Глава четвертая, повествующая о потопе открытий и способах наскоро соорудить комфортабельный ковчег

Кстати, о призраках… На днях я с огромным интересом прочел книгу одного ученого-психиатра «Записки о встречах с призраками». По этой книжке выходит, что призраки поддаются довольно точному определению.

К. Абэ



Счастливые «допотопные времена»

Тридцатые годы. Время великих свершений и иллюзий… Посудите сами. Устройство микромира постепенно выстраивалось в не столь уж сложную систему. Есть фотоны, и есть электроны. С помощью фотонов осуществляется взаимодействие между электронами и любыми другими электрическими зарядами. Электроны вместе с ядрами формируют атомы. Ядра состоят из протонов и нейтронов. Все пригоже и целесообразно — ничего лишнего. Правда, имеются две нерешенные задачки — явные пробелы в общей картине.

Первая из них восходит к 1914 году, когда Дж. Чэдвик (будущий открыватель нейтрона) обнаружил странное свойство бета-радиоактивности. Быстрые бета-электроны явно испускались из атомного ядра в результате какого-то внутриядерного катаклизма. Но вместо того, чтобы нести одну постоянную и строго определенную энергию, они создавали целый спектр, притом довольно широкий.

Если бета-электроны с таким непрерывным спектром вылетали непосредственно из ядер, возникала явная энергетическая катастрофа — в каждом акте испускания частицы обладали различными значениями энергии. Н. Бор со свойственной ему смелостью выдвинул гипотезу, что в этих конкретных актах энергия не сохраняется, а закон сохранения следует относить только к среднему значению энергии электрона. Простой путь к спасению великого закона указала немка Л. Мейтнер. В 1922 году она высказала предположение, что электроны «размазываются» по широкому энергетическому интервалу из-за вторичных соударений. Однако к концу 20-х годов ее гипотеза была опровергнута экспериментально.

И все-таки спасение закона сохранения энергии пришло. Пришло в виде письма, которое адресовал участникам небольшой конференции в Тюбингене в декабре 1930 года молодой В. Паули.

В послании из Цюриха выдвигалась гипотеза, будто вместе с бета-электроном ядро испускает новую частицу с очень малой массой и высокой проникающей способностью, причем суммарная энергия бета-электрона и новой частицы остается постоянной, то есть строго сохраняется в каждом акте. В. Паули окрестил «спасителя» нейтроном. Это тяжеловесное название продержалось недолго — лишь до открытия Дж. Чэдвиком настоящего, полноправного нейтрона.

Новая частица понравилась многим, но особые симпатии к ней стал испытывать молодой итальянский физик Э. Ферми. По его предложению она стала называться нейтрино (по-итальянски: нейтрончик), и конфликт между достойными партнерами по ядерному миру был ликвидирован. В 1933 году Э. Ферми построил первую теорию испускания бета-электронов, которая сыграла исключительную роль в развитии представлений о микромире.

Прежде всего в ней была впервые четко зафиксирована идея о том, что в атомном ядре содержатся только протоны и нейтроны, а бета-электроны образуются лишь в результате реакции распада нейтрона. Тем самым было защищено наиболее уязвимое место в протон-нейтронной гипотезе о строении ядра, которая была выдвинута в работах В. Гейзенберга, советского физика-теоретика Д. Иваненко и итальянца Э. Майорана. Эта гипотеза появилась вслед за открытием нейтрона, но некоторое время физики думали, что в ядре наряду с протонами и нейтронами все-таки должны содержаться электроны — те, которые испускаются в виде бета-излучения. Во-вторых, теория Э. Ферми сделала гипотезу В. Паули выдающимся примером предоткрытия. Между предсказанием и прямой регистрацией нейтрино прошло около 35 лет, и некоторые вполне естественные сомнения, возникавшие за столь долгий срок, не идут ни в какое сравнение с редчайшим обстоятельством — на шатком, казалось бы, фундаменте гипотетического нейтрино вырос целый раздел физики элементарных частиц. И именно в этом главная заслуга работы Э. Ферми, где впервые было показано, что бета-радиоактивность обусловлена новыми особыми силами, которые значительно слабее электромагнитных. Благодаря слабому взаимодействию нейтрон превращается в протон, испуская одновременно электрон и антинейтрино.

Эта идея была в значительной степени основана на аналогии с квантовой электродинамикой, которая трактовала взаимодействие как испускание или поглощение фотона электрическими зарядами.

В теории Э. Ферми вместо электрических рассматривались особые «слабые заряды», а аналогом фотона стали пары электрон — нейтрино.

В том, что решающий эксперимент по обнаружению новой частицы произошел не скоро, «виноваты» сами нейтрино, точнее, их фантастическая проникающая способность. Оценка, которой пользовался В. Паули в своем знаменитом письме в Тюбинген, означала, что нейтрино должно свободно прошивать примерно 10-сантиметровую свинцовую пластинку. Впоследствии он любил приводить такой наглядный пример: нейтрино может «не заметить» и свинцовой стены толщиной в 100 световых лет.

Пример, конечно, не столько наглядный, сколько сногсшибательный. Посудите сами: световой год — это расстояние, которое способен пройти свет в пустоте за один земной год. Скорость света составляет примерно 3 ∙ 1010 сантиметров в секунду, а год длится 3,16 ∙ 107 секунд (кстати, удобнейшая приближенная формула для запоминания: π ∙ 107 секунд, где π — обычное школьное «пи»!), то есть один световой год равен 1018 сантиметров, а 100 световых лет соответственно равны 1020 сантиметров. Это на 10(!) порядков превышает радиус Солнца и примерно в три раза радиус ядра нашей Галактики. Отсюда ясно, по крайней мере, одно: нейтрино способно приносить информацию из таких уголков вселенной, откуда ни одна другая частица не выберется «живьем».

Разумеется, о проникающей способности говорят лишь в среднем, то есть каждое отдельное нейтрино может застрять в первом же миллиметре вашего письменного стола, а может и проскочить всю вселенную. Просто оба эти события маловероятны. Рассуждая о гигантской космической преграде, имеют в виду, что вероятность застревания нейтрино при наличии более толстой преграды, скажем, свинцовой стены толщиной более 100 световых лет, весьма велика. В общем, здесь все происходит по правилам квантовой механики: запустив на какую-либо мишень достаточно интенсивный пучок нейтрино, мы вскоре обнаружим редкие события его столкновений с частицами вещества. Но именно в этом и скрывались основные трудности в постановке решающего опыта — нужен был действительно мощный поток нейтрино.

