1212: exten => 123,1,GotoIf($[${CALLERID(num)} = 8885551212]?reject:allow) exten => 123,n(allow),Dial(Zap/4) exten => 123,n,Hangup()
exten => 123,n(reject),Playback(abandon-all-hope) exten => 123,n,Hangup()
В приоритете 1 вызывается приложение GotoIf(). Оно указывает Asterisk перейти к метке приоритета reject (отклонить), если номер Caller ID (ID звонящего) соответствует 8885551212, а в противном случае перейти к метке приоритета allow (можно было бы опустить имя метки, позволяя GotoIf() просто передать управление далее). Если номер Caller ID (ID звонящего) совпадает с указанным, управление вызовом передается приоритету reject, который воспроизводит нежелательному абоненту неприветливое сообщение. В противном случае делается попытка вызова получателя по каналу Zap/4.
Переходы по условию с временным критерием с помощью GotoIfTime()
Другой вариант использования переходов по условию в диалплане - приложение GotoIfTime(). GotoIf() для принятия решения производит вычисление выражения, тогда как GotoIfTime() выбирает, в какую ветвь диалплана выполнить переход, на основании текущего системного времени.
Самое очевидное применение этого приложения - предоставление абонентам разных приветствий до начала рабочего времени и после его окончания.
Приложение GotoIfTime() имеет следующий синтаксис:
GotoIfTime( tlmes,days_of_week,days_of_month,months? label)
Одним словом, GotoIfTime() передает вызов в заданную метку label, если текущие дата и время соответствуют критерию, заданному параметрами times (время), days_of_week (дни недели), days_of_month (дни месяца) и months (месяцы). Рассмотрим каждый аргумент более подробно:
times
Это список из одного или более временных диапазонов, записанных в 24-часовом формате. Например, период с 9:00 утра до 5:00 вечера
будет задан так: 09:00-17:00. День начинается с 0:00 и заканчивается в 23:59.
Следует отметить, что times прекрасно выполняет циклические переходы. Поэтому, если требуется задать период, когда офис закрыт, в параметре times можно указать 18:00-9:00 - и все будет работать, как ожидается. Обратите внимание, что данная техника применима и для других компонентов GotoIfTime(). Например, описать выходные дни можно, задав sat-sun (суббота- воскресенье).
days_of_week
Это список из одного или более дней недели. Дни должны быть заданы как mon, tue, wed, thu, fri, sat и/или sun. Период с понедельника по пятницу можно задать как mon-fri. Вторник и четверг были бы представлены как tue&thu.
Обратите внимание, что можно задавать сочетание диапазонов и отдельных дней, например sun-mon&wed&fri-sat или проще,
wed&fri-mon.
days_of_month
Это список дней месяца. Дни задаются числами от 1 до 31. Период с 7-го до 12-го числа будет представлен как 7-12, а 15-е и 30-е числа месяца будут записаны как 15&30.
months
Это список из одного или более месяцев года. Диапазон месяцев должен быть записан как jan-apr, а если требуется указать месяцы, идущие не по порядку, они записываются через амперсанд, например jan&mar&jun. Также можно комбинировать диапазоны и отдельные месяцы: jan-apr&jun&oct-dec. Если необходимо выбрать все возможные значения для любого из этих аргументов, просто задайте * для него.
В качестве аргумента label может быть задано любое из следующих значений:
• Метка приоритета в рамках того же добавочного номера, например
time_has_passed (время прошло).
• Добавочный номер и приоритет в рамках того же контекста, например 123,time_has_passed.
• Контекст, добавочный номер и приоритет, например incoming,123, time_has_passed.
Теперь, после того как мы ознакомились с синтаксисом, рассмотрим несколько примеров. Следующий пример соответствует промежутку времени с 9:00 утра до 5:59 вечера, с понедельника по пятницу, любого дня месяца, в любой месяц года:
exten => s,1,GotoIfTime(09:00-17:59,mon-fri,*,*?open,s,1)
Если абонент звонит в данные часы, вызов будет направлен в первый приоритет добавочного номера s контекста open. Если вызов поступает в другое время, вне заданного промежутка, он будет направлен в следующий приоритет текущего добавочного номера. Это позволяет выполнять переходы по условию с несколькими временными критериями, как показано в примере ниже (обратите внимание, что более конкретизированные временные диапазоны всегда должны быть указаны перед менее конкретными):
; Если это любой час любого дня недели, который ; является четвертым днем месяца июля, мы закрыты exten => s,1,GotoIfTime(*,*,4,jul?open,s,1)
; В рабочие часы вызовы направляются в контекст open exten => s,n,GotoIfTime(09:00-17:59|mon-fri|*|*?open,s,1) exten => s,n,GotoIfTime(09:00-11:59|sat|*|*?open,s,1)
; В противном случае мы закрыты exten => s,n,Goto(closed,s,1)
Возможна ситуация, когда для интервала задано конечное время 17:58, а текущее время - 17:59, но диалплан не меняет своего поведения. Для такого случая следует заметить, что степень дискретизации приложения GotoIfTime() равна двум минутам. Поэтому, если в качестве времени завершения периода задано 18:00, система изменит свое поведение только в 18:01:59.
Голосовая почта
Одной из самых популярных (или, возможно, непопулярных) функций любой современной системы телефонной связи является голосовая
почта. Естественно, Asterisk обладает достаточно гибкой системой голосовой почты. Среди ее возможностей можно упомянуть:
• Неограниченные по размеру защищенные паролем ящики голосовой почты, в каждом из которых содержатся почтовые папки для организации сообщений голосовой почты.
• Различные приветствия для состояний «занято» и «недоступен».
• Стандартные и специальные приветствия.
• Возможность связывать телефоны с несколькими почтовыми ящиками, а почтовые ящики - с несколькими телефонами.
• Уведомление о поступлении сообщения голосовой почты по электронной почте с возможностью прикрепления сообщения голосовой почты в виде звукового файла1.
• Пересылка и широковещательные рассылки голосовой почты.
Нет, за это действительно не надо платить, и да, это действительно работает.
• Индикатор ожидающих сообщений (мигающий световой индикатор или прерывистый тональный сигнал) во многих типах телефонов.
• Каталог ящиков голосовой почты служащих компании.
И это только вершина айсберга! В данном разделе будут представлены основы типовой настройки голосовой почты.
Конфигурация голосовой почты описывается в конфигурационном файле voicemail.conf. Этот файл содержит набор настроек, которые могут использоваться для приведения системы голосовой почты в соответствие конкретным требованиям. Рассмотреть все доступные опции voicemail.conf в одной главе было бы просто невозможно, но образец конфигурационного файла хорошо задокументирован и прост для понимания. Пока что давайте посмотрим в конец файла, где описываются контексты и ящики голосовой почты.
Контексты диалплана просто разделяют разные части диалплана, контексты голосовой почты позволяют определять разные, изолированные друг от друга, наборы почтовых ящиков. Это обеспечивает возможность хранить голосовую почту нескольких разных компаний или офисов на одном сервере. Контексты голосовой почты определяются так же, как и контексты диалплана: с помощью имени контекста, заключенного в квадратные скобки. В примерах данной книги будет использоваться контекст голосовой почты [default].
Создание почтовых ящиков
Внутри каждого контекста голосовой почты определяются разные почтовые ящики. Для описания почтового ящика используется следующий синтаксис:
почтовыйящик. => пароль,имя[,email[,email_пейджера[,опции]]]
Поясним назначение каждой части описания почтового ящика:
почтовыйящик
Это номер почтового ящика. Обычно он соответствует добавочному номеру ассоциированного с ним телефонного аппарата.
пароль
Числовой пароль, который будет использоваться владельцем почтового ящика для доступа к своей голосовой почте. Если пользователь изменит свой пароль, система обновит это поле в файле voicemail.conf.
имя
Это имя владельца почтового ящика. Текст данного поля используется в телефонном справочнике компании для обеспечения возможности абонентам при вызове применять имена пользователей.
Это адрес электронной почты владельца ящика голосовой почты. Asterisk может посылать уведомления о получении голосовой почты (включая само сообщение голосовой почты) на заданный ящик электронной почты.
emall_пейджера
Это электронный адрес пейджера или мобильного телефона владельца ящика голосовой почты. Asterisk может посылать короткое сообщение, уведомляющее о получении голосовой почты, на заданный адрес электронной почты.
опции
Это список опций, определяющих часовой пояс, в котором находится владелец почтового ящика, и переопределяющих глобальные настройки голосовой почты. Существует девять допустимых опций: attach, serveremail, tz, saycid, review, operator, callback, dialout и exitcontext. Эти опции определяются парами опция=значение, разделяемыми символами вертикальной черты (| ). Опция tz задает часовой пояс пользователя соответственно часовому поясу, определенному ранее в разделе [zonemessages] файла voicemail.conf. Остальные восемь опций переопределяют соответствующие их именам глобальные настройки голосовой почты.
Вот типовое описание почтового ящика:
101 => 1234,Joe Public,jpublic@somedomain.com,jpublic@pagergateway.net, tz=central|attach=yes
Продолжая создание нашего диалплана из последней главы, зададим ящики голосовой почты для Джона и Джейн. Для Джона определим пароль 1234, а для Джейн - 4444 (помните, это делается в файле voicemail. conf, а не в extensions.conf):
[default]
• => 1234,John Doe,john@asteriskdocs.org,jdoe@pagergateway.tld
• => 4444,Jane Doe,jane@asteriskdocs.org,jane@pagergateway.tld
Добавление голосовой почты в диалплан
Теперь, когда созданы почтовые ящики для Джейн и Джона, давайте обеспечим возможность абонентам оставлять сообщения для них в случае, если они не отвечают на звонок. Для этого воспользуемся приложением VoiceMail().
Приложение VoiceMail() направляет вызывающего абонента на заданный почтовый ящик, чтобы он мог оставить сообщение. Почтовый ящик должен быть описан так: почтовыйящик@контекст, где контекст - имя контекста голосовой почты. Сюда также могут быть добавлены буквы b или u для запроса типа приветствия. Если используется буква b, абонент услышит сообщение о занятости владельца почтового ящика. Если используется буква u, абонент услышит сообщение о недоступности владельца почтового ящика (если таковое существует). Применим это в нашем диалплане. Ранее в контексте [internal] располагалась следующая строка, обеспечивающая возможность звонить Джону:
exten => 101,1,Dial(${JOHN})
Теперь давайте добавим сообщение о недоступности, которое услышит вызывающий абонент, если Джон не ответит на звонок в течение 10 с. Помните, второй аргумент в приложении Dial() - время ожидания. Если до истечения времени ожидания ответа на вызов не последовало, звонок перенаправляется в следующий приоритет. Зададим время ожидания 10 с и добавим приоритет для перевода абонента на голосовую почту, в случае если Джон не отвечает на звонок вовремя:
exten => 101,1,Dial(${J0HN},10) exten => 101,n,VoiceMail(101@default,u)
Теперь скорректируем это так, чтобы, если Джон занят (в другом звонке), абонент перенаправлялся на голосовую почту, где слышал бы сообщение о занятости. Для этого воспользуемся переменной ${DIALSTATUS}, в которой содержится одно из значений статуса (список всех возможных значений можно получить в консоли Asterisk с помощью команды core show application dial):
exten => 101,1,Dial(${JOHN},10)
exten => 101,n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail) exten => 101,n(unavail),Voicemail(101@default,u) exten => 101,n,Hangup()
exten => 101,n(busy),VoiceMail(101@default,b) exten => 101,n,Hangup()
Теперь абоненты будут получать сообщение голосовой почты Джона (с соответствующим приветствием), если Джон занят или недоступен. Однако осталась небольшая проблема - Джон не имеет возможности извлекать свои сообщения. Исправим это.
Организация доступа к голосовой почте
Пользователи могут извлекать свои сообщения голосовой почты, менять опции и записывать приветствия голосовой почты с помощью приложения VoiceMailMain(). В своей типовой форме приложение VoiceMailMain() вызывается без аргументов. Добавим в контекст [internal] диалплана добавочный номер 700, чтобы внутренние пользователи могли выполнять звонки для доступа к своим сообщениям голосовой почты: exten => 700,1,VoiceMailMain()
Создание телефонного справочника для набора номера по имени
Осталась последняя заслуживающая внимания функция системы голосовой почты Asterisk - телефонный справочник для набора номера по имени. Создается он с помощью приложения Directory(). Это приложение, используя имена, заданные в описаниях почтовых ящиков в файле voicemail.conf, предоставляет абоненту телефонный справочник абонентов АТС для набора номеров по имени.
Directory() принимает три аргумента: контекст голосовой почты, из которого считываются имена, контекст диалплана, в котором вызывается пользователь (необязательный), и строку опций (также необязательный). По умолчанию Directory() ведет поиск пользователя по фамилии. Если передается опция f, поиск осуществляется по имени. Добавим два справочника для набора номера по имени в контекст [incoming] нашего образца диалплана, чтобы абоненты могли выполнять поиск или по имени, или по фамилии:
exten => 8,1,Directory(default,incoming,f) exten => 9,1,Directory(default,incoming)
Если абоненты нажмут кнопку 8, они получат справочник, составленный по именам. Если они наберут 9, то получат справочник, составленный по фамилиям.
Макрос
Макросы[76] - очень полезная структура, разработанная во избежание повторов в диалплане. Также они облегчают задачу по внесению изменений в диалплан. Чтобы проиллюстрировать это, снова вернемся к нашему примеру диалплана. Если вы помните, при внесении изменений для голосовой почты мы остановились на следующем варианте добавочного номера для Джона: exten => 101,1,Dial(${J0HN},10)
exten => 101,n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail) exten => 101,n(unavail),Voicemail(101@default,u) exten => 101,n,Hangup()
exten => 101,n(busy),VoiceMail(101@default,b) exten => 101,n,Hangup()
Допустим, системой Asterisk пользуются сто абонентов. Для задания добавочных номеров пришлось бы многократно копировать и вставлять фрагменты кода. Теперь предположим, что возникла необходимость немного скорректировать работу добавочных номеров. Для этого пришлось бы вносить массу изменений, и почти наверняка при этом будут допущены ошибки.
Вместо этого можно определить макрос, содержащий список необходимых шагов, и затем сделать так, чтобы все добавочные номера использовали его. В этом случае корректировать придется только макрос, и это обеспечит изменение всех элементов диалплана, ссылающихся на него.
Те, кто хорошо знаком с программированием, заметят, что макросы подобны подпрограммам, которые есть во многих современных языках программирования. Если вы не знакомы с программированием, не волнуйтесь, мы подробно и последовательно ознакомим вас с созданием макроса.
Лучший способ оценить макрос - увидеть его в деле, так что прямо сейчас и приступим.
Описание макроса
Давайте возьмем логику диалплана, которая использовалась выше для настройки голосовой почты Джона, и превратим ее в макрос. Затем с помощью этого макроса обеспечим Джону и Джейн (и их коллегам) аналогичные функциональные возможности.
Описание макроса очень похоже на контексты. (По сути, можно даже утверждать, что это действительно небольшие контексты с ограниченной функциональностью.) Для описания макроса используется служебное слово macro-, за которым следует имя макроса, и вся эта конструкция заключается в квадратные скобки: [macro-voicemail]
Имена макросов должны начинаться со служебного слова macro-. Это отличает их от обычных контекстов. Команды внутри макроса формируются практически аналогично всем остальным элементам диалпла- на; единственное ограничение - макросы используют только добавочный номер s. Введем логику голосовой почты в макрос, заменяя по ходу добавочные номера на s:
[macro-voicemail]
exten => s,1,Dial(${JOHN},10)
exten => s,n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)
exten => s,n(unavail),Voicemail(101@default,u)
exten => s,n,Hangup()
exten => s,n(busy),VoiceMail(101@default,b)
exten => s,n,Hangup()
Для начала хорошо, но не идеально, потому что данный макрос предназначен только для Джона и номера его почтового ящика. Чтобы сделать его универсальным и подходящим не только для Джона, но и для всех его сослуживцев, воспользуемся другой возможностью макроса - его аргументами. Но прежде рассмотрим, как осуществлять вызов макроса в диалплане.
Вызов макроса из диалплана
Использовать макрос в диалплане нам поможет приложение Macro(). Оно вызывает заданный макрос и передает в него необходимые аргументы. Например, чтобы вызвать наш макрос голосовой почты из диал- плана, можно сделать следующее:
exten => 101,1,Macro(voicemail) Приложение Macro() определяет также несколько специальных переменных. К ним относятся: ${MACRO_CONTEXT}
Исходный контекст, в котором был вызван макрос. ${MACRO_EXTEN}
Исходный добавочный номер, в котором был вызван макрос.
${MACRO_PRIORITY}
Исходный приоритет, в котором был вызван макрос.
${ARG n}
n-ный аргумент, передаваемый в макрос. Например, первым был бы аргумент ${ARG1}, вторым - ${ARG2} и т. д.
Как говорилось ранее, описанный выше макрос был жестко определен для Джона, тогда как должен быть универсальным. Давайте изменим его и вместо номера почтового ящика 101 будем использовать переменную ${MACRO_EXTEN}. Таким образом, при вызове макроса из добавочного номера 101 сообщения голосовой почты будут приходить в почтовый ящик 101; если макрос будет вызван из добавочного номера 102, сообщения пойдут в почтовый ящик 102, и т. д.: [macro-voicemail] exten => s,1,Dial(${JOHN},10)
exten => s,n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail) exten => s,n(unavail),Voicemail(${MACRO_EXTEN}@default,u) exten => s,n,Hangup()
exten => s,n(busy),VoiceMail(${MACRO_EXTEN}@default,b) exten => s,n,Hangup()
Использование аргументов в макросе
Итак, мы уже близки к получению того макроса, какой нам нужен, осталось внести последнее изменение. Необходимо передать в макрос канал, по которому будут выполняться вызовы, потому что до сих пор в нем жестко прописан канал ${JOHN} (помните, мы определяли переменную JOHN как канал для звонков Джону?). Передадим канал как аргумент - и наш первый макрос будет готов: [macro-voicemail] exten => s,1,Dial(${ARG1},10)
exten => s,n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail) exten => s,n(unavail),Voicemail(${MCARO_EXTEN}@default,u)
exten => s,n,Hangup()
exten => s,n(busy),VoiceMail(${MCARO_EXTEN}@default,b) exten => s,n,Hangup()
Теперь, когда макрос готов, его можно использовать в диалплане. Вот как вызывается макрос для обеспечения функции голосовой почты для Джона, Джейн и Джека:
exten => 101,1,Macro(voicemail,${JOHN}) exten => 102,1,Macro(voicemail,${JANE}) exten => 103,1,Macro(voicemail,${JACK})
И для 50 или более пользователей этот диалплан сохранит свою четкость и организованность; для каждого пользователя просто будет создана строка со ссылкой на макрос, который может быть настолько сложным, насколько это необходимо. Может существовать даже несколько разных макросов для различных типов пользователей, таких как executives (руководство), courtesy_phones (телефоны справочной службы), call_center_agents (агенты центра обработки вызовов), analog_ sets (аналоговые телефоны), sales_department (отдел продаж) и т. д. Более сложная версия макроса может выглядеть примерно так: [macro-voicemail] exten => s,1,Dial(${ARG1},20) exten => s,n,Goto(s-${DIALSTATUS},1) exten => s-NOANSWER,1,Voicemail(${MACRO_EXTEN},u) exten => s-NOANSWER,n,Goto(incoming,s,1) exten => s-BUSY,1,Voicemail(${MACRO_EXTEN},b) exten => s-BUSY,n,Goto(incoming,s,1) exten => _s-.,1,Goto(s-NOANSWER,1)
Этот макрос использует замечательный побочный эффект приложения Dial(): Dial() задает переменную DIALSTATUS как индикатор успешности или неуспешности вызова. В данном случае обрабатываются варианты NOANSWER (не отвечает) и BUSY (занято), а все остальные результаты трактуются как NOANSWER.
Использование базы данных Asterisk (AstDB)
Ну что, пока довольны? Дальше будет еще интереснее! В Asterisk есть мощный механизм для хранения значений, который называется базой данных Asterisk (AstDB). AstDB обеспечивает простой способ хранения данных для использования в диалплане.
Для тех, кто имеет опыт использования реляционных баз данных, таких как PostgreSQL или MySQL, заметим, что база данных Asterisk не является традиционной реляционной базой данных. Это база данных Berkeley DB версии 1. Существует несколько способов хранения данных из Asterisk в реляционной базе данных. Подробнее о реляционных базах данных рассказывается в главе 12.
База данных Asterisk хранит данные в группах, называемых семействами, значения которых идентифицируются ключами. Например, если бы у нас имелось семейство test, мы могли бы хранить только одно значение с ключом count. Каждое хранящееся значение должно быть ассоциировано с каким-то семейством.
Хранение данных в AstDB
Для сохранения нового значения в базе данных Asterisk используется приложение SetQ[77], но с его помощью задается переменная не канала, а AstDB. Например, чтобы присвоить ключу count семейства test значение 1, необходимо записать следующее:
exten => 456,1,Set(DB(test/count)=1)
Если в семействе test уже есть ключ count, его значение будет заменено на новое. Также можно сохранять значения из командной строки Asterisk, выполнив команду database put семейство ключ значение. Для нашего примера надо ввести следующее: data base put test count 1.
Извлечение данных из AstDB
Чтобы извлечь значение из базы данных Asterisk и присвоить его переменной, используется все то же приложение Set(). Давайте извлечем значение count (опять же из семейства test), присвоим его переменной COUNT и затем воспроизведем это значение абоненту:
exten => 456,1,Set(DB(test/count)=1) exten => 456,n,Set(COUNT=${DB(test/count)}) exten => 456,n,SayNumber(${COUNT})
Также можно проверять значение заданного ключа из командной строки Asterisk, выполнив команду database get семейство ключ. Для просмотра всего содержимого AstDB используется команда database show.
Удаление данных из AstDB
Существует два способа удаления данных из базы данных Asterisk.
Чтобы удалить ключ, можно использовать приложение DB DELETE().
Оно принимает путь к ключу в качестве аргумента:
; удаляет ключ и возвращает его значение за один шаг
exten => 457,1,Verbose(0, The value was ${DB_DELETE(test/count)})
Также можно удалить все семейство ключей, используя приложение DBdeltree(). Оно принимает всего один аргумент - имя семейства ключей, подлежащего удалению. Чтобы удалить все семейство test, делаем следующее:
exten => 457,1,DBdeltree(test)
Для удаления ключей и семейств ключей AstDB из командной строки используются команды database del ключ и database deltree семейство соответственно.
Использование AstDB в диалплане
Существует бесконечное число вариантов использования базы данных Asterisk в диалплане. Чтобы представить AstDB, рассмотрим два простых примера. Первый - простой пример вычисления, демонстрирующий постоянство базы данных Asterisk (имеется в виду, что она устойчива к перезагрузкам системы). Во втором примере с помощью функции BLACKLIST() будет определена принадлежность номера к черному списку и необходимость его блокировки.
Для начала в примере с воспроизведением счета извлечем число (значение ключа count) из базы данных и присвоим его переменной COUNT. Если такой ключ не существует, DB() возвратит NULL (нет значения). Чтобы проверить наличие значения в базе данных, введем функцию ISNULL(), которая будет контролировать, возвращено ли значение. В случае если этого не произошло, мы присвоим AstDB исходное значение 1 с помощью приложения Set(). Следующий приоритет возвратит нас к приоритету 1. Это произойдет при первом вызове данного добавочного номера:
exten => 678,1,Set(COUNT=${DB(test/count)})
exten => 678,n,GotoIf($[${ISNULL(${COUNT})}]?:continue)
exten => 678,n,Set(DB(test/count)=1)
exten => 678,n,Goto(1)
exten => 678,n(continue),NoOp()
Далее будет воспроизведено текущее значение COUNT. После этого оно будет увеличено на 1:
exten => 678,1,Set(COUNT=${DB(test/count)})
exten => 678,n,GotoIf($[${ISNULL(${COUNT})}]?:continue)
exten => 678,n,Set(DB(test/count)=1)
exten => 678,n,Goto(1)
exten => 678,n(continue),NoOp()
exten => 678,n,SayNumber(${COUNT})
exten => 678,n,Set(COUNT=$[${COUNT} + 1])
Теперь, после приращения COUNT, давайте поместим новое значение в базу данных. Не забудьте, что сохранение значения для существующего ключа приводит к перезаписи предыдущего значения:
exten => 678,1,Set(COUNT=${DB(test/count)})
exten => 678,n,GotoIf($[${ISNULL(${COUNT})}]?:continue)
exten => 678,n,Set(DB(test/count)=1)
exten => 678,n,Goto(1)
exten => 678,n(continue),NoOp()
exten => 678,n,SayNumber(${COUNT})
exten => 678,n,Set(COUNT=$[${COUNT} + 1])
exten => 678,n,Set(DB(test/count)=${COUNT})
Наконец вернемся к первому приоритету. Теперь приложение будет продолжать счет:
exten => 678,1,Set(COUNT=${DB(test/count)})
exten => 678,n,GotoIf($[${ISNULL(${COUNT})}]?:continue)
exten => 678,n,Set(DB(test/count)=1)
exten => 678,n,Goto(1)
exten => 678,n(continue),NoOp()
exten => 678,n,SayNumber(${COUNT})
exten => 678,n,Set(COUNT=$[${COUNT} + 1]
exten => 678,n,Set(DB(test/count)=${COUNT})
exten => 678,n,Goto(1)
Попробуйте этот пример. Послушайте немного, как приложение считает, и повесьте трубку. Когда вы наберете этот добавочный номер снова, счет должен быть продолжен с той цифры, на которой вы остановились. Значение, хранящееся в базе данных, будет постоянным даже при перезагрузке Asterisk.
В следующем примере логика диалплана будет организована вокруг функции BLACKLIST(), которая проверяет наличие Caller ID (ID звонящего) текущего абонента в черном списке. (Черный список - это просто семейство AstDB, называемое blacklist.) Если функция BLACKLIST() находит номер в черном списке, она возвращает значение 1, в противном случае возвращается 0. Эти значения в сочетании с приложением GotoIf() могут использоваться для управления выполнением приложения Dial() при вызове:
exten => 124,1,GotoIf($[${BLACKLIST()]?blocked,1) exten => 124,n,Dial(${JOHN})
exten => blocked,1,Playback(privacy-you-are-blacklisted) exten => blocked,n,Playback(vm-goodbye) exten => blocked,n,Hangup()
Чтобы добавить номер в черный список, выполните команду database put blacklist номер 1 из интерфейса командной строки Asterisk.
Полезные функции Asterisk
Теперь, рассмотрев дополнительные базовые возможности, давайте перейдем к ряду популярных функций, включенных в Asterisk.
Zapateller()
Zapateller() - это простое приложение Asterisk, которое воспроизводит специальный информационный тон в начале звонка. Устройства автоматического набора (обычно используемые в системах продаж по телефону) принимают этот тон за сигнал разъединения линии. Причем они не только прекратят вызов, но также пометят данный номер как не обслуживаемый, что поможет избежать всех видов телемаркетинговых звонков. Чтобы использовать эту функциональность в своем диалпла- не, вам надо просто вызвать приложение Zapateller().
Также применим необязательную опцию nocallerid, чтобы тон воспроизводился только в случае, если входящий вызов не предоставляет информации о Caller ID (ID звонящего). Вот пример использования приложения Zapateller() в добавочном номере контекста [incoming]:
[incomimg]
exten => s,1,Zapateller(nocallerid) exten => s,n,Playback(enter-ext-of-person)
Парковка вызова
Еще одна удобная функция - парковка вызова. Она обеспечивает возможность перевести вызов в состояние ожидания, поставить его на «парковку», чтобы он мог быть принят на другом добавочном номере. Все параметры парковки вызовов (такие, как используемые добавочные номера, количество мест и т. д.) задаются в конфигурационном файле features.conf. Раздел [general] файла features.conf содержит четыре настройки, касающиеся парковки вызовов: parkext
Это добавочный номер для парковки. Передайте вызов на этот добавочный номер - и система сообщит, в какой парковочный слот он помещен. Добавочный номер для парковки по умолчанию - 700.
parkpos
Эта опция определяет количество парковочных слотов. Например, задав номера 701-720, вы создадите 20 парковочных слотов с нумерацией от 701 до 720.
context
Это имя контекста парковки. Чтобы иметь возможность парковать вызовы, необходимо включить этот контекст.
parkingtime
Если эта опция задана, она определяет, как долго (в секундах) вызов может оставаться на парковке. Если вызов не принят в течение заданного времени, выполняется звонок на добавочный номер, с которого вызов поступил на парковку.
После редактирования файла features.conf необходимо перезагрузить Asterisk, потому что чтение этого файла выполняется только при запуске системы. Выполнение команды reload не обеспечит чтения файла features.conf.
Также обратите внимание, что, поскольку пользователю необходимо иметь возможность переводить вызовы на добавочный номер парковки, в приложении Dial() должны использоваться опции t и/или T. Итак, давайте создадим простой диалплан для демонстрации парковки вызовов: [incoming]
include => parkedcalls
exten => 103,1,Dial(SIP/Bob,,tT) exten => 104,1,Dial(SIP/Charlie,,tT)
Проиллюстрируем принцип работы парковки вызовов. Скажем, Элис звонит в систему и набирает добавочный номер 103, чтобы поговорить с Бобом. Через некоторое время Боб переводит вызов на добавочный номер 700, который сообщает ему, что звонок от Элис был припаркован в слот 701. После этого Боб звонит Чарли на добавочный номер 104 и говорит ему, что Элис ожидает по номеру 701. Чарли набирает добавочный номер 701 и разговаривает с Элис. Это простой и эффективный способ обеспечить возможность переключения вызывающих абонентов между пользователями системы.
Аргументы t и T приложения Dial() нужны не для всех типов каналов. Например, многие SIP-телефоны реализуют это с помощью функциональной или обычной кнопки и обмена сигналами по протоколу SIP.
Организация конференц-связи с помощью MeetMe()
Не менее полезной функцией является установление аудиоконференц- связи с помощью приложения MeetMeQ[78]. Это приложение обеспечивает возможность одновременного общения множества абонентов так, как если бы они все физически находились в одном месте. К основным функциям относятся:
• Возможность создания защищенных паролем конференций.
• Администрирование конференции (отключение звука конференции, блокировка конференции, исключение участников).
• Опция отключения звука всех участников, кроме одного (полезна для объявлений по компании, широковещательных рассылок и т. д.).
• Создание статических или динамических конференций.
Давайте поэтапно рассмотрим процесс настройки базового конференц- зала. Конфигурационные опции для системы конференц-связи MeetMe располагаются в файле meetme.conf. В этом конфигурационном файле задаются конференц-залы и необязательные числовые пароли. (Если пароль задан, он будет необходим для входа на все конференции, проводимые с использованием этого конференц-зала.) Для нашего примера настроим конференц-зал по добавочному номеру 600. Сначала зададим все настройки в файле meetme.conf. Назовем этот конференц-зал 600 и на этот раз не будем задавать пароль: [rooms] conf => 600
Закончив работу с конфигурационным файлом, необходимо перезагрузить Asterisk, чтобы она могла повторно прочитать файл meetme.conf. Далее добавим поддержку конференц-зала в диалплан, используя приложение MeetMe(). MeetMe() принимает три аргумента: имя конференц- зала (заданное в meetme.conf), набор опций и пароль, который пользователь должен ввести, чтобы присоединиться к конференции. Настроим простую конференцию, используя конференц-зал 600, опцию i (которая обеспечивает оповещение о том, что кто-то присоединился или покинул конференцию) и пароль 54321:
exten => 600,1,MeetMe(600,i,54321) Вот и все! Когда абоненты попадут на добавочный номер 600, им будет предложено ввести пароль. Если они правильно введут 54321, то попадут на конференцию. Полный список всех опций, поддерживаемых приложением MeetMe(), представлен в приложении В. Другое полезное приложение - MeetMeCount(). Как следует из его имени, это приложение подсчитывает, сколько пользователей находится в том или ином конференц-зале. Оно принимает два аргумента: конференц-зал, где необходимо подсчитать количество участников, и необязательное имя переменной, в которой нужно сохранить это число. Если второй аргумент, то есть имя переменной, не задан, полученное число воспроизводится вызывающему абоненту: exten => 601,1,Playback(conf-thereare) exten => 601,n,MeetMeCount(600) exten => 601,n,Playback(conf-peopleinconf)
Если вторым аргументом в MeetMeCount() передается переменная, итоговое количество участников присваивается этой переменной, а само число не воспроизводится. Так можно ограничивать количество участников:
; ограничить конференц-зал 10 участниками exten => 600,1,MeetMeCount(600,CONFCOUNT)
exten => 600,n,GotoIf($[${CONFCOUNT} <= 10]?meetme:conf_full,1) exten => 600,n(meetme),MeetMe(600,i,54321)
exten => conf_full,1,Playback(conf-full) Разве Asterisk не забавна?
Заключение
В данной главе было рассмотрено еще несколько приложений диалпла- на Asterisk. Надеемся, что это обеспечит вам фундамент, на основе которого можно экспериментировать с созданием собственных диалпла- нов. Как и в предыдущей главе, мы рекомендуем вернуться назад и перечитать разделы, в которых для вас остались неясные моменты. В следующих главах мы немного отвлечемся от Asterisk, чтобы поговорить о некоторых технологиях, используемых во всех системах телефонной связи. Мы будем часто упоминать Asterisk, но то, что мы собираемся обсуждать, в большой мере присуще многим телекоммуникационным системам.
7
Что такое телефония
Один телефон - это необходимость, два телефона - богатство, три телефона - роскошь, а ни одного телефона - блаженство.
- Дуг Ларсон
Теперь мы собираемся отдохнуть от Asterisk на протяжении пары главы, потому что хотим посвятить некоторое время обсуждению технологий, с которыми придется взаимодействовать системе Asterisk. В данной главе мы поговорим о некоторых технологиях традиционной телефонной сети, особенно о тех, которые люди чаще всего хотят подключить к Asterisk. (Передача голоса по IP-протоколу обсуждается в следующей главе.)
О технологиях, используемых в телекоммуникационных сетях, можно было бы написать многотомные книги, но материал для данной главы был отобран на основании нашего опыта работы в сообществе, который помог определить круг вопросов, представляющих наибольшую ценность. Хотя эти знания могут и не потребоваться непосредственно для конфигурации системы Asterisk, они будут очень полезны при соединении с системами (и общении с людьми) из мира традиционных телекоммуникаций.
Аналоговая телефония
Назначение коммутируемой телефонной сети общего пользования (Public Switched Telephone Network, PSTN) - установление и обслуживание аудиосвязи между двумя конечными точками с целью передачи речи.
Хотя люди могут воспринимать звуковые колебания частотой в диапазоне 20-20 000 Гц1, большинство создаваемых нами звуков располагаются в диапазоне 250-3000 Гц. Поскольку назначение телефонной сети - передача человеческой речи, она была разработана с полосой пропускания примерно 3-3500 Гц. Такой ограниченный частотный диапазон означает, что некоторое качество звука теряется (что может засвидетельствовать любой, кому приходилось слушать музыку, проигрываемую во время ожидания), особенно на высоких частотах.
Составляющие части аналогового телефона
Аналоговый телефон состоит из пяти частей: звонка, номеронабирателя, гибридного (или сетевого) трансформатора, рычажного переключателя и трубки (оба подключаются к гибридному трансформатору). Звонок, номеронабиратель и гибридный трансформатор могут работать абсолютно независимо друг от друга.
Звонок
Когда центральная АТС хочет сообщить о входящем звонке, она подает в сеть сигнал переменного тока напряжением примерно 90 В. Это заставит зазвонить колокольчик в вашем телефоне. (В электронных телефонах звонковое устройство может представлять собой не колокольчик, а небольшой электронный частотный модулятор. В конце концов, в качестве звонка может использоваться все, что может реагировать на напряжение звонка; например, в шумных местах, таких как заводы, часто применяются стробирующие световые сигналы.)
Н| ' Напряжение звонка может быть высоким. При работе с под-ключенн°й телефонной линией необходимо обязательно пред- V""^'' принимать меры предосторожности.
Многие путают напряжение переменного тока, активирующее звонок, с напряжением постоянного тока (direct current, DC), питающим телефон. Просто запомните, что для активации колебаний звонка необходим переменный ток (так же как и церковный колокол не будет звонить, если не сообщить ему движение).
В Северной Америке количество звонковых устройств, которые можно подключить к линии, зависит от коэффициента эквивалентности звонка (Ringer Equivalence Number, REN) используемых устройств. Общий REN всех устройств, подключенных к линии, не может превышать 5,0. Старые аналоговые телефоны с электромеханическим звонком имеют REN 1,0. REN некоторых электронных телефонов равен 0,3 или даже меньше. Если подключить слишком много устройств, для питания которых будет необходимо большое напряжение, ни одно из них не сможет генерировать звонок.
Номеронабиратель
*
При выполнении телефонного звонка необходимо как-то сообщить сети адрес стороны, с которой вы хотите связаться. Номеронабиратель - это часть телефона, предоставляющая такую функциональность. На заре развития PSTN номеронабиратели были роторными устройствами, которые определяли введенные цифры по импульсам. Это был довольно медленный процесс, поэтому телефонные компании в конце концов перешли на тональный набор. Номеронабиратель для тонального набора, также известного как двухканальный многочастотный (Dual-Tone Multi Frequency, DTMF), состоит из 12 кнопок. За каждой кнопкой закреплено две частоты (табл. 7.1).
Таблица 7.1. Символы DTMF
1209 Гц | 1336 Гц | 1477 Гц | 1633 Гц* | |
697 Гц | 1 | 2 | 3 | A |
770 Гц | 4 | 5 | 6 | B |
852 Гц | 7 | 8 | 9 | C |
941 Гц | * | 0 | # | D |
Обратите внимание, что в этом столбце располагаются буквы, которые обычно не представлены на номеронабирателе телефона. Тем не менее они являются частью стандарта DTMF и любой качественный телефон имеет электронику, необходимую для их формирования, даже если на нем нет таких кнопок. (На самом деле такие кнопки можно увидеть на некоторых телефонах, которые преимущественно используются в армии и правительственных структурах.)
При нажатии кнопки номеронабирателя по линии передаются два сигнала соответствующих частот. Дальний конец линии связи может анализировать эти частоты и определять, какой символ был нажат.
Гибридный (или сетевой) трансформатор
Гибрид - это тип трансформатора, который решает задачу по комбинированию сигналов, передаваемых и получаемых по паре проводов в PSTN и двум парам проводов в трубке. Одна из функций гибрида - регулирование местного эффекта (sidetone), то есть того, какая часть передаваемого сигнала возвращается в динамик телефонной трубки. Его назначение - обеспечить связь с более естественным звучанием. Если местного эффекта будет слишком много, абонент будет слышать
свой голос чересчур громко; очень мало местного эффекта - и абонент решит, что линия отключена.
Рычажный переключатель. Это устройство сигнализирует о состоянии телефонной цепи на центральную АТС. Когда абонент снимает трубку своего телефона, рычажный переключатель замыкает цепь между ним и центральной АТС, что выглядит как запрос на получение тонального сигнала готовности линии. Когда абонент вешает трубку, рычажный переключатель размыкает цепь, что свидетельствует о завершении вы- зова1.
Рычажный переключатель также может использоваться для обмена сигналами. Некоторые электронные аналоговые телефоны имеют кнопку с надписью Link (Связь), при нажатии которой возникает мгновенное событие сброса (flash). Сброс можно выполнить вручную, нажав рычажный переключатель и удерживая его 200-1200 мс. Если удерживать переключатель в нажатом состоянии дольше, канал связи может интерпретировать это как завершение разговора. Назначение кнопки Link - реализация функциональности мгновенного нажатия рычажного переключателя. Если вы когда-нибудь использовали функцию отложенного вызова или вели разговор с подключением третьего абонента на аналоговой линии, вы применяли мгновенное нажатие рычажного переключателя с целью передачи сигналов в сеть.
Телефонная трубка. Телефонная трубка состоит из передатчика и приемника. Она осуществляет преобразования между звуковой энергией, используемой человеком, и электрической энергией, используемой телефонной сетью.
Tip и Ring
В аналоговой телефонной сети имеется два провода. В Серверной Америке эти провода называют Tip (Земля) и Ring (Вход)2. Эта терминология сложилась во времена, когда соединение по телефону выполнялось живыми операторами на пультах коммутации. Используемые ими штекеры имели два контакта: один располагался на верхушке штекера, а другой подключался к кольцу, охватывающему штекер посередине (рис. 7.1).
2
Tip - это провод с положительной полярностью питания. В Северной Америке этот провод обычно зеленого цвета и обеспечивает обратную цепь. Ring - это провод с отрицательной полярностью. В Северной Америке этот провод обычно красный. Для современных кабелей Cat 5 и 6 Tip - это обычно белый провод, а Ring - цветной. Когда трубка те-Говоря о состоянии аналоговой линии, люди часто употребляют понятия «занято» и «свободно». Если линия «занята», значит, выполняется разговор по телефону. Если линия «свободна», телефон, по сути, выключен, или не занят.
В других регионах их могут называть иначе (например, А и В).
Рис. 7.1. Вход и Земля
лефона не снята, напряжение на этом проводе относительно Tip - 48 В. При поднятии трубки это напряжение падает примерно до 7 В постоянного тока.
Цифровая телефония
Аналоговая телефония уже практически мертва.
В PSTN единственный участок телефонной сети, до сих пор использующий технологию, которая появилась более ста лет назад, - это так называемая последняя миля1 (The Last Mile).
Одна из основных сложностей при передаче аналоговых сигналов состоит в том, что помехой им может стать что угодно, приводя к снижению громкости, статическим помехам и всевозможным нежелательным эффектам. Вместо того чтобы оберегать аналоговый сигнал на больших расстояниях, которые могут иметь протяженность в тысячи километров, почему бы просто не измерить характеристики исходного звука и не послать на дальний конец эту информацию? Исходный сигнал, конечно, не дошел бы туда, но была бы передана вся информация, необходимая для его восстановления.
Таков принцип цифровой аудиосвязи (включая телефонию): измерение характеристик исходной звуковой волны, сохранение снятых показателей и передача этих данных на дальний конец. Затем на дальнем конце с помощью переданной информации формируется абсолютно новый аудиосигнал, обладающий теми же характеристиками, что и оригинальная звуковая волна. Воспроизведенная копия настолько хороша, что человеческое ухо не замечает разницы.
Принципиальное преимущество цифровой аудиосвязи заключается в возможности проверки оцифрованных данных математическими средствами на наличие ошибок на протяжении всего пути к месту назначения, что гарантирует поступление на дальний конец точной копии оригинала. Расстояние больше не влияет на качество, и помехи могут быть выявлены и устранены.
Импульсно-кодовая модуляция
Существует несколько способов цифровой обработки аудиосигнала, но самым распространенным методом является импульсно-кодовая модуляция, или ИКМ (Pulse-Code Modulation, PCM). Чтобы проиллюстрировать принцип ее работы, рассмотрим несколько примеров.
Цифровое кодирование аналогового сигнала
Принцип ИКМ заключается в измерении амплитуды1 аналоговой волны через равные промежутки времени таким образом, чтобы позже ее можно было воссоздать. Количество замеров зависит как от разрядности квантования каждого замера, так и от частоты замеров. Чем больше разрядность и частота дискретизации, тем выше точность, но и тем большая полоса пропускания потребуется для передачи такой подробной информации.
Чтобы лучше понять принцип работы ИКМ, рассмотрим волну, представленную на рис. 7.2.
Амплитуда - это, по сути, мощность, или сила сигнала. Наверное, все когда-нибудь размахивали скакалкой или садовым шлангом, как кнутом, и видели получающуюся волну. Чем выше волна, тем больше ее амплитуда.
Чтобы выполнить оцифровку волны, необходимо разбить ее на равные временные отрезки и замерить ее амплитуду в каждый момент време-
Рис. 7.2. Простая синусоидальная (гармоническая) волна
ни. Процесс разбиения волны на отрезки времени и измерение энергии в каждый момент называется квантованием, или дискретизацией.
Замеры должны производиться довольно часто, и необходимо собрать достаточно информации, чтобы обеспечить возможность восстановления волны на дальнем конце с приемлемой степенью точности. Для получения более точного замера потребуется большее количество битов. Чтобы объяснить этот принцип, начнем с очень маленького разрешения, при котором для представления амплитуды используется четыре бита. Это упростит задачу по визуализации и самого процесса квантования, и влияния, которое разрядность квантования имеет на качество. На рис. 7.3 показано, какие данные будут зафиксированы, если выполнить дискретизацию гармонической волны с разрядностью четыре бита.
Рис. 7.3. Дискретизация гармонической волны с использованием четырех битов
В каждом временном интервале измеряется амплитуда волны и записывается соответствующая интенсивность, иначе говоря, мы делаем замер. Как видите, разрядность в четыре бита ограничивает точность. Первый замер приходится округлять до 0011, следующий интервал дает значение 0101. Затем идут 0100, 1001, 1011 и т.д. В общем, получается 14 измерений (в реальности должно быть сделано несколько тысяч измерений в секунду).
Если из всех значений составить строку, их можно передавать на другой конец:
0011 0101 0100 1001 1011 1011 1010 0001 0101 0101 0000 1100 1100 1010 При передаче по проводам этот код выглядит примерно так, как показано на рис. 7.4.
Рис. 7.4. ИКМ-кодированная волна
Когда цифроаналоговый (digital-to-analog, D/A) преобразователь на дальнем конце получает этот сигнал, он может использовать данную информацию для построения волны, как показано на рис. 7.5.
На основании этих данных волна может быть восстановлена (рис. 7.6).
Рис. 7.5. Графическое представление ИКМ-сигнала
Рис. 7.6. Сигнал без сглаживания
Как видите, если сравнить рис. 7.2 и 7.6, такая реконструкция волны не очень точная. Это было сделано намеренно, чтобы продемонстрировать важный момент: качество оцифрованной волны зависит от разрядности и частоты, с которой выполняются замеры. При слишком низкой частоте дискретизации качество получаемого аудиосигнала будет неприемлемым.
Повышение разрешения и частоты дискретизации
Вернемся к исходной волне и на этот раз используем пять битов для определения интервалов квантования (рис. 7.7).
Рис. 7.7. Та же волна при более высокой разрядности квантования
На самом деле пятибитовой ИКМ не существует. В телефонной сети замеры ИКМ кодируются с помощью 8 бит1.
Также удвоим частоту дискретизации. Точки, откладываемые на этот раз, представлены на рис. 7.8.
Теперь количество замеров и разрядность увеличены вдвое. Вот полученные данные:
00111 01000 01001 01001 01000 00101 10110 11000 11001 11001 11000 10111 10100 10001 00010 00111 01001 01010 01001 00111 00000 11000 11010 11010 11001 11000 10110 10001
При получении на другом конце эти данные могут быть представлены так, как показано на рис. 7.9.
На основании этой информации может быть построена волна, представленная на рис. 7.10.
Другие методы цифровой аудиозаписи могут использовать 16 бит или более.
Рис. 7.8. Та же волна при вдвое большей разрядности
Рис. 7.9. ИКМ-сигнал с разрядностью 5 бит
Как видите, полученная в данном случае волна намного более точно представляет оригинал. Однако также можно заметить, что все равно имеется возможность для улучшения.
Обратите внимание, что при кодировании волны с разрядностью квантования 4 бита использовалось 40 бит, тогда как для отправки той же волны с разрядностью квантования 5 бит (и также вдвое большей частотой дискретизации) пришлось использовать 156 бит. Суть в том, что существует соотношение: чем лучшее качество необходимо обеспечить при кодировании аудиосигнала, тем больше битов для этого используется, и тем больше битов придется передавать (естественно, в реальном масштабе времени), и тем большая полоса пропускания потребуется.
Рис. 7.10. Волна, полученная из ИКМ-сигнала с разрядностью 5 бит
Теорема Найквиста
Итак, какая частота дискретизации будет достаточной? Такой же вопрос задал себе в 20-х годах прошлого века инженер-электрик (и сотрудник AT&T/Bell) Гарри Найквист (Harry Nyquist). Теорема Найквиста гласит: «Чтобы можно было абсолютно точно восстановить исходный сигнал по его дискретной версии, частота дискретизации должна быть вдвое больше полосы частот входного сигнала»[79].
По существу, это означает следующее: чтобы точно кодировать аналоговый сигнал, частота замеров должна вдвое превышать максимальную частоту в частотном диапазоне, который требуется воспроизвести. Поскольку телефонная сеть не будет передавать частоты ниже 300 и выше 4000 Гц, частоты дискретизации 8000 замеров в секунду будет достаточно для воспроизведения любой частоты в частотном диапазоне аналогового телефона. Запомните величину 8000 замеров в секунду; мы поговорим об этом немного позже.
Компандирование по логарифмическому закону
Итак, мы рассмотрели основы квантования и обсудили тот факт, что большее количество интервалов квантования (то есть более высокая частота дискретизации) обеспечивают лучшее качество, но при этом требуется большая полоса пропускания. Наконец, мы обсудили, какой должна быть минимальная частота дискретизации для точного измерения диапазона частот, который мы хотим передавать (в случае с телефоном это 8000 Гц). Все это сводится к тому, что по проводам передается довольно большое количество данных, поэтому пришла пора поговорить о компандировании.
Компандирование - это метод улучшения динамического диапазона метода дискретизации без потери необходимого качества. Он заключается в квантовании более высоких амплитуд с намного меньшей частотой, чем меньших амплитуд. Иначе говоря, если кричать в телефон, ваш голос будет дискретизирован не так хорошо, как если бы вы говорили нормально. Крик также вреден для кровяного давления, поэтому лучше избегать его.
Обычно используется два метода компандирования: plaw[80] в Северной Америке и alaw в остальном мире. В них используется один принцип, но во всем остальном они несовместимы.
При компандировании волна делится на хорды, каждая из которых включает несколько шагов. Квантование заключается в сопоставлении измеренной амплитуды с соответствующим шагом хорды. Значение полосы и номера хорд (а также знак - плюс или минус) становятся сигналом. Приведенные далее диаграммы дают визуальное представление того, что происходит при компандировании. Они не основываются на каком-либо стандарте, а просто созданы как иллюстрация (опять же, в телефонной сети компандирование будет выполняться с разрядностью 8, а не 5 бит).
Рис. 7.11 иллюстрирует компандирование с разрядностью 5 бит. Как видите, дискретизация амплитуд, близких к нулевому уровню, намного выше, чем больших амплитуд (как в положительной, так и в отрицательной области). Однако, поскольку человеческое ухо, передатчик и приемник также будут искажать громкие сигналы, это не представляет проблемы.
Квантованный образец может выглядеть так, как представлено на рис. 7.12. Он обеспечивает получение следующего потока битов:
00000 10011 10100 10101 01101 00001 00011 11010 00010 00001 01000 10011 10100
10100 00101 00100 00101 10101 10011 10001 00011 00001 00000 10100 10010 10101
01101 10100 00101 11010 00100 00000 01000
Рис. 7.11. Компандирование с разрядностью 5 бит
Наложение частот
Если когда-нибудь при просмотре одного из старых вестернов вам казалось, что колеса повозки вращаются в обратном направлении, вы наблюдали эффект наложения частот. Частота смены кадров фильма не соответствует частоте вращения колес, и поэтому возникает впечатление вращения в обратную сторону.
В цифровой аудиосистеме (каковой является современная PSTN) наложение частот возникает, если в аналогово-цифровой преобразователь поступают сигналы частотой, превышающей половину частоты дискретизации. В PSTN это аудиосигналы частотой выше 4000 Гц (половина частоты дискретизации, которая составляет 8000 Гц). Эту проблему легко исправить, пропустив аудиосигнал через низкочастотный фильтр1 перед его передачей в аналогово-цифровой преобразователь2.
Рис. 7.12. Квантование и компандирование с разрядностью 5 бит
2
Низкочастотный фильтр, как следует из его названия, пропускает только частоты, которые меньше его частоты среза. Существуют еще высокочастотные фильтры (которые убирают низкие частоты) и полосные фильтры (которые отфильтровывают и высокие, и низкие частоты). Те, кому когда-либо приходилось делать аудиозаписи для системы, вероятно, пользовались полосным фильтром, который встроен в большинство телефонных аппаратов. Запись с использованием даже высококлассного звукозаписывающего оборудования может выявить разнообразнейший фоновый шум. Вы могли даже не слышать его, пока не выполнили понижающей дискретизации, при которой фоновый шум создает эффект наложения частот (что может порождать разнообразные странные звуки). С другой стороны, телефонные записи уже выполнены в соответствующем формате, поэтому шум никогда не попадает в аудиопоток. Из всего вышесказанного следует, что, независимо от того, какое оборудование используется для записи, следует избегать сред с большим количеством фоновых шумов. Обычные офисы могут быть намного более шумными, чем кажется, поскольку оборудование отопления, вентиляции и кондиционирования воздуха может создавать шум, о котором мы даже не подозреваем.
Цифровая коммутируемая телефонная сеть
Более ста лет телефонные сети были исключительно коммутируемыми. Это означало, что для каждого телефонного звонка между двумя конечными точками устанавливалось выделенное соединение с фиксированной полосой частот, распределенной для этого канала. Создание такой сети было дорогим удовольствием, а использование ее на больших расстояниях обходилось вдвое дороже. Хотя все предсказывают окончание эпохи коммутируемой сети, многие люди по-прежнему пользуются ею каждый день и она, действительно, достаточно неплохо справляется со своими функциями.
Типы линий связи
В PSTN существует много разных линий, обеспечивающих различные нужды сети. Между центральной АТС и абонентом обычно достаточно одной или более аналоговых линий или нескольких десятков каналов, предоставляемых посредством цифровой линии. Между станциями PSTN (и большим количеством абонентов), как правило, используются оптоволоконные линии связи.
Простая DS-0 - основа всего
Поскольку стандартный метод оцифровки телефонного звонка - запись 8-битового замера 8000 раз в секунду, можно заметить, что телефонной линии с ИКМ понадобится полоса пропускания 8000 бит/с х 8, то есть 64 000 бит/с. Такой канал с полосой пропускания 64 Кбит/с называют DS-0. DS-0 - это основной строительный блок всех цифровых телекоммуникационных линий.
Даже вездесущая аналоговая линия переходит на DS-0 ускоренными темпами. Иногда это происходит в месте, где линия входит в центральную АТС, иногда намного раньше[81].
Линии с T-несущей
Т1 - один из самых известных терминов цифровой телефонии. Т1 - это цифровая линия, состоящая из 24 мультиплексирующихся каналов DS-0, обеспечивающих передачу данных со скоростью 1,544 Мбит/с[82]. Этот битовый поток определен как DS-1. Голос кодируется в T1 с использованием алгоритма компандирования plaw.
Европейская версия T1 была разработана Европейской конференцией почтовых и телекоммуникационных ведомств (European Conference of Postal and Telecommunications Administrations, CEPT) и сначала называлась CEPT-1. Теперь ее называют E1. E1 образована 32 каналами DS-0, но метод ИКМ-кодирования другой: Е1 использует закон компандирования аlaw. Это означает, что для соединения между сетями Е1 и Т1 всегда будет необходим этап перекодировки. Заметьте, что E1, хотя и имеет 32 канала, также считается линией DS-1. Е1 намного больше распространена, поскольку используется во всем мире, кроме Северной Америки и Японии.
Все остальные линии с Т-несущей (T2, T3 и T4) являются кратными T1 и базируются на простой DS-0. В табл. 7.2 представлены сравнительные характеристики разных линий с Т-несущей.
Таблица 7.2. Линии с T-несущей
Несущая | Эквивалент по скорости передачи данных | Количество каналов DS-0 | Скорость передачи данных, Мбит/с |
T1 | 24 канала DS-0 | 24 | 1,544 |
T2 | 4 канала T1 | 96 | 6,312 |
T3 | 7 каналов T2 | 672 | 44,736 |
T4 | 6 каналов T3 | 4032 | 274,176 |
При плотностях более Т3 линии с Т-несущей используются очень редко. Для таких скоростей передачи данных могут применяться оптоволоконные линии связи (Optical Carrier, OC).
Синхронная оптическая сеть и оптоволоконные линии связи
Синхронная оптическая сеть (Synchronous Optical Network, SONET) была разработана по причине необходимости перевода системы с Т-не- сущей на следующий технологический уровень - волоконную оптику. SONET базируется на полосе пропускания Т3 (44,736 Мбит/с) с небольшими потерями, что в сумме составляет 51,84 Мбит/с. Такая линия называется OC-1 или STS-1. Как показано в табл. 7.3, скорость передачи данных во всех высокоскоростных оптоволоконных линиях кратна этой базовой величине.
Создание SONET было попыткой стандартизации оптических линий. Однако ее высокая стоимость, а также преимущества, предлагаемые более новыми схемами, такими как мультиплексирование по длине волны высокой плотности (Dense Wave Division Multiplexing, DWDM), делают ее будущее туманным.
Таблица 7.3. Оптоволоконные линии связи
Несущая | Эквивалент | Количество каналов DS-0 | Скорость передачи данных, Мбит/с |
по скорости передачи | |||
данных | |||
1 канал DS-3 | |||
OC-1 | (плюс полоса на | 672 | 51,840 |
непроизводительные | |||
затраты) | |||
OC-3 | 3 канала DS-3 | 2016 | 155,520 |
OC-12 | 12 каналов DS-3 | 8064 | 622,080 |
OC-48 | 48 каналов DS-3 | 32256 | 2488,320 |
OC-192 | 192 канала DS-3 | 129024 | 9953,280 |
Протоколы обмена сигналами по цифровым каналам
Как для всех остальных линии, для линий, используемых в PSTN, недостаточно просто передавать данные (голос) между конечными точками. Должны существовать механизмы для обмена информацией о статусе канала. (Контроль за разъединением и ответом - вот два основных примера использования обмена сигналами; Caller ID (ID звонящего) - пример более сложной формы обмена сигналами.)
Передача служебных сигналов по выделенному каналу
Метод передачи служебных сигналов по выделенному каналу (Channel Associated Signaling, CAS), называемый также обменом сигналов с резервированием битов, используется для передачи голоса по линии Т1, если недоступна ISDN. CAS не использует мощь цифровой линии, а имитирует аналоговые каналы. CAS обеспечивается за счет заимствования битов из аудиопотока для служебных целей. Хотя это не оказывает заметного влияния на качество передаваемого аудиосигнала, отсутствие мощного канала для передачи служебных сигналов негативно влияет на гибкость.
При конфигурации линии T1 с CAS опции обмена сигналами на каждом конце должны совпадать. Как правило, предпочтительной является технология обмена сигналами E&M (Ear & Mouth или recEive & transMit), поскольку она предлагает наилучший контроль. Исходя из сказанного наиболее вероятное применение CAS в среде Asterisk - банк каналов. Это означает, что, скорее всего, вам придется использовать протокол обмена сигналами FXS.
Теперь CAS очень редко используется в линиях PSTN из-за преимуществ, предлагаемых ISDN-PRI. Одно из ограничений CAS - он не допускает динамического назначения функций каналам. Также информацию Caller ID (такая функция может даже не поддерживаться) приходится передавать как часть аудиопотока. CAS обычно используется в линии T1 в банках каналов.
ISDN
Цифровая сеть с интеграцией служб (Integrated Services Digital Network, ISDN) появилась более 20 лет назад. Поскольку она разделяет каналы, по которым передается основной трафик (несущие или B-каналы), и канал, переносящий сигнальную информацию (D-канал), ISDN обеспечивает возможность предоставления намного более богатой функциональности, чем CAS. Вначале ожидалось, что ISDN будет обеспечивать возможности, сходные с теми, которые нам дает Интернет, включая улучшенные средства передачи голоса, видео и данных. К сожалению, вместо того чтобы ратифицировать стандарт и придерживаться его, каждый уважающий себя производитель средств связи решил внести в протокол что-то свое, твердо веря, что его версия является самой лучшей и в конце концов займет лидирующее положение на рынке. В результате соединение двух ISDN-совместимых систем часто становилось болезненной и дорогостоящей процедурой. Поставщики услуг связи, которые должны были реализовать и поддерживать эту дорогостоящую технологию, в свою очередь, установили непомерно высокие цены на нее, что затормозило ее распространение. В настоящее время ISDN используется практически исключительно для базового объединения каналов. Кстати, аббревиатуру ISDN в отрасли в шутку расшифровывают как «It Still Does Nothing» (Она до сих пор ничего не делает).
Таким образом, основным применением ISDN стало объединение каналов, и сейчас она (в основном) соответствует стандартам. Если имеется офисная АТС с более чем десятком линий, подключенных к PSTN, скорее всего, будет использоваться линия ISDN-PRI (Primary Rate Interface). Также там, где нет возможности доступа к Интернету по цифровой абонентской линии (Digital Subscriber Line, DSL) или кабельной линии (или он очень дорогой), канал ISDN-BRI (Basic Rate Interface) мог бы обеспечить доступное по цене соединение со скоростью передачи данных 128 Кбит/с. В большей части Северной Америки отказались от использования BRI для соединения с Интернетом в пользу DSL и кабельных модемов (и ее никогда не применяли для передачи голоса), но во многих европейских странах она практически полностью заменила аналоговые линии.
ISDN-BRI/BRA. Интерфейс, обеспечивающий базовую скорость передачи данных (Basic Rate Interface) или базовый доступ (Basic Rate Access) - разновидность ISDN, разработанная для обслуживания конечных точек с малой нагрузкой на канал, таких как рабочие станции.
Разновидность BRI спецификации ISDN часто называют просто ISDN, но это может стать причиной путаницы, поскольку ISDN - это протокол, а не тип линии (не говоря уже о том, что линии PRI также правильно было бы называть ISDN!).
Линия Basic Rate ISDN состоит из двух B-каналов со скоростью передачи данных 64 Кбит/с, управляемых D-каналом со скоростью передачи данных 16 Кбит/с, что в сумме составляет 144 Кбит/с. Линия Basic Rate ISDN является источником неразберихи на протяжении всего времени своего существования из-за проблем совместимости со стандартами, сложности с технической точки зрения и недостатка документации по ней. Тем не менее многие европейские телефонные компании широко применяют ISDN-BRI, таким образом, она более популярна в Европе, чем в Северной Америке.
ISDN-PRI/PRA. Интерфейс, обеспечивающий основную скорость передачи данных (Primary Rate Interface) или основной доступ (Primary Rate Access) - разновидность ISDN, используемая для предоставления сервиса ISDN через более масштабные сетевые соединения. Линия Primary Rate ISDN использует для передачи служебных сигналов один канал DS-0 (D-канал); оставшиеся каналы выполняют роль B-каналов. В Северной Америке линии Primary Rate ISDN обычно строятся на одном или более Т1-каналах. Поскольку Т1 включает 24 канала, североамериканская PRI-линия обычно состоит из 23 B-каналов и одного D-канала. Поэтому PRI-линии часто обозначают как 23B+D[83].
В Европе используется 32-канальная линия Е1, поэтому линия Primary Rate ISDN обозначается как 30B+D (последний канал используется для синхронизации).
Линии Primary Rate ISDN очень популярны благодаря техническим преимуществам и, как правило, конкурентоспособной цене при более высоких плотностях. Если планируется использовать примерно десяток PSTN-линий или более, следует обратить внимание на цену Primary Rate ISDN.
С технической точки зрения ISDN-PRI всегда предпочтительнее CAS. Signaling System 7
Signaling System 7 (SS7) - это система обмена сигналами, используемая поставщиками услуг связи. Концептуально она аналогична ISDN и обеспечивает поставщикам эффективный механизм передачи дополнительной информации, которую обычно должны передавать конечные точки ISDN. Однако технология SS7 отличается от ISDN. Главное различие в том, что SS7 выполняется в совершенно отдельной сети, независимо от магистральных линий связи, по которым осуществляются звонки.
Реализация поддержки SS7 в Asterisk не за горами, поскольку очень велик интерес сделать Asterisk совместимой с сетями поставщиков услуг телефонной связи. Версия SS7 с открытым исходным кодом (http://www. openss7.org) существует, но еще требует доработки для полной совместимости с SS7. На момент написания данной книги неизвестно, будет ли эта версия интегрирована с Asterisk. Другой многообещающий источник поддержки SS7 обеспечивает компания Sangoma Technologies, которая предлагает функциональность SS7 во многих своих продуктах. Следует отметить, что введение поддержки SS7 в Asterisk не заключается просто в написании соответствующего драйвера. Подключение оборудования к SS7^™ будет невозможным без прохождения этим оборудованием исключительно жесткой сертификации. И даже после этого вряд ли кто-нибудь из поставщиков традиционных услуг связи поспешит обеспечить условия для того, чтобы это произошло, главным образом, из стратегических и политических соображений.
Сети с коммутацией пакетов
В середине 1990-х годов производительность сетей достигла той точки, когда стало возможно передавать через сетевые соединения поток медиа-информации в режиме реального времени. Поскольку медиа-поток разделяется на сегменты, заключенные в конверт с адресом, такие соединения называют пакетными. Основная сложность заключается, конечно, в том, чтобы переслать множество таких пакетов между двумя конечными точками, обеспечив их поступление в том же порядке, в каком они были отправлены, менее чем за 150 мс и без потерь. В этом суть технологии передачи голоса по IP-протоколу.
Заключение
В данной главе были рассмотрены технологии, используемые в настоящее время в PSTN. В следующей главе мы обсудим протоколы для VoIP: передачу телефонных соединений по сетям, использующим протоколы IP. Данные протоколы определяют разные механизмы для осуществления телефонных разговоров, но их значимость этим не ограничивается. Вход телефонной сети в сеть передачи данных окончательно устранит барьер между телефонами и компьютерами, что обещает привести к революционным изменениям в способах общения.8
Протоколы для VoIP
Интернет - это зазнавшаяся система телефонной связи.
- Клиффорд Столл
Телекоммуникационная промышленность существует более 100 лет, и Asterisk объединяет в себе большинство, если не все основные технологии, применявшиеся в это последнее столетие. Чтобы максимально эффективно работать с Asterisk, не надо быть профессионалом во всех областях, но понимание разницы между разнообразными кодеками и протоколами обеспечит лучшее восприятие и осмысление системы в целом. В данной главе рассматривается технология передачи голоса по IP-про- токолу (Voice over IP, VoIP) и то, что отличает сети VoIP от традиционных коммутируемых телефонных сетей, которые были темой предыдущей главы. Мы исследуем, зачем нужны протоколы VoIP, кратко коснувшись истории и возможного будущего для каждого из них. Также мы обратим внимание на вопросы безопасности и способность этих протоколов работать в сетях, использующих технологию трансляции сетевых адресов (Network Address Translation, NAT). Остановимся на следующих протоколах VoIP (некоторые из них будут рассмотрены менее подробно, чем другие):
• IAX
• SIP
• H.323
• MGCP
• Skinny/SCCP
• UNISTIM
Кодеки - это средства, с помощью которых аналоговый голосовой сигнал может быть преобразован в цифровой сигнал и передан по Интернету. Пропускная способность любого устройства ограничена, и количество одновременных разговоров, которое может обеспечивать любое отдельно взятое соединение, напрямую зависит от типа используемого кодека. В данной главе мы также рассмотрим, чем отличаются следующие кодеки с точки зрения требований к полосе пропускания (уровень сжатия) и качества:
• G.711
• G.726
• G.729A
• GSM
• iLBC
• Speex
• MP3
Глава завершится обсуждением возможностей надежной передачи голосового трафика, причин возникновения эха и средств борьбы с ним, а также того, как Asterisk управляет аутентификацией входящих и исходящих звонков.
Зачем нужны протоколы VoIP
Основная предпосылка использования VoIP - пакетирование[84] аудиопотоков для транспортировки по сетям, использующим протокол IP (Internet Protocol). Главные сложности при этом заключаются в манере общения людей. Сигнал должен не только поступить практически в той же форме, в какой был передан, но его транспортировка должна занять не более 150 мс. Если пакеты будут утеряны или задержатся, качество связи ухудшится, то есть два человека будут испытывать трудности в ведении беседы.
Транспортные протоколы, которые объединены под общим названием «сетевые», изначально разрабатывались без реализации возможности потоковой передачи несущей в режиме реального времени. Предполагалось, что конечные точки в случае потери пакетов будут увеличивать время их ожидания, посылая запросы на повторную передачу или в некоторых случаях просто продолжать работать без потерянной информации. Для обычного голосового общения такие механизмы неприемлемы. Наши разговоры не допускают утраты букв или слов и тем более какой-либо ощутимой задержки между передачей и приемом.
Традиционная PSTN была разработана специально для передачи голоса и прекрасно подходит для выполнения этой задачи с технической точки зрения. Однако с точки зрения гибкости ее недостатки очевидны даже тем, кто слабо разбирается в этой технологии. VoIP обещает включить телефонную связь во все другие протоколы, используемые в наших сетях, но из-за особых требований к передаче разговоров для разработки, создания и обслуживания таких сетей необходимо обладать специальными навыками.
Проблема с пакетной передачей голоса заключается в том, что то, как мы говорим, абсолютно не совпадает с тем, как IP передает данные. Процесс разговора и слушания состоит из ретрансляции потока аудиосигналов, тогда как сетевые протоколы разработаны так, что они все разбивают на части, заключают единицы информации в тысячи пакетов и затем доставляют каждый пакет на дальний конец линии связи любым возможным путем. Очевидно, с этим надо что-то делать.
Протоколы VoIP
Механизм соединения по протоколу VoIP обычно состоит в сериях транзакций по передаче сигналов между конечными точками (и шлюзами, располагающимися между ними), которые оформляются в два устойчивых медиа-потока (по одному в каждом направлении), фактически передающих беседу. Есть несколько протоколов для осуществления этого. В данном разделе мы обсудим те из них, которые имеют значение для VoIP в общем и Asterisk в частности.
IAX (протокол Inter-Asterisk eXchange)
Чтобы проверить человека, который заявляет, что является знатоком Asterisk, попросите его прочитать название этого протокола. Казалось бы, оно должно звучать, как «ай-эй-экс», но так можно и язык сломать[85]. К счастью, правильно он произносится «иикс»[86]. IAX - это открытый протокол, то есть кто угодно может загружать его и вести его разработку, но он пока что не является стандартом[87]. Ожидается, что IAX2 вскоре станет IETF-протоколом. В настоящее время IAX2 находится в IETF в статусе проекта и ожидается, что он станет официальным протоколом в течение нескольких лет. В Asterisk поддержку IAX обеспечивает модуль chan_iax2.so.
История
Протокол IAX был разработан компанией Digium для обмена информацией с другими серверами Asterisk (отсюда и название: протокол Inter- Asterisk eXchange). Крайне важно отметить, что IAX не ограничен применением только в Asterisk. Этот стандарт открыт для использования и поддерживается многими телекоммуникационными проектами с открытым исходным кодом, а также несколькими производителями оборудования. IAX - это транспортный протокол (подобно SIP), который использует один порт UDP (4569) и для обмена сигналами по каналам, и для медиа-потоков. Как объясняется ниже в данной главе, это упрощает обслуживание при использовании межсетевых экранов, поддерживающих NAT.
IAX также обладает уникальной способностью объединять несколько сеансов в один поток данных, что может обеспечивать громадный выигрыш по пропускной способности при отправке множества одновременных каналов на удаленный сервер. Объединение позволяет представлять множество медиа-потоков под одним заголовком датаграммы (datagram), что сокращает издержки на отправку каждого отдельно взятого канала. Таким образом снижаются задержки и сокращаются требования к вычислительной мощности и пропускной способности, что обеспечивает возможность масштабирования протокола для поддержания большого числа активных каналов между конечными точками. Если требуется передавать большое количество IP-вызовов между двумя конечными точками, следует обратить особое внимание на способность IAX объединять каналы связи.
Будущее
Поскольку IAX был оптимизирован для передачи голоса, его критикуют за недостаточную поддержку видео, но на самом деле потенциально IAX может передавать практически любой медиа-поток. Поскольку это открытый протокол, в него, несомненно, будет включена возможность передачи любых типов медиа-данных, которые появятся в будущем, если сообществу это понадобится.
Вопросы безопасности
IAX включает возможность аутентификации тремя способами: открытый текст, хеширование MD5 и обмен ключами RSA. Конечно, это никак не касается шифрования медиа-потоков или заголовков при передаче между конечными точками. Многие решения включают использование устройства или программного обеспечения виртуальной частной сети (Virtual Private Network, VPN) для шифрования потока на другом уровне технологии, при котором от конечных точек требуется заранее установить правила, по которым будут конфигурироваться и работать эти каналы. Однако сейчас IAX также может шифровать потоки между конечными точками с использованием динамического обмена ключами при установлении соединения (за счет применения конфигурационной опции encryption=aes128), что обеспечивает возможность использования автоматического выбора ключей.
IAX и NAT
Протокол IAX2 был специально разработан для работы с устройствами, находящимися за межсетевыми экранами, которые реализуют протокол NAT. Использование одного UDP-порта и для обмена служебными сигналами, и для передачи голоса также сводит к минимуму количество каналов, которые необходимо открыть в межсетевом экране. Эти условия помогли сделать IAX одним из простейших протоколов (если не самым простым) для реализации в безопасных сетях.
Протокол Session Initiation Protocol (SIP) покорил телекоммуникационную отрасль. SIP практически низверг с пьедестала когда-то могущественный H.323 и стал предпочтительным протоколом VoIP, безусловно, в конечных точках сети. Основная идея SIP в том, что каждый конец соединения является равноправным участником сети; протокол договаривается о параметрах устанавливаемого между ними соединения. Неотразимым протокол SIP делает его относительная простота; его синтаксис подобен синтаксису многих широко известных протоколов, таких как HTTP и SMTP. Поддержку SIP в Asterisk обеспечивает модуль chan_sip.soJ.
История
Впервые SIP был представлен в организации Internet Engineering Task Force (IETF) в феврале 1996 года как draft-ietf-mmusic-sip-00. Исходный проект не имел ничего общего с тем, каким мы знаем SIP сегодня, и содержал только один тип запросов: запрос на установление соединения. В марте 1999 года, после 11 редакций, родился SIP RFC 2543. Поначалу SIP практически полностью игнорировался, поскольку H.323 считался предпочтительным протоколом для определения параметров соединения при транспортировке данных по VoIP. Однако по мере нарастания шума вокруг него SIP начал завоевывать популярность. И хотя, возможно, его развитие ускорили различные факторы, нам приятнее думать, что в большей мере его успех обусловлен свободно доступной спецификацией.
SIP - это сигнальный протокол уровня приложений, который использует для передачи информации широко известный порт 5060. SIP-па- кеты могут передаваться по протоколам транспортного уровня UDP или TCP. В настоящее время Asterisk не имеет реализации TCP для передачи SIP-сообщений, но возможно, будущие версии будут поддерживать его (приветствуются патчи к кодовой базе). SIP используется для «установления, корректировки и завершения сеансов обмена мультимедийной информацией, таких как звонки интернет-телефонии»[88]. SIP не передает речевые данные между конечными точками. Для передачи речевых данных (то есть голоса) между конечными точками применяется RTP. RTP использует в Asterisk непривилегированные порты с большими порядковыми номерами (по умолчанию от 10000 до 20000).
Топологию, обычно используемую для иллюстрации SIP и RTP, часто называют SIP-трапецией (рис. 8.1). Когда Элис хочет позвонить Бобу, телефон Элис соединяется с ее прокси-сервером и прокси пытается найти Боба (часто соединяясь через его прокси). Как только соединение установлено, телефоны общаются друг с другом напрямую (если это возможно), таким образом не загружая данными ресурсы прокси- серверов.
Рис. 8.1. SIP-трапеция
SIP - не первый и не единственный используемый сегодня VoIP-прото- кол (среди которых можно упомянуть H. 323, MGCP, IAX и т. д.), но в настоящее время его поддерживают большинство производителей аппаратных средств. Преимущества SIP-протокола заключаются в его распространенности и гибкости архитектуры (и, как мы уже говорили, простоте!).
Будущее
SIP заслужил свое звание протокола, который укрепил позиции VoIP. Все новые пользователи и продукты уровня предприятия должны поддерживать SIP, и любой существующий продукт сейчас не будет продаваться, если не предлагает возможности перехода на SIP. От SIP ожидают, что предоставляемые им возможности будут намного шире, чем просто VoIP, включая возможность передавать видео, музыку и любой тип мультимедийной информации в режиме реального времени. Несмотря на то что его повсеместное использование в качестве механизма общего назначения для передачи медиа-данных пока вызывает сомнения, SIP, бесспорно, будет поставлять основную массу новых голосовых приложений в ближайшие несколько лет.
Вопросы безопасности
Для аутентификации пользователя SIP применяет систему запрос/ответ. Исходное сообщение INVITE посылается на прокси-сервер, с которым желает установить соединение конечное устройство. Прокси возвращает сообщение 407 Proxy Authorization Request (запрос авторизации на прокси), содержащее случайный набор символов, который называют временным кодом (nonce). Этот временный код вместе с паролем используется для формирования хеша MD5, который передается в следующем сообщении INVITE. Если хеш MD5 соответствует хешу, сформированному прокси, клиент проходит аутентификацию. DoS-атаки (Denial of Service - отказ в обслуживании) - наверное, самый распространенный тип атак при связи по протоколам VoIP. DoS- атакой может считаться поступление на прокси-сервер большого количества недействительных запросов INVITE с целью вызвать перегрузку системы. Эти атаки относительно просто реализовать, и они мгновенно отражаются на пользователях системы. SIP располагает несколькими методами минимизации эффектов от DoS-атак, но предотвратить их полностью невозможно.
SIP реализует схему, которая гарантирует, что для установления связи между вызывающим абонентом и доменом вызываемого абонента используется безопасный транспортный механизм с шифрованием (а именно Transport Layer Security, или TLS). Кроме того, защищенный запрос посылается в конечное устройство согласно локальным политикам безопасности сети. Обратите внимание, что шифрование речевых данных (то есть потока RTP) не входит в функции SIP и должно реализовываться отдельно.
Больше информации относительно вопросов безопасности в SIP, включая похищение учетных данных, подмену сервера и обрыв сеанса, можно найти в разделе 26 документации SIP RFC 3261.
SIP и NAT
Наверное, самым большим техническим препятствием, которое должен преодолеть SIP, является проведение транзакции через сети, использующие технологию NAT. Поскольку SIP инкапсулирует адресную информацию в своих порциях данных и NAT выполняется на более низком сетевом уровне, автоматической корректировки адресной информации не происходит. Таким образом, медиа-потоки не будут располагать правильной адресной информацией, которая необходима для завершения установления соединения при использовании NAT. Кроме того, межсетевые экраны, обычно интегрированные с NAT, не будут рассматривать поступающий медиа-поток как часть SIP-тран- закции и блокируют соединение. Более новые межсетевые экраны и пограничные контроллеры сеансов (Session Border Controllers) поддерживают SIP, но это по-прежнему считается недостатком данного протокола и является источником бесконечных неприятностей для сетевых специалистов, которым приходится соединяться с конечными точками, работающими по SIP-протоколу, используя существующую сетевую инфраструктуру.
H.323
Этот протокол, рекомендованный Международным союзом телекоммуникаций (МСТ), изначально был разработан для обеспечения транспортного механизма для видеоконференц-связи по IP-протоколу. Он стал стандартом для оборудования видеоконференц-связи, работающего по IP-протоколу, и также некоторое время пользовался популярностью как VoIP-протокол. Хотя еще ведутся жаркие дебаты по поводу того, какой из протоколов, SIP или H.323 (или IAX), будет доминировать в мире VoIP-протоколов, Asterisk почти отказалась от H.323 в пользу IAX и SIP. H.323 не завоевал особой популярности среди пользователей и компаний, хотя по-прежнему является, наверное, самым широко используемым VoIP-протоколом среди поставщиков услуг связи.
Три версии H.323, поддерживаемые в Asterisk, обрабатываются модулями chan_h323.so (поставляется с Asterisk), chan_oh323.so (доступен как бесплатное дополнение) и chan_ooh323.so (поставляется в пакете asterisk-addons).
Скорее всего, вы использовали H.323, даже не подозревая об этом: клиент NetMeeting от компании Microsoft является, наверное, наиболее популярным Н.323-клиентом.
История
H.323 был разработан МСТ в мае 1996 как средство передачи голоса, видео, данных и факсов по IP-сетям с возможностью подключения к PSTN. С тех пор H.323 пережил несколько версий и дополнений (которые вносят дополнительную функциональность в протокол), что позволяет использовать его как в простых сетях, предназначенных исключительно для VoIP, так и в сетях с более развитой топологией.
Будущее
Будущее H.323 является предметом споров. Если брать за показатель его использование, будущее H.323 не слишком радужное, потому что в этой связи он упоминается редко (несомненно, не так часто, как SIP). H.323 часто называют техническим соперником SIP, но, как показывают примеры других технологий, заявления такого рода редко являются решающим фактором для достижения успеха. Один из аспектов, негативно влияющих на популярность H.323, - его сложность, хотя многие отмечают, что изначально простой SIP начинает страдать тем же недугом.
H.323, безусловно, по-прежнему обслуживает основную массу мирового VoIP-трафика, но, по мере того как снижается зависимость людей от традиционных поставщиков услуг связи, будущее H.323 становится все менее предсказуемым. Хотя H.323, вероятно, и не будет предпочтительным протоколом для новых реализаций, можно с уверенностью ожидать, что нам еще некоторое время придется решать вопросы совместимости с H.323.
Вопросы безопасности
H.323 - относительно защищенный протокол и не требует особых мер обеспечения безопасности, кроме тех, которые обычно применяются при любом обмене информацией по сети Интернет. Поскольку H.323 использует для передачи медиа-данных RTP-протокол, он не поддерживает шифрованные медиа-потоки. Использование VPN или другого шифрованного канала между конечными точками является самым распространенным способом обеспечения безопасности передачи медиа-данных. Конечно, недостатком здесь является необходимость установления этих безопасных каналов между конечными точками, что может быть не всегда удобным (или даже возможным). По мере того как VoIP все чаще используется для связи с финансовыми учреждениями, такими как банки, скорее всего, нам понадобятся расширения для наиболее популярных протоколов VoIP, обеспечивающие поддержку методов устойчивого шифрования.
H.323 и NAT
Стандарт H.323 использует RTP-протокол IETF для переноса речевых данных между конечными точками. Поэтому в сетях с использованием NAT протоколу H.323 свойственны те же проблемы, что и SIP. Самый простой способ - переадресация соответствующих портов через NAT- устройство на внутреннего клиента.
Для получения вызовов всегда придется переадресовывать TCP-порт 1720 на клиента. Кроме того, понадобится переадресовывать UDP- порты для медиа-данных, передаваемых по протоколу RTP, и управляющих потоков RTCP (необходимый диапазон портов указан в руководстве пользователя к устройству). Более старые клиенты, такие как NetMeeting от Microsoft, также потребуют переадресации TCP-портов для туннелирования H.245 (опять же, диапазон используемых портов можно найти в руководстве пользователя).
Если за устройством NAT имеется большое количество клиентов, понадобится шлюз, работающий в режиме прокси. Шлюз потребует наличия интерфейса для взаимодействия закрытой IP-подсети и открытого Интернета). Тогда клиент H.323 из закрытой IP-подсети зарегистрируется на шлюзе, который будет передавать вызовы от его лица. Заметьте, что любым внешним клиентам, которые пожелают позвонить вам, тоже придется зарегистрироваться на прокси-сервере. В настоящее время Asterisk не может выступать в роли шлюза H.323. Для этого придется использовать отдельное приложение, такое как OpenH323 Gatekeeper с открытым исходным кодом (http://www.gnugk.org).
MGCP
Протокол контроля медиа-шлюзов (Media Gateway Control Protocol, MGCP) мы также получили от IETF. Хотя MGCP распространен больше, чем кому-то может показаться, он быстро сдает позиции в пользу таких протоколов, как SIP и IAX. Однако Asterisk любит протоколы, поэтому, естественно, имеет базовую поддержку и этого протокола. MGCP описан в RFC 3435[89]. Он был разработан, чтобы максимально упростить конечные устройства (такие, как телефоны) и перенести всю логику и обработку вызовов на плечи медиа-шлюзов и агентов вызова. В отличие от SIP, MGCP использует централизованную модель. MGCP- телефоны не могут напрямую вызывать другие MGCP-телефоны; обязательно должен использоваться какой-нибудь контроллер.
Asterisk поддерживает MGCP посредством модуля chan_mgcp.so, а конечные точки определены в конфигурационном файле mgcp.conf. Поскольку Asterisk предоставляет только базовые сервисы агента вызовов, он не может эмулировать телефон MGCP (чтобы зарегистрироваться на другом MGCP-контроллере как агент пользователя, например). Если у вас под рукой есть несколько MGCP-телефонов, их можно использовать с Asterisk. Если планируется вводить MGCP-телефоны в эксплуатацию в системе Asterisk, помните, что сообщество перешло на более популярные протоколы и поэтому необходимо соответственно планировать затраты на программную поддержку. Если это возможно (например, для телефонов Cisco), следует обновить MGCP-телефоны и перейти на протокол SIP.
Узкоспециализированные протоколы
Наконец давайте рассмотрим два поддерживаемых в Asterisk узкоспециализированных протокола.
Skinny/SCCP
Протокол Skinny Client Control Protocol (SCCP) является узкоспециализированным протоколом для VoIP-оборудования Cisco. Это протокол по умолчанию для конечных точек офисной АТС Cisco Call Manager1. Asterisk поддерживает Skinny, но при подключении телефонов Cisco к Asterisk, как правило, рекомендуется получить SIP-образы для всех телефонов, поддерживающих SIP, и соединяться через SIP.
UNISTIM
Поддержка узкоспециализированного VoIP-протокола компании Nortel UNISTIM означает, что Asterisk является первой офисной АТС в истории, поддерживающей узкоспециализированные IP-терминалы двух крупнейших игроков в VoIP - Nortel и Cisco. Реализация поддержки UNISTIM - это лишь эксперимент, и система работает недостаточно устойчиво, чтобы вводить ее в эксплуатацию, но тот факт, что кто-то не поленился сделать это, демонстрирует мощь платформы Asterisk.
Кодеки
2
Под кодеками, как правило, понимают различные математические модели, используемые для цифрового кодирования (и сжатия) аналоговой аудиоинформации. Многие из этих моделей учитывают способность человеческого мозга формировать законченное впечатление по неполной информации. Все мы видели оптические иллюзии; точно так же алгоритмы сжатия голоса используют нашу способность представлять то, что, как нам кажется, мы должны слышать, а не то, что мы фактически слышим2. Цель различных алгоритмов кодирования - обеспечить баланс между эффективностью и качеством3. Изначально под термин « кодек» был образован от слов КОдер/ДЕКодер - это устройство, которое выполняет преобразования между аналоговым и цифровым сигналом. Теперь этот термин, кажется, больше относится к понятиям КОмпрессия/ДЕКомпрессия.
Прежде чем перейти к каждому кодеку в отдельности, рассмотрим табл. 8.1, где представлены краткие данные, которые можно использовать для справки.
Таблица 8.1. Краткие справочные данные для кодеков
Кодек | Скорость передачи данных, Кбит/с | Необходимость лицензии |
G.711 | 64 | Не нужна |
G.726 | 16, 24, 32 или 40 | Не нужна |
G.729A | 8 | Нужна (не нужна для транзитной пересылки) |
GSM | 13 | Не нужна |
iLBC | 13,3 (кадры по 30 мс) или 15,2 (кадры по 20 мс) | Не нужна |
Speex | Переменная (между 2,15 и 22,4) | Не нужна |
G.711
G.711 - основной кодек PSTN. В сущности, при упоминании ИКМ (обсуждается в предыдущей главе) в связи с телефонной сетью можно смело иметь в виду G.711. Используется два метода компандирования: plaw в Северной Америке и аlaw во всем остальном мире. Любой из них обеспечивает передачу 8-битового слова 8000 раз в секунду. Если произвести вычисления, можно увидеть, что это потребует передачи 64 000 бит/с.
Многие скажут вам, что G.711 - это кодек без сжатия. Это не вполне так, поскольку компандирование считается формой сжатия. На самом деле G.711 является базовым кодеком, от которого были произведены все остальные.
G.711 налагает минимальную (практически нулевую) нагрузку на ЦП.
G.726
Этот кодек активно использовался некоторое время (его называли G.721, но сейчас он вышел из употребления) и является одним из исходных кодеков со сжатием. Эта технология известна как адаптивная дифференциальная импульсно-кодовая модуляция (Adaptive Differential Pulse-Code Modulation, ADPCM), она обеспечивает разную скорость передачи данных. Чаще всего используются скорости 16, 24 и 32 Кбит/с. На момент написания данной книги Asterisk поддерживала только ADPCM-32, несомненно, самую популярную скорость передачи данных для этого кодека.
G.726 предлагает качество практически такое же, как у G.711, но использует только половину полосы пропускания. Это возможно потому, что он отправляет не результат измерения, а только достаточную информацию для описания разницы между текущим и предыдущим замерами. G.726 потерял популярность в 1990-х годах из-за неспособности передавать сигналы модема и факсов, но сейчас она вновь возвращается благодаря обеспечиваемому им соотношению пропускная способность/нагрузка на ЦП. G.726 особенно привлекателен, потому что не требует от системы проведения большого объема вычислений.
G.729A
Учитывая, насколько малую полосу пропускания использует кодек G.729A, он обеспечивает впечатляющее качество звука. Делает он это за счет технологии Conjugate-Structure Algebraic-Code-Excited Linear Prediction (CS-ACELP)[90]. G729A является запатентованным продуктом, поэтому его нельзя использовать без лицензии; однако он чрезвычайно популярен и, соответственно, поддерживается многими разными телефонами и системами.
Чтобы достичь такой значительной степени сжатия, этот кодек требует такой же значительной работы от ЦП. В системе Asterisk использование кодеков с большой степенью сжатия быстро приводит к перегрузке ЦП.
Для G.729A требуется пропускная способность 8 Кбит/с.
GSM
GSM - самый любимый кодек Asterisk. Он не обременен лицензионными соглашениями, как G.729A, и предлагает превосходную производительность, если учитывать требования, которые он предъявляет к ЦП. Качество получаемого звука, в общем, считается ниже, чем обеспечивает G.729A, но это преимущественно субъективное мнение; обязательно попробуйте его. Скорость передачи данных GSM - 13 Кбит/с.
iLBC
Internet Low Bitrate Codec (iLBC)[91] обеспечивает привлекательное сочетание низкого коэффициента использования полосы пропускания и приемлемого качества. Он особенно хорошо подходит для обеспечения целесообразного качества в сетевых соединениях с потерями.
Естественно, Asterisk поддерживает его (и поддержка этого кодека другими системами тоже растет), но он не так популярен, как кодеки ITU, и, таким образом, может не поддерживаться обычными IP-теле- фонами и коммерческими VoIP-системами. IETF RFC 3951 и 3952 опубликованы в поддержку iLBC, и iLBC находится на пути к стандартизации IETF.
iLBC использует сложные алгоритмы для достижения таких высоких уровней сжатия, поэтому довольно сильно загружает ЦП при использовании в Asterisk.
iLBC можно использовать без всяких авторских отчислений, но владелец патента на iLBC, Global IP Sound (GIPS), желает получать информацию обо всех случаях его применения в коммерческих целях. Для этого надо скачать и распечатать копию лицензии на использование iLBC, подписать ее и отправить GIPS. Почитать о iLBC и лицензии на его использование можно по адресу http://www.ilbcfreeware.org. iLBC используется для каналов со скоростью передачи данных 13,3 Кбит/с (кадры по 30 мс) и 15,2 Кбит/с (кадры по 20 мс).
Speex
Speex - это кодек с переменной скоростью передачи цифровых данных (Variable Bitrate, VBR). Это означает, что он может динамически менять скорость передачи данных в ответ на изменение условий сети. Он предлагается как в узкополосном, так и в широкополосном вариантах в зависимости от того, какого качества звук требуется получить (телефонного или лучше).
Speex - абсолютно бесплатный кодек, лицензированный по версии Xiph.org лицензии BSD.
В Интернете доступен проект спецификации Speex. Больше информации о Speex можно найти на его странице (http://www.speex.org). Speex может использоваться для каналов со скоростью передачи данных от 2,15 до 22,4 Кбит/с благодаря его способности менять свою скорость передачи данных.
MP3
Конечно же, MP3 - это кодек. Вообще говоря, он называется Moving Picture Experts Group Audio Layer 3 Encoding Standard[92]. С таким именем неудивительно, что его называют MP3! В Asterisk кодек MP3 обычно используется для музыки во время ожидания (Music on Hold, MoH).
MP3 не предназначен для передачи речи по телефонным сетям, поскольку он оптимизирован для музыки, а не голоса. Тем не менее он очень популярен в системах телефонной связи VoIP для воспроизведения музыки во время ожидания.
Не забывайте, что обычно для трансляции музыки необходима лицензия. Многие полагают, что вполне законно могут использовать радиостанцию или CD как источник музыки во время ожидания, но в большинстве случаев это не так.
Качество и класс предоставляемых услуг передачи данных
Качество обслуживания, или, как чаще всего говорят, QoS (Quality of Service), - характеристика, определяющая качество и класс услуг по передаче потока данных, предоставляемой пользователю сетью и являющейся критичной по времени. Жестких норм здесь не существует, но обычно считается, что нормальное плавное течение беседы возможно, если звук, производимый говорящим, доставляется к уху слушателя в течение 150 мс. Если задержка превышает 300 мс, участники беседы начнут перебивать друг друга. При задержке выше 500 мс нормальный разговор невозможен.
Кроме выполнения требований по времени, необходимо гарантировать, что передаваемая информация приходит неповрежденной. Потеря слишком большого количества пакетов обусловит невозможность полного восстановления дискретизирванного аудиосигнала на дальнем конце, и пробелы в данных будут слышаться как помехи или, в более тяжелых случаях, пропуски целых слов или предложений. Даже утрата 5% пакетов может сильно повредить сети VoIP.
TCP, UDP и SCTP
Для передачи данных по сети, работающей по IP-протоколу, используется один из трех обсуждаемых здесь транспортных протоколов.
Transmission Control Protocol
Transmission Control Protocol (TCP) практически не используется для VoIP, поскольку, хотя у него имеются механизмы обеспечения гарантированной доставки, они фактически не используются. TCP склонен создавать больше проблем, чем решать их, в большинстве соединений и может применяться только в соединениях между двумя конечными точками с чрезвычайно малым временем ожидания. Назначение TCP - гарантировать доставку пакетов. Для этого реализуется несколько механизмов, таких как нумерация пакетов (для восстановления блоков данных), подтверждение доставки и повторный запрос утерянных пакетов. В мире VoIP быстрая доставка пакетов в конечную точку является первостепенной задачей, но за 20 лет использования сотовой связи мы научились спокойно относиться к недостатку нескольких пакетов[93].
Тщательная обработка, управление состоянием и подтверждение доставки - все эти характеристики делают TCP прекрасным протоколом для передачи больших объемов данных, но он просто недостаточно эффективен для передачи медиа-данных в реальном масштабе времени.
User Datagram Protocol
В отличие от TCP, User Datagram Protocol (UDP) не предлагает никаких гарантий доставки. Пакеты передаются по проводам так быстро, как это возможно, и выпускаются в мир без всякой информации о том, достигли они пункта своего конечного назначения или нет. Поскольку UDP не дает никаких гарантий доставки данных[94], его эффективность обеспечивается очень небольшими затратами на транспортировку.
TCP является более «сознательным» протоколом, потому что полоса пропускания распределяется между клиентами, соединяющимися с сервером, более равномерно. С увеличением UDP- трафика возможна перегрузка сети.
Stream Control Transmission Protocol
Одобренный IETF в качестве предлагаемого стандарта в RFC 2960, SCTP является относительно новым транспортным протоколом. С самого начала он разрабатывался как протокол, лишенный недостатков TCP и UDP и предназначенный в первую очередь для сервисов, обычно предоставляемых коммутируемыми телефонными сетями. Некоторыми из целей SCTP были:
• Лучшие техники предотвращения перегрузок (в частности, предотвращение атак типа «отказ в обслуживании»).
• Строго упорядоченная доставка данных.
• Более низкая задержка для улучшения передачи в режиме реального времени.
Разработчики SCTP надеялись создать надежный протокол для передачи SS7 и других типов сигналов PSTN по IP-сети, избавленный от основных недостатков TCP и UDP.
Дифференцированное обслуживание
Дифференцированное обслуживание, или DiffServ, - не столько механизм QoS, сколько метод, с помощью которого можно маркировать трафик и обеспечивать ему специальное обслуживание. Очевидно, что DiffServ может способствовать обеспечению QoS, предоставляя преимущество определенным типам пакетов над другими.
Хотя, несомненно, это повышает шансы VoIP-пакета быстро пройти через все соединения, но не дает твердых гарантий.
Гарантированное обслуживание
Гарантированное качество и класс предоставляемых услуг обеспечивает PSTN. Для каждого разговора используется выделенный только под этот звонок канал со скоростью передачи данных 64 Кбит/с; пропускная способность гарантируется. Точно так же протоколы, предлагающие гарантированное обслуживание, могут обеспечить выделение под обслуживаемое соединение необходимой полосы пропускания. Как для любой сетевой технологии с пакетированием, эти механизмы, как правило, лучше всего работают в условиях, когда объем трафика ниже максимально допустимых уровней. Если соединение достигает своих предельных значений, практически невозможно избежать ухудшения качества обслуживания.
MPLS
Multiprotocol Label Switching (MPLS) - это метод разработки и управления моделями сетевого трафика независимо от таблиц маршрутизации третьего (сетевого) уровня. Суть работы протокола заключается в присваивании сетевым пакетам коротких меток (кадров MPLS), которые затем используются маршрутизатором для пересылки пакетов на выходной маршрутизатор MPLS и в итоге - к их окончательному месту назначения. Традиционно маршрутизаторы принимают независимое решение о пересылке на основании поиска в IP-таблице при каждом переходе в сети. В сети MPLS такой поиск выполняется только один раз, когда пакет входит в MPLS-облако на входном маршрутизаторе. После этого пакету назначается поток, называемый Label Switched Path (LSP) и идентифицируемый по метке. Метка используется как индекс поиска в таблице пересылки MPLS, и пакет проходит по LSP независимо от решений маршрутизации третьего уровня. Это позволяет администраторам больших сетей тонко настраивать решения по маршрутизации и использовать сетевые ресурсы с максимальной эффективностью. Кроме того, с меткой может быть связана информация, определяющая приоритетность пакета при пересылке.
RSVP
В MPLS нет метода для динамического установления LSP, но для этого в сочетании с MPLS можно использовать Reservation Protocol (RSVP).
RSVP - это протокол обмена сигналами, используемый для упрощения задач по установлению LSP и передачи информации о возникающих проблемах на входной маршрутизатор MPLS. Преимущество использования RSVP в сочетании с MPLS - сокращение затрат на администрирование. Если не использовать RSVP с MPLS, придется вручную конфигурировать все метки и каждый путь на всех маршрутизаторах. Применение RSVP делает сеть более динамичной за счет передачи функции управления метками маршрутизаторам. Таким образом, сеть становится более чутко реагирующей на изменяющиеся условия и может быть настроена на изменение путей исходя из определенных условий, например если какой-то из путей недоступен (возможно, по причине выхода из строя маршрутизатора). В этом случае конфигурация маршрутизатора сможет использовать RSVP для распределения новых меток среди маршрутизаторов MPLS-сети без всякого вмешательства человека (или при минимальном вмешательстве).
Негарантированное обслуживание
Самый простой и дешевый подход к QoS - не предоставлять качества услуг вообще. Это называется негарантированным обслуживанием. Вероятно, звучит не очень хорошо, но этот метод может очень неплохо работать. Любой вызов VoIP, проходящий по открытой сети Интернет, практически наверняка будет вызовом с негарантированным обслуживанием, поскольку механизмы QoS в этой среде еще не получили широкого распространения.
Эхо
Возможно, вы не осознаете этого, но проблема эха существует в PSTN так же долго, как существуют телефоны. Вероятно, вы не часто сталкивались с ней, потому что телекоммуникационная отрасль потратила огромные суммы денег на разработку дорогих эхоподавляющих устройств. Также, если конечные точки физически располагаются на небольшом расстоянии, например когда вы звоните своему соседу, живущему на одной с вами улице, задержка минимальна и все сигналы возвращаются настолько быстро, что полностью имитируют местный эф- фект1, обычно создаваемый телефоном. То есть суть в том, что при местных звонках эхо присутствует в большинстве случаев, но абонент не может различить его в обычном телефоне, потому что оно возвращается практически мгновенно. Чтобы понять это, представьте следующее: когда вы находитесь в комнате, все сказанное вами отражается от стен и потолка (и, вероятно, пола, если нет ковра) и возвращается к вам, но это не создает никаких проблем, потому что происходит настолько быстро, что вы не улавливаете задержки.
Как говорилось в главе 7, местный эффект - это функция телефона, которая обеспечивает возвращение части звукового сигнала в ухо говорящего, чтобы создать эффект более естественного разговора.
Причина, по которой в телефонной системе VoIP, такой как Asterisk, может появиться эхо, в том, что введение VoIP-телефона приводит к возникновению небольшой задержки. Прохождение пакетов от телефона на сервер (и обратно) занимает несколько миллисекунд. Если вдруг возникает ощутимая задержка, вы можете слышать эхо, которое было там всегда, но никогда не приходило с задержкой.
Почему возникает эхо
Прежде чем приступить к обсуждению мер по борьбе с эхом, давайте рассмотрим, почему эхо возникает в аналоговом мире. Если вы слышите эхо, проблема не в телефоне, а в дальнем конце линии. И наоборот, эхо, слышимое на дальнем конце, формируется на вашей стороне. Эхо может быть обусловлено тем, что местной аналоговой линии связи приходится передавать и получать сигналы по одной и той же паре проводов. Если эта линия не сбалансирована по электрическим параметрам или если к ней подключен телефон низкого качества, получаемые ею сигналы могут отражаться назад в сеть, становясь частью возвращаемых данных. Когда этот отраженный сигнал возвратится к вам, вы услышите слова, которые произнесли несколько мгновений назад. Люди будут различать эхо при задержке, превышающей определенную величину (возможно, от 20 мс для некоторых). При увеличении задержки эхо начнет раздражать.
В дешевом телефоне эхо может формироваться в теле трубки. Вот почему некоторые дешевые IP-телефоны могут создавать эхо, даже если в соединении нет ни одной аналоговой линии[95]. В мире VoIP эхо обычно обусловлено или присутствием аналоговой линии где-то в соединении, или применением дешевого терминала, отражающего часть сигнала (например, обратная связь через устройство hands-free или плохую трубку либо гарнитуру). Чем выше задержка в сети, тем более надоедливым может быть это эхо.
Устранение эха в каналах Zaptel
В конфигурационном файле zconfig.h можно выбрать один из ряда предлагаемых алгоритмов эхоподавления. По умолчанию используется MARK2. Поэкспериментируйте с различными эхокомпенсаторами, чтобы выбрать тот, который лучше всего подходит для вашей среды. Также Asterisk предлагает опцию в файле zconfig.h, которая позволяет сделать эхоподавление более агрессивным. Ее можно активировать, раскомментировав следующую строку: #define AGGRESSIVE_SUPPRESSOR
Заметьте, что агрессивное эхоподавление может создать эффект портативной полудуплексной радиостанции. Оно должно быть активировано, только если все остальные методы снижения эха не обеспечили результата.
Активация эхоподавления для интерфейсов Zaptel осуществляется в файле zapata.conf. В стандартной конфигурации эхоподавление активируется строкой echocancel=yes. echocancelwhenbridged=yes обеспечит эхо- подавление для звонков, проходящих через TDM. Хотя такие звонки не должны требовать эхоподавления, это может улучшить их качество. Если эхоподавление активировано, эхокомпенсатор распознает эхо в линии во время звонка. Поэтому эхо может быть слышимо в начале разговора и со временем уменьшаться. Чтобы избежать этого, можно прибегнуть к методу, называемому тренировкой эхоподавления, при котором в линии в начале звонка на мгновение отключается звук и передается тональный сигнал, по которому может быть определена величина эха. Это позволяет Asterisk быстрее устранять эхо. Тренировка эхоподавления активируется строкой echotraining=yes.
Аппаратное эхоподавление
Программное эхоподавление - не самый эффективный способ борьбы с эхом. Если планируется развертывание системы хорошего качества, потратьте дополнительные средства на платы, снабженные устройствами аппаратного эхоподавления. Такие платы несколько дороже обычных, но они быстро окупятся, поскольку обеспечат снижение нагрузки на ЦП и сберегут ваши нервы благодаря сокращению жалоб пользователей.
Asterisk и VoIP
Для вас не должно быть сюрпризом, что Asterisk любит работать с VoIP. Но для этого ей надо знать, какую функцию выполнять: клиента, сервера или и того и другого. Одна из наиболее сложных и часто сбивающих с толку концепций в Asterisk - схема присваивания имен при аутентификации входящих и исходящих вызовов.
Пользователи, и равноправные участники, и друзья - о, боже!
Соединения, устанавливаемые с нами или нами, определены в файлах iax.conf и sip.conf как user (пользователь) и peer (равноправный участник). Соединения, которые могут выполняться в обоих направлениях, могут быть определены как friend (друг). При определении, в каком направлении происходит аутентификация, всегда важно посмотреть на направление каналов с точки зрения Asterisk, поскольку соединения принимаются и создаются сервером Asterisk.
Соединения user
Соединение, определенное как user, - это любая система/пользователь/конечная точка, которой мы разрешаем соединяться с нами. Помните, что описание user не обеспечивает метода вызова этого пользователя; тип user используется просто для создания канала для входящих звонков[96]. В описании user потребуется задать имя контекста для обозначения места диалплана (в файле extensions.conf), где будет начинаться обработка аутентифицированных звонков.
Соединения peer
Соединение типа peer является исходящим. Представим это так: пользователи (users) звонят нам, тогда как мы звоним равноправным участникам (peers). Поскольку равноправные участники не звонят нам, описание peer обычно не требует задания имени контекста. Однако есть одно исключение: если звонки, берущие начало в вашей системе, возвращаются в вашу же систему, входящие звонки (которые берут начало на SIP-прокси, а не на агенте пользователя) будут сопоставляться с описанием peer. Контекст default должен обрабатывать эти входящие звонки соответствующим образом, хотя предпочтительнее, чтобы контексты были определены для каждого peer отдельно[97]. Чтобы знать, куда отправлять вызов, необходимо иметь информацию о местонахождении хоста в Интернете (то есть знать его IP-адрес). Местоположение peer может быть определено или статически, или динамически. Динамический peer конфигурируется с помощью строки host=dynamic, размещаемой под заголовком описания. Поскольку IP- адрес динамического peer может меняться постоянно, он должен регистрироваться на сервере Asterisk, чтобы его IP-адрес был известен и звонки могли успешно направляться к нему. Если удаленным концом является другой сервер Asterisk, необходимо использовать выражение register, что обсуждается ниже.
Соединения friend
Определение типа friend является сокращенной записью для соединения, которое может быть и user, и peer. Однако соединения, являющиеся и user, и peer, не всегда определяются так, потому что индивидуаль-
Рис. 8.2. Источник вызова относительно Asterisk для соединений типа user, peer и friend
ное описание каждого направления создания вызова (использование двух описаний, user и peer) обеспечивает возможность более тонкой настройки и управления каждым отдельно взятым соединением. На рис. 8.2 показан поток управления аутентификацией по отношению к Asterisk.
Выражения register
Выражение register - это средство сообщить удаленному равноправному участнику сети, где в Интернете находится ваш сервер Asterisk. Asterisk использует выражения register для аутентификации у удаленных поставщиков сервисов, если вы используете динамические IP- адреса или если ваш IP-адрес не зарегистрирован у поставщика. Возможны ситуации, когда выражение register не требуется, но, чтобы продемонстрировать случаи, когда выражение register необходимо, рассмотрим следующий пример.
Допустим, имеется удаленный равноправный участник сети, предоставляющий вам сервисы DID. Когда кто-то вызывает номер +1-800555-1212, звонок поступает по физической сети PSTN к вашему поставщику сервисов и на его сервер Asterisk, возможно, через Т1-линию. После этого данный вызов направляется по Интернету на ваш сервер Asterisk.
Ваш поставщик услуг будет располагать описанием вашего сервера Asterisk в одном из конфигурационных файлов, sip.conf или iax.conf (в зависимости от того, выполняется ли соединение по протоколу SIP или IAX соответственно). Если вы получаете вызовы только от этого поставщика сервисов, вы определили бы их тип как user (если бы это была другая система Asterisk, вы могли бы быть определены в ней как
peer).
Теперь, допустим, ваш сервер использует ваше домашнее соединение с Интернетом с динамическим IP-адресом. Поставщик услуг имеет статический IP-адрес (или, возможно, полностью определенное доменное имя), которое указано в вашем конфигурационном файле. Поскольку у вас динамический адрес, поставщик сервисов в своем конфигурационном файле указывает host=dynamic. Чтобы знать, куда направлять ваш звонок на номер +1-800-555-1212, поставщику сервисов необходимо знать ваше местонахождение в Интернете. Вот где понадобится выражение register.
Выражение register - это средство аутентификации и сообщения peer своего местонахождения. В разделе [general] своего конфигурационного файла поместите выражение, аналогичное данному:
register => имяпользователя:секрет@мой_удаленнный_равноправный_участник Убедиться в успешности регистрации можно с помощью команд iax2 show registry и sip show registry из консоли Asterisk.
Безопасность VoIP
В данной книге мы можем лишь коснуться сложного и широкого вопроса безопасности VoIP; поэтому, прежде чем углубиться в него, мы хотели бы направить вас к VoIP Security Alliance (http://www.voipsa. org). Этот фантастический ресурс имеет превосходную рассылку, техническую документацию, практические рекомендации и общий перечень всех материалов, касающихся безопасности VoIP. Как и сообщения электронной почты, речевые данные тоже могут быть подвергнуты атакам корыстного или криминального характера. Хорошие парни на VoIPSA делают все, что в их силах, чтобы мы могли справиться с этими проблемами сейчас, до того как они станут эпидемией. Из книг, посвященных этому вопросу, мы рекомендуем самую лучшую - «Hacking Exposed VoIP» (издательство McGraw-Hill Osborne Media) Дэвида Энд- лера (David Endler) и Марка Коллиера (Mark Collier). Те, кто отвечает за развертывание любой системы VoIP, должны знать этот материал.
Спам по сети интернет-телефонии (СПИТ)
Нам не хочется думать об этом, но мы знаем, что он будет. Чтобы предсказать это, достаточно того простого факта, что в этом мире есть люди, в которых отсутствие определенных социальных навыков сочетается с тупой жадностью, и такие парни думают только о том, как наводнить Интернет огромной массой электронной почты. Эти же ребята, недолго думая, начнут делать то же самое с голосовой связью. Мы уже знаем, что значит утопать в звонках систем продаж по телефону; а теперь попытайтесь представить ситуацию, когда рассылка голосового спама не стоит телемаркетинговой фирме практически ни копейки. Никакие меры не остановили спам по электронной почте и, вероятно, не остановят голосовой спам, поэтому борьба с ним будет нашей задачей.
Шифрование звука с помощью безопасного RTP
Если можно перехватывать пакеты, исходящие из системы Asterisk, значит, можно извлекать аудиоданные из RTP-потоков. Эти данные могут поставляться в автономном режиме в систему обработки речи, которая будет слушать ключевые слова, такие как «номер кредитной карты» или «пин», и предоставлять эти данные тому, кто заинтересован в них. Поток также может быть проанализирован на предмет встроенных DTMF-тонов, что представляет опасность, потому что многие сервисы запрашивают ввод пароля и информации кредитной карты через номеронабиратель. Также и в деловой сфере, имея возможность сбора и анализа аудиоданных, можно выведать стратегически важную информацию.
Использование безопасного RTP (Secure RTP, SRTP) может помочь справиться с этой проблемой за счет шифрования RTP-потоков; но Asterisk не поддерживала SRTP на момент написания данной книги. Работы по обеспечению поддержки SRTP ведутся (для готовящейся к выпуску версии есть патч, но на данный момент неизвестно, будет ли он перенесен в более раннюю версию 1.4).
Спуфинг
В традиционной телефонной сети очень сложно действовать от лица кого-либо. Ваша деятельность может быть (и будет) отслежена, и полномочные органы быстро положат конец забавам. В мире IP намного проще сохранять анонимность. Поэтому несложно догадаться, что орды предприимчивых злоумышленников станут охотно звонить в компанию по выдаче кредитных карт или в банк от вашего имени. Если не будет придуман надежный механизм борьбы со спуфинг-мошенничес- твом[98], мы быстро поймем, что не можем доверять звонкам по VoIP.
Что можно сделать
Первое, что надо помнить при рассмотрении вопросов безопасности в VoIP-системе, - VoIP основывается на сетевых протоколах, то есть анализ необходимо проводить с данной точки зрения. Мы не хотим
сказать, что должны игнорироваться традиционные меры защиты, используемые в телекоммуникациях, но необходимо обратить внимание на сеть, лежащую в основе.
Базовая безопасность сети
Самое эффективное, что можно сделать, - обеспечить защищенный доступ к сети телефонной связи. Применение межсетевых экранов и виртуальных локальных сетей (VLAN) - примеры того, как это можно реализовать. По умолчанию сеть телефонной связи должна быть доступной только для того, в чем есть необходимость. Например, если программные телефоны не используются, клиентские ПК не должны иметь доступа к сети телефонной связи.
Разделение речевого трафика и трафика данных. Если нет необходимости в передаче речи и данных по одной сети, возможно, будет выгодно разделить их (это может иметь также и другие преимущества, такие как упрощение конфигурации QoS). Не является чем-то из ряда вон выходящим полная реализация сети телефонной связи в абсолютно изолированной локальной сети, использующей существующую кабельную разводку CAT3 и заканчивающейся недорогими сетевыми коммутаторами. Это также может быть дешевле.
Демилитаризованная зона (DMZ). Размещение системы VoIP в демилитаризованной зоне может обеспечить дополнительный уровень защиты локальной сети, предоставляя при этом возможность соединения для соответствующих приложений. Если система VoIP будет подвергнута несанкционированному доступу, будет намного сложнее использовать ее для распространения атаки на остальную сеть, поскольку она не является доверенной. Но даже если развертывание системы выполняется в демилитаризованной зоне, любой необычный трафик, исходящий из системы, должен находиться под подозрением. Укрепление сервера. Укрепление сервера Asterisk является критически важным. Это обеспечивает не только преимущества по производительности (выполнение второстепенных процессов может съедать ценные ресурсы ЦП и оперативной памяти); устранение всего ненужного сократит шанс того, что уязвимость операционной системы может быть использована для получения доступа и организации атак на другие части вашей сети.
Запуск Asterisk под учетной записью, не принадлежащей администратору, - важнейшая составляющая укрепления системы. Подробнее этот вопрос рассматривается в главе 11.
Шифрование
Даже несмотря на то что Asterisk до сих пор не обеспечивает полной поддержки SRTP, трафик VoIP можно шифровать. Например, между узлами связи может использоваться VPN. В этом случае необходимо исходить из затрат на обеспечение необходимой производительности,
но, как правило, это очень эффективный и относительно простой в реализации способ защиты трафика VoIP.
Физическая безопасность
Нельзя пренебрегать и физической безопасностью. Все оконечное оборудование (такое, как коммутаторы, маршрутизаторы и сама офисная АТС) должно размещаться в безопасном месте с возможностью доступа к нему только людей, имеющих на то специальное разрешение. На стороне пользователя (например, под столом) довольно сложно обеспечить физическую безопасность, но, если сеть отвечает только знакомым устройствам (например, если в DHCP все выдаваемые IP-адреса жестко привязаны к, MAC-адресам устройств, которые известны), риск неавторизованного вторжения можно несколько снизить.
Заключение
Если верить слухам, распространяемым в телекоммуникационной отрасли, можно подумать, что VoIP - это будущее телефонии. Но для Asterisk VoIP из области «это мы уже проходили». Для Asterisk будущее телефонии намного более захватывающее. Но мы обратимся к этому несколько позднее, в главе 15. В следующей главе мы собираемся углубиться в одну более революционную и мощную концепцию Asterisk: AGI (Asterisk Gateway Interface) - шлюзовой интерфейс Asterisk.
9
Шлюзовой интерфейс Asterisk (AGI)
Даже он, кому большинство из того, что другим людям кажется достаточно разумным, представляется довольно бестолковыми, полагал, что это было достаточно разумным.
- Дуглас Адамс «Лосось сомнений»
Шлюзовой интерфейс Asterisk, или AGI, предоставляет стандартный интерфейс, посредством которого внешние программы могут управлять диалпланом Asterisk. Как правило, сценарии AGI используются для реализации расширенной логики, соединения с реляционными базами данных (такими, как PostgreSQL или MySQL) и доступа к другим внешним ресурсам. Передача управления диалпланом внешнему сценарию AGI позволяет Asterisk без труда реализовывать задачи, выполнение которых в противном случае было бы сложным или невозможным. В данной главе рассматриваются основы использования AGI. Она не научит вас программировать, напротив, здесь предполагается, что читатель уже является достаточно квалифицированным разработчиком, чтобы понимать, как создаются AGI-программы. Если вы не знаете, как писать компьютерные программы, вероятно, эта глава не для вас. Пропустите ее и переходите к следующей.
По ходу данной главы будет написана AGI-программа с использованием разных языков программирования: Perl, PHP и Python. Однако обратите внимание, что, поскольку Asterisk предоставляет стандартный интерфейс для AGI-сценариев, эти сценарии могут быть написаны практически на любом современном языке программирования. Мы решили остановиться на Perl, PHP и Python, потому что эти языки чаще всего используются для программирования AGI.
Основы обмена информацией с AGI
AGI не реализует API для программирования. AGI-сценарии взаимодействуют с Asterisk по каналам связи (посредством описателей файла, выражаясь на языке программистов), которые известны как STDIN, STDOUT и STDERR. Большинство программистов знают эти каналы, но все- таки, на случай если вы не знакомы с ними, они будут рассмотрены здесь.
Что такое STDIN, STDOUT и STDERR
STDIN, STDOUT и STDERR - это каналы, по которым программы в UNIX-по- добных средах обмениваются информацией с внешними программами. STDIN, или стандартный ввод, - это информация, передаваемая в программу или с клавиатуры, или из другой программы. В нашем случае данные, поступающие от самой Asterisk, приходят в описатель файла STDIN. STDOUT, или стандартный вывод, - это описатель файла, применяемый сценарием AGI для передачи информации в Asterisk. И наконец, сценарий AGI может использовать описатель файла STDERR (стандартная ошибка) для записи сообщений об ошибке в консоль Asterisk. Подытожим эти три концепции обмена информацией:
• Сценарий AGI читает из STDIN для получения информации от Asterisk.
• Сценарий AGI записывает данные в STDOUT для отправки информации в Asterisk.
• Сценарий AGI может записывать данные в STDERR для отправки отладочной информации в консоль Asterisk.
На данный момент запись в STDERR из сценария AGI обеспечивает запись данных только в первую консоль Asterisk - точнее, в первую консоль Asterisk, запущенную с параметром -с. Это довольно неудачно, и мы надеемся, что данный недостаток будет вскоре устранен разработчиками Asterisk. Если для запуска Asterisk используется программа safe_ asterisk (скорее всего, вы так и поступаете), она запускает удаленную консоль на TTY9. (Проверьте, получите ли вы интерфейс командной строки Asterisk, нажав сочетание клавиш Ctrl+Alt+F9.) Это означает, что вся отладочная информация AGI будет выводиться только в той удаленной консоли. Вероятно, вы захотите деактивировать эту консоль в safe_asterisk, чтобы получить возможность видеть отладочную информацию в другой консоли. (Также, вероятно, эту консоль необходимо отключить из соображений безопасности: вам не нужно, чтобы каждый, подошедший к вашему серверу Asterisk, имел доступ к консоли без всякой аутентификации.)
Стандартная схема обмена информацией с AGI
Обмен информацией между Asterisk и сценарием AGI идет по заранее установленной схеме. Перечислим все этапы и затем последовательно рассмотрим один из примеров сценария AGI, поставляемого с Asterisk. Когда сценарий AGI запускается, Asterisk передает в него список переменных и их значений. Эти переменные могут выглядеть примерно так:
agi | _request: | test.py |
agi | _channel: | Zap/1-1 |
agi | _language | en |
agi | _callerid | |
agi | _context: | default |
agi | _extensior | : 123 |
agi_priority: 2
Передав эти переменные, Asterisk посылает пустую строку. Это сигнал того, что Asterisk закончила передачу переменных и сценарий AGI может управлять диалпланом.
На этом этапе сценарий AGI посылает команды в Asterisk, выполняя запись в STDOUT. На каждую команду, передаваемую сценарием, Asterisk возвращает ответ, который сценарий AGI должен прочитать. Эти действия (отправка команд в Asterisk и чтение ответов) могут продолжаться в течение всего времени выполнения сценария AGI. Наверное, вас интересует, какие команды можно использовать в сценарии AGI. Хороший вопрос. Очень скоро мы рассмотрим основные ко- манды[99].
Вызов сценария AGI из диалплана
Чтобы сценарий AGI работал правильно, он должен быть исполняемым файлом. Для использования сценария AGI в диалплане просто вызывается приложение AGI() с указанием имени сценария AGI в качестве аргумента:
exten => 123,1,Answer() exten => 123,2,AGI(agi-test.agi)
Сценарии AGI часто располагаются в папке AGI (которая обычно находится в папке /var/lib/asterisk/agi-bin), но можно указать и полный путь к сценарию AGI.
В этой главе сначала мы рассмотрим сценарий agi-test.agi, поставляемый с Asterisk (который написан на Perl), затем напишем AGI-про- грамму на PHP для получения сводки погоды и напоследок создадим математическую игру в виде AGI-программы на Python.
AGI(), EAGI(), DeadAGI() и FastAGI()
Кроме приложения AGI(), существует еще несколько AGI-при- ложений, подходящих для разных ситуаций. Хотя они не будут рассмотрены в данной главе, поняв азы работы со сценариями AGI, разобраться с ними будет довольно просто.
Приложение EAGI() (улучшенный AGI) ведет себя так же, как и AGI(), но обеспечивает возможность сценарию AGI читать входящий аудиопоток в описатель файла номер три.
Приложение DeadAGI() также очень похоже на AGI(), но выполняется корректно для «мертвого» канала (то есть канала, который был отключен). Отсюда следует, что обычное приложение AGI() не работает для отключенных каналов.
Приложение FastAGI() позволяет вызывать сценарий AGI по сети, таким образом, множество серверов Asterisk могут использовать сценарии AGI, хранящиеся централизованно.
Написание сценариев AGI на Perl
Asterisk поставляется с образцом сценария AGI под названием agi-test. agi. На примере этого файла рассмотрим основные концепции программирования AGI. Этот конкретный сценарий написан на Perl, но AGI- программы могут быть реализованы практически на любом языке программирования. Чтобы доказать это, в данной главе будут представлены AGI-программы на нескольких других языках программирования. Итак, приступим! Будем рассматривать каждый раздел кода по очереди и описывать, что он делает: #!/usr/bin/perl
Эта строка сообщает системе, что данный сценарий написан на Perl, таким образом, для его выполнения должен использоваться интерпретатор Perl. Опытным создателям сценариев для Linux или UNIX эта строка должна быть хорошо знакома. Конечно, здесь предполагается, что исполняемый файл Perl располагается в папке /usr/bin/. Если необходимо, измените строку соответственно местоположению своего интерпретатора Perl. use strict;
Строка use strict указывает Perl строго придерживаться правил программирования и не допускать возможных ошибок при написании программы, таких как, например, необъявленные переменные. Хотя она не является обязательной, но активация этой функциональности поможет избежать обычных ошибок при программировании. $|=1;
Данная строка указывает интерпретатору Perl не буферизировать вывод. Иначе говоря, любые данные должны записываться немедленно, а не накапливаться и выводиться блоками. К этому вопросу мы будем многократно возвращаться по ходу главы.
# Задаем некоторые переменные
my %AGI; my $tests = 0; my $fail = 0; my $pass = 0;
При написании сценариев AGI должен использоваться только небуферизированный вывод. В противном случае AGI может работать не так, как от него требуется. Например, Asterisk может ожидать вывода программы, тогда как программа полагает, что уже отправила вывод в Asterisk, и ожидает ответа.
Здесь задаются четыре переменные. Первая - это хеш AGI, который используется для хранения переменных, передаваемых Asterisk в наш сценарий в начале сеанса AGI. Следующие три - это скалярные значения, используемые для подсчета общего количества тестов, количества непройденных тестов и количества пройденных тестов соответственно:
while(
last unless length($_);
if (/~agi_(\w+)\:\s+(.*)$/) {
$AGI{$1} = $2;
}
i
Как говорилось ранее, Asterisk передает группу переменных в программу AGI при запуске. Этот цикл просто принимает все эти переменные и сохраняет их в хеше AGI. Позже они могут использоваться в программе или просто игнорироваться, но они обязательно должны быть прочитаны из STDIN, прежде чем будет продолжено выполнение логики программы.
print STDERR "AGI Environment Dump:\n";
foreach my $i (sort keys %AGI) {
print STDERR " -- $i = $AGI{$i}\n";
}
Данный цикл просто записывает каждое из значений, сохраненных в хеше AGI, в STDERR. Это полезно для отладки сценария AGI, поскольку STDERR выводится в консоли Asterisk[100].
sub checkresult { my ($res) = my $retval;
$tests++;
chomp $res;
if ($res =~ /"200/) {
$res =~ /result=(-?\d+)/; if (!length($1)) {
print STDERR "FAIL ($res)\n"; $fail++; } else {
print STDERR "PASS ($1)\n"; $pass++;
}
} else {
print STDERR "FAIL (unexpected result '$res')\n"; $fail++;
}
Эта подпрограмма считывает результат выполнения команды AGI из Asterisk и декодирует его, чтобы выяснить, была ли команда выполнена успешно или дала сбой.
Теперь, когда подготовительные этапы пройдены, можно перейти к основной логике сценария AGI:
print STDERR "1. Testing 'sendfile'..."; print "STREAM FILE beep \"\"\n"; my $result =
Первый тест показывает, как использовать команду STREAM FILE. Команда STREAM FILE указывает Asterisk воспроизвести звуковой файл вызывающему абоненту, точно так же как это делает приложение Backg round(). В данном случае Asterisk должна воспроизвести файл beep.gsm[101]. Обратите внимание, второй аргумент заменяется парой двойных кавычек, экранированных обратным слэшем. Без обозначения второго аргумента двойными кавычками эта команда не будет работать правильно.
В команды AGI должны передаваться все необходимые аргументы. Если требуется пропустить необходимый аргумент, должны быть указаны пустые кавычки (правильно экранированные, соответственно синтаксису конкретного языка программирования), как показано выше. Если необходимое количество аргументов не будет передано, сценарий AGI не станет работать.
Также необходимо убедиться, что вы не забыли передать символы перевода строки (символы \n в конце выражения print) в конце команды.
После передачи команды STREAM FILE этот тест читает результат из STDIN и вызывает подпрограмму checkresult, чтобы выяснить, смогла ли Asterisk воспроизвести файл. Команда STREAM FILE принимает три аргумента, два из которых являются обязательными:
• Имя звукового файла для воспроизведения.
• Коды, которые могут прерывать воспроизведение.
• Место начала воспроизведения звукового файла, заданное номером музыкального фрагмента (необязательный).
Одним словом, этот тест указал Asterisk воспроизвести файл beep.gsm и затем проверил результат, чтобы убедиться, что Asterisk успешно выполнила команду.
print STDERR "2. Testing 'sendtext'..."; print "SEND TEXT \"hello world\"\n"; my $result =
Этот тест демонстрирует, как вызывать команду SEND TEXT, которая является аналогом приложения SendText(). Эта команда будет посылать заданный текст вызывающему абоненту, если используемый им тип канала поддерживает передачу текста.
Команда SEND TEXT принимает один аргумент: текст, который должен быть отправлен в канал. Если текст содержит пробелы (как в предыдущем фрагменте кода), аргумент должен быть заключен в кавычки, чтобы Asterisk понимала, что вся строка является одним аргументом команды. Опять же, обратите внимание, что кавычки экранированы, поскольку они должны быть переданы в Asterisk, а не использоваться для ограничения строки в Perl.
print STDERR "3. Testing 'sendimage'..."; print "SEND IMAGE asterisk-image\n"; my $result =
Этот тест вызывает команду SEND IMAGE, которая является аналогом приложения SendImage(). Ее единственный аргумент - имя файла изображения, который будет отправляться вызывающему абоненту. Как и команда SEND TEXT, данная команда работает, только если вызывающий канал поддерживает прием изображений. print STDERR "4. Testing 'saynumber'..."; print "SAY NUMBER 192837465 \"\"\n"; my $result =
Этот тест посылает Asterisk команду SAY NUMBER. Она ведет себя аналогично приложению диалплана SayNumber() и принимает два аргумента:
• Число, которое должно быть воспроизведено.
• Коды, которые могут прервать выполнение команды.
Опять же, поскольку второй аргумент опущен, необходимо передать пустую пару кавычек.
print STDERR "5. Testing 'waitdtmf'..."; print "WAIT FOR DIGIT 1000\n"; my $result =
Этот тест демонстрирует применение команды WAIT FOR DIGIT. Эта команда обеспечивает ожидание ввода DTMF-кода вызывающим абонентом заданное количество миллисекунд. Если требуется реализовать бесконечное ожидание ввода цифры, в качестве времени ожидания задается -1. Это приложение возвращает десятичное значение ASCII нажатой цифры.
print STDERR "6. Testing 'record'..."; print "RECORD FILE testagi gsm 1234 3000\n"; my $result =
Этот фрагмент кода демонстрирует команду RECORD FILE. Она используется для записи разговора, аналогично приложению диалплана Record(). RECORD FILE принимает семь аргументов, из которых три последних являются необязательными:
• Имя записываемого файла.
• Формат, в котором выполняется запись.
• Коды, которые могут прервать запись.
• Время ожидания (максимальное время записи) в миллисекундах или -1, если время ожидания бесконечно.
• Число музыкальных фрагментов, которые необходимо пропустить перед началом записи (необязательный).
• Слово BEEP, если требуется, чтобы Asterisk подавала звуковой сигнал перед началом записи (необязательный).
• Количество секунд, которое должно пройти, прежде чем Asterisk решит, что пользователь закончил запись, и продолжит выполнение даже несмотря на то, что время ожидания еще не истекло и DTMF-коды не были введены (необязательный). Этот аргумент должен следовать за s=.
В данном конкретном случае записывается файл testagi (в формате GSM), любой DTMF-код от 1 до 4 может прервать запись и максимальное время записи - 3000 мс.
print STDERR "6a. Testing 'record' playback..."; print "STREAM FILE testagi \"\"\n"; my $result =
Вторая часть этого теста воспроизводит записанный ранее аудиофайл, используя команду STREAM FILE. Команда STREAM FILE уже рассматривалась, поэтому данный фрагмент кода не требует дополнительных пояснений.
print STDERR "================== Complete ======================\n";
print STDERR "$tests tests completed, $pass passed, $fail failed\n"; print STDERR "==================================================\n";
В конце сценария AGI результаты тестирования записываются в STDERR, который должен быть выведен в консоли Asterisk.
Итак, при написании AGI-программ на Perl необходимо помнить следующее:
• Должен быть активирован строгий контроль выполнения правил языка программирования с помощью команды use strict[102].
• Должна быть отключена буферизация вывода через задание $|=1.
• Данные, поступающие от Asterisk, принимаются с помощью цикла
while(
• Значения записываются командой print.
• Для записи отладочной информации в консоль Asterisk используется команда print STDERR.
Библиотека AGI для Perl
Тем, кто собирается создавать собственные сценарии AGI на языке Perl, вероятно, будет интересен модуль на Perl - Asterisk::AGI, написанный Джеймсом Головичем (James Golovich), который можно найти по адресу http://asterisk.gnuinter.net. Модуль Asterisk::AGI еще больше упрощает написание сценариев AGI на Perl.
Создание сценариев AGI на PHP
Мы обещали обсудить несколько языков программирования, поэтому пойдем дальше и рассмотрим, как выглядит сценарий AGI на PHP. Основные правила программирования AGI те же, изменился только язык программирования. В данном примере мы напишем сценарий AGI для загрузки из Интернета сводки погоды и предоставления вызывающему абоненту информации о температуре, направлении и скорости ветра.
#!/usr/bin/php -q
Первая строка указывает системе использовать для выполнения сценария интерпретатор PHP. Опция -q отключает HTML-сообщения об ошибках. Необходимо убедиться в отсутствии дополнительных строк между первой строкой и открывающим тегом PHP, поскольку это собьет Asterisk с толку.
# внесите соответствующие изменения для получения
# данных по интересующему вас городу
# полный список городов США можно найти по адресу
# http://www.nws.noaa.gov/data/current_obs/
$weatherURL="http://www.nws.noaa.gov/data/current_obs/KMDQ.xml"; Тем самым вы указываете сценарию AGI, где можно получить информацию о текущих погодных условиях. В данном примере предоставляются данные для Хантсвилла, штат Алабама. Вы можете свободно посетить указанный сайт, на котором найдете полный список станций по всем Соединенным Штатам Америки1.
# не допускайте, чтобы этот сценарий выполнялся дольше 60 с set_time_limit(60);
Здесь мы указываем PHP, что данная программа не должна выполняться более 60 с. Таким образом, сценарий будет гарантированно завершен, если по какой-то причине время его выполнения превысит 60 с.
# отключить буферизацию вывода ob_implicit_flush(false);
Эта команда отключает буферизацию вывода, то есть все данные будут отправляться в интерфейс AGI немедленно и не станут накапливаться в буфере.
# отключите сообщения об ошибках, поскольку, скорее всего,
# они будут пересекаться с сообщениями интерфейса AGI error_reporting(0);
Эта команда отключает все сообщения об ошибках, поскольку они могут пересекаться с сообщениями интерфейса AGI. (Вероятно, полезно будет закомментировать эту строку при тестировании.)
# создать описатели файла в случае необходимости if (!defined('STDIN'))
define('STDIN', fopen('php://stdin', 'r'));
if (!defined('STDOUT'))
define('STDOUT', fopen('php://stdout', 'w'));
if (!defined('STDERR'))
define('STDERR', fopen('php://stderr', 'w'));
Этот фрагмент кода гарантирует открытие описателей файла для потоков STDIN, STDOUT и STDERR, которые будут обрабатывать все взаимодействия между Asterisk и нашим сценарием.
# извлекаем все переменные AGI из Asterisk
while (!feof(STDIN)) {
$temp = trim(fgets(STDIN,4096));
if (($temp == "") || ($temp == "\n")) {
break;
i
$s = split(":",$temp);
$name = str_replace("agi_","",$s[0]);
$agi[$name] = trim($s[1]);
}
Далее считываем все AGI-переменные, передаваемые нам Asterisk. Использование в PHP команды fgets для чтения данных из STDIN обеспечит сохранение каждой переменной в хеше $agi. Эти переменные могли бы использоваться в логике сценария AGI, но в данном примере мы не будем этого делать.
# вывести все переменные AGI в целях отладки
foreach($agi as $key=>$value) {
fwrite(STDERR,"-- $key = $value\n"); fflush(STDERR);
}
Здесь переменные возвращаются в STDERR для целей отладки.
# извлечь эту веб-страницу $weatherPage=file_get_contents($weatherURL);
Эта строка кода обеспечивает извлечение XML-файла с сайта National Weather Service (Национальная метеорологическая служба) и помещение его содержимого в переменную $weatherPage. Эта переменная будет использована позже для получения необходимых частей сводки погоды.
# получить температуру в градусах по Фаренгейту
if (preg_match("/
$currentTemp=$matches[1];
}
Данный фрагмент кода извлекает данные о температуре (в градусах по Фаренгейту) из сводки погоды с помощью команды preg_match. Для получения необходимых данных эта команда использует совместимые с Perl регулярные выражения[103].
# получить направление ветра
if (preg_match("/
$currentWindDirection='northerly';
elseif (preg_match("/
$currentWindDirection='southerly'; elseif (preg_match("/
$currentWindDirection='easterly'; elseif (preg_match("/
$currentWindDirection='westerly'; elseif (preg_match("/
$currentWindDirection='northwesterly'; elseif (preg_match("/
$currentWindDirection='northeasterly'; elseif (preg_match("/
$currentWindDirection='southwesterly'; elseif (preg_match("/
Направление ветра извлекаем посредством команды preg_match, а полученное значение (заключенное в теги wind_dir) присваиваем переменной $currentWindDirection.
# получаем скорость ветра
if (preg_match("/
$currentWindSpeed = $matches[1];
}
Наконец получаем текущую скорость ветра и присваиваем ее значение переменной $currentWindSpeed.
# сообщить вызывающему абоненту текущие погодные условия
if ($currentTemp) {
fwrite(STDOUT,"STREAM FILE temperature \"\"\n"); fflush(STDOUT);
$result = trim(fgets(STDIN,4096)); checkresult($result); fwrite(STDOUT,"STREAM FILE is \"\"\n"); fflush(STDOUT);
$result = trim(fgets(STDIN,4096));
checkresult($result);
fwrite(STDOUT,"SAY NUMBER $currentTemp \"\"\n"); fflush(STDOUT);
$result = trim(fgets(STDIN,4096)); checkresult($result);
fwrite(STDOUT,"STREAM FILE degrees \"\"\n"); fflush(STDOUT);
$result = trim(fgets(STDIN,4096)); checkresult($result);
fwrite(STDOUT,"STREAM FILE fahrenheit \"\"\n"); fflush(STDOUT);
$result = trim(fgets(STDIN,4096)); checkresult($result);
}
if ($currentWindDirection && $currentWindSpeed) {
fwrite(STDOUT,"STREAM FILE with \"\"\n"); fflush(STDOUT);
$result = trim(fgets(STDIN,4096)); checkresult($result);
fwrite(STDOUT,"STREAM FILE $currentWindDirection \"\"\n"); fflush(STDOUT);
$result = trim(fgets(STDIN,4096)); checkresult($result);
fwrite(STDOUT,"STREAM FILE wx/winds \"\"\n"); fflush(STDOUT);
$result = trim(fgets(STDIN,4096)); checkresult($result); fwrite(STDOUT,"STREAM FILE at \"\"\n";) fflush(STDOUT);
$result = trim(fgets(STDIN,4096)); checkresult($result);
fwrite(STDOUT,"SAY NUMBER $currentWindSpeed \"\"\n"); fflush(STDOUT);
$result = trim(fgets(STDIN,4096)); checkresult($result);
fwrite($STDOUT,"STREAM FILE miles-per-hour \"\"\n"); fflush(STDOUT);
$result = trim(fgets(STDIN,4096)); checkresult($result);
}
Теперь, собрав все необходимые данные, можно отправить AGI-коман- ды в Asterisk (проверяя результаты по ходу), которые доставят информацию о текущих погодных условиях вызывающему абоненту. Это будет реализовано с помощью AGI-команд STREAM FILE и SAY NUMBER. Мы говорили об этом раньше, повторим еще раз: при вызове команд AGI в них должны передаваться все необходимые аргументы. В данном случае обе команды, STREAM FILE и SAY NUMBER, требуют второго аргумента. Передадим пустые кавычки, экранированные символом обратного слэша.
Также следует обратить внимание, что при каждой записи в STDOUT вызывается команда fflush. Вероятно, это лишнее, но не будет вреда в том, чтобы гарантировать немедленную отправку AGI-команды в Asterisk, без буферизации.
function checkresult($res) {
trim($res);
if (preg_match('/"200/',$res)) {
if (! preg_match('/result=(-?\d+)/',$res,$matches)) {
fwrite(STDERR,"FAIL ($res)\n");
fflush(STDERR);
return 0;
}
else {
fwrite(STDERR,"PASS (".$matches[1].")\n");
fflush(STDERR);
return $matches[1];
}
}
else {
fwrite(STDERR,"FAIL (unexpected result '$res')\n");
fflush(STDERR);
return -1;
}
}
Назначение функции checkresult аналогично подпрограмме checkresult из нашего примера на Perl. Как следует из ее имени, она проводит проверку
результатов, возвращаемых Asterisk, при каждом вызове команды AGI.
?>
В конце файла располагается закрывающий тег PHP. После закрывающего тега PHP не должно быть никаких пробелов, поскольку это может сбить с толку интерфейс AGI.
Теперь мы уже рассмотрели два разных языка программирования с целью продемонстрировать, что общего в написании сценария AGI на PHP и Perl и чем они отличаются. При создании сценария AGI на PHP помните, что необходимо:
• Запускать PHP с ключом -q; это отключает HTML в сообщениях об ошибках.
• Отключить ограничение по времени или задать для него приемлемое значение (более новые версии PHP автоматически отключают ограничение по времени при запуске PHP из командной строки).
• Отключить буферизацию вывода с помощью команды ob_implicit_ flush(false).
• Открыть описатели файла для STDIN, STDOUT и STDERR (в более новых версиях PHP один или более этих описателей файла уже могут быть открыты; в предыдущем фрагменте кода показано, как сделать это красиво для большинства версий PHP).
• Прочитать переменные из STDIN, используя функцию fgets.
• Использовать функцию fwrite для записи данных в STDOUT и STDERR.
• Всегда вызывать функцию fflush после записи в STDOUT или STDERR.
Библиотека AGI для PHP
Для более продвинутого программирования AGI на PHP, вероятно, пригодится проект PHPAGI, который можно найти по адресу http:// phpagi.sourceforge.net. Изначально он был написан Мэттью Ашамом (Matthew Asham) и дорабатывался несколькими членами сообщества разработчиков Asterisk.
Написание сценариев AGI на Python
Сценарий AGI, который мы напишем на Python, называется «Игра в вычитание». Источником идей для его написания стала программа на Perl, созданная Эдом Гаем (Ed Guy) и представленная им на конференции AstriCon в 2004 году. Эд рассказывал, в какой восторг он пришел от мощи и простоты Asterisk, когда обнаружил, что может написать короткий сценарий на Perl, чтобы помочь своей дочери с математикой. Поскольку мы уже написали Perl-программу, использующую AGI и Эд создал свою математическую программу на Perl, мы решили заняться реализацией этой задачи на Python! Итак, разберем наш сценарий на Python: #!/usr/bin/python
Данная строка указывает системе выполнять этот сценарий в интерпретаторе Python. Для небольших сценариев в эту строку можно добавить опцию -u, что обеспечит выполнение Python в режиме без буферизации. Однако это не рекомендуется для больших или часто используемых сценариев AGI, поскольку может сказаться на производительности системы. import sys import re import time import random
Здесь импортируются несколько библиотек, которые будут использоваться в сценарии AGI.
# Читаем и игнорируем среду AGI (читать до пустой строки)
env = {} tests = 0;
while 1:
line = sys.stdin.readline().strip()
if line == '': break
key,data = line.split(':') if key[:4] <> 'agi_':
# игнорируем ввод, который начинается не с agi_ sys.stderr.write("Did not work!\n"); sys.stderr.flush() continue key = key.strip() data = data.strip() if key <> '':
env[key] = data
sys.stderr.write("AGI Environment Dump:\n");
sys.stderr.flush()
for key in env.keys():
sys.stderr.write(" -- %s = %s\n" % (key, env[key])) sys.stderr.flush()
Данный фрагмент кода читает переменные, передаваемые в сценарий из Asterisk, и сохраняет их в словарь env. Затем эти значения записываются в STDERR для целей отладки.
def checkresult (params): params = params.rstrip() if re.search('"200',params): result = re.search('result=(\d+)',params) if (not result):
sys.stderr.write("FAIL ('%s')\n" % params) sys.stderr.flush() return -1 else:
result = result.group(1)
#debug("Result:%s Params:%s" % (result, params)) sys.stderr.write("PASS (%s)\n" % result) sys.stderr.flush() return result
else:
sys.stderr.write("FAIL (unexpected result '%s')\n" % params)
sys.stderr.flush()
return -2
Функция checkresult по своему назначению практически идентична подпрограмме checkresult в примере AGI-сценария на Perl, который рассматривался ранее в этой главе. Она читает результат выполнения команды Asterisk, проводит синтаксический разбор результата и сообщает, была команда выполнена успешно или нет. def sayit (params):
sys.stderr.write("STREAM FILE %s \"\"\n" % str(params)) sys.stderr.flush()
sys.stdout.write("STREAM FILE %s \"\"\n" % str(params)) sys.stdout.flush()
result = sys.stdin.readline().strip() checkresult(result)
Функция sayit - это просто оболочка для команды STREAM FILE.
def saynumber (params):
sys.stderr.write("SAY NUMBER %s \"\"\n" % params) sys.stderr.flush()
sys.stdout.write("SAY NUMBER %s \"\"\n" % params) sys.stdout.flush()
result = sys.stdin.readline().strip() checkresult(result)
Функция saynumber - это просто оболочка для команды SAY NUMBER.
def getnumber (prompt, timelimit, digcount):
sys.stderr.write("GET DATA %s %d %d\n" % (prompt, timelimit, digcount)) sys.stderr.flush()
sys.stdout.write("GET DATA %s %d %d\n" % (prompt, timelimit, digcount)) sys.stdout.flush()
result = sys.stdin.readline().strip() result = checkresult(result) sys.stderr.write("digits are %s\n" % result) sys.stderr.flush() if result:
return result else:
result = -1
Функция getnumber вызывает команду GET DATA для получения DTMF-вво- да от вызывающего абонента. Она используется в нашей программе для получения ответов абонента на поставленные задачи по вычитанию.
limit=20
digitcount=2
score=0
count=0
ttanswer=5000
Здесь выполняется задание исходных значений нескольким переменным, которые будут использоваться в программе.
starttime = time.time() t = time.time() - starttime
В этих строках переменной starttime задается текущее время, а переменной t - начальное значение 0. Переменная t будет использоваться для отсчета времени с момента запуска сценария AGI в секундах.
sayit("subtraction-game-welcome")
Далее, мы рады приветствовать абонента в нашей игре на вычитание.
while ( t < 180 ):
big = random.randint(0,limit+1) big += 10
subt= random.randint(0,big) ans = big - subt count += 1
#постановка задачи:
sayit("subtraction-game-next");
saynumber(big);
sayit("minus");
saynumber(subt);
res = getnumber("equals",ttanswer,digitcount);
if (int(res) == ans) : score+=1
sayit("subtraction-game-good"); else :
sayit("subtraction-game-wrong"); saynumber(ans);
t = time.time() - starttime Это сердце сценария AGI. При циклическом выполнении данного фрагмента кода абоненту в течение 180 с предлагаются задачи на вычитание. В начале цикла берутся два случайных числа и вычисляется их разность. Затем абоненту предлагается решить эту задачу. Читается ответ абонента. Если ответ неверен, дается правильный ответ. pct = float(score)/float(count)*100; sys.stderr.write("Percentage correct is %d\n" % pct) sys.stderr.flush() sayit("subtraction-game-timesup") saynumber(score) sayit("subtraction-game-right") saynumber(count) sayit("subtraction-game-pct") saynumber(pct)
После того как абонент закончил решение примеров, ему сообщается, сколько баллов он набрал.
Как видите, при написании сценариев AGI на Python следует помнить такие основные моменты:
• Выходной буфер должен очищаться после каждой записи. Это гарантирует, что AGI-программа не зависнет из-за того, что Asterisk будет ожидать освобождения буфера для записи, а Python - ответа от Asterisk.
• Чтение данных из Asterisk осуществляется с помощью команды sys.stdin.readline.
• Запись команд в Asterisk выполняется с помощью команды sys. stdout.write. После записи не забывайте вызывать sys.stdout.flush.
Библиотека AGI для Python
Если вы планируете много работать с Python для AGI, вероятно, вам пригодится модуль Python Pyst, созданный Карлом Патлэндом (Karl Putland). Его можно найти по адресу http://sourceforge.net/projects/pyst.
Отладка в AGI
Отладка программ AGI, как и любых других программ, может приводить в уныние. К счастью, при отладке сценариев AGI есть два преимущества. Во-первых, поскольку весь обмен информацией между Asterisk и программой AGI происходит через STDIN и STDOUT (и конечно, STDERR), у вас должно получиться выполнять сценарий AGI непосредственно из операционной системы. Во-вторых, в Asterisk есть удобная команда для отображения всех взаимодействий между ним и сценарием AGI - agi debug.
Отладка из операционной системы
Как упоминалось выше, у вас должно получиться запустить свою программу прямо из операционной системы, чтобы проверить ее поведение. Хитрость здесь в том, чтобы действовать подобно Asterisk, предоставляя сценарию следующее:
• Список переменных и их значений, таких как agi_test:1.
• Символы перевода строки (\n), указывающие на то, что передача переменных завершена.
• Ответы на каждую из команд AGI, поступающую из вашего сценария AGI. Обычно достаточно ввести 200 response=1.
При тестировании программы непосредственно из операционной системы, возможно, проще замечать ошибки в ней.
Использование команды Asterisk agi debug
В интерфейсе командной строки Asterisk есть очень полезная команда для отладки сценариев AGI, которая называется (вполне уместно) agi debug. Если ввести в консоли Asterisk agi debug и затем запустить AGI- сценарий, вы увидите нечто подобное:
-- Executing AGI("Zap/1-1", "temperature.php") in new stack
-- Launched AGI Script /var/lib/asterisk/agi-bin/temperature.php AGI Tx >> agi_request: temperature.php AGI Tx >> agi_channel: Zap/1-1 AGI Tx >> agi_language: en AGI Tx >> agi_type: Zap AGI Tx >> agi_uniqueid: 1116732890.8 AGI Tx >> agi_callerid: 101 AGI Tx >> agi_calleridname: Tom Jones
AGI Tx >> agi_callingpres: 00 |
AGI Tx >> agi_callingani2: 0 |
AGI Tx >> agi_callington: 0 |
AGI Tx >> agi_callingtns: 0 |
AGI Tx >> agi_dnid: unknown |
AGI Tx >> agi_rdnis: unknown |
AGI Tx >> agi_context: incoming |
AGI Tx >> agi_extension: 141 |
AGI Tx >> agi_priority: 2 |
AGI Tx >> agi_enhanced: 0.0 |
AGI Tx >> agi_accountcode: |
AGI Tx >> |
AGI Rx << STREAM FILE temperature |
AGI Tx >> 200 result=0 endpos=6400 |
AGI Rx << STREAM FILE is "" |
AGI Tx >> 200 result=0 endpos=5440 |
AGI Rx << SAY NUMBER 67 "" |
-- Playing 'digits/60' (language 'en')
-- Playing 'digits/7' (language 'en')
AGI Tx >> 200 result=0
AGI Rx << STREAM FILE degrees ""
AGI Tx >> 200 result=0 endpos=6720
AGI Rx << STREAM FILE fahrenheit ""
AGI Tx >> 200 result=0 endpos=8000
-- AGI Script temperature.php completed, returning 0
Во время выполнения сценария AGI будут выведены строки трех типов. Первый тип - строки, начинающиеся с AGI TX >>. Это строки, которые Asterisk передает в STDIN вашей программы. Второй тип - строки, начинающиеся с AGI RX <<. Это команды, которые ваша AGI-программа записывает в Asterisk через STDOUT. Третий тип - строки, начинающиеся с --. Это стандартные сообщения Asterisk, выводимые при выполнении определенных команд.
Чтобы отключить отладку AGI после запуска, просто введите в консоли Asterisk agi no debug.
Используя команду agi debug, можно увидеть взаимодействие между Asterisk и своей программой, что может быть очень полезным при отладке. Надеемся, эти два совета помогут вам создавать и отлаживать мощные AGI-программы.
Заключение
AGI для разработчика - это один из наиболее революционных и веских аргументов в пользу Asterisk, а не закрытой узкоспециализированной офисной АТС. Но AGI - это только часть картины. В главе 10 будет рассмотрен другой мощный интерфейс программирования, известный как Asterisk Manager Interface.10
Интерфейс Asterisk Manager (AMI) и Adhearsion
Лучше позаботьтесь о том, чтобы все слова ваши были понятны, пристойны и правильно расположены, чтобы каждое предложение и каждый ваш период, затейливый и полнозвучный, с наивозможною и доступною вам простотою и живостью передавали то, что вы хотите сказать; выражайтесь яснее, не запутывая и не затемняя смысла. - Мигель де Сервантес, предисловие к книге «Дон Кихот»
Интерфейс Manager
Asterisk Manager Interface (AMI) - мощный программный интерфейс. Он позволяет внешним программам как управлять, так и контролировать систему Asterisk1. Этот интерфейс часто используется для интеграции Asterisk с существующими бизнес-процессами и системами, программным обеспечением CRM (Customer Relationship Management - управление взаимоотношениями с клиентами). Он также может применяться для разнообразных приложений, таких как программы автоматического набора номера и системы click-to-call (звонок-по-щелчку). Интерфейс Asterisk Manager слушает соединения, устанавливаемые по сетевому порту. Клиентская программа может соединяться с интерфейсом Asterisk Manager через этот порт, аутентифицироваться и передавать команды в Asterisk. После этого Asterisk будет отвечать на запрос, а также обновлять в клиентской программе информацию о статусе системы.
Чтобы использовать интерфейс Manager, необходимо задать учетную запись в файле /etc/asterisk/manager.conf. Этот файл будет выглядеть примерно так:
[general] enabled = yes port = 5038 bindaddr = 0.0.0.0
[oreilly]
secret = notvery
;deny=0.0.0.0/0.0.0.0
;permit=209.16.236.73/255.255.255.0
read = system,call,log,verbose,command,agent,user
write = system,call,log,verbose,command,agent,user
В разделе [general] необходимо активировать сервис, задав параметр enabled = yes. Чтобы эти изменения вступили в силу, понадобится перезагрузить интерфейс Manager (команда module reload manager из консоли Asterisk). По умолчанию используется TCP-порт 5038. Далее вы создаете по разделу для каждого пользователя, который будет присылать запрос на аутентификацию в системе. Для пользователя задается имя пользователя в квадратных скобках ([ ]), за которым следует пароль этого пользователя (secret), все IP-адреса, которым вы желаете запретить (deny) доступ, все IP-адреса, которым вы хотите разрешить (permit) доступ, и права на чтение (read) и запись (write) для этого пользователя.
Очень важно понимать, что, кроме незашифрованного пароля и возможности ограничить доступ для определенных IP-адре- сов, в интерфейсе Manager нет других средств обеспечения безопасности. Если вы запускаете Manager в ненадежной сети (или существуют любые другие сложные требования), для обработки всех соединений с API интерфейса Manager следует использовать замечательный пакет AstManProxy Дэвида Троя (David Troy).
Подключение к интерфейсу Manager
Важно помнить, что интерфейс Manager создан для использования программами, а не пользователями. Дело здесь не в том, что не получится направлять команды к нему напрямую, просто не следует ожидать увидеть обычный консольный интерфейс - назначение интерфейса Manager не в этом.
Команды в интерфейс Manager доставляются в пакетах, имеющих следующий синтаксис (строки завершаются CR+LF)[104]:
Действие: <тип действия> Ключ 1: Значение 1 Ключ 2: Значение 2 и т. д. ... Переменная: Значение Переменная: Значение и т. д. ...
Например, чтобы пройти аутентификацию в интерфейсе Manager (которая необходима для получения возможности любого взаимодействия), необходимо передать следующее:
Action: login Username: oreilly Secret: notvery
Дополнительная CR+LF в пустой строке обеспечит передачу в интерфейс Manager пакета целиком.
Пройдя аутентификацию, вы сможете запускать действия, а также видеть события, сформированные Asterisk. В сильно загруженной системе может быть очень сложно или практически невозможно отслеживать все это «невооруженным глазом». Чтобы отключить для Asterisk возможность посылать события, можно добавить параметр Events в команду на регистрацию: Action: login Username: oreilly Secret: notvery Events: off
Если вы боитесь передавать свой пароль по сети незашифрованным (и это нормально), можно осуществить аутентификацию, используя систему запрос/ответ и алгоритм MD5, принцип работы которого очень похож на краткую аутентификацию HTTP. Для этого сначала вызывается действие Challenge (Запрос), которое предоставит вам маркер запроса:
Action: Challenge AuthType: MD5
Response: Success Challenge: 840415273
После этого можно взять маркер запроса, присоединить в конце него незашифрованный секрет и вычислить контрольную сумму результирующей строки по алгоритму MD5. Результат может использоваться для регистрации без необходимости передачи секрета открытым текстом.
Action: Login AuthType: MD5 Username: Admin
Key: e7a056e1488882c6c509bbe71a049978
Response: Success
Message: Authentication accepted
Передача команд
После успешной регистрации в системе AMI можно передавать команды в Asterisk, используя другие действия. Здесь мы продемонстрируем несколько команд, чтобы дать представление о том, как они работают.
Перенаправление вызова
Действие Redirect (Перенаправить) может использоваться для перенаправления вызова. После регистрации необходимо послать такое действие:
Action: Redirect Channel: SIP/John-ae201e78 Context: Lab Exten: 6001 Priority: 1
ActionID: 2340981650981
Каждое действие, передаваемое по интерфейсу Manager, может сопровождаться произвольным значением ActionID. Это позволит распознавать, к какому действию относится ответ Asterisk. Настоятельно рекомендуется передавать уникальный ActionID с каждой командой AMI.
Этот URL переносит заданный канал в другой добавочный номер и приоритет диалплана. Ответ на это действие такой:
Response: Success ActionID: 2340981650981 Message: Redirect Successful
Чтение конфигурационного файла
Чтобы прочитать конфигурационный файл Asterisk через интерфейс Manager, можно использовать действие GetConfig. GetConfig возвращает содержимое конфигурационного файла или его часть. Следующая команда извлекает содержимое файла users.conf:
Action: GetConfig Filename: users.conf ActionID: 9873497149817
После этого Asterisk возвращает содержимое файла users.conf. Ответ
выглядит так:
Response: Success ActionID: 987397149817 Category-000000: general
Line-000000-000000: fullname=New User
Line-000000-000001: userbase=6000
Line-000000-000002: hasvoicemail=yes
Line-000000-000003: hassip=yes
Line-000000-000004: hasiax=yes
Line-000000-000005: hasmanager=no
Line-000000-000006: callwaiting=yes
Line-000000-000007: threewaycalling=yes
Line-000000-000008: callwaitingcallerid=yes
Line-000000-000009: transfer=yes
Line-000000-000010: canpark=yes
Line-000000-000011: cancallforward=yes
Line-000000-000012: callreturn=yes
Line-000000-000013: callgroup=1
Line-000000-000014: pickupgroup=1
Line-000000-000015: host=dynamic
Обновление конфигурационных файлов
Часто полезно иметь возможность обновлять конфигурационный файл Asterisk через интерфейс Manager. Для обновления одной или более настроек конфигурационного файла используется действие Update Config. Например, чтобы удалить из users.conf пользователя под именем 6003, можно использовать следующую команду:
Action: UpdateConfig Filename: users.conf Reload: yes
SrcFilename: users.conf DstFilename: users.conf Action-00000: delcat Cat-00000: 6003 ActionID: 5298795987243
Конечно, мы лишь слегка коснулись возможностей Asterisk Manager Interface и рассмотрели лишь несколько из множества предоставляемых им разнообразных действий. Более подробный список доступных команд приведен в приложении F.
Flash Operator Panel
Flash Operator Panel (FOP) - один из наиболее популярных примеров, демонстрирующих мощь интерфейса Manager. FOP обеспечивает визу-
Рис. 10.1. Интерфейс управления Flash Operator Panel
альное веб-представление вашей системы и возможность управления вызовами.
FOP чаще всего используется для того, чтобы дать возможность оператору-человеку видеть пользователей системы и устанавливать соединения между ними. Также он может применяться в инфраструктуре центра обработки звонков для обеспечения инициируемых CRM всплывающих экранов[105].
Интерфейс управления FOP представлен на рис. 10.1. Копию FOP можно найти по адресу http://www.asternic.org.
Настраивать FOP несложно, но все-таки конфигурация включает несколько этапов. Эти вопросы выходят за рамки рассмотрения данной книги, но на веб-сайте, посвященном FOP, можно найти самую свежую документацию с подробным описанием процесса установки и настройки.
FOP имеет фантастическое сообщество разработчиков и пользующуюся большой популярностью рассылку. Успеху FOP также способствовало его включение в Trixbox.
Разработка в Asterisk с использованием Adhearsion
Не так давно появилась новая технология, которая может изменить порядок составления диалпланов[106].
Новый подход к диалпланам
Asterisk повзрослела с точки зрения как технологии, так и ее популярности, но при все большем погружении в этот чудесный мир невозможно не столкнуться с ограничениями. Созданию сложных сценариев уровня предприятия с использованием только Asterisk будет сопутствовать множество трудностей применения логики диалплана. Несмотря на всю гибкость и мощь диалплана, как язык программирования он довольно слаб и существенно менее гибок, чем большинство современных языков сценариев. При реализации расширенной логики диалплан, GUI и даже более развитый AEL (Asterisk Extension Language) могут разочаровать. Создавая все более сложные диалпланы, можно столкнуться с трудностями в следующих вопросах:
• Условные циклы и переходы по условию.
• Переменные.
• Сложные структуры данных.
• Интеграция с базой данных/LDAP.
• Использование библиотек сторонних производителей.
• Обмен и распространение функциональности VoIP.
• Расширение конфигурационных языков.
• Плохая обработка ошибок.
• Плохая обработка даты и времени.
• Сопоставление с шаблонами.
• Единообразие использования.
• Организация исходного кода.
Многие решают эти проблемы, реализуя расширенную логику во внешних программах на таких языках программирования, как Perl и PHP, и соединяясь с Asterisk через AMI и AGI. К сожалению, обеспечивая желаемую мощь, эти решения не всегда упрощают жизнь разработчика. Наоборот, они зачастую еще более усложняют процесс разработки. Используя существующие технологии в Asterisk, но имея целью обеспечение мощи и простоты, Adhearsion предлагает новый подход.
Разработка в Asterisk с использованием Adhearsion
Adhearsion - это инфраструктура с открытым исходным кодом (распространяемая по лицензии LGPL), которая разработана с целью улучшения реализации решений Asterisk. Она располагается поверх системы Asterisk, обрабатывая части или весь диалплан, и обеспечивает несколько уникальных способов управления доступом к Asterisk посредством ряда улучшенных интерфейсов. Adhearsion выполняется в отдельном процессе-демоне и интегрируется через уже представленные выше интерфейсы Gateway (AGI) и Manager (AMI), поэтому конфигурирование контекста на ее использование заключается просто в добавлении нескольких строк в диалплан или пользователя в файл manager.conf.
Adhearsion преимущественно использует высокодинамичный объектно-ориентированный язык программирования Ruby, но может поддерживать другие языки, такие как С или Java. В мире VoIP многие вещи существуют как концептуальные объекты, то есть применение объектно-ориентированного программирования вполне логично. У тех, кто хорошо знаком с Python, Perl или другими языками сценариев, не должно возникнуть проблем с Ruby. Для тех, кто не работал до этого с языками сценариев, Ruby - замечательное начало.
Установка Adhearsion
Программное обеспечение Ruby, как правило, устанавливается с помощью диспетчера пакетов (аналогичного диспетчерам пакетов Linux, но созданного специально для платформы Ruby). Adhearsion входит в стандарт RubyGems, поэтому, если установлены Ruby и RubyGems, вы находитесь на расстоянии одной команды от установки Adhearsion.
Установка Ruby/RubyGems в AsteriskNOW
AsteriskNOW стандартно поставляется с Ruby, но без RubyGems (по причинам поддержки). К счастью, RubyGems можно без труда установить из коллекции Ruby rPath, используя следующую команду:
conary update rubygems=ruby.rpath.org@rpl:devel source /etc/profile
Установка Ruby/RubyGems в Linux
Диспетчеры пакетов многих дистрибутивов Linux содержат пакет Ruby, хотя в некоторых до сих пор нет RubyGems. В предпочтительном приложении управления разработкой и сопровождением ПО своего дистрибутива установите Ruby 1.8.5 или более позднюю версию и RubyGems, если он доступен. Если RubyGems недоступен в CentOS, Ruby можно установить, введя следующее: yum install ruby
Далее необходим RubyGems. Чтобы получить его, перейдите в /usr/ src/ и введите следующее:
wget http://rubyforge.Org/frs/download.php/20585/rubygems-0.9.3.tgz tar zxvf rubygems-0.9.3.tgz cd rubygems-0.9.3 ruby setup.rb
Установка Ruby/RubyGems в Mac OS X
Фактически Ruby поставляется с OS X, но понадобится обновить его и установить RubyGems с MacPorts, диспетчера пакетов OS X. Если
MacPorts установлен (доступен на http://www.macports.org, если у вас его еще нет), Ruby и RubyGems можно установить, используя следующую команду:
sudo port install ruby rb-rubygems
Также может понадобиться добавить /opt/local/bin в переменную PATH в/etc/profile.
Ruby/RubyGems в Windows
Для Windows существует замечательная программа установки «одним щелчком». Этот инсталлятор за несколько минут автоматически установит Ruby, RubyGems и несколько других обычно используемых пакетов. Инсталлятор можно скачать по адресу http://rubyforge.org/ projects/rubyinstaller.
Установка Adhearsion из RubyGems
Выполнив для своей системы все представленные выше инструкции и получив Ruby и RubyGems, установите Adhearsion, используя следующую команду:
gem install adhearsion
Если обнаружены какие-либо зависимости, вероятно, необходимо разрешить их установку, чтобы обеспечить нормальную работу Adhearsion.
Создание нового проекта Adhearsion
После того как Adhearsion установлена, можно приступать к созданию и запуску нового проекта Adhearsion с использованием новой команды ahn, утилиты командной строки, которая выполняет в Adhearsion практически все.
Вот пример команды для создания нового проекта Adhearsion:
ahn create ~/новыйпроект При этом в заданной папке создается подпапка, содержащая папку и иерархию файлов, необходимые для работы Adhearsion. У вас сразу же должно получиться запустить новое приложение по команде
ahn start ~/новыйпроект Чтобы ознакомиться с системой Adhearsion, просмотрите папки приложения и прочитайте сопутствующую документацию.
Написание диалплана в Adhearsion
Как правило, новички начинают с использования возможности написания диалпланов в Adhearsion. Поскольку Ruby допускает тонкую настройку самого языка во время выполнения, одна из функций, выполняемых Adhearsion, - реализация эстетических изменений, которые призваны упростить процесс разработки диалпланов.
Ниже приведено приложение Hello World (Здравствуй, мир), написанное в Adhearsion:
мой_первый_контекст { play "hello-world"
}
Это абсолютно допустимый синтаксис Ruby, но не все приложения Ruby так выглядят. В Adhearsion очень удобно объявлять имена контекстов, поскольку сценарий диалплана здесь обрабатывается особым образом. Ваши сценарии будут располагаться в корневой папке вновь созданного приложения Adhearsion.
Когда вызовы поступают в Asterisk и потом в Adhearsion, Adhearsion вызывает собственную версию имени контекста, из которого происходит AGI-запрос. Таким образом, имя контекста в файле extensions.conf должно гарантированно быть таким же, чтобы обеспечить соответствующее перенаправление вызовов в Adhearsion.
Синтаксис направления вызовов в Adhearsion следующий:
[мой_первый_контекст]
exten => _.,1,AGI(agi://127.0.0.1)
Любой набранный шаблон фиксируется здесь и отправляется в Adhearsion через AGI для реализации инструкций по обработке вызова. Предоставленный здесь IP, конечно, должен быть заменен на IP, который обеспечит доступ к вашему серверу Adhearsion.
Теперь, имея базовое понимание того, как взаимодействуют Adhearsion и Asterisk, можно перейти к более реалистичному примеру диалплана в Adhearsion:
internal {
case extension when 10..99
dial SIP/extension when 6000..6020, 7000..7030
# Присоединяемся к конференции MeetMe с помощью join join extension
when _'21XX'
if Time.now.hour.between? 2, 10
dial SIP/"berlin-office"/extension[2..4] else speak "The German office is closed" end
when US_NUMBER
dial SIP/'us-trunk-out'/extension when /~\d{11,}$/ # Perl-подобное регулярное выражение
# Передаем все остальные длинные номера прямо в наш
# магистральный канал связи.
dial IAX/'intl-trunk-out'/extension else
play %w'sorry invalid extension please-try-again' end
Такой небольшой фрагмент кода реализует довольно многое. Даже имея ограниченные познания в Ruby или не зная его вовсе, вы поймете следующее:
• Переменная extension (которую Adhearsion создает для нас) используется в условном выражении.
• Набор номера от 10 до 99 направляет нас к равноправному участнику SIP с соответствующим числовым именем пользователя.
• Любой номер в диапазоне от 6000 до 6200 или от 7000 до 7030 направляется в конференцию MeetMe под тем же номером. Конечно, для этого требуется, чтобы номера данных конференций были сконфигурированы в meetme.conf.
• Опция 21XX' точно отвечает стилю шаблонов Asteris. Начало строки с символа подчеркивания в Adhearsion обеспечивает неявный вызов метода, который возвращает регулярное выражение Ruby. В Ruby-выражении case регулярные выражения могут использоваться в выражении when для выполнения сопоставления с шаблоном. Конечный результат должен быть очень хорошо знаком тем, кто имеет опыт написания extensions.conf.
• Синтаксис Adhearsion для представления каналов также происходит непосредственно из традиционного формата Asterisk. SIP/123 может использоваться как есть для представления равноправного участника SIP 123. Если бы использовался магистральный канал, синтаксис был бы такой: SIP/имяканала/имяпользователя.
• Метод speak() обобщает лежащий в основе механизм преобразования текста в речь. Он может быть сконфигурирован на использование наиболее популярных механизмов.
• В выражении when для осуществления более сложного сопоставления с шаблонами, если шаблонов Asterisk недостаточно, может использоваться полноценное Perl-подобное регулярное выражение.
• Adhearsion определяет несколько констант, которые могут быть полезны при написании диалпланов. Константа US_NUMBER здесь - это регулярное выражение, соответствующее телефонному номеру в США.
• Если необходимо воспроизводить несколько файлов последовательно, play() принимает массив имен файлов. К счастью, в Ruby есть удобный способ создания массива строковых значений (String).
Конечно, это только простой пример, демонстрирующий лишь самые основы возможностей Adhearsion для создания диалплана.
Интеграция с базами данных
Несмотря на чрезвычайный успех в области веб-разработки для обслуживания динамического содержимого, интеграция с базами данных всегда была и остается недостаточно реализованной возможностью управления динамическими голосовыми приложениями в Asterisk. Большинство приложений Asterisk, выполняющих интеграцию с базами данных, делегируют реализацию сложных вопросов AGI-сценариям на
PHP или Perl, потому что extensions.conf или синтаксиса AEL просто недостаточно для решения задач такого уровня сложности. Adhearsion использует библиотеку интеграции с базами данных ActiveRecord, разработанную создателями инфраструктуры Ruby on Rails. Имея ActiveRecord, конечный пользователь изредка, если вообще делает это, пишет SQL-выражения. А разработчик осуществляет доступ к базе данных, как к любому другому объекту Ruby. Благодаря обеспечиваемым Ruby гибкости и динамичности, доступ к базе данных выглядит и ощущается довольно естественным. Кроме того, ActiveRe- cord устраняет различия между системами управления базами данных, делая реализацию доступа к базе данных универсальной. Не вдаваясь в детали ActiveRecord и более сложные варианты ее использования, рассмотрим следующую простую схему MySQL: CREATE TABLE groups (
'id' int(11) DEFAULT NULL auto_increment PRIMARY KEY, 'description' varchar(255) DEFAULT NULL, 'hourly_rate' decimal DEFAULT NULL
);
CREATE TABLE customers (
'id' int(11) DEFAULT NULL auto_increment PRIMARY KEY, 'name' varchar(255) DEFAULT NULL, 'phone_number' varchar(10) DEFAULT NULL, 'usage_this_month' int(11) DEFAULT 0, 'group_id' int(11) DEFAULT NULL
);
В реальности, конечно, о заказчике хранилось бы намного больше сведений и информация об использовании сервиса находилась бы в записи параметров вызова в базе данных, но такое упрощение позволяет более эффективно продемонстрировать основные моменты ActiveRecord. Чтобы подключить Adhearsion к этой базе данных, необходимо просто задать информацию для доступа к базе данных в конфигурационном файле YAML: adapter: mysql host: localhost database: adhearsion username: root password: pass
Так Adhearsion будет знать, как подключиться к базе данных, однако механизм доступа к информации в таблицах зависит от того, как смоделированы наши объекты ActiveRecord. Поскольку объект - это экземпляр класса, для каждой таблицы ставим в соответствие класс. С помощью методов надкласса определяем простые свойства и отношения в классе.
Вот два класса, которые могут использоваться с вышеупомянутыми таблицами:
class Customer < ActiveRecord::Base belongs_to :group
validates_presence_of :name, :phone_number validates_uniqueness_of :phone_number validates_associated :group def total_bill
self.group.hourly_rate * self.usage_this_month / 1.hour end
end
class Group < ActiveRecord::Base has_many :customers
validates_presence_of description, :hourly_rate
end
Уже из этого небольшого объема информации ActiveRecord может сделать множество логических выводов. При обработке данных классов ActiveRecord переводит их имена в нижний регистр, ставит во множественное число и принимает, что это - имена таблиц (customers и groups соответственно). Если применение такого соглашения нежелательно, автор может без труда переопределить его. Кроме того, во время интерпретации ActiveRecord на самом деле заглядывает в столбцы базы данных и делает доступными многие новые создаваемые динамически методы.
Методы belongs_to (принадлежит) и has_many (имеет много) в данном примере определяют отношения между Customers (клиенты) и Groups (группы). Опять обратите внимание, как ActiveRecord использует множественное число в строке has_many :customers для большей выразительности кода. В этом примере также можно увидеть несколько проверок достоверности - политик, которые будет применять ActiveRecord. При создании нового объекта Customer мы должны обеспечить для него как минимум name (имя) и phone_number (номер телефона). Задание двух телефонных номеров может привести к конфликту. У каждого Customer должна быть Group. У каждой группы должно быть description (описание) и hourly_rate (почасовая ставка). Это поможет разработчику избежать ошибок, а также нарушения целостности базы данных.
Также обратите внимание на метод total_bill (общий счет) класса Customer. Для любого объекта Customer, извлекаемого из базы данных, можно вызвать этот метод, который умножает значение hourly_rate для группы, к которой принадлежит Customer, на время пользования телефоном этого клиента (в секундах).
Вот несколько примеров, которые могут точнее продемонстрировать то, насколько удобно применять абстрактную объектную логику Ruby для работы с базами данных:
everyone = Customer.find :all
jay = Customer.find_by_name "Jay Phillips"
jay.phone_number # Выполняем выражение SELECT
jay.total_bill # Выполняем вычисления по нескольким выражениям SELECT
jay.group.customers.average :usage_this_month jay.group.destroy
jay.group = Group.create description => "New cool group!",
:hourly_rate => 1.23
jay.save
Интеграция с базой данных стала здесь намного более естественной, а диалпланы Asterisk выглядят более выразительными. Ниже представлен пример диалплана поставщика сервисов, который налагает ограничение на суммарную продолжительность исходящих звонков, используя информацию из базы данных. Постараемся сохранить простоту:
# Предположим, сервис VoIP предлагается клиентам,
# которые могут быть идентифицированы по их callerid.
service {
# Строка кода ниже реализует выражение SQL SELECT
# по отношению к нашей базе данных. Метод
# find_by_phone_number() был создан автоматически,
# потому что ActiveRecord обнаружила в базе данных
# столбец phone_number. Adhearsion создает для нас
# переменную callerid.
caller = Customer.find_by_phone_number callerid
usage = caller.usage_this_month if usage >= 100.hours
play "sorry-cant-let-you-do-that" else
play %w'to-hear-your-account-balance press-1
otherwise wait-moment' choice = wait_for_digit 3.seconds
p choice if choice == 1
charge = usage / 60.0 * caller.group.hourly_rate play %W"your-account will-reflect-charge-of
$#{charge} this month for #{usage / 60} minutes and #{usage % 60} seconds"
end
# Мы также можем записать значение свойства
# usage_this_month объекта caller. По завершении
# выполнения метода time новое значение для этого
# абонента будет внесено в базу данных. caller.usage_this_month += time do
# Засекаем время выполнения данного фрагмента кода. dial IAX/'main-trunk'/extension
end
caller.save
end
Надежная интеграция с базой данных, которую обеспечивает Adhear- sion, упрощает управление и разработку для офисной АТС. Хранящаяся централизованно информация позволяет Asterisk напрямую интегрироваться с другими сервисами, обеспечивая при этом более ценные сервисы, которые не могут быть реализованы в рамках традиционных технологий разработки в Asterisk.
Распространение и повторное использование кода
Приложение Adhearsion располагается в одной папке, поэтому полностью скопировать VoIP-приложение - не сложнее, чем архивировать файлы. Наверное, впервые в сообществе Asterisk разработчики могут запросто обмениваться друг с другом удачными приложениями и дорабатывать их. Кстати, весьма поощряется предоставление кода собственных приложений Adhearsion.
Кроме того, на локальном уровне расширения инфраструктуры Adhear- sion, называемые помощниками, могут использоваться повторно или создаваться самостоятельно. Помощниками могут быть как целые вспомогательные инфраструктуры, такие как Micromenus для интеграции с телефонными микроброузерами, так и обычный новый метод диал- плана, который возвращает выбираемые случайным образом цитаты Оскара Уайльда.
Ниже представлен простой помощник Adhearsion, написанный на Ruby. Он создает новый метод, который будет существовать во всей инфраструктуре, включая диалплан. В целях сохранения простоты метод загружает XML-документ по заданному URL HTTP и преобразует его в Ruby-объект Hash (тип ассоциативного массива Ruby): def remote_parse url
Hash.from_xml open(url).read
end
Заметьте, что вспомогательный файл может включать только эти три строки. При загрузке Adhearsion выполняет сценарий таким образом, что все описанные методы или классы становятся доступными во всей системе.
Для некоторых задач, в частности задач масштабирования Adhearsion, может потребоваться обеспечить в узких местах эффективность короля производительности: языка программирования С. Ниже представлен пример помощника Adhearsion, который возвращает факториал заданного числа:
int fast_factorial(int input) { int fact = 1, count = 1; while(count <= input) { fact *= count++;
}
return fact;
Опять же, приведенный здесь код может составлять все содержимое вспомогательного файла. В данном случае, поскольку код написан на С, файл должен называться factorial.alien.c. Это указывает Adhearsion запустить алгоритм для чтения файла, добавить стандартные заголовки разработки языков С и Ruby, скомпилировать файл, кэшировать общий объект, загрузить его в интерпретатор и затем создать для С-ме- тода оболочку на Ruby. Ниже представлен диалплан, который просто воспроизводит факториал шести, используя этот помощник на С:
fast_test {
num = fast_factorial 6 play num
}
Заметьте, что С-метод становится первоклассным методом на Ruby. Числовые объекты Ruby, преданные в метод, преобразуются в элементарный тип С int, а затем возвращаемое значение преобразуется обратно в числовой объект Ruby.
Вспомогательные файлы предлагают простой, но надежный способ расширения инструментария VoIP-специалиста. Но главное - полезными помощниками можно обмениваться, отчего выиграет все сообщество.
Интеграция с настольным телефоном с использованием Micromenus
В условиях все возрастающей конкуренции между производителями современных настольных телефонов, поддерживающих IP, появление микроброузера прошло относительно незамеченным и используется он крайне редко. Принцип прост: физические настольные телефоны создают интерактивные меню, принимая XML по HTTP или что-то подобное. Однако конфликт интересов сыграл с этой технологией злую шутку: каждый производитель создает собственный XML, микроброузеры часто имеют какие-то странности и доступные возможности сильно разнятся. Инфраструктура Micromenus (Микроменю) существует как помощник Adhearsion и предназначена устранять различия между телефонами разных производителей. В этой очень специальной области разработки (то есть создании меню) для четкой реализации логики независимо от марок телефонов Micromenus использует очень простой основанный на Ruby «доменный язык». Вот простой пример Micromenu: image 'company-logo' item "Call an Employee" do
# Создаем список сотрудников из активных ссылок в базе данных. Employee.find(:all).each do |someone|
# Просто выбираем кого-то, чтобы позвонить ему по телефону. call someone.extension, someone.full_name
end
end
item "Weather Information" do
call "Hear the weather report" do play weather_report("Portland, OR")
end
item "Current: " + weather("Portland, OR")[:current][:temp]
end
item "System Uptime: " + 'uptime' Список item (элемент) отображается двумя способами. Если дается только строка текста (String), Micromenus формирует лишь текстовый элемент. Если аргументы содержат блок do/end вложенной информации, этот текст становится ссылкой на подстраницу, которая формирует визуальное представление этого вложенного содержимого. Элемент call (вызов) также имеет два варианта использования, каждый из них формирует ссылку, которая при выборе инициирует вызов. Когда call получает блок do/end, он моделирует физический набор номера, заданного в качестве первого аргумента. Если блок do/end существует и все вызовы направляются через Adhearsion, выбор этого элемента обеспечивает выполнение функциональности диалплана в рамках блока. Это замечательный пример того, как выгодно выполнять обработку диалпланов и экранных микроброузеров в одной инфраструктуре. Из этого примера можно сделать еще некоторые четкие выводы о Micro- menus:
• Micromenus поддерживает отправку изображений. Если запрашивающий телефон не поддерживает изображения, в ответе они не будут упоминаться.
• Все помощники Adhearsion работают и здесь. В данном примере использовался помощник сводки погоды.
• Вспомогательная инфраструктура Micromenus может использовать интеграцию Adhearsion с базой данных.
• Ruby может выполнять команду, заключенную в открывающие кавычки, и возвращать результат как строку (String). В нашем случае возвращается время безотказной работы (uptime).
Конечно, этот пример предполагает, что вы сконфигурировали интеграцию своего приложения с базой данных соответствующим образом и имеете класс Employee, соответствующий таблице со столбцами extension (расширение) и full_name (полное имя).
Поскольку Micromenus просто формирует визуальное представление различных ответов, поступающих по HTTP, обычный веб-броузер тоже может прислать запрос на сервер Micromenus. Для таких более высокотехнологичных конечных точек Micromenus формирует красивый интерфейс с загрузкой Ajax, эффектами DHTML и окнами, которые можно перетаскивать.
Micromenus - это еще одна возможность сделать ваши Adhearsion-при- ложения для VoIP более надежными.
Интеграция с веб-приложением
Хотя Adhearsion конструктивно может интегрироваться с практически любым приложением, включая PHP или сервлеты Java, Ruby на платформе Rails является особенно мощным партнером. Rails - среда разработки веб-приложений, широко обсуждаемая в прессе в последнее время, причем абсолютно заслуженно. Ее разработчики используют весь потенциал Ruby, демонстрируя, как метапрограммирование действительно избавляет разработчика от ненужной работы. Поразительная ясность кода Rails и использование принципа Don't Repeat Yourself (Не повторяйся), или DRY, вдохновили дизайнеров на создание Adhearsion в том виде, в каком она существует сейчас. Начиная с версии 0.8.0, каталог приложений Adhearsion располагается поверх существующего Rails-приложения, совместное использование данных происходит автоматически. Если требуется разработать сложный веб-интерфейс для функциональности VoIP, обратите внимание на этот сногсшибательный дуэт.
Использование Java
Весь мир пришел в изумление, когда Sun объявила о приеме на работу двух основных специалистов проекта по разработке интерпретатора JRuby Чарльза Наттера (Charles Nutter) и Томаса Энебо (Thomas Enebo) в сентябре 2006 года. JRuby - это интерпретатор Ruby, написанный не на С, а на Java. Поскольку JRuby может компилировать части приложения на Ruby в байт-код Java, JRuby фактически превосходит С-реализа- цию Ruby 1.8 по многим параметрам и обещает полностью обойти последнюю в ближайшем будущем.
Приложение на Ruby, выполняемое в JRuby, имеет преимущество использования не только библиотек Ruby, но и любых библиотек Java. Выполнение Adhearsion в JRuby обеспечивает потрясающий ассортимент библиотек Java сторонних производителей для написания диал- плана офисной АТС. Если окружение вашей компании требует тесной интеграции с другими технологиями Java, внедрение Adhearsion в стек J2EE может предложить необходимую гибкость.
Дополнительная информация
Больше информации о быстро развивающемся сообществе разработчиков Adhearsion, включая полные разборы примеров по шагам, можно найти на официальном веб-сайте Adhearsion по адресу http://adhearsion.com, в официальном блоге, посвященном Adhearsion, по адресу http://blog. adhearsion.com, на веб-сайте консалтинговой компании-учредителя Adhearsion по адресу http://codemecca.com. За помощью в изучении Ruby обращайтесь на сайт http://jicksta.com.
11
Инфраструктура Asterisk GUI
..Я конструировал маяк, в то время как все остальные строили корабли.
- Чарльз Саймик
В данной главе представлены компоненты, которые составляют графический пользовательский интерфейс (GUI) и помогают работать с Asterisk. Для тех, кто не использует дистрибутив AsteriskNOW, здесь приводится установка веб-сервера и компонентов GUI. Показано, как настраивать GUI в соответствии со своими задачами. Также предоставлена техническая информация, чтобы разработчики, желающие создать собственный GUI или приложение, могли использовать веб-сервер и компоненты GUI. Мы выражаем благодарность сотрудникам Digium, помогавшим писать эту главу, и особое спасибо за примеры кода, которые они разработали и протестировали.
Зачем нужен GUI для Asterisk
Asterisk всегда была телефонной системой для смелых. Раньше от нас требовались недюжинные усилия и больше чем просто упорство, чтобы заставить Asterisk выполнять свои распоряжения. Те, кто в своем стремлении освоить ее принимался за конфигурационные файлы и боролся за свои звонки, были вознаграждены, получив мощную и гибкую систему телефонной связи (а также пользующийся большим спросом набор навыков). Однако массовый потребительский рынок не был и до сих пор не готов к написанию сценариев для обработки добавочных номеров, управлению равноправными участниками сети и решению других задач, составляющих суть администрирования Asterisk.
Еще с самых ранних времен, до версии 1.0, люди пытаются приручить могучую систему Asterisk с помощью генераторов конфигурационных файлов, связанных с базами данных и управляемых посредством различных графических пользовательских интерфейсов (Graphical User Interfaces, GUI). Самым успешным удалось создать приложение, основанное на Asterisk, но ни один из них не обеспечил полной гибкости, которую предлагает самостоятельная среда для написания сценариев. После замены цифрового хокку диалплана на ограниченный список опций полученная система превратилась из собственно Asterisk в систему, основанную на Asterisk. Неплохо, но не достаточно[107]. Чтобы GUI был именно GUI Asterisk, в нем должны быть сохранены создаваемые вручную конфигурационные файлы, которые являются лингва-франка Asterisk испокон веков. Он должен предоставлять простые графические средства конфигурации без оказания воздействия на базовое программное обеспечение Asterisk или жесткой фиксации решений, которые должны оставаться открытыми для конечного пользователя. Также он должен обеспечивать расширенную функциональность, не загружая компьютер и не захватывая ценные ресурсы, необходимые для выполнения основной задачи - обработки вызовов.
Одновременно с выходом версии Asterisk 1.4 Digium начала разработку проекта Asterisk GUI. Изначально GUI задумывался как компонент встроенного устройства Asterisk от Digium. Устройство, продаваемое и как Asterisk Appliance Developers Kit (AADK - комплект для разработчиков устройств Asterisk), и как самостоятельная конфигурация, представляет собой небольшой полупроводниковый компьютер с необязательными аналоговыми (и в перспективе цифровыми) интерфейсами. GUI был создан с использованием гибкой и расширяемой инфраструктуры, которая переносит максимум задач по отображению и логику проверки достоверности на компьютер клиента. Также была учтена необходимость сохранения возможности создания конфигурационных файлов вручную, но при этом предоставлены автоматизированные средства их редактирования. Созданная в результате инфраструктура получила название AJAM (обыгрывается название популярной технологии Web 2.0 Ajax), что является аббревиатурой от Asynchronous JavaScript and Asterisk Manager (Асинхронный диспетчер JavaScript и Asterisk). Основной AJAM-код, наборы поддерживающих AJAM веб-страниц и расширение диспетчера Asterisk - все вместе, взаимодействуя, формируют инфраструктуру Asterisk GUI.
Что такое GUI
Asterisk GUI - это интерфейс, который поставляется с дистрибутивом AsteriskNOW или может быть добавлен в существующую установку Asterisk. Стандартный интерфейс ориентирован на пользователя, желающего применять Asterisk как офисную АТС для небольшого предприятия с довольно типовыми требованиями к системе телефонной связи. Это самое простое, что можно сделать с помощью AJAM; рассматривайте его как бета-интерфейс, который, как можно ожидать, будет развиваться согласно желаниям сообщества. Его появление вызвало большое воодушевление в сообществе разработчиков Asterisk, потому что лежащие в основе GUI технологии поднимают планку возможностей интерфейса офисной АТС. Он также позволяет создавать пользовательские интерфейсы, нацеленные на собственные уникальные требования.
Марк Спенсер о GUI
Asterisk - мощная платформа для телефонии. Однако ценность этой мощи определяется тем, насколько она может быть полезна конкретным целевым пользователем. Графические интерфейсы (GUI) очень нужны Asterisk. Большинство GUI специально разработаны для определенной задачи. Например, некоторые GUI созданы специально для систем голосовой почты. Другие ориентированы на гостиничную отрасль. Необходимость в универсальном GUI для Asterisk существует, но приходится идти на естественный компромисс между удобством использования и простотой GUI и количеством предлагаемых им функций. Например, GUI, нужный администратору сложных и многофункциональных систем, скорее всего, будет отличаться от того, который требуется администратору офиса, отвечающему только за простые перемещения, добавление записей и изменение системы. Исходя из такого широкого диапазона требований Digium разработала инфраструктуру GUI, названную (неизобретательно) Asterisk GUI. Digium не стала разрабатывать единый GUI, а вместо этого выпустила разные GUI и инфраструктуру для упрощения процесса создания и изменения GUI для разных областей применения. Второй задачей было обеспечить такое взаимодействие GUI с традиционными конфигурационными методами Asterisk, чтобы ничто не могло воспрепятствовать его применению. Большинство GUI для Asterisk используют формат промежуточной конфигурации или базу данных, с помощью которых можно создать конфигурационные файлы для использования Asterisk. К сожалению, это означает, что любая опция, не представленная в GUI, не может быть задана «вручную» в конфигурационных файлах. А вот Asterisk GUI реально изменяет традиционные конфигурационные файлы Asterisk, то есть изменения, вносимые в GUI, и изменения, вносимые в сами файлы, могут сосуществовать и даже передаваться туда и обратно. Например, если изменить ID вызывающего абонента в файле users.conf и обновить GUI, изменения можно будет увидеть и в GUI. Аналогично, если внести изменения в GUI и перезагрузить файл, изменения
будут отражены и в нем. Если добавить новые настройки, не представленные в GUI (например, ввести nat=yes в конкретную запись в файле users.conf) и затем изменить ID вызывающего абонента в GUI, вы увидите, что строка nat=yes сохранится в файле даже несмотря на то, что произойдет изменение ID вызывающего абонента. Комментарии тоже обычно сохраняются при редактировании через GUI. Это не только означает, что GUI больше не должен отображать все возможные конфигурации, поскольку наиболее специфичные из них могут быть заданы вручную. Это также означает, что, если кто- то начнет с использования Asterisk GUI, а затем выйдет за его рамки, он вполне естественным образом сможет создавать более сложные функции, не отказываясь от уже ставшего привычным GUI.
Использование GUI
При первой регистрации во вновь созданном GUI система активирует Мастер настройки, который позволяет настроить основные элементы системы телефонной связи.
GUI может не суметь определить все типы интерфейсов TDM и в результате сообщит, что не находит определенные платы, даже несмотря на то, что они установлены. Предполагается, что со временем GUI научится определять любые платы, использующие интерфейс Zaptel, и работать с ними, но эта функциональность обещает быть сложной и на данный момент находится на этапе разработки.
Мастер настройки одну за другой предлагает некоторые базовые опции, такие как длина добавочного номера или правила набора. Мы не собираемся углубляться в детали того, как работает стандартный GUI. Он находится в процессе непрерывной разработки, и, скорее всего, читая эту книгу, вы не найдете в GUI многое из того, что мы могли бы написать здесь.
Элементы GUI
Стандартный GUI, который поставляется с AsteriskNOW (или который можно скачать через SVN), имеет стандартный набор элементов. Эти элементы представляют собой то, что может присутствовать в типовой малой офисной АТС. В настоящее время в меню представлены следующие элементы:
• Users (Абоненты).
• Conferencing (Конференц-связь).
• Voicemail (Голосовая почта).
• Call Queues (Очереди звонков).
• Service Providers (Поставщики сервисов).
• Calling Rules (Правила вызова).
• Incoming Calls (Входящие звонки).
• Voice Menus (Голосовые меню).
• Record a Menu (Запись в меню).
• Active Channels (Активные каналы).
• Graphs (Диаграммы).
• System Info (Сведения о системе).
• Backup (Создание резервной копии).
• Options (Опции).
Архитектура Asterisk GUI
Прежде чем углубляться в изучение (или разработку собственного) Asterisk GUI, важно понимать, как реализуется поток данных между клиентом (веб-броузером) и Asterisk. Поскольку эти интерфейсы являются Ajax-приложениями, многое в них не вполне понятно. Поток управления проходит примерно так:
• Броузер переходит по URL вашего приложения управления.
• Веб-сервер Asterisk отправляет броузеру HTML-страницу, библиотеки и само приложение (которое написано на JavaScript и активно использует Ajax).
• Пользователь взаимодействует с броузером; по мере необходимости приложение JavaScript присылает команды назад веб-серверу. Эти команды, представленные в форме URL, запрашивают некоторое действие от самого сервера Asterisk.
• Веб-сервер интерпретирует эти URL. Если пользователь прошел регистрацию успешно, он посылает команду (действие) Asterisk через Asterisk Manager Interface (AMI), описанный в главе 10.
• Asterisk выполняет действия и передает результаты (код состояния и, возможно, данные) на веб-сервер.
• Веб-сервер возвращает ответ Asterisk JavaScript-приложению, выполняющемуся в броузере.
• JavaScript-приложение обновляет окно броузера.
Несмотря на то что на первый взгляд это может показаться несколько сложным, не пугайтесь. Это очень гибкая и мощная архитектура, которая может использоваться для разнообразнейших приложений, а не только для Asterisk GUI. Однако сейчас сосредоточимся на совершенствовании Asterisk GUI. Начнем с настройки базовых частей и затем перейдем к установке и изменению Asterisk GUI.
Компоненты Asterisk GUI
Рассмотрим подробнее некоторые ключевые компоненты Asterisk GUI. Они будут использоваться позже в данной главе для изменения Asterisk GUI.
Asterisk Manager Interface
Как рассказывалось в главе 10, Asterisk Manager Interface обеспечивает возможность внешним программам управлять Asterisk. Интерфейс Manager - это сердце Asterisk GUI, поскольку он выполняет всю тяжелую работу.
Команды Manager по HTTP и веб-сервер Asterisk
Веб-сервер, встроенный в Asterisk, позволяет передавать команды интерфейса Manager в Asterisk по HTTP, а не подключаться непосредственно к интерфейсу Manager. Это намного упрощает для веб-приложения задачу по передаче команд AMI в Asterisk с использованием Asynchronous JavaScript Asterisk Manager (AJAM), что мы вскоре рассмотрим. Веб-сервер также можно конфигурировать на обслуживание статического содержимого, такого как HTML-файлы и изображения1.
AJAM и JavaScript
Инфраструктура AJAM использует JavaScript и XML для асинхронной отправки команд в Asterisk и обновления информации, отображаемой в веб-броузере.
Установка Asterisk GUI
Если у вас не установлен AsteriskNOW, необходимо скачать и установить файлы Asterisk GUI. После загрузки эти файлы просто компилируются и устанавливаются как часть Asterisk.
Для использования Asterisk GUI необходима Asterisk версии 1.4 или более поздней.
Самую последнюю версию файлов GUI можно найти в хранилище Subversion компании Digium2. Если на вашем компьютере установлено Subversion, код GUI можно загрузить, используя следующую команду:
Возможно, вы спрашиваете себя: «Почему веб-сервер встроен в Asterisk? Почему бы просто не использовать внешний веб-сервер?» Внешний веб-сервер может использоваться для обслуживания Asterisk GUI, но это выходит за рамки рассмотрения данной главы, поскольку модель безопасности, лежащая в основе Ajax, разрешает Ajax направлять запросы только к тому домену, порту и по тому протоколу, по которым поступила HTML-страница. Обычно такое поведение называют политикой единства происхождения. В настоящее время нет способа загрузить GUI через FTP. Эта ситуация может измениться в любой момент, поэтому не стесняйтесь и свободно проверяйте, не появилась ли обновленная информация на веб-сайте Asterisk.
# cd /usr/src # или любая папка, в которую вы хотите загрузить исходный код
# svn co http://svn.digium.com/svn/asterisk-gui/trunk asterisk-gui
Установить GUI очень просто:
# cd asterisk-gui
# ./configure
# make
# make install
# make samples
После выполнения представленных выше команд файлы GUI будут установлены и станут частью вашего дистрибутива Asterisk.
Настройка httpd.conf и manager.conf
Конфигурация веб-сервера Asterisk для обработки запросов AJAM включает несколько простых шагов. В файл /etc/asterisk/http.conf необходимо добавить (или раскомментировать) следующее:
[general] enabled=yes
enablestatic=yes ; без этого вы можете только посылать команды AMI, ; но не отображать html-содержимое
bindaddr=0.0.0.0 ; адрес, на который HTTP-сервер Asterisk должен отвечать bind po rt=8088 ; порт, по которому HTTP-сервер Asterisk должен отвечать prefix=asterisk ; будет формировать часть URI, соответствующую имени папки
Теперь, когда httpd.conf настроен, можно передать содержимое в броузер. Чтобы веб-клиент мог посылать команды в Asterisk, необходимо внести некоторые изменения в Asterisk Manager Interface (AMI). Для этого добавим несколько строк в раздел [general] файла manager.conf и учетную запись пользователя с набором разрешений config. Откроем файл manager.conf и отредактируем его следующим образом: [general]
enabled=yes ; возможно, AMI уже активирован, если используется для других целей webenabled=yes ; это активирует взаимодействие между веб-сервером Asterisk и AMI
[asterisk_http] ; пользователю может быть присвоено любое имя secret = gooey
read = system,call,log,verbose,command,agent,user,config write = system,call,log,verbose,command,agent,user,config
Сохраните изменения и перезапустите Asterisk. У вас должно получиться подключиться в веб-серверу Asterisk посредством следующего URI:
http://localhost:8088/asterisk/static/ajamdemo.html Если по какой-то причине возникли проблемы с переходом на демонстрационную страницу, вернитесь в папку исходного кода asterisk-gui и выполните команду
# make checkconfig
Вот и все! Asterisk теперь поддерживает веб-доступ. Пора переходить к реальной разработке с использованием Asterisk GUI.
Формирование Asterisk GUI
После установки файлов для Asterisk GUI можно приступать к формированию GUI. В следующих нескольких разделах поэтапно рассматриваются настройка и объединение различных компонентов с целью улучшения и расширения возможностей GUI.
Передача команд интерфейса Manager по HTTP
Asterisk GUI формирует команды для Asterisk, вызывая специально созданные URL на веб-сервере Asterisk. В этом разделе представлены примеры некоторых обычно используемых команд (действий) и соответствующие ответы веб-сервера. Эти URL AMI имеют следующую общую структуру:
http://hostname:8088/asterisk/rawman9action=KOMaHfla&.. . .пары параметр=значение... http://hostname:8088/asterisk/manager?action=KOMaHfla&. ...пары параметр=значение... http://hostname:8088/asterisk/mxml9action=KOMaHfla&... .пары параметр=значение.. .
Разница между URL rawman, manager и mxml важна. Веб-сервер экспортирует три разных представления интерфейса AMI. Если используется URL rawman, сервер возвращает в HTTP-ответе последовательность пар ключевое слово/значение. Если используется URL manager, сервер возвращает результат в HTML-формате. Аналогично, если используется URL mxml, сервер возвращает результаты в XML-формате. Для современных приложений в стиле Ajax формы rawman и mxml, пожалуй, более полезны[108].
Действия с параметрами, которые могут быть переданы на сервер, являются обычными командами интерфейса управления, описываемыми в приложении F. Обратите внимание: действия LOGIN и CHALLENGE уникальны тем, что посылаются не непосредственно в Asterisk, а обрабатываются интерфейсом Manager для аутентификации пользователя. Если пользователь не прошел аутентификацию, сервер не передает действие на обработку в Asterisk, а возвращает ошибку.
Ознакомимся с некоторыми широко используемыми действиями и рассмотрим, как их можно использовать для управления сервером.
LOGIN
Команда LOGIN аутентифицирует учетные данные для доступа к HTML- представлению интерфейса Manager. Как только вы зарегистрировались, Asterisk сохраняет в вашем броузере объект cookie (который действителен в течение времени, заданного настройкой httptimeout). Этот cookie используется для подключения к одному и тому же сеансу. URL
http://localhost:8088/asterisk/rawman?action=login&username= asterisk_http &secret=gooey
отправляет на веб-сервер команду на регистрацию, которая включает учетные данные. Если регистрация прошла успешно, сервер отвечает следующим образом:
Response: Success
Message: Authentication accepted
Это, конечно, очень упрощенное представление принципа работы регистрации. Отправка имени пользователя и пароля в URL является плохой практикой, хотя и очень полезной при формировании GUI. Более подходящим способом реализации регистрации и примером более сложной обработки команды является использование последовательности запрос/ответ. Сформируйте такой запрос:
http://localhost:8088/ asterisk / rawman? action=challenge&AuthType=md5
Команда CHALLENGE запускает последовательность запрос/ответ, которая может использоваться для регистрации пользователя. Сервер отвечает, отправляя запрос (произвольную строку) в ответе:
Response: Success Challenge: 113543555
Ваше приложение отвечает на запрос, вычисляя хеш MD5 запроса, конкатенированного с паролем пользователя. Вот как пользователь может вручную вычислить хеш MD5:
# echo -n 113543555gooey | md5sum
50a0f43ad4c9d99a39f1061cf7301d9a -После этого вычисленный хеш может использоваться как ключ регистрации в URL:
http://localhost:8088/asterisk/rawman?action=login&username=asterisk_ http&authtype=md5&key=50a0f43ad4c9d99a39f1061cf7301d9a
В целях безопасности регистрация должна произойти в течение пяти секунд после запроса. Также обратите внимание: чтобы система запрос/ответ работала, в броузере должен быть активирован прием объектов cookie, поскольку именно cookie гарантирует, что действие регистрации использует тот же ID сеанса интерфейса управления, что и действие запроса.
Если для запроса используется URL manager (а не rawman), ответ будет получен в формате HTML:
Manager Tester | |
Response | Success |
Challenge | 113543555 |
Аналогично, если используется представление mxml, будет получен ответ в формате XML:
Кроме формата, эти три типа ответов больше ничем не отличаются. Для большинства приложений в подобной ситуации, когда нет необходимости отображать HTML-страницу пользователю, извлечь запрос из пар ключевое слово/значение будет намного проще, чем использовать
rawman или mxml.
Передача вызова
Действие REDIRECT может использоваться для передачи вызова. Просто сформируйте такой URL:
http://localhost:8088/ asterisk / rawman? action=redirect&channel=SIP / John-ae201e78&priority=1&exten=6001
Этот URL передает заданный канал в другой добавочный номер и приоритет диалплана. Ответ на это действие такой:
Response: Success Message: Redirect Successful
Чтение конфигурационного файла
Команда GETCONFIG возвращает содержимое конфигурационного файла или его часть. HTTP-запрос
http://localhost:8088/asterisk/rawman?action=getconfig&filename= users.conf
возвращает содержимое файла users.conf. Asterisk GUI использует эту функциональность для представления текущей конфигурации Asterisk конечному пользователю. Ответ выглядит следующим образом:
Response: Success
Category-000000: general Line-000000-000000: fullname=New User Line-000000-000001: userbase=6000 Line-000000-000002: hasvoicemail=yes Line-000000-000003: hassip=yes Line-000000-000004: hasiax=yes Line-000000-000005: hasmanager=no
Line-000000-000006: callwaiting=yesLine-000000-000006: callwaiting=yes |
Line-000000-000007: threewaycalling=yes |
Line-000000-000008: callwaitingcallerid=yes Line-000000-000009: transfer=yes |
Line-000000-000010: canpark=yes |
Line-000000-000011: cancallforward=yes |
Line-000000-000012: callreturn=yes |
Line-000000-000013: callgroup=1 |
Line-000000-000014: pickupgroup=1 |
Line-000000-000015: host=dynamic |
Category-000001: 6007 |
Line-000001-000000: fullname=Bill Savage |
Line-000001-000001: secret=1234 |
Line-000001-000002: email=bsavage@digium.com |
Line-000001-000003: cid_number=6001 |
Line-000001-000004: zapchan= |
Line-000001-000005: context=numberplan-custom-1 |
Line-000001-000006: hasvoicemail=yes |
Line-000001-000007: hasdirectory=no |
Line-000001-000008: hassip=yes |
Line-000001-000009: hasiax=yes |
Line-000001-000010: hasmanager=no |
Line-000001-000011: callwaiting=yes |
Line-000001-000012: threewaycalling=yes |
Line-000001-000013: mailbox=6007 |
Line-000001-000014: hasagent=yes |
Line-000001-000015: group= |
Обновление конфигурационных файлов с помощью UPDATECONFIG
Действие UPDATECONFIG используется для обновления одной или более настроек конфигурационного файла. Например, чтобы удалить пользователя, необходимо выполнить такой HTTP-запрос: http://localhost:8088/asterisk/rawman?action=updateconfig&reload= yes&srcfilename=users.conf&dstfilename=users.conf&Action-000000= delcat&Cat-000000=6003& Var-000000=&Value-000000=
Ответ, свидетельствующий об ошибке
Чтобы формировать все остальные команды, пользователь должен зарегистрироваться на веб-сервере. Если пользователь не аутентифици- рован, любая из обсуждаемых выше команд будет возвращать ошибку. Если он отправлен пользователем, не прошедшим аутентификацию, URI http://localhost:8088/asterisk/rawman?action=ping возвращает такой свидетельствующий об ошибке ответ: Response: Error
Message: Authentication Required
Ajax, AJAM и Asterisk
Аббревиатура Ajax расшифровывается как Asynchronous JavaScript and XML (Асинхронный JavaScript и XML). Хотя этот термин включает слова «асинхронный» и «XML», это не означает ни то, что можно делать только асинхронные запросы, ни то, что должен обязательно использоваться XML. Некоторые авторы описывают Ajax просто как комбинацию HTML, JavaScript, DHTML и DOM. Следующее поколение броузеров, таких как Mozilla/Firefox, для отправки асинхронного запроса на сервер используют XMLHttpRequest (объект JavaScript). Запрос выполняется в фоновом режиме и обрабатывается сервером. Назад в броузер результат передается посредством обратного вызова: все, что возвращает сервер, может сохраняться и использоваться для обновления отображаемой страницы. Для Internet Explorer 5 или более поздних версий той же цели служит объект ActiveX XMLHttp.
Обработка форм в традиционном веб-приложении
HTML-формы обычно передаются посредством кнопки SUBMIT (ПЕРЕДАТЬ) (type=submit). После щелчка пользователем по кнопке SUBMIT (ПЕРЕДАТЬ) обработка веб-приложения останавливается и не возобновляется до тех пор, пока сервер не возвратит новую страницу полностью:
Прежде чем переходить к Ajax или JavaScript, давайте рассмотрим, как работает традиционное веб-приложение. Для описания формы, где определяются все параметры, которые пользователь хочет отправить на сервер, традиционные веб-приложения используют элемент