Если рассматривать где-нибудь на выставке автоматические КА, то в глаза бросается, что все они не похожи и даже резко отличаются друг от друга. Форма их необычна для тех, кто привык видеть обтекаемые формы автомобилей, поездов, самолетов. На Земле чем выше скорость передвижения, тем более обтекаемую форму приобретают средства транспорта. Самолет своей стремительностью и завершенностью линий восхищает, а ведь скорость его по сравнению со спутником не так уж и велика.
Ничего похожего на обтекаемость форм, на плавность обводов во внешнем облике КА не видно. Наоборот, на корпусе КА во все стороны раскинуты панели солнечных батарей, антенны, штанги с научными приборами, вынесенными подальше от влияния электромагнитных полей КА, кронштейны с микродвигателями системы ориентации и т. д. Иногда КА из-за множества кронштейнов, штанг и антенн похож на ощетинившегося ежа.
Все эти выступающие и кажущиеся хрупкими части, оказывается, не мешают мчащемуся в космических просторах КА, и их не обломает встречный поток воздуха. Сопротивление движению аппарата или отсутствует совсем, или имеет очень ничтожное значение. Правда, как уже говорилось ранее, во время выведения при нарастании скорости в плотных слоях атмосферы надо предохранять все хрупкие и выступающие части. Поэтому в ракете-носителе все штанги, антенны и панели солнечных батарей сложены вдоль КА и закрыты прочным головным обтекателем. Только при выводе КА на орбиту ИСЗ, где практически отсутствует атмосфера, головной обтекатель сбрасывается, и все антенны, кронштейны, штанги и панели солнечных батарей отстыковываются и раскрываются, принимая свое рабочее положение.
В космическом пространстве имеется ряд специфических условий, которые накладывают свой отпечаток на конструкцию космического аппарата. Например, здесь и температурный режим жестче, и перепад температур значительно больше, чем в земных условиях.
В космическом пространстве даже в районе Земли температура предметов, освещенных Солнцем, достигает 150° — 200 °C. Если же ИСЗ оказывается в тени Земли, а, вообще говоря, одна из его сторон всегда повернута в сторону Солнца, то с теневой стороны температура снижается до -150°-170 °C, Такой температурный диапазон, значительно более широкий, чем на Земле, заставляет применять материалы, надежно работающие в этих экстремальных условиях. А для межпланетной станции, приближающейся к внутренним планетам, т. е. ближе к Солнцу, нагрев от Солнца еще больше, так же как и для станций, исследующих внешние планеты и уходящих в даль от Солнца, температура теневых участков КА падает ниже -150 °C.
На выбор материалов влияет и такой фактор, непосредственно не относящийся к условиям космического пространства, как применение более легких материалов и сплавов в космической технике. Для выведения КА на орбиту ИСЗ затрачивается большое количество топлива, и поэтому чем легче КА, тем с меньшими затратами он доставляется па орбиту. Иначе говоря, при одинаковых массах тот КА принесет больше научных данных, конструкция и корпус которого изготовлены из более легких материалов, за счет чего он может нести больше научной аппаратуры. Вот почему при создании ИСЗ очень редко применяются сталь и медь, а широко распространены алюминии, магний и титан и их сплавы. Также широко применяются различные пластмассы и другие синтетические материалы, имеющие малую плотность и относительно высокую прочность.
Невесомость тоже накладывает свой отпечаток на создание конструкции, отдельных узлов и агрегатов КА. Так, например, для открытия панелей солнечных батарей, антенн и других элементов ИСЗ часто применяются пружины, развивающие усилия, которые по величине меньше массы открываемых элементов. В невесомости любая, даже незначительная сила может приводить в движение большие массы (в земных условиях это аналогично движению больших грузов по воде, осуществляемому малой силой), правда, с очень малыми ускорениями. Следовательно, скорость открытия панелей солнечных батарей или антенн может быть небольшой. Но это даже выгодно: при попадании на упор и стопорении в рабочем положении удар будет невелик и тем самым сохраннее и работоспособнее будут открывающиеся элементы.
Для создания температурных условий для аппаратуры, сходных с земными, на ИСЗ необходимо создать специальную атмосферу и поддерживать в ней с помощью системы терморегулирования нормальные условия. Для этого используется герметичный корпус, внутри которого созданы приемлемые условия по давлению воздуха. Конструкции корпуса для большинства ИСЗ, а также КА для исследования Луны и Марса испытываюг давление, равное 1 атм, причем только изнутри. На Луне атмосфера, в нашем понятии, практически отсутствует, а на Марсе давление газовой оболочки на поверхности примерно в 150 раз меньше земного.
Создание спускаемых аппаратов для исследования Луны и планет Солнечной системы учитывает различные условия, существующие на этих планетах. Спускаемые аппараты для Луны и Марса должны выдерживать давление 1 атм (как на участке перелета, так и па поверхности). Под этим давлением находится и воздух внутри аппарата. Спускаемый же аппарат для исследования Венеры попадает из вакуума межпланетного пространства в тяжелейшие условия, каких не существует на Земле. Давление атмосферы у поверхности этой планеты порядка 90 атм, а температура — около 500 °C. Корпус спускаемого аппарата должен теперь уже выдерживать давление такое, как подводный батискаф на глубине около 1 км в море, и одновременно нагрев, сравнимый с температурой в обычной печи, отапливаемой дровами.
Для забора грунта с поверхности планеты и дальнейшего его исследования создаются грунтозаборные или буровые устройства. Специфика их работ тоже обладает большим разнообразием. В условиях Луны, где температуры относительно приемлемые, отсутствие воздуха затрудняет проведение бурения. Движущийся и вращающийся буровой снаряд несколько нагревается и в условиях вакуума увлекает грунт с наружной части во вращение — происходит спекание грунта с инструментом.
Вращающиеся части бурового механизма должны яадежно работать и не свариваться в вакууме с неподвижными деталями устройства. Отсутствие воздуха делает трущиеся поверхности чистыми без воздушной смазки, что приводит к диффузии атомов одной детали в атомы другой. Происходит так называемая холодная сварка. Применение смазки может уменьшить коэффициент трения, но в вакууме при длительном пребывании смазка улетучивается, испаряется. Приходится применять твердые смазки или такие материалы, которые неохотно расстаются со своими атомами, т. с. поддерживается относительно низкий коэффициент трения. Это относится не только к лунным условиям. В космическом пространстве свариваться могут все подвижные части. А это и панели солнечных батарей, и узлы их крепления, и штанги научных приборов, и антенны — все они при раскрытии вращаются на осях.
Вблизи поверхности Венеры сварки от трения в вакууме не возникает, зато условия работы грунтозаборного устройства очень тяжелые, ведь температура и грунта и инструмента достигает около 500 °C. И вообще спускаемые аппараты, предназначенные для планет, имеющих атмосферу, должны обладать прочной конструкцией, чтобы выдерживать большие перегрузки. Так, например, спускаемый аппарат станции «Венера-4», входя довольно круто (под большим углом) к поверхности планеты, испытывал от аэродинамического торможения перегрузку, близкую к 400 g. Следовательно, не только корпус КА, но и его аппаратура, как научная, так и служебная, должны были иметь большую прочность.
Даже при посадке на Луну спускаемый аппарат должен обладать прочной конструкцией. Из-за отсутствия атмосферы торможение осуществляется здесь с помощью тормозной двигательной установки. Хотя при этом и возникают небольшие перегрузки, но на конечном участке спуска (после выключения двигательной установки) спускаемый аппарат с небольшого расстояния падает на грунт. Удар о грунт вызывает перегрузки, достигающие иногда (в зависимости от механических свойств грунта) 100–150 g.