Необходимый поток антиподов нейтрино — антинейтрино достигался на некоторых ядерных реакторах, и благодаря этому американские физики сумели зарегистрировать реакцию такого типа: антинейтрино налетает на протон, они взаимодействуют, и в результате возникают нейтрон и позитрон. Это открытие состоялось в 1956 году. В 1962 году был обнаружен другой тип нейтрино, так называемое мюонное нейтрино, возникающее при распаде уже встречавшегося нам мю-мезона. Таким образом, «дублер» появляется не только у электрона (мюон!), но и у электронного нейтрино (мюонное нейтрино).

А теперь обсудим вторую нерешенную задачку, где в ответе появится пи-мезон — частица с едва ли не прямо противоположными свойствами, для которой буквально каждый сантиметр вещества таит смертельную опасность. Эта задачка возникла в связи с уже упоминавшейся неприятностью — в красивой картине протон-нейтронной модели ядра не хватало одной «мелкой детали» — неясно было, что же удерживает рядом протоны и нейтроны, почему одноименно заряженные протоны не разлетаются в разные стороны.



В разрешении данной загадки значительную роль сыграла небольшая заметка советского физика-теоретика И. Тамма, опубликованная в журнале «Нэйче» («Природа») в 1934 году. Он предположил, что силы, действующие между протонами и нейтронами, обусловлены обменом парами квантов электронного и нейтринного полей. Эта идея следовала из аналогии с картиной взаимодействия электрических зарядов, например, электронов, которые обменивались между собой фотоном. По замыслу И. Тамма, электрон-нейтринные пары должны были «замещать» фотоны в задаче о взаимодействии протонов и нейтронов. Разумеется, теперь речь шла не об электрических, а о каких-то особых «ядерных зарядах». Силу взаимодействия между протонами и нейтронами можно было оценить непосредственно, исходя из теории Ферми, по той интенсивности, с которой нейтрон испускает электрон и антинейтрино, превращаясь при этом в протон. Но оказалось, что такое взаимодействие слишком слабо для поддержания стабильности атомных ядер! Однако идея И. Тамма проложила дорогу решению проблемы ядерных сил. Физикам стало ясно, что непосредственно применять готовые модели электромагнитных или слабых взаимодействий нельзя, — соответствующие силы просто не смогут склеить протоны и нейтроны в ядре. Но в ограниченном виде аналогия с электродинамикой — там, где речь шла о некоторых обменных частицах — была вовсе не плоха. Именно из этого исходил двадцативосьмилетний физик-теоретик из Осакского университета X. Юкава, приступая к анализу природы новых сил, действующих в ядре.

В 1935 году появилась его знаменитая статья, где была сформулирована гипотеза о существовании новых частиц — переносчиков взаимодействия между протонами и нейтронами, — квантах некоторого особого ядерного поля, наподобие фотонов, которые, как вы помните, являются квантами электромагнитного поля. Основываясь на известных ему оценках радиуса действия ядерных сил, X. Юкава рассчитал массу такой частицы; она должна была примерно в 200 раз превышать массу электрона. Величину «ядерного заряда» теперь уже можно было выбирать, не ограничиваясь теорией Ферми, а опираясь непосредственно на экспериментальные данные по взаимодействию протонов и нейтронов. Оказалось, что силы, действующие между ними, примерно в тысячу раз интенсивней электромагнитных. В результате получилась весьма неплохая модель устройства ядра, но, как это нередко встречается, сам автор воспринял ее излишне пессимистически — в конце статьи он указал, что придуманная им теория, по-видимому, неверна, поскольку… придуманную им частицу никто экспериментально не обнаруживал.

А судьба гипотезы о юкавских переносчиках взаимодействия между протонами и нейтронами, этих тяжелых квантах ядерного взаимодействия, оказалась и впрямь не очень простой. Начать с того, что уже в 1934 году первооткрыватель позитрона Ч. Андерсон со своим сотрудником С. Неддермейером обнаружили, что некоторые следы в камере Вильсона соответствуют частицам со значениями масс много больше электронной и много меньше протонной. Но X. Юкава ничего не знал об этих результатах! Официальное «открытие» новых частиц состоялось только в 1937 году, когда в одном и том же томе американского журнала «Физикал ревью». («Физическое обозрение») появились сообщения сразу двух групп, изучавших следы космических лучей. Юкавское значение массы оправдывалось с поразительной точностью!

Эти работы явились вполне достойным «открытием» новых объектов — мезонов, а кавычки для слова «открытие» использованы по той простой причине, что «американские мезоны» не имели непосредственного отношения к «японским предсказаниям» — это были уже упоминавшиеся мю-мезоны, дублеры электрона по микромиру. Впрочем, первоначально никаких особых подозрений в несоответствии предсказанных и открытых частиц не возникало. Лишь постепенно, в течение десяти лет, выяснилось, что такие частицы не обладают ядерной активностью и взаимодействуют с ядрами только благодаря наличию электрических зарядов.

Такие неприятные неувязки были окончательно осознаны к 1947 году, и не исключено, что в судьбе гипотетических тяжелых квантов Юкавы произошли бы трагические события, если бы… они не были именно в этом году открыты «всамделишно».

Особо важную роль в благополучном исходе поисков сыграли новые, чрезвычайно чувствительные фотопластинки, вовремя попавшие в руки к исследователям космических лучей. Благодаря чудо-пластинкам группа С. Пауэлла обнаружила, что наряду с мю-мезонами появляется некоторое количество частиц с близким значением массы, но способных к расщеплению атомных ядер. Так юкавские кванты, названные в отличие от мю-мезонов пи-мезонами, получили права полноправных граждан микромира. Не остались в тени и их открыватели: X. Юкава был удостоен Нобелевской премии в 1949 году, а С. Пауэлл ровно через год.

Теперь, я думаю, ясно, почему примерно к 1937 году — отчасти по «святому неведению», отчасти по «стремлению к покою душевному» — у физиков создалось довольно радужное настроение по поводу того, как же лепо и пригоже устроен этот микромир. Все при деле, и все на своих местах. Две новые частицы — мезон и нейтрино — вполне оправдывают свое существование: с ними в физику вошло представление о двух новых типах взаимодействия — слабом и сильном. Похоже было, что экспериментаторы выполнили свой долг наилучшим образом. Теперь дело за теоретиками, за созданием хорошей количественной теории наблюдаемых явлений.

К моменту, когда настоящий юкавский квант — пи-мезон — обнаружился в составе космических лучей, а еще через год был зарегистрирован на циклотроне Берклиевской радиационной лаборатории, могло сложиться впечатление, что все главные действующие лица микромира уже найдены. Но вот тут-то на горизонте и замаячили крупные неурядицы.

Житейская мудрость предлагает по поводу таких ситуаций внешне парадоксальную поговорку: когда слишком хорошо — значит, плохо! В данном случае все оказалось не то чтобы «плоше», но сложней и интересней.

Уже в 1944 году французские физики Л. Ле-Принс Ренгуэ и М. Лэритье зарегистрировали любопытный след космической частицы, обладающей массой порядка 500 МэВ. Через три года сотрудники Манчестерского университета Дж. Рочестер и Ч. Батлер обнаружили два события: какие-то частицы распадались на лету и возникала своеобразная вилка следов, напоминающая по форме латинскую букву V. Начались интенсивные поиски новых событий такого же типа, а вскоре стало ясно, что открыт целый новый класс, точнее, даже два класса элементарных частиц, и первоначально их так и назвали: V-частицы. Некоторые из них оказались массивней протона, а другие — легче его; и эти, более легкие, явно принадлежали к мезонам.

V-частицы вели себя довольно странно — они рождались с большой интенсивностью в результате сильных взаимодействий, а распадались на пи-мезоны и протоны или только на пи-мезоны (опять-таки на сильновзаимодействующие частицы — адроны!) с гораздо меньшей интенсивностью. Получалось так, что рождением и распадом V-частиц «управляют» различные силы, и распад происходит в результате слабых взаимодействий. В этом-то и состояло противоречие с известными законами физики: раз частицы способны участвовать в сильных взаимодействиях, то и распадаться на адроны они должны были бы за счет тех же сильных взаимодействий! Поскольку этого не наблюдалось, физики предположили, что рождение V-частиц происходит несколько необычным образом — они действительно образуются в процессах сильных взаимодействий, но лишь в строго определенных комбинациях, скажем, попарно, а распадаются поодиночке и уже за счет слабых взаимодействий. Впоследствии именно это свойство V-частиц — рождаться в строго определенных комбинациях — было подтверждено экспериментами и расценено как странная черта в их поведении. Например, у пи-мезонов аналогичной странности не наблюдалось — они рождались тоже с гораздо большей интенсивностью, чем распадались, но ведь распадались-то пи-мезоны не на адроны, а на частицы, не участвующие в сильных взаимодействиях!



Летом 1953 года во французском городке Банье-де-Бигор была созвана конференция по физике космических лучей. Она имела вполне определенную цель — навести порядок в семействе недавно открытых частиц, дать конкретные рекомендации для составления подробной таблицы элементарных «кирпичиков мироздания».

Конечно, новое всегда интересно и притягательно, но физики могли с легким налетом грусти отметить — частиц стало много, слишком много, чтобы все они в равной мере оставались настоящими «кирпичиками». Вероятно, создавшееся в связи с этим элегическое настроение способствовало одобрению прилагательного «странные» в качестве определения (официального обозначения!) тех частиц, которые вели себя своенравно, и заставляли ученых искать какие-то необычные правила реакций. «Странные» мезоны были названы ка-мезонами, а «странные» частицы тяжелее протона и нейтрона — гиперонами. Протон, нейтрон и гипероны получили также и общее название — барионы (от «барос» — тяжелый).

В 1960 году на Международной конференции по физике высоких энергий демонстрировалась подробная таблица элементарных частиц и их основных свойств. Она занимала целую страницу стандартного книжного формата и включала целых 30 частиц и античастиц!

Первым, в гордом одиночестве стоял герой квантовых сражений фотон. Далее выделился особый класс лептонов (от «лептос» — легкий), куда вошли электрон, мюон, нейтрино и их античастицы. Из ядерно-активных частиц были известны 3 пи-мезона и 4 ка-мезона, а также протон, нейтрон, их античастицы и 6 гиперонов (один лямбда-гиперон, 3 сигма-гиперона и 2 кси) со своими антигиперонами.

Вот какая сложная «зоология» была наведена в микромире около 20 лет назад.

Запомнить такую «огромную» таблицу было намного сложней, чем две-три частицы «старых добрых времен».

Казалось, что конец 40-х и 50-е годы принесли настоящее половодье открытий — 20 новых частиц: мезонов и гиперонов, да еще и нейтрино. 23 из 30 частиц в приведенной таблице были ядерно-активны, причем 16 мезонов и гиперонов считались «странными». Следовательно, сильные взаимодействия обладают гораздо более сложными и разнообразными свойствами, чем могли себе вообразить физики в «ядерные» 30-е годы.

Между тем размышления о половодье возникли буквально накануне настоящего потопа, причем первые сигналы о надвигающейся «каре за иллюзии» физики в некотором смысле прозевали…


Адронный потоп

«…В шестисотый год жизни Ноевой, во второй месяц, в семнадцатый день месяца, в сей день разверзлись все источники великой бездны и окна небесные отворились. И лился на землю дождь сорок дней и сорок ночей…» Таковы строки библейской сказки о «наказании господнем», ниспосланном за грехи рода человеческого. Как известно, спасется лишь Ной — человек праведный и за то вовремя осененный предупреждением свыше. Он построит громадный ковчег, соберет на нем «всякой твари по паре» и причалит на нем к единственному кусочку незатопленной тверди земной — вершине горы Арарат.

Сказка сказкой, но нечто подобное произошло и в микромире: был и потоп открытий, и спасительный ковчег…

Масштабы событий, нахлынувших вскоре на физику элементарных частиц, действительно огромны, и их источники хорошо известны.

Ускорители дождались наконец своего часа. Уже к концу 40-х годов их возможности намного превзошли мечты создателей. Правда, хотя эпоха естественных радиоактивных снарядов ушла в прошлое, принципиальные результаты работ на ускорителях все еще плелись в хвосте у достижений физики космических лучей. Благодаря огромному энергетическому диапазону «дара небес» они позволяли широким фронтом вести поиск всевозможных необычных событий. Поэтому к моменту заполнения 30-частичной таблицы космические лучи оказались в положении фаворита.

Посудите сами, электрон и фотон были открыты с помощью катодных трубок; нейтрон и протон — с помощью радиоактивных элементов; нейтрино открыли, используя ядерный реактор. А вот мю-мезон, пи-мезоны, ка-мезоны, большинство гиперонов обязаны своим появлением исследованиям «космиков» (так называют среди физиков тех, кто занимается космическими лучами). Что могли показать на этой выставке достижений ускорители? Подтверждения результатов, добытых космиками? Но подтверждение, несмотря на всю полезность поговорки «повторение — мать учения», остается всего лишь движением по проторенному пути.

Неужели ускорители были обречены пожизненно на вторые роли?

Разумеется, нет! Просто они не могли конкурировать с космическими лучами в той области, где были (до поры, до времени!) заведомо слабее. Зато в систематическом изучении механизмов различных реакций ускорители имели уже к началу 50-х годов неоспоримое преимущество. Ведь за несколько часов работы лабораторной установки можно было набрать тысячи и тысячи событий с интересующими экспериментаторов характеристиками. В процессе таких исследований и выяснилось, что таблица элементарных частиц, построенная главным образом благодаря даровым источникам, не то что неполна, но составляет на самом деле лишь малую часть настоящей таблицы.

Первые шаги на этом пути выглядели просто и скромно.

Весной 1951 года в Институте ядерных исследований при Чикагском университете был запущен синхроциклотрон с энергией протонного пучка 450 миллионов электрон-вольт. С помощью этого прибора группа Э. Ферми приступила к исследованию взаимодействия пи-мезонов с протонами. Пи-мезоны получались в результате бомбардировки медных и бериллиевых мишеней, после чего пучки положительно и отрицательно заряженных «ядерных квантов» выводились по отдельности на специальную мишень из жидкого водорода. Далее, измерялось ослабление пи-мезонных пучков: сцинтилляционные счетчики регистрировали количество налетающих на мишень частиц, а также число частиц, прошедших камеру-мишень без взаимодействия, и вычислялось отношение этих величин для камеры, заполненной водородом, и камеры пустой. Разность отношений в двух указанных ситуациях и определяла искомое ослабление.

Интуитивно ясно, что ослабление пучка зависит не только от силы взаимодействия пи-мезонов с протонами (ядрами атомов водорода), но и от плотности мишени. Поэтому для получения объективной характеристики самого взаимодействия необходимо выражать результаты измерений в форме, не зависящей от плотности. С этой целью обычно вводится удобная величина — поперечное сечение взаимодействия, — измеряемая в единицах площади. Ее наглядный, хотя и несколько приближенный, смысл состоит в следующем: налетающая частица «видит перед собой» преграду, площадь которой и есть поперечное сечение; или по-другому: если укрепить монету перед стенкой и направить на стенку луч фонаря, то возникающая теневая картинка полностью определяется площадью поверхности монеты, и говорят, что сечение рассеяния света равно по порядку величины этой площади.



Измеряя сечение рассеяния положительных пи-мезонов на протонах, Э. Ферми и его сотрудники обратили внимание на странную закономерность: в интервале энергии пионов (так сокращенно называют пи-мезоны) от 56 до 136 МэВ сечение возрастало примерно в 15 раз, то есть вероятность взаимодействия становилась очень большой.

Буквально в тот же день, когда столь сильный рост был окончательно установлен, Э. Ферми ознакомился с текстом еще не опубликованной статьи молодого теоретика К. Бракнера. В этой статье высказывалось предположение, что в пион-протонном рассеянии может возникать своеобразный резонансный эффект — то есть подавляющая часть событий может происходить с образованием некоторого промежуточного состояния. Слова «подавляющая часть» означают, что некоторое промежуточное состояние образуется с очень большой вероятностью.

В своей статье, содержащей описание этих экспериментов, Э. Ферми отмечает, что природа «промежуточного состояния» неясна, а энергии Чикагского ускорителя слишком малы для изучения эффекта в более широком интервале. Между тем он и его сотрудники впервые наблюдали проявление совершенно новых «героев микромира» — резонансов.

Для понимания природы резонансов потребовалось еще примерно 8 лет интенсивных исследований в значительно более широком интервале энергий и с гораздо лучшей теоретической «вооруженностью». Но Э. Ферми уже не сумел разделить радость вступления в новую резонансно-адронную эру — 29 ноября 1954 года его не стало. А через три дня Комиссия по атомной энергии США наградила посмертно его — президента Американского физического общества, лауреата Нобелевской и многих других премий, члена ряда иностранных академий — еще одной премией, носящей его имя.

Открытие резонансного эффекта в пион-протонном рассеянии оказалось последней крупной экспериментальной работой Э. Ферми. Дальнейшая история прорыва в новую область микромира тесно связана с поисками более общей картины сильных взаимодействий, чем можно было получить в рамках юкавской модели. В сущности, основная идея X. Юкавы не отбрасывалась — барионы должны были по-прежнему взаимодействовать посредством мезонного обмена, но теперь уже речь шла о совершенно иных мезонах с несколько необычными свойствами.

К 1960 году различные гипотезы оформились в виде довольно ясного предсказания — следует искать новые частицы, способные распадаться на два или на три пиона. И в 1961 году почти одновременно были открыты ро- и омега-резонансы, которые вполне соответствовали бы предсказанным частицам, если бы… не отличались от обычных мезонов весьма забавным образом. Своенравие «ро» и «омега» состояло в том, что они принципиально не желали оставлять макроскопических следов.

Вот ведь какое дело! Представить себе существование обычной элементарной частицы не так-то просто: глаз или прибор регистрируют только достаточно масштабное явление среди атомов и молекул, вызванное «нарушителем спокойствия». А в данном случае никакого явления не видно, и резонанс приходится вычислять. Ни в одной лаборатории мира вам не покажут фотографии с красивым переплетением линий, где бы просматривался след нового объекта — ро- или омега-резонанса. И тем не менее современная таблица элементарных частиц насчитывает более двухсот «главных взаимодействующих лиц», причем львиная доля приходится на эти самые резонансы. В чем же дело, нет ли тут каких-то неувязок? Можно ли ставить «невидимки» в один ряд с ранее известными частицами?

Прежде всего следует выяснить, не существует ли уважительной причины столь неуважительного отношения резонансов к традициям физической лаборатории. Среди частиц имеются различия не только по массам, но и по временам жизни. Из известных частиц абсолютно стабильны только четыре — фотон, нейтрино, электрон и протон, которые в вакууме могут существовать сколь угодно долго. Остальные хозяева микромира — все мезоны и барионы, начиная с нейтрона, — в вакууме непременно распадаются. Время жизни нестабильных частиц весьма различно: например, у нейтрона оно превышает 15 минут, а заряженные пи-мезоны живут всего 2,6 ∙ 10-8 секунды. Конечно, по нашим масштабам это невероятно маленький срок, но за такое время, двигаясь с околосветовой скоростью, пион успевает пролететь около 7,5 метра, то есть вполне достаточно для обычного фотографирования его в довольно большой камере. В этом смысле процесс распада можно считать медленным, происходящим как реакция со слабым взаимодействием.

Чем слабей взаимодействие, вызывающее распад, тем медленнее он происходит. Как мы помним, квантовая теория позволяет рассчитывать лишь вероятностные характеристики процессов. В данном случае обычно вычисляется вероятность перехода (например, пи-мезона в мюон и нейтрино) в единицу времени, а собственно временем жизни называется величина, обратная вероятности перехода. Понятно, что за счет слабых взаимодействий вероятности перехода получаются существенно меньшие, а следовательно, и время жизни таких частиц большее. Скажем, родной брат заряженных пионов — пи-ноль-мезон — может распадаться на два фотона только за счет электромагнитных взаимодействий, которые намного «сильнее слабых», и поэтому он живет недолго, в среднем 0,8 ∙ 10-16 секунды.

Но по сравнению с резонансами и пи-ноль-мезон великий долгожитель. Если мы договоримся принять его краткий срок существования, его век жизни, за год, то в таком «микрокалендаре» резонанс живет всего несколько секунд, тогда как, например, мюон — около 20 миллиардов лет (примерно столько, сколько существует наблюдаемый участок вселенной в обычных годах)! В нормальной же шкале «ро» имеет время жизни порядка 10-23 секунды, и мюон — 2,2 ∙ 10-6 секунды, то есть резонанс должен распадаться на пионы за счет сильных взаимодействий. В этом его основная особенность. За столь малое время «ро» успевает пройти лишь микроскопическое расстояние порядка 10-13 сантиметра и, разумеется, не успевает оставить заметный макроскопический след. Поэтому его появление регистрируется не обычным путем, а особым образом.

Поскольку «ро» распадается на пару пионов, которые можно наблюдать непосредственно, то в какой-нибудь из реакций отбирают все события с рождением двух пи-мезонов и строят своеобразный график распределения по их суммарной массе. В этом распределении при массе примерно 773 МэВ должен наблюдаться максимум — горб кривой, — то есть основная часть событий концентрируется вблизи указанного значения. Однако распределение оказывается довольно широким — основание полученного «горба» составляет примерно 152 МэВ. Получив эти данные (для этого необходимо обработать сотни и сотни фотографий, содержащих пионные следы!), можно сделать вывод о том, что реакция образования пары пи-мезонов идет в два этапа: сначала рождается некая частица с массой 773 миллиона электрон-вольт, а потом она распадается на два пиона. Время жизни промежуточной частицы вычисляется простым делением постоянной Планка на ширину наблюдаемого «горба». Эта промежуточная частица и есть ро-резонанс, или ро-мезон.

В остальном «ро» ничем не отличается от обычных частиц-долгожителей и обладает всеми нормальными свойствами мезонов. Например, резонанс ро-мезон может быть заряжен положительно, или отрицательно, или быть нейтральным.

Резонанс омега-мезон имеет немного большую массу, но ширина соответствующего ему «горба» примерно в 15 раз меньше, то есть он живет в 15 раз дольше. Известны и более «узкие» резонансы, но все равно их времени жизни не хватает для непосредственной регистрации.

В сущности, физики столкнулись с самым настоящим резонансным явлением, известным и во многих других разделах науки. В воинской практике издавна существует железное правило: если колонна солдат вступает на мост, немедленно прекращается маршировка «в ногу», ибо парадное шествие может обойтись (и много раз обходилось!) очень дорого — всякий мост имеет привычку немного раскачиваться в такт движению, но, пока толчки ног случайны, размах колебаний невелик, а стоит общим усилием попасть на «любимую частоту» моста, и он не выдержит — рухнет. Если изобразить размах колебаний (амплитуду, говоря научным слогом) как функцию частоты, то в графике вблизи «любимой частоты» моста возникает резкий максимум. Здесь колебания могут стать столь сильными, что вся конструкция не выдержит и развалится. Таково типично механическое проявление резонанса.



С подобным явлением постоянно встречаются и при изучении электрических цепей. Каждый день, настраивая приемник на любимую станцию, вы регулируете специальный контур до тех пор, пока он не «попадает в резонанс» — начинает пропускать радиоволны определенной частоты, на которой и ведется передача со станции.

Ясно, что, меняя размеры моста и материалы, из которых он сделан, или применяя несколько иные радиодетали, мы можем в обоих случаях создать резонансные эффекты при совсем иных частотах. В случае адронных резонансов мы не вольны в своих возможностях — резонансный эффект наступает при определенных энергиях, и обнаруженные значения масс и времен жизни являются характерными и устойчивыми параметрами микромира. В этом смысле резонансы можно рассматривать как полноценные частицы наравне с долгоживущими.

Что же касается позиции экспериментатора, то тут, очевидно, все дело в определенной договоренности. В древние времена частицей могли считать объект, который можно видеть или осязать. Но видеть невооруженным глазом — одно, разглядеть с помощью специального прибора — несколько другое. Применение телескопа и микроскопа Г. Галилеем привело к огромному сдвигу в научном постижении мира; но потребовалось немало времени, прежде чем люди осознали объективную реальность наблюдаемых таким образом несовершенств лунной поверхности или беспорядочных метаний мельчайших частичек вещества. В этом отношении ученые всегда пользовались известным преимуществом в понимании новых элементов реальности — они непосредственно ощущали пользу от своих «хитрых» приборов и гораздо быстрее привыкали к представлениям о тех или иных невидимках. Для людей, стоящих в стороне от конкретных естественнонаучных исследований, восприятие несколько затруднялось. Помните великолепные строчки из чеховского «Письма к ученому соседу»: «Как Вы могли видеть на Солнце пятна, если на Солнце нельзя глядеть простыми человеческими глазами…»?

По поводу элементарных частиц также приходится заключать определенный договор. До поры до времени для регистрации новой частицы было необходимо предъявить ее портрет (еще лучше целый альбом!) — фотографию следа в камере Вильсона или ином приборе — переводчике с «микро» на «макро».

Регистрация каждого резонанса требует огромного числа специально обработанных данных, получаемых с сотен фотографий, причем ни на одной из них сам резонанс не оставляет собственного заметного следа — он лишь определенным образом перераспределяет размеры и направления заметных следов других частиц. Поэтому наблюдение резонанса предполагает дополнительную процедуру измерения по сравнению с ситуацией, где в игре участвуют только стабильные или долгоживущие частицы. Но если считать реставрацию резонанса по виду распределения видимых следов вполне допустимой операцией, то он становится полноправным членом семейства элементарных частиц.

За последние 15 лет таблица частиц разрослась чуть ли не в 10 раз! Но, как ни странно, поток адронных резонансов не привел к хаосу в наших представлениях о микромире. Сквозь необъятные строки и столбцы таблицы частиц стали просматриваться удивительно четкие закономерности…


Краткая таблица элементарных частиц


Спасительные симметрии

Согласно библейской легенде Ной начал строить ковчег заранее и именно поэтому вполне благополучно пережил потоп. Нечто подобное произошло и в физике элементарных частиц. К моменту, когда на страницы научных журналов хлынул поток сообщений об открытии адронных резонансов, у теоретиков были подготовлены неплохие спасательные средства с красивым названием Высшие Симметрии. Оказалось, что огромная таблица сильновзаимодействующих частиц-адронов выстроена как бы не из отдельных «кирпичиков», а из целых «крупноблочных конструкций». Иными словами, адроны можно разделять на группы частиц с близкими свойствами, и таким образом наводить среди них весьма четкий порядок.

Что же такое симметрия и о каких свойствах частиц идет речь?

Симметрия буквально означает соизмеримость. Это понятие играет важную роль в физике, как, впрочем, и во многих других областях научной и практической деятельности. Например, архитектор стремится, как правило, создавать симметричные здания со строгим равенством всех деталей относительно центра фасада — справа и слева должно располагаться одинаковое количество колонн, ступеней, окон, дверей…

Такое полностью симметричное здание обладает одним интересным свойством. Предположим, перед вами лежат два его фотоизображения, причем одно из них получено при непосредственном фотографировании изображения этого же здания в обыкновенном зеркале. Нетрудно догадаться, что при тщательном изготовлении обоих снимков никто не сумеет определить, где же изображено само здание, а где его зеркальный двойник. Мы сталкиваемся здесь с важным свойством симметричного объекта — его вид сохраняется при зеркальном отражении.



На самом деле любые формы симметрии тел или процессов связаны со свойством сохранения какой-либо величины. Верно и обратное утверждение: если есть закон сохранения, то за ним непременно скрывается определенная симметрия. Именно исследование законов сохранения и привело физиков к идеям группировки элементарных частиц.

Прежде всего остановимся на двух так называемых абсолютных законах сохранения: электрического и барионного зарядов (или квантовых чисел). К тому, что электрический заряд в некотором замкнутом объеме не исчезает бесследно и не появляется из ничего, мы привыкли с довольно давних времен. Когда речь идет об элементарных частицах, то закон сохранения электрического заряда означает, что алгебраическая сумма числа положительных и отрицательных зарядов до начала реакции и после нее не изменяется. Этот закон проверен в таком количестве опытов и со столь высокой степенью точности, что его относят к числу абсолютных законов сохранения. Важно то, что он выполняется в любых реакциях и ни одно из известных взаимодействий не способно его нарушить.

Одно из важнейших проявлений этого закона состоит в том, что электрон — легчайшая из электрически заряженных элементарных частиц — абсолютно стабилен, то есть не способен к самопроизвольному распаду на какие-нибудь более легкие незаряженные частицы, например, на нейтрино.

Другой абсолютный закон сохранения связан со своеобразной закономерностью в поведении барионов, к которым, как вы помните, относятся протон, нейтрон, гипероны и значительная часть известных адронных резонансов. Барионы не могут бесследно исчезнуть или появиться из ничего. Иными словами, сумма числа барионов и антибарионов до какой-либо реакции и после нее остается постоянной. Формально этот закон можно представлять себе так, что как бы каждому бариону приписывается барионный заряд плюс единица, а каждому антибариону — минус единица, и в любой реакции алгебраическая сумма зарядов будет сохраняться.

Закон сохранения барионного заряда также проверен в огромном количестве опытов и в некотором смысле даже с большей точностью, чем в случае сохранения электрического заряда. Дело в том, что легчайший из барионов — протон — не должен распадаться на какие-то более легкие частицы, например, на мезоны или лептоны, не несущие барионного заряда. Поэтому о протоне говорят: он абсолютно стабилен.

Но, используя определения типа «абсолютно», физики имеют в виду лишь то, что точность, с которой проводятся опыты на сегодняшний день, не позволяет уловить акты распада того же протона. Эта точность имеет вполне конкретную оценку, на основе которой обычно и делается вывод, что протон имеет время жизни больше, чем 2 ∙ 1030 лет. Аналогичная оценка существует и для электрона — его время жизни должно превышать 3 ∙ 1021 лет.

Теперь нам ясно, в каком смысле закон сохранения барионного заряда «сильней» закона сохранения электрического заряда. Практически же можно говорить и об абсолютно точном сохранении зарядов, ведь среднее время жизни и протона и электрона превышает время жизни наблюдаемого участка вселенной (порядка 2 ∙ 1010 лет)!

Однако приведенное уточнение важно для понимания точки зрения физиков на законы сохранения вообще, идет ли речь о зарядах, импульсе, энергии или других важнейших характеристиках частиц. Всякий закон сохранения не есть какая-то абсолютно непреложная истина, а результат осмысления большого количества экспериментальных данных. Если появляются данные, которые никак нельзя согласовать с тем или иным законом, то его приходится считать приближенным. Тем не менее борьба за каждый закон сохранения идет до самого конца, и тщательно рассматриваются любые идеи, способные его спасти. Вспомним хотя бы историю гипотезы о существовании нейтрино, которая была выдвинута во имя спасения закона сохранения энергии.

Наряду с абсолютными законами сохранения электронного и барионного зарядов, которые играют очень важную и общую роль в наших представлениях о микромире, существуют другие приближенные законы сохранения, на долю которых и выпала главная тяжесть по наведению порядка в чрезмерно разросшейся таблице элементарных частиц.

Еще в 1932 году В. Гейзенберг обратил внимание на поразительную схожесть двух фундаментальных составляющих ядерной структуры — протона и нейтрона. Их массы отличались всего на десятую долю процента. И у него возникало, естественно, подозрение: если протон был бы вообще лишен электрического заряда, то не превратился ли бы он в самый настоящий нейтрон?

И тогда В. Гейзенберг выдвинул интересную идею: протон и нейтрон представляют собой просто различные состояния одной частицы — нуклона. Если вообразить мир, в котором «по мановению волшебной палочки» выключились бы электромагнитные взаимодействия, например, все фотоны объявили бы забастовку и не захотели бы вступать в контакт с электрическими зарядами, то у физиков не нашлось бы никакого способа узнать, «кто есть кто», — все частицы в ядре выглядели бы на одно лицо. И двуликую природу нуклонов можно установить после этого единственным путем — снова запустить в этот воображаемый мир фотоны и заставить их нести свои важные обязанности по розыску электрических зарядов.

Таким образом, нуклон совмещает в себе представление о двух частицах и как бы расщепляется на протон и нейтрон под действием электромагнитного поля. Аналогичная ситуация имеет место и в случае пи-мезонов. В теории можно рассматривать один пи-мезон, который расщепляется на три наблюдаемых — пи-плюс-, пи-ноль- и пи-минус-мезоны — только при включении электромагнитных взаимодействий. Такое же «сокращение» можно провести и для известных ка-мезонов, гиперонов и резонансов.



Благодаря этому адроны с близкими значениями масс, но различными электрическими зарядами удобно группируются и предстают перед нами в более «крупноблочной» классификации: нуклон, пи-мизон, ка-мезон, три типа гиперонов (лямбда, сигма, кси) и так далее. То, что на самом деле каждый из них виден в нескольких состояниях, скажем, сигма-гиперон — в трех, является лишь сравнительно малым эффектом. Действительно, разности масс между различными состояниями частиц по сравнению с величинами самих масс этих частиц-адронов ничтожно малы. Можно считать, что разности масс между нейтральными и заряженными адронами, составляющие не более нескольких процентов от этих масс, как раз и обусловлены электромагнитными взаимодействиями.

Такой взгляд на классификацию частиц не покажется столь уж удивительным, если вспомнить, что аналогичным приемом мы часто пользуемся в повседневной жизни. Нам часто приходится иметь дело с объектами, у которых, как говорится, общее преобладает над различиями. Скажем, два жилых дома, построенных по типовому проекту, могут отличаться окраской панелей и отделкой подъездов, наконец, в одном из них может размещаться магазин, а в другом — нет. Эти отличия очень полезны для ориентации, хотя мы прекрасно понимаем, что перед нами дома-близнецы. И особенно просто почувствовать всю второстепенность указанных отличий, оказавшись вблизи домов-близнецов в незнакомом районе и в позднее время, когда мелкие детали как бы растворяются в темноте…

Электромагнитные взаимодействия, нарушающие полную эквивалентность адронов с близкими значениями массы, но различными зарядами, играют в определенном смысле тоже второстепенную роль.

Анализируя близость свойств протона и нейтрона, В. Гейзенберг высказал идею, что эти частицы должны участвовать в сильных взаимодействиях совершенно симметричным образом, как бы забывая о том, что у одной из них есть электрический заряд, а у другой нет. Впоследствии эта идея была распространена и на все другие адроны и получила название изотопической симметрии. Строгой изотопической симметрии соответствует сохранение особой величины, квантового числа, называемого изотопическим спином.

Но, как мы уже успели убедиться, электромагнитные взаимодействия разрушают эквивалентность в поведении заряженных и нейтральных адронов. Поэтому говорят о нарушении изотопической симметрии в реальном мире и, соответственно, считают, что изотопической спин является лишь приближенно сохраняющимся квантовым числом.

Может возникнуть естественный вопрос: зачем же обсуждать какую-то симметрию законов природы, если она выполняется только в воображаемом мире, а в реальности хоть и сравнительно слабо, но заведомо нарушается?

Этот интересный вопрос затрагивает на самом деле очень глубокие проблемы познания, и он, бесспорно, важен для понимания логики развития физики элементарных частиц, да и любой другой науки.

Физики всегда конструируют воображаемые миры, чтобы глубже постичь закономерности мира реального. Реальность слишком сложна для того, чтобы ее можно было сразу же осознать во всем многообразии. Ученые вынуждены действовать постепенно, шаг за шагом приближаясь к пониманию определенных явлений.

Верно, что в природе нет реального нуклона — это лишь образ, замещающий две частицы (протон и нейтрон), известные нам из эксперимента.

Но ведь в природе нет, скажем, и настоящей окружности в том смысле, как ее понимают геометры. Просто, окружность — это очень полезный и бесконечно привычный образ, с помощью которого мы можем часто с весьма хорошим приближением описывать свойства реальных тел, всегда имеющих хотя бы слабые отклонения от идеальной формы.

В природе нет и «абсолютно твердых тел», которые мы обсуждали в связи со старой моделью электрона-шарика. Однако это весьма полезный образ в механике, который позволяет изучать многие движения с хорошей точностью.

Но вообще-то «вносить в природу» те или иные приближенные образы из конкретных наук надо с осторожностью. Весь многотысячелетний опыт познания говорит о том, что любой самый красивый и, казалось бы, общий научный образ рано или поздно сменяется другим, более красивым и более общим. В свое время активное противодействие представлениям квантовой механики было во многом обязано тому, что в сознании ряда людей, в том числе и физиков, прочно «склеились» образы классической механики и реальный мир. И им трудно было убедить себя в том, что, допустим, траектория электрона вовсе не необходимая принадлежность реального мира, а полезное приближенное средство для описания движения макроскопических тел.

Все это очень важно иметь в виду, обсуждая дальнейшее развитие принципов классификации в микромире.

Изотопическая симметрия заметно упорядочила наши представления, сгруппировав адроны с очень близкими значениями масс. Но, как вы помните, существовали еще и явления, связанные с рождением необычных, странных частиц в строго определенных комбинациях, скажем, попарно. Например, лямбда-гиперон мог родиться только в паре с положительно заряженным или нейтральным ка-мезоном или, наконец, вместе со своим антиподом — анти-лямбда-гипероном. Такие же закономерности прослеживались и в рождении других гиперонов и ка-мезонов. Когда же наступала пора этим частицам распадаться, такой закономерности уже не наблюдалось — любая из них распадалась на обычные адроны, как бы забывая о правилах своего рождения.

Физики отметили интересное обстоятельство — рождение странных адронов идет со значительно большей интенсивностью, чем их распад. Прямые оценки показали, что в первом случае имеет место сильное взаимодействие, а во втором — слабое. Отсюда был сделан важный вывод: странные адроны несут какой-то своеобразный заряд (квантовое число), который сохраняется в сильных взаимодействиях, но не сохраняется в слабых. Это квантовое число и было названо «странностью». Нуклону и пи-мезону можно было сопоставить нулевую странность — у них не было таких особенностей в поведении, как у странных частиц.

Лямбда- и сигма-гиперонам, независимо от знака электрического заряда, была сопоставлена «странность» минус единица, а кси-гиперону — минус два. Положительно заряженный ка-плюс-мезон и нейтральный ка-ноль-мезон должны были нести «странность» плюс единица, а их античастицы (ка-минус- и анти-ка-ноль) — противоположную. Такая расстановка нового квантового числа полностью объясняла все экспериментально изученные процессы рождения «странных» частиц.

Когда классификация адронов по «странности» была завершена, перед физиками возникла заманчивая аналогия. Раз протон и нейтрон приближенно оказались разными зарядовыми состояниями одной частицы — нуклона, то не являются ли нуклон и гипероны, в свою очередь, различными по «странности» состояниями одной и той же частицы? Не происходит ли то же самое и с пи- и ка-мезонами?

Для того чтобы поверить в такую возможность, нужно было, конечно, немалое воображение. Ведь симметрия, которая в данном случае могла появиться, была бы нарушена гораздо сильней, чем изотопическая. Это видно хотя бы из того, что разность масс «странных» и «нестранных» адронов не столь уж мала по сравнению с самими величинами масс. Относительная разность может достигать здесь десятков процентов! Теперь уже нарушение новой симметрии нельзя приписать электромагнитным взаимодействиям, а необходимо вводить два типа сильного взаимодействия: предельно сильное и умеренно сильное.

В воображаемом мире, где существует только предельно сильное взаимодействие, все восемь стабильных барионов выглядят как один. Если включить умеренно сильное взаимодействие, то произойдет расщепление на «нестранные» нуклоны и «странные» гипероны — мы как бы увидим 4 типа частиц. И наконец, если включить электромагнитное взаимодействие, то произойдет более полное расщепление, и перед нами предстанут все восемь барионов с различными значениями электрического заряда и «странности».

Нечто подобное произойдет и с восемью стабильными мезонами (тремя пи-, четырьмя ка- и эта-мезонами): в мире предельно сильного взаимодействия они будут на одно лицо, будто это одна частица. По мере включения умеренно сильных и электромагнитных взаимодействий единый мезон будет все сильней расщепляться, пока не появятся все 8 реальных частиц.

Именно с такой идеей группировки адронов и выступили в 1961 году М. Гелл-Манн и Ю. Нееман. Предельно сильные взаимодействия предположили они, должны обладать особой унитарной симметрией, так чтобы восемь легчайших барионов и восемь легчайших мезонов участвовали в этих взаимодействиях совершенно симметрично независимо от электрических зарядов и «странности».

В новой системе классификации все наблюдаемые адроны относились к определенному набору, который может включать одну, восемь или десять частиц. Все адроны, в том числе и резонансы, действительно были приписаны к одному из таких наборов. Это привело, конечно, к очень экономичному представлению таблицы элементарных частиц — гораздо более «крупноблочному», чем в случае использования только изотопической симметрии.

Рассматривая каждый набор в воображаемом мире, где учтены только предельно сильные взаимодействия, как единую частицу, можно было затем включить умеренно сильные взаимодействия и оценить возникающее за счет него расщепление масс. Таким способом и были получены соотношения между массами для различных состояний каждого набора. В тех случаях, когда все частицы данного набора были известны, эта операция приводила к удивительно хорошему согласию теории и эксперимента.

Расчет соотношений между массами адронов внутри каждого набора и привел к важному открытию, которое стало основным свидетельством в пользу схемы Гелл-Манна — Неемана.



Дело в том, что, пытаясь укомплектовать набор из 10 барионов, физики столкнулись с небольшой трудностью. Среди известных адронов довольно быстро обнаружились девять хороших кандидатов в эту «десятку». Эти кандидаты представляли собой короткоживущие барионные резонансы: 4 частицы дельта-1232 (это различные зарядовые состояния резонанса, открытого Э. Ферми), 3 сигма-1385 и 2 кси-1530. А вот десятого — «замыкающего» — подыскать не удалось. Его масса была вычислена на бумаге и должна была составлять примерно 1670 МэВ. Были заранее известны и многие другие свойства, например, его «странность» должна была быть равна минус три и электрический заряд — минус единице. Но среди известных адронов такая частица не значилась. И только в самом начале 1964 года из Брукхэвенской национальной лаборатории было получено необходимое известие: на одной из 50 тысяч фотографий зарегистрирован каскад из целых семи частиц, связанный с распадом нового гиперона с массой около 1670 МэВ! Новая частица была названа омега-минус-гипероном.

Открытие омега-минус-гиперона укрепило веру в унитарную классификацию, и в настоящее время она считается общепринятой. Это, конечно, не означает, что физикам стало все ясно в адронном мире. Остаются и возможности обобщения, и непонятные проблемы.

Дело в том, что с математической точки зрения и изотопическая симметрия В. Гейзенберга, и унитарная симметрия, предложенная М. Гелл-Манном и Ю. Нееманом, являются различными формами унитарных симметрий общего типа. Вторая оказывается просто симметрией более высокого типа, чем первая; именно поэтому она и позволяет объединять частицы в более крупные наборы, «блоки», и часто называется Высшей Симметрией.

А не могут ли проявиться еще более высокие унитарные симметрии адронов? Такую возможность никак нельзя исключить. Ведь схема Гелл-Манна — Неемана основана на сохранении только двух квантовых чисел — электрического заряда и «странности».

В 1964 году американские теоретики Дж. Бьеркен и С. Глешоу ввели в рассмотрение новый точный или приближенный закон сохранения, соответствующий особому квантовому числу — «очарованности». Такая возможность открывала путь к более высокой симметрии сильных взаимодействий и позволяла преодолеть некоторые проблемы предшествующих моделей.

Едва ли не главная из этих проблем состояла в том, что схема классификации Гелл-Манна — Неемана допускала существование удивительных наборов из 3 частиц. Просто не обращать внимания на эти наборы было нельзя, так как они играли фундаментальную роль для указанной схемы. Но частицы в этих наборах должны были иметь столь необычные свойства — в частности, дробные электрические и барионные заряды, — что включить их в рассмотрение было не так уж просто. Итак, либо новