Глава 1. «Доисторическая эпоха» теории хаоса

На самом деле чем величественней наука, тем сильнее ощущение тайны.

Владимир Набоков


Однажды великий философ Иммануил Кант (1724–1804), известный в обоих полушариях, возвращался с дневной прогулки. Слуга следовал за ним на почтительном расстоянии, стараясь не потревожить мыслей своего господина. Кант всегда гулял в одном и том же месте в одно и то же время. Благодаря его пунктуальности жители Кёнигсберга даже сверяли часы по своему знаменитому соседу. Как-то раз, прежде чем пересечь сад и перешагнуть порог дома, автор «Критики чистого разума» задержался. Он остановился, чтобы посмотреть на папоротник, выросший после недавних дождей. По его зеленому стеблю неуклюже карабкалась прекрасная бабочка. Философ аккуратно тронул ее, а затем провел рукой по влажному листу папоротника и улыбнулся, наслаждаясь совершенством его формы. Кант что-то неслышно прошептал, посмотрел в небо и вошел в дом.

Несколько минут спустя он сел за стол у камина, обмакнул перо в чернильницу и начал писать.

Если бы Кант поднял голову…

В своей книге «Критика способности суждения» Иммануил Кант задался вопросом: является ли математика частью природы или же математику в натуральную философию привносят сами математики? Он писал о господствующих силах природы так:

«Можно смело сказать: для людей было бы нелепо даже только думать об этом или надеяться, что когда-нибудь появится новый Ньютон, который сумеет сделать понятным возникновение хотя бы травинки, исходя лишь из законов природы, не подчиненных никакой цели. Напротив, такую проницательность следует безусловно отрицать у людей»[1].



Портрет Иммануила Канта.

«С самых ранних времен, до которых простирается история человеческого разума, математика пошла верным путем науки».


Это амбициозное утверждение сегодня неактуально — если вы позволите нам такое сравнение, то уже пришло время этого второго Ньютона, который сделал понятным возникновение травинок. Мы говорим об английском математике Майкле Барнсли, специалисте по одному из интереснейших аспектов теории хаоса — фракталам. Фрактальная геометрия — неразлучная спутница теории хаоса, в чем вы еще не раз убедитесь, читая эту книгу.

Барнсли обнаружил, что при простой «игре в хаос», словно по волшебству, могут появляться листья папоротника и других растений. Игра в хаос заключается всего лишь в постепенном нанесении на лист бумаги последовательности точек, которая в пределе образует знакомую картину. Подведем итог: на основе случайного закона (Кант сказал бы: закона, не подчиняющегося намерению) при помощи компьютера мы способны породить лист растения. Для этого достаточно выбрать фиксированную точку (расположенную не в центре экрана) и начать подбрасывать монету.

Когда выпадет решка, отметим новую точку на расстоянии в 6 единиц на северо-запад от предыдущей. Когда выпадет орел, новую точку сдвинем на 25 % к центру относительно предыдущей. Очевидно, что это построение может повторяться произвольное число раз и изначально расположение точек будет казаться случайным.

Однако после нескольких тысяч бросков на экране непостижимым образом постепенно начнет проявляться лист папоротника. Хаос словно бы порождает порядок в виде фрактального множества — папоротника Барнсли.

Мы никогда не узнаем, что сказал бы великий кёнигсбергский философ, если бы смог охватить взглядом удивительное множество природных систем, строго детерминированных, но при этом обладающих хаотическим поведением со всеми вытекающими последствиями, то есть поведением случайным, или стохастическим (по-гречески stochastikos означает «умеющий угадывать»). Многие движения, кажущиеся беспорядочными, в действительности описываются строгими правилами, в которых нет места случайности. Таким образом, хаос и фракталы — это новый инструмент познания Вселенной.



«Спонтанное» появление папоротника Барнсли.

* * *

ОТРЫВОК ИЗ РОМАНА «ВЕК ПРОСВЕЩЕНИЯ» АЛЕХО КАРПЕНТЬЕРА

Наблюдая за улиткой, Эстебан думал о том, что на протяжении тысячелетий перед взором первобытных народов, живших рыбною ловлей, постоянно находилась спираль, но они еще не способны были не только постичь ее форму, но даже осознать ее присутствие. Он созерцал похожего на шар морского ежа, спиралевидную раковину моллюска, желобки на раковине святого Иакова и поражался богатству форм, открытых человечеству, которое, увы, не способно осмыслить то, что представало его глазам. «Верно, и ныне многое вокруг меня приняло четкие и определенные формы, но я не могу постичь их смысл!» — думал Эстебан. Какой знак, какая мысль, какое предупреждение таятся в завитках цикория, в немом языке мхов, в строгой форме плода миртового дерева? Созерцать улитку. Одну улитку… Те Deum…[2]

* * *

ДИАЛОГ ИЗ ФИЛЬМА «ПАРК ЮРСКОГО ПЕРИОДА»

(РЕЖИССЕР СТИВЕН СПИЛБЕРГ, 1993 ГОД), СНЯТОГО ПО ОДНОИМЕННОМУ РОМАНУ МАЙКЛА КРАЙТОНА

- Тираннозавр не намерен подчиняться правилам и распорядку, он — суть хаоса.

- Я не понимаю, что такое хаос. Что это значит?

- Это непредсказуемость в сложных системах. Проще говоря — эффект бабочки. Бабочка взмахнула крылышком в Пекине, а в Центральном парке полил дождь. Сейчас вы все увидите. Дайте мне этот стакан воды. Машину постоянно качает, но ничего, это просто пример.

Допустим, вам в руку упала капелька воды. Куда она, по-вашему, скатится? К какому пальцу?

- Скажем, к большому.

- Так, хорошо. Не убирайте руку! Не шевелитесь. Я снова капну, в то же самое место. Куда теперь скатится капля?

- Не знаю. Туда же?

- Не туда! Почему? Потому что невидимые глазу колебания, ориентация волосинок на руке, количество крови в венах, микроскопические изъяны кожи, как правило, непостоянны и значительно влияют на результат.

- Как это называется?

- Непредсказуемость. Смотрите. Видите? Я снова прав. Кто мог предположить, что д-р Грант неожиданно выпрыгнет на ходу из машины? И еще один пример. Я остался один и разговариваю с самим собой. Теория хаоса в действии.

* * *


Рождение теории хаоса

Сегодня хаос у всех на устах. О нем сняты такие фильмы, как «Хаос», «Эффект бабочки» и «Парк Юрского периода». Ему посвящены художественные произведения, к примеру «Баталист» испанского писателя Артуро Перес-Реверте, где удачно сделанная фотография полностью меняет жизнь хорватского партизана, рассказы «И грянул гром» Рэя Брэдбери, в котором гибель доисторической бабочки меняет исход президентских выборов в США, или «Крах Баливерны» Дино Буццати, где неудержимое восхождение по отвесной скале получает неожиданную развязку.

Но что такое хаос? В большинстве словарей приводится несколько определений этого понятия. К примеру, в толковых словарях русского языка дается три значения слова «хаос». Первые два отражают изначальный смысл, которым наделялось это слово в Древней Греции, а также его привычное значение.

1. В древнегреческой мифологии и философии — беспорядочная материя, неорганизованная стихия, существовавшая в мировом пространстве до образования известного человеку мира.

2. Полный беспорядок, неразбериха.

Третье определение отражает смысл хаоса в физике и математике.

3. Явление, при котором поведение нелинейной системы выглядит случайным, несмотря на то что оно определяется детерминистическими законами.

В этой книге мы, разумеется, поговорим о хаосе в третьем, последнем значении, а также покажем, как математический хаос находит место в массовом сознании благодаря его использованию в физике, биологии, медицине, нейробиологии и других науках. Множество систем в нашем мире, начиная от человеческого мозга и заканчивая климатом Земли, полны хаоса.

В этой и следующей главах мы расскажем историю математической истории хаоса начиная с эпохи Ньютона, периода научной революции, и заканчивая XXI веком.

Знаковым в развитии теории хаоса стал рубеж XIX и XX веков, когда ряд нерешенных задач небесной механики, связанных с устойчивостью Солнечной системы (столкнется ли Луна с Землей? уничтожит ли удар астероида жизнь на Земле?), был рассмотрен талантливым математиком Анри Пуанкаре принципиально иным образом. И в этой, и в следующей главе мы будем использовать интуитивно понятное определение хаоса, близкое к тому, которое применяется в механике, так как именно в механике впервые были описаны системы, которые мы сегодня называем хаотическими. В третьей главе попытаемся применить более формальный подход и постараемся точнее объяснить, в чем именно заключается упомянутый в предисловии эффект бабочки, уже знакомый нам по литературе и кино.

Но начнем с самого начала. Так называемая теория хаоса родилась усилиями нескольких математиков, заинтересованных в том, чтобы связать динамические системы (системы, эволюционирующие со временем) и геометрию, — в их число входили уже упомянутый Анри Пуанкаре и Стивен Смэйл. Немалый вклад в создание теории хаоса внесли физики, изучавшие столь далекие друг от друга области, как метеорология и астрономия, в частности Эдвард Лоренц и Мишель Эно, а также некоторые биологи, занимавшиеся изучением роста популяций, в частности Роберт Мэй. В этот длинный список также следует включить многих ученых, работавших сразу в нескольких областях, в частности Джеймса Йорка, Давида Рюэля, Митчелла Фейгенбаума, Майкла Барнсли и многих других.

Начнем путь к истокам теории хаоса. Нам предстоит преодолеть три реки, которые впадают в море динамических систем: это механика Ньютона, аналитическая механика Лапласа и, наконец, общая теория, задуманная Пуанкаре, который по праву станет главным героем этой главы.


От Ньютона — к Лейбницу, от Лейбница — к Лапласу

В попытках понять траектории движения планет, которые наблюдал Кеплер в свой телескоп, Ньютон составил математические модели, следуя путем Галилея. Так, Ньютон сформулировал законы, связывавшие физические величины и скорости их изменения, то есть, к примеру, пространство, пройденное телом, и скорость тела или скорость тела и ускорение. Следовательно, физические законы, описывавшие динамические системы, выражались в виде дифференциальных уравнений, в которых дифференциалы служили мерами скорости изменения.

Дифференциальное уравнение — это уравнение, главной неизвестной которого является скорость изменения величины, то есть ее дифференциал или производная. И дифференциал, и производная функции описывают изменение ее значений, то есть показывают, как ведет себя функция: возрастает, убывает или остается неизменной. В наших примерах ускорение описывает изменение скорости движущегося тела, так как представляет собой отношение дифференциалов скорости и времени.

Иными словами, ускорение — это производная скорости по времени. Следовательно, ускорение характеризует изменение скорости с течением времени.

Простые решения дифференциальных уравнений, как и алгебраических, крайне редки. Аналитическая механика, появившаяся позднее, стала шагом вперед по сравнению с механикой Ньютона, поскольку была ближе к анализу, чем к геометрии.

В результате изучение физических явлений стало сводиться к поиску дифференциальных уравнений, описывающих эти явления. После того как Ньютон открыл знаменитое дифференциальное уравнение «сила равна произведению массы на ускорение», описывающее движение систем точек и твердых тел, швейцарский математик Леонард Эйлер (1707–1783) определил систему дифференциальных уравнений, описывающих движение непрерывных сред, например воды, воздуха и других потоков, в которых отсутствует вязкость. Впоследствии физик и математик Жозеф Луи Лагранж (1736–1813) изучил звуковые волны и сформулировал уравнения акустики, а Жан-Батист Жозеф Фурье (1768–1830) рассмотрел потоки распределения тепла и описал их с помощью уравнения. Математический анализ, по мнению Фурье, был так же обширен, как и сама природа.

В XVII–XIX веках физики последовательно расширяли математическую картину мира, предлагая все новые дифференциальные уравнения для изучения самых разных областей, к примеру уравнения Навье — Стокса, описывающие движение вязкой жидкости, или уравнения Максвелла, характеризующие электромагнитное поле. Всю природу — твердые тела, жидкости, звук, тепло, свет, электричество — стало возможно описать с помощью дифференциальных уравнений. Однако найти уравнения, характеризующие то или иное явление природы, и решить их — две принципиально разные задачи.

Существуют два типа дифференциальных уравнений: линейные и нелинейные.

Дифференциальное уравнение называется линейным, если сумма двух его решений также будет его решением. В линейном уравнении ни сама неизвестная функция, ни ее производная не возведены в степень, отличную от нуля или единицы. Линейные дифференциальные уравнения описывают события, в которых действие совокупности причин равно совокупному действию этих причин по отдельности. В нелинейных уравнениях, напротив, подобное соотношение между причинами и следствиями не наблюдается, и совокупность двух причин может привести к неожиданным последствиям. Как вы увидите позднее, нелинейности всегда сопутствует хаос.

* * *

НЬЮТОН И ПЕРВОЕ ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ

Самое знаменитое дифференциальное уравнение, несомненно, принадлежит Ньютону: сила равна произведению массы на ускорение. В виде символов это уравнение записывается так:

F = ma где а = dv/dt — (ускорение есть отношение дифференциалов скорости и времени, то есть производная скорости по времени). Рассмотрим еще два простых примера:

(dy/dx) + y = 0

Это линейное дифференциальное уравнение, однако

(dy/dx) + y2 = 0

уже будет нелинейным, так как в этом случае неизвестная функция у возведена в степень, отличную от нуля или единицы.

* * *

Теория линейных дифференциальных уравнений довольно быстро была разработана полностью. А вот с теорией нелинейных дифференциальных уравнений все обстояло иначе, и нелинейные задачи, например уравнение колебаний маятника, решаются путем приведения уравнений к линейному виду, то есть путем устранения всех неудобных членов. Иными словами, для данного нелинейного дифференциального уравнения решалось похожее линейное дифференциальное уравнение, а полученные решения использовались как приближенные решения исходного уравнения.

Этот метод был назван методом возмущений. Вскоре стала понятна его неэффективность, однако прошло еще много времени, прежде чем нелинейным дифференциальным уравнениям стало уделяться примерно такое же внимание, что и линейным.

Одной из нелинейных задач, не дававших покоя физикам и математикам с XVII века, была задача небесной механики, связанная с моделированием Солнечной системы — задача n тел. Необходимо определить траекторию движения в пространстве для n тел разной массы, взаимодействующих по закону тяготения.

Несмотря на простую формулировку, решить эту задачу совсем не просто. Ньютон решил геометрически задачу двух тел для двух сфер, движущихся под действием взаимного притяжения, и привел решение в «Математических началах натуральной философии». В 1734 году Даниил Бернулли (1700–1782) привел аналитическое решение этой задачи в статье, удостоенной премии Французской академии наук, а во всех подробностях задача была рассмотрена лишь в 1744 году Эйлером, в труде «Теория движения планет и комет».



Портрет Эйлера.

«Читайте, читайте Эйлера — он учитель всех нас!»

(Пьер-Симон Лаплас)

* * *

НЕЛИНЕЙНОЕ УРАВНЕНИЕ КОЛЕБАНИЙ МАЯТНИКА

Если обозначить через θ угол наклона маятника относительно вертикали, то нелинейное дифференциальное уравнение колебаний маятника будет записываться так: d2θ/dt2 + sin θ = 0.

Для малых колебаний это уравнение можно заменить линейным, использовав в качестве приближенного значения тригонометрической функции sin θ сам угол θ. Полученное уравнение d2θ/dt2 + sin θ = 0 решить нетрудно: это линейное дифференциальное уравнение второго порядка, так как в нем фигурирует вторая производная, однако ни вторая производная, ни θ не возводятся в степень, большую 1.

Приведем еще один пример нелинейного дифференциального уравнения: m∙(dv/dt) — v2 = mg, где g — ускорение свободного падения (9,8 м/с2). Это уравнение описывает движение снаряда в среде, сопротивление которой пропорционально квадрату его скорости (v2 и будет нелинейным членом уравнения).

* * *

После того как задача n тел была решена для n = 2, физики и математики XVIII и XIX столетий приступили к решению этой задачи для n = 3, чтобы описать относительное движение Солнца, Земли и Луны. Были начаты две параллельные исследовательские программы: в рамках первой велся поиск общих приближенных решений с помощью метода возмущений, в рамках второй — поиск точных частных решений. К примеру, Лагранж решил задачу трех тел, рассмотрев систему, включающую Солнце, Юпитер и астероид Ахиллес. Самый знаменитый труд Лагранжа,

«Аналитическая механика», стал достойным завершением работ Ньютона по механике. Вообще этот математик считал Ньютона счастливейшим из ученых: Вселенная всего одна, а ее математические законы открыл именно он.

В то же самое время возник еще один вопрос, тесно связанный с задачей n тел, — вопрос об устойчивости Солнечной системы, которая в то время представляла собой систему из семи тел. Ответ на этот вопрос напрямую зависел от решения задачи n тел. Ньютон знал, что для задачи двух тел можно привести точное решение для любого промежутка времени, однако при рассмотрении трех тел все обстояло иначе.

Хотя взаимное притяжение планет слабее, чем их притяжение к Солнцу, этими силами нельзя пренебречь, поскольку они могут сместить планету с орбиты или даже вытолкнуть ее за пределы Солнечной системы.

В своем труде «О движении тел по орбитам» (De motu corporum in gyrum), изданном в 1684 году, Ньютон писал, что планеты не движутся по эллипсам и не проходят по одной и той же орбите дважды. Он признавал, что задача о расчете траекторий движения планет на произвольный интервал времени неподвластна человеческому разуму.



Лист рукописи «О движении тел по орбитам» Исаака Ньютона.


Оставался вопрос: устойчива ли Солнечная система? Не сойдут ли ее планеты в будущем со своих орбит? По мнению Ньютона, если планеты Солнечной системы постепенно сходили с орбит, требовалось радикальное решение: рука Бога периодически должна подталкивать каждую планету внутрь орбиты, восстанавливая равновесие. Лейбниц возражал Ньютону: Создателя нельзя уподоблять часовщику, который время от времени подводит часы.

Несколько десятилетий спустя великий физик и математик Пьер-Симон Лаплас (1749–1827), который при Наполеоне занял пост министра внутренних дел, счел, что объяснил отклонения Сатурна и Юпитера от орбиты. Эти отклонения сильно беспокоили Ньютона, считавшего, что они объясняются исключительно законом всемирного тяготения и со временем скомпенсируют — ся. Юпитер, казалось, двигался с ускорением, Сатурн же постепенно замедлялся, и если бы эта тенденция сохранялась, то Юпитер покинул бы Солнечную систему, а Сатурн упал бы на Солнце.

* * *

ПОЛЕМИКА ЛЕЙБНИЦА И КЛАРКА

В 1715–1716 годах философ, математик, юрист, посол и человек множества других профессий Готфрид Вильгельм Лейбниц (1646–1716) вступил в дискуссию по переписке с Сэмюелом Кларком (1675–1729), англиканским священником и сторонником Ньютона. Спор был посвящен влиянию механики Ньютона на христианские догматы. Лейбниц к тому времени уже вел активную переписку с самим Ньютоном по поводу авторства дифференциального и интегрального исчисления: оба ученых обвиняли друг друга в плагиате. Лейбниц во время этой переписки обсудил открытия Ньютона на примере задачи трех тел и устойчивости Солнечной системы.

Предполагалось, что Бог совершенен, следовательно, созданный Им мир — лучший из возможных, поэтому абсурдно предположение, что Бог должен регулярно подводить часы Вселенной.

По мнению Лейбница, Ньютон недооценил Бога. И действительно, в «Оптике» Ньютон писал: «В связи с вязкостью жидкостей, трением частей и слабой эластичностью тел движение с намного большей вероятностью будет затухать, нежели появляться, и неизменно будет сходить на нет». В ответ на это Лейбниц задавал вопрос: «Неужели машина, созданная Богом, способна приходить в такой беспорядок, что Он сам должен чинить ее подобно простому ремесленнику?»

Ньютон, дабы не унижать свое достоинство, предоставил право ответа на этот вопрос Кларку.

На этом полемика Лейбница и Ньютона завершилась, и английская математика надолго оказалась в изоляции. В результате пострадала и континентальная наука: французы, к примеру, долго следовали Декарту и его теории вихрей, пока Вольтер в 1727 году, вернувшись из Англии, не познакомил соотечественников с теорией тяготения Ньютона.

* * *

Лаплас доказал, что ускорение Юпитера и замедление Сатурна были вызваны второстепенными факторами, обусловленными особым расположением планет относительно Солнца. Солнечная система восстанавливала равновесие самостоятельно. Казалось, что спустя почти 100 лет Лейбниц праздновал победу над Ньютоном. Когда Лаплас представил свой «Трактат о небесной механике» Наполеону, тот заметил, что ни в одном томе этого монументального труда не упоминается Бог. Лаплас ответил: «Это потому, что я в этой гипотезе не нуждался». Система мира, описанная Лапласом, была полностью детерминированной и устойчивой. В своем «Опыте философии теории вероятностей» (1814) ученый писал:

«Мы должны рассматривать нынешнее состояние Вселенной как результат его предшествующего состояния и как причину состояния, которое воспоследует. Разум, которому в настоящий момент были бы известны все силы, движущие природой и относительное положение всех существ, ее составляющих, и который был бы достаточно обширным, чтобы подвергнуть все эти данные анализу, подытожил бы в одной и той же формуле движения величайших тел Вселенной и мельчайших атомов: для этого разума ничто не было бы неопределенным, и грядущее, равно как и прошлое, предстали бы перед его глазами.

То совершенство, которым человеческий разум наделил астрономию, есть лишь слабый отголосок этого разума. Открытия человека в области механики и геометрии наряду с открытием закона всемирного тяготения позволили описать теми же аналитическими выражениями прошлое и будущее состояние системы мира».

Однако Лаплас был очень и очень далек от истины. В своих уравнениях, описывавших систему «Солнце-Юпитер-Сатурн» (задачу трех тел) ученый пренебрег одним слагаемым, которое он счел слишком малым. Но это слагаемое могло неограниченно возрастать и вести к потере устойчивости Солнечной системы. В отличие от Лагранжа, крайне скрупулезного в расчетах, Лаплас был подобен лису, заметавшему собственные следы хвостом. Он часто забывал указывать источники, из которых брал те или иные результаты, и создавалось впечатление, что все они принадлежали ему лично. Математические задачи, с которыми Лаплас сталкивался в физических исследованиях, он решал так же небрежно. Американский астроном, который перевел «Трактат о небесной механике» на английский язык, говорил, что каждый раз, когда он видел фразу «нетрудно видеть, что…», то понимал: для восстановления пропущенного потребуется несколько часов упорного труда.



Портрет Лапласа (1749–1827), «Ньютона революционной Франции».


Многие физики и математики XIX века посвятили себя поискам полного решения задачи трех тел и ответа на вопрос об устойчивости Солнечной системы. Со времен великого Ньютона до 1900 года на эту тему было написано более 800 работ.

Среди математиков, пытавшихся справиться с этой задачей, нашелся и человек, сыгравший ключевую роль в создании теории хаоса, — гениальный Анри Пуанкаре (1854–1912).


Конкурс короля Оскара

Еще в детстве Пуанкаре проявлял живой интерес к математике, однако в остальном он был неуклюжим и рассеянным. Он считается последним математиком-универ салом: в отличие от узких специалистов, Пуанкаре интересовало буквально все — он занимался анализом, дифференциальными уравнениями, группами, топологией, небесной механикой и математической физикой, а также философией, преподаванием и просветительской работой. Разумеется, он был первым математиком, кто столкнулся лицом к лицу с хаосом при решении задачи трех тел.



Жюль Анри Пуанкаре в возрасте 36 лет.

«Мысль — это всего только молния в ночи. Но в этой молнии — все».


Знаменитая работа Пуанкаре, посвященная этой задаче, была опубликована в 1890 году, когда ученому было всего 36 лет, однако ее история началась раньше.

В 1885 году европейские математики узнали, что под покровительством Оскара II, короля Швеции и Норвегии, пройдет важный международный математический конкурс. Оскар II, изучив ряд математических дисциплин в университете, чувствовал, что математике нужно придать новый толчок. В рамках международного конкурса была учреждена премия для того, кто сможет решить задачу трех тел и открыть путь к изучению устойчивости Солнечной системы.

В 1884 году Магнус Геста Миттаг-Леффлер (1846–1927), преподаватель математики Стокгольмского университета, предложил королю Оскару II провести математический конкурс, приуроченный к шестидесятилетнему юбилею монарха, который должен был праздноваться через 5 лет, 21 января 1889 года. В те годы подобные конкурсы были вполне обычным делом, и хотя премии обычно не отличались большим размером, победители пользовались тем же авторитетом, что и нынешние нобелевские лауреаты. С другой стороны, этим конкурсом Миттаг-Леффлер хотел привлечь внимание специалистов к журналу Acta Mathematica, который он основал незадолго до того при неоценимой поддержке короля.

Подобрать членов жюри и организационного комитета конкурса было совсем не просто. Миттаг-Леффлер хотел избежать споров и обвинений в предвзятости, поэтому выбрал тех, с кем был знаком лично: своих бывших преподавателей, Шарля Эрмита и Карла Вейерштрасса как представителей французской и немецкой математической школы, а также Софью Ковалевскую, блестящую ученицу Миттаг-Леффлера и Вейерштрасса.

С помощью Миттаг-Леффлера члены организационного комитета сформулировали четыре вопроса, один из которых касался решения задачи n тел: «Для данной системы, состоящей из произвольного числа материальных точек, взаимодействующих друг с другом согласно законам Ньютона, предлагается выразить координаты каждой точки с помощью ряда, содержащего известные функции времени, которые бы равномерно сходились для любого значения времени.

По-видимому, эта задача, решение которой расширит наши знания об устройстве Вселенной, может быть решена известными на сегодня методами анализа. Это следует предполагать по меньшей мере потому, что незадолго до смерти Иоганн Петер Густав Лежён Дирихле сообщил своему другу, математику Леопольду Кронекеру, что обнаружил метод интегрирования дифференциальных уравнений механики и успешно применил его для доказательства устойчивости нашей Солнечной системы. К сожалению, нам ничего не известно об этом методе, хотя почти со стопроцентной уверенностью можно предполагать, что он не подразумевал каких-либо объемных и сложных расчетов, а основывался на некой простой идее. Разумно ожидать, что эту идею можно будет обнаружить вновь в ходе более тщательного и серьезного исследования.

Если никому не удастся решить предложенную задачу в указанные сроки, премия может быть присуждена работе, посвященной любой другой задаче механики, которая будет рассмотрена указанным образом и полностью решена».

Когда новость о проведении конкурса была опубликована в журнале Acta Mathematica, 31-летний Пуанкаре уже был известен в мире математики, однако он не сразу согласился принять участие в конкурсе. Митгаг-Леффлеру пришлось отправить ему письмо, призывая подать на конкурс какую-либо работу. Пуанкаре ответил, что планирует рассмотреть задачу трех тел не затем, чтобы решить ее (это представлялось ему практически невозможным), а главным образом для того, чтобы получить новые важные результаты, достойные быть представленными жюри конкурса.

В конце концов воодушевленный Пуанкаре начал развивать свои идеи, касавшиеся качественной теории дифференциальных уравнений. Эту теорию Пуанкаре разработал в 1881–1885 годах и изложил в четырех статьях, важнейшая из которых носила название «О кривых, определяемых дифференциальными уравнениями». В этих работах были рассмотрены линейные и нелинейные дифференциальные уравнения не столько с количественной, сколько с качественной точки зрения (иными словами, он стремился найти не решения в явном виде, а описать их общую динамику и устойчивость), для чего обратился к недавно созданной дисциплине — топологии, которая в то время называлась анализом размещения (лат. analysis situs).

В отличие от Лагранжа, который хвастался тем, что его «Аналитическая механика» не содержала ни одной иллюстрации, Пуанкаре смело использовал геометрические методы.

Понимая невозможность решить большинство дифференциальных уравнений (для нелинейных уравнений метод возмущений не работал), Пуанкаре рассмотрел их геометрически. Начал он с того, что рассмотрел дифференциальное уравнение


где производная у по х равна отношению двух произвольных функций Р и Q. Ученый подробно изучил так называемые особые точки, то есть точки с координатами (х, у), в которых Р(х, у) = Q(x, у) = 0. Иными словами, особые точки — это точки, в которых производная у по х равна нулю, разделенному на ноль, то есть точки, в которых возникает неопределенность, ведь операция деления на 0 не имеет смысла. Именно поэтому такие точки называются особыми.

* * *

РЕЗИНОВАЯ ГЕОМЕТРИЯ

Топология — это раздел математики, изучающий исключительно форму и расположение геометрических объектов без учета их количественных свойств, в частности размеров. Например, схемы метро дают информацию о станциях и пересадках, но искажают расстояния. Важнейшую роль в развитии топологии сыграл Пуанкаре, благодаря которому она обрела популярность как «качественная геометрия». Предоставим слово самому Пуанкаре:

«Так называемый «анализ размещения», analysis situs, это целая доктрина, которая привлекала внимание крупнейших геометров и в которой одна за одной появилось несколько важных теорем. Отличие этих теорем от теорем классической геометрии в том, что они носят качественный характер и остаются корректными даже тогда, когда фигуры неумело срисует неопытный чертежник, исказив их пропорции и заменив прямые более или менее криволинейными отрезками».

Топологию часто сравнивают с геометрией резиновых лент: если бы геометрические фигуры были изготовлены из эластичной резины, их можно было бы превращать друг в друга. Так, с точки зрения топологии сфера и куб неразличимы, и не важно, что поверхность сферы гладкая, а куб имеет ребра. Говорят, что тополог — это математик, не способный отличить бублик от чашки кофе, так как его невнимательный взгляд замечает лишь то, что и чашка, и бублик имеют единственное отверстие (бублик — дырку, чашка — отверстие в ручке). Мы можем отличить бублик от апельсина, так как в бублике дырка есть, а в апельсине — нет. Но как мы отличили бы бублик от апельсина, если бы были совсем маленькими и жили на их поверхности? (Этот вопрос вовсе не так прост, ведь сферическая поверхность Земли кажется нам плоской.) Один из методов, позволяющий избавиться от сомнений, заключается в изучении группы Пуанкаре для нашего пространства. Допустим, что мы привязали собаку к крыльцу дома очень длинным резиновым поводком и оставили ее на несколько дней. Если мы живем на поверхности бублика, то, когда мы вернемся домой, поводок скорее всего будет натянут, так как собака наверняка пройдет через отверстие бублика. Если же мы живем на поверхности апельсина, то, когда мы вернемся, поводок будет висеть свободно, и мы сможем смотать его обратно.

Пуанкаре был автором знаменитой гипотезы, носящей его имя: «Является ли трехмерная сфера единственным трехмерным многообразием, на поверхности которого любая петля стягивается в точку?». Эта обобщенная гипотеза была доказана Фридманом для четырех измерений и Смэйлом — для большего числа измерений. Полное доказательство гипотезы Пуанкаре для трех измерений привел российский математик Григорий Перельман в 2003 году.

* * *

Далее Пуанкаре рассмотрел их с точки зрения топологии: он изучил поведение кривых, заданных дифференциальным уравнением, в окрестности этих точек, поскольку решения исходного дифференциального уравнения — это функции, которые можно представить на плоскости графически. Точнее говоря, для этих функций можно построить график в так называемой фазовой плоскости. Термин «фаза» изначально появился в электротехнике и обозначает состояние или место, в котором находится определенное решение. На фазовой плоскости изображается семейство кривых, которые описывают решения дифференциального уравнения. Эти кривые часто называются траекториями или, по аналогии с движением планет, орбитами.

Пуанкаре разделил особые точки на четыре класса: центр, фокус, узел, седло. Названия классов заимствованы из гидродинамики, так как траектории (орбиты) на фазовой плоскости можно сравнить с потоком жидкости, распространяющимся по ней. Центры — это особые точки, окруженные периодическими орбитами; фокусы — особые точки, которые притягивают близлежащие траектории (они подобны водостокам фазовой плоскости); узлы, напротив, являются неустойчивыми, так как отталкивают близлежащие траектории (продолжая аналогию с гидродинамикой, такие точки можно сравнить с кранами, из которых льется вода на фазовую плоскость); наконец, седла — особые точки, которые являются устойчивыми и неустойчивыми одновременно. Седла — это точки, в которых словно бы сталкиваются два потока воды. Траектории, которые пересекаются точно в седле, называются сепаратрисами.

Седла Пуанкаре называл гомоклиническими точками, сепаратрисы — двоякоасимптотическими. В конце главы вы узнаете, почему он выбрал именно такие названия.



Слева — центр, справа — фокус.



Слева — узел, справа — седло идее сепаратрисы, которые в этом случае представляют собой две прямые, пересекающиеся в центральной точке.


Позднее Пуанкаре сформулировал теорему, которая сегодня называется теоремой Пуанкаре — Бендиксона (в честь шведского математика, закончившего ее доказательство). Согласно этой теореме, наряду с предельными циклами (замкнутыми кривыми, притягивающими соседние траектории) указанные выше разновидности особых точек являются единственно возможными на плоскости. Так как в двух измерениях существуют только центры, фокусы, узлы, седла и предельные циклы, то можно сказать, что количество траекторий, которые описывают решения дифференциальных уравнений, невелико: они могут описывать витки вокруг центра или предельного цикла, удаляться от узла, проходить вблизи седла или приближаться к фокусу. Все возможные варианты траектории можно пересчитать по пальцам одной руки.



Предельный цикл осциллятора Ван дер Поля. Он представляет собой замкнутую кривую (на рисунке — широкая линия), которая притягивает к себе все ближайшие траектории.


В 1881 году, за четыре года до проведения конкурса, Пуанкаре уже понимал, что созданную им новую качественную теорию можно использовать для решения задачи трех тел и ответа на вопрос об устойчивости Солнечной системы. Не напрасно лейтмотивом статьи «О кривых, определяемых дифференциальными уравнениями» стали вопросы: «Описывает ли движущаяся точка замкнутую кривую? Всегда ли эта кривая будет находиться в определенной части плоскости? Иными словами, если использовать астрономические термины, является ли орбита устойчивой?».

За несколько лет до проведения конкурса, в 1878 году, американский астроном Джордж Уильям Хилл привлек всеобщее внимание к важности периодических решений (замкнутых кривых) задачи об устойчивости Солнечной системы. Периодическое (то есть повторяющееся) движение очень полезно при изучении устойчивости: при таком движении тело никогда не сойдет с орбиты, не столкнется с другим телом и не улетит бесконечно далеко. Хилл нашел периодическое решение задачи трех тел для случая, когда масса одного из них пренебрежимо мала по сравнению с остальными.

Проблема Хилла представляла собой частный случай задачи трех тел, в котором легкая планета движется под действием сил притяжения двух одинаковых звезд, лежащих в одной плоскости. Изучив проблему Хилла, Пуанкаре доказал: эту проблему, равно как и общий случай задачи трех тел, нельзя решить классическими методами решения дифференциальных уравнений — в отличие от задачи двух тел (ее решили Ньютон, Бернулли и Эйлер), не все интегралы движения можно решить при помощи законов сохранения (энергии, импульса и так далее). Пуанкаре сделал вывод: какого-то одного общего решения задачи трех тел, выраженного в простых и привычных функциях, не существует.

У Пуанкаре оставался последний шанс — метод возмущений. Применив его, он нашел решения в виде бесконечных степенных рядов. Тем не менее ничто не указывало, что эти ряды (аналогичные ряды ранее получили Эйлер, Лагранж и Линдстедт) сходились, пусть они и удовлетворяли уравнениям задачи трех тел. В конечном счете Пуанкаре оставил попытки найти аналитическое решение задачи.

Лишь в 1909 году, то есть более чем 20 лет спустя, математик Карл Зундман (1873–1949) наконец представил общее решение задачи трех тел в виде сходящегося ряда. Искомый ряд сходился крайне медленно, а решение Зундмана было настолько сложным, что на практике оказалось совершенно бесполезным, но если бы он добился своего результата 20 годами ранее, то, возможно, получил бы премию от короля Оскара II.

Пуанкаре, оставив анализ, обратился к топологии, решив, что если он рассмотрит вопрос с другой стороны, то докажет существование периодических решений.

Так как устойчивость решений нельзя было оценить путем изучения рядов, Пуанкаре решил использовать свою качественную теорию дифференциальных уравнений: описывают ли эти решения замкнутые кривые, то есть являются ли они периодическими? Если движущееся тело описывает замкнутую кривую, то есть цикл, то рано или поздно его движение повторится, следовательно, движение тела будет периодическим. Вооружившись своей новой теорией, в которой были объединены анализ и топология, Пуанкаре показал: существует бесконечно много замкнутых кривых, а следовательно, бесконечно много периодических решений.



Слева — король Швеции и Норвегии Оскар II, справа — Магнус Геста Миттаг-Леффлер. Король-пифагореец и математик-платоник.


И победителем становится…

На конкурс короля Оскара II двенадцать математиков представили двенадцать работ. Всего в пяти из них рассматривалась задача трех тел, но ни в одной не приводилось требуемого решения в виде степенного ряда. В итоге 20 января 1889 года, за день до шестидесятилетнего юбилея монарха, уважаемое жюри, получив одобрение короля, объявило победителем Анри Пуанкаре за статью «О задаче трех тел и уравнениях движения»: «Эта статья не может считаться полным решением предложенной задачи, однако она столь важна, что ее публикация откроет новую эру в истории небесной механики».

Французская пресса сочла Пуанкаре едва ли не героем, его победа расценивалась как триумф французской математики над немецкой, которой традиционно отдавалось первенство.

Однако вскоре стало понятно: что-то пошло не так. Когда Миттаг-Леффлер опубликовал статью Пуанкаре, астроном Йохан Аугуст Гуго Полден, подобно Немезиде, вместе с Леопольдом Кронекером незамедлительно провозгласил, что эта работа ничем принципиально не отличается от более ранней его работы, опубликованной в 1887 году.

Ситуация обострилась еще больше, когда несколько месяцев спустя, в июле 1889-го, на Пуанкаре с градом вопросов обрушился Эдвард Фрагмен, редактор журнала Acta Mathematica, который хотел прояснить непонятные моменты объемной статьи перед публикацией. Эрмит неспроста писал: «В этой работе, как и почти во всех остальных, Пуанкаре только показывает путь, однако требуется приложить немало усилий, чтобы устранить лакуны и закончить его работу».

Кроме того, в конце ноября сам автор обнаружил в статье грубую ошибку, о чем сообщил Миттаг-Леффлеру в письме, датированном 1 декабря:

«Сегодня утром я написал Фрагмену, чтобы сообщить о допущенной мной ошибке, но я сомневаюсь, что он даст тебе прочесть мое письмо. Однако последствия этой ошибки намного серьезнее, чем я изначально предполагал. Двоякоасимптотические решения [сепаратрисы, проходящие через седло] не являются замкнутыми кривыми… следовательно, не являются периодическими решениями. Верно лишь то, что две составляющие этой кривой [две сепаратрисы] пересекаются бесконечное число раз. Не буду говорить, какое беспокойство причинило мне это неприятное открытие. В статью необходимо внести много изменений».

Это письмо, несомненно, поразило редактора журнала и организатора конкурса: признание Пуанкаре серьезно подорвало авторитет жюри и организаторов. Миттаг-Леффлер оказался в крайне затруднительном положении. Он попытался изъять из обращения уже напечатанные копии статьи и не придавать огласке ошибку Пуанкаре, чтобы не повредить репутации ученого. Весь тираж очередного номера престижного журнала Acta Mathematica пришлось уничтожить — сохранился единственный экземпляр номера, который сейчас хранится в сейфе в Институте Миттаг-Леффлера. Между тем всего за два месяца, то есть за декабрь 1889-го и январь 1890 года, Пуанкаре полностью исправил все ошибки в своей работе, отправил ее в печать и оплатил публикацию из своего кармана, так как еще до участия в конкурсе согласился покрыть все накладные расходы. Пуанкаре заплатил более 3500 шведских крон при том, что в качестве премии он получил всего 2500 крон.

Прекрасный пример интеллектуальной честности.


Математический монстр Пуанкаре

В чем же заключалась ошибка Пуанкаре? Французский математик заявил, что нашел бесконечное множество периодических решений задачи трех тел, но потом обнаружил, что некоторые эти решения не были периодическими, так как не описывали замкнутые кривые. Именно благодаря этой грубой ошибке Пуанкаре смог обнаружить, что двоякоасимптотические решения, сепаратрисы, проходящие через седловые точки (эти точки Пуанкаре называл гомоклиническими), определяли хаотические орбиты.

Рассмотрим эту ситуацию подробнее. Пуанкаре и Бендиксон смогли доказать свою теорему на плоскости, в двух измерениях. Так как траектории на фазовой плоскости не могут пересекаться, число корректных траекторий невелико. Как мы уже показали, существует всего пять основных видов траекторий: они могут приближаться к особой точке, удаляться от нее (для фокусов, узлов и седел) либо периодически вращаться вокруг центра или вблизи предельного цикла.

В задаче трех тел, движущихся под действием сил взаимного притяжения, рассматривается трехмерное пространство, которое допускает куда больше сочетаний и возможных случаев. В фазовом пространстве все обстоит намного сложнее: траектории необязательно должны пересекаться — достаточно, чтобы они переплетались между собой. На плоскости, в отличие от трехмерного пространства, траектории не могут сплетаться. Кроме того, если число измерений пространства больше двух, система может иметь аттракторы, которые будут весьма заметно отличаться от особых точек (фокусов) и предельных циклов. Как вы узнаете из следующей главы, в многомерных пространствах возникают так называемые странные аттракторы, которые, как правило, сопутствуют хаосу.



В трехмерном пространстве траектории-решения могут переплетаться между собой.


Но как Пуанкаре справился с этими трудностями и нашел периодические решения в пространстве? Он применил метод, называемый сегодня сечениями Пуанкаре.

Так как изучать динамику на плоскости намного проще, чем в пространстве, ученый рассмотрел плоскость, заключенную в фазовом пространстве и полностью рассекающую трехмерный пучок траекторий. Нечто похожее мы делаем каждый день, когда проверяем, червивое ли яблоко: мы разрезаем его ножом и осматриваем поперечное сечение.

Допустим, что человек в течение всего дня носит с собой катушку ниток, разматывая ее. Нитка укажет траекторию этого человека. Теперь предположим, что мы неожиданно потеряли его след и не знаем, вернулся ли он домой. Как найти ответ? На помощь приходит топология, в частности теория Пуанкаре: плоскость, в которой располагается дверь дома нашего беглеца, станет сечением Пуанкаре.

Встанем у двери и сосчитаем, сколько нитей пересекает дверной порог. Если число нитей нечетно, наш незнакомец еще не вернулся, если же число нитей четно, он уже дома — это логично. Следовательно, если человек вернулся, то через дверной порог — наше сечение Пуанкаре — будет проходить четное число нитей. Выходит, изучение нитей (траекторий), пересекающих поверхность подобно тому, как нити пересекают порог (сечение Пуанкаре), дает важные результаты.



Сечение Пуанкаре S. Если бы х и Р(х) совпадали, траектория была бы замкнутой кривой и представляла собой периодическое решение.


Пуанкаре указывал, что периодичность решения можно определить с помощью сечения Пуанкаре, если показать, что кривая в конечном итоге возвращается в ту же исходную точку, в которой пересекла сечение. Следовательно, сечение Пуанкаре фазового пространства отражает важнейшие аспекты решений дифференциального уравнения (в том числе их устойчивость).

По сути, Пуанкаре считал, что в каждом сечении будет наблюдаться типичная и не слишком сложная двумерная динамика, при которой траектории могут пересекаться только в особых точках. Однако он с ужасом обнаружил, что сепаратрисы седловых точек (две траектории, которые сталкиваются в гомоклинических точках) пересекаются, но не совпадают, а представляют собой две различные кривые, которые пересекаются снова и снова, образуя своеобразную решетку с бесконечным множеством точек пересечения. Оказалось, что трехмерная динамика, проекции которой содержатся в каждом сечении, невероятно сложна.



Ошибка Пуанкаре: он считал, что нестабильная сепаратриса (та, что удаляется от седловой точки) и стабильная (та, что приближается к седловой точке) совпадают.


Таким образом, суть задачи такова: локальная структура седловой точки проста, поскольку линейна, а глобальная структура необязательно будет простой, поскольку она нелинейна. Более того, глобальная структура может быть невероятно сложной — именно поэтому возникают хаотические движения. В примере с задачей трех тел обе сепаратрисы переплетаются снова и снова бесконечное число раз. Эта гомоклиническая сеть — великое открытие Пуанкаре, фигура настолько сложная, что сам автор не осмелился ни изобразить ее, ни подробно описать. Эта сеть и вызывает хаос, а также приводит к тому, что систему нельзя описать посредством аналитических интегралов.



Гомоклиническая сеть: р — седло, Ь0, h1, h2…. — бесконечное множество гомоклинических точек, в которых пересекаются две сепаратрисы.


Позднее, в своем монументальном трехтомнике «Новые методы небесной механики», опубликованном в 1892–1899 годах, Пуанкаре привел первое математическое описание хаотического поведения динамической системы, связанного с гомоклиническими орбитами:

«Если попытаться представить себе фигуру, образованную этими двумя кривыми и их бесчисленными пересечениями, каждое из которых соответствует двоякоасимптотическому решению, то эти пересечения образуют нечто вроде решетки, ткани, сети с бесконечно тесными петлями. Ни одна из двух кривых никогда не должна пересечь самое себя, но она должна навиваться на самое себя очень сложным образом, чтобы пересечь бесконечно много раз все петли сети. Поражаешься сложности этой фигуры, которую я даже не пытаюсь изобразить. Ничто не является более подходящим, чтобы дать нам представление о сложности задачи трех тел».

Гомоклинические сети — это рельефный отпечаток хаоса, и 200-страничная исправленная и дополненная статья Пуанкаре стала первым учебником по теории хаоса. Эрмит в письме Миттаг-Леффлеру писал: «Пуанкаре кажется ясновидящим, перед которым истины предстают в ярком свете, но лишь перед ним одним».



Хаотическая орбита в ограниченной задаче трех тел. Если бы наша планета вращалась вокруг двойной звезды (а не Солнца), Кеплер отказался бы от мысли найти законы, описывающие движение планет, — в этом случае в движении планет вокруг звезд нельзя было бы обнаружить каких-либо закономерностей.


Пуанкаре приложил очень много усилий, чтобы познакомить коллег с детерминированными динамическими системами, предсказать поведение которых невозможно.

Траектории-решения дифференциального уравнения могут так сильно переплетаться, что даже небольшая ошибка при выборе траектории, указывающей решение задачи, может привести к тому, что мы проследуем вдоль другой траектории, которая приведет нас к совершенно иному состоянию. В 1908 году в «Науке и методе», взяв за основу задачу трех тел и, что любопытно, прогнозы погоды, Пуанкаре заключил:

«Если бы нам были в точности известны законы природы и положение тел во Вселенной в начальный момент времени, мы могли бы в точности предсказать состояние Вселенной в последующие моменты времени. Однако даже если законы природы перестанут быть для нас тайной, мы сможем определить начальное положение лишь приближенно. Если это позволит предсказать последующее положение тел с той же степенью приближения (а это все, что нам необходимо), то будем говорить, что рассматриваемое явление было предсказано и подчиняется законам. Но так происходит не всегда: может случиться, что небольшие отклонения в начальных условиях вызовут значительные отклонения в итоговых результатах. Небольшая ошибка, допущенная вначале, станет причиной огромной ошибки в конце. И составление прогнозов оказывается невозможным».

За несколько месяцев до смерти в 1911 году, по возвращении с Сольвеевского конгресса, где Пуанкаре познакомился с квантовой теорией Макса Планка (которая вкупе с теорией хаоса нанесла болезненный удар по научному детерминизму), Пуанкаре высказал свои опасения:

«Кажется излишним указывать, насколько эти идеи отличаются от традиционных; физические явления больше не будут подчиняться законам, выражаемым в виде дифференциальных уравнений, и это, несомненно, станет крупнейшей и самой радикальной революцией в натуральной философии со времен Ньютона».

Задавшись вопросом, подходят ли дифференциальные уравнения для математической формулировки физических законов, гениальный Пуанкаре, как любой истинный математик, сомневался в корректности детерминизма.

Ньютон, можно сказать, облачил закон причинно-следственной связи в математические одежды: законы Ньютона были записаны в виде дифференциальных уравнений. Развитие целого ряда методов математического анализа существенно расширило возможности прогнозирования с помощью классической механики. Но теперь Пуанкаре показал, что некоторые механические системы могут демонстрировать столь сложное поведение, что предсказать его невозможно. Из этого следовала не только ограниченная возможность науки предсказывать явления — квантовая физика ставила под сомнение сами дифференциальные уравнения. С наступлением XX века обе революции (вызванные появлением теории хаоса и квантовой механики) совершили окончательный переворот в науке.

* * *

ДЖЕЙМС КЛЕРК МАКСВЕЛЛ. МЕЖДУ ХАОСОМ И ЭЛЕКТРОМАГНЕТИЗМОМ

Проанализировав результаты наблюдений, проведенных французскими инженерами Сен-Венаном и Буссинеском, 11 февраля 1873 года знаменитый физик шотландского происхождения Джеймс Клерк Максвелл (1831–1879) организовал в Кембридже конференцию, посвященную детерминизму. На ней Максвелл продемонстрировал, насколько хорошо он знаком с эффектом, который сегодня называется «эффектом бабочки» или «чувствительностью к начальным условиям» и представляет собой своеобразный отпечаток хаоса:

«На некоторые из этих вопросов можно пролить немало света, рассмотрев устойчивость и неустойчивость. Когда положение вещей таково, что бесконечно малое отклонение от текущего состояния вызывает лишь бесконечно малое отклонение в будущем, то говорят, что состояние системы, находящейся в покое или в движении, стабильно. Однако если бесконечно малое отклонение от текущего состояния может вызвать конечное отклонение за конечное время, то говорят, что состояние системы нестабильно. Очевидно, что существование нестабильных состояний делает невозможным предсказание будущих событий, если наши знания о нынешнем состоянии приближенны и неточны. Следовательно, если физики, стремясь познать тайны науки, придут к изучению сингулярностей и неустойчивости, в отличие от непрерывности и устойчивости, то распространение знания станет возможным только при отказе от идеи всеобщего детерминизма, которая, по-видимому, происходит из предположения, согласно которому физика будущего будет подобна всего лишь увеличенному изображению физики прошлого».

* * *

Сегодня, сто лет спустя, кажется удивительным, насколько Пуанкаре опередил современников. Никогда математическая ошибка не оказывалась столь плодотворной, поэтому часто считают, что именно она в какой-то мере дала начало теории хаоса. Если Пуанкаре заложил фундамент теории хаоса, то Смэйл и Лоренц позднее воздвигли на нем целое здание, став, наряду с другими учеными, отцами-основателями этой теории. Но не будем забегать вперед.



Загрузка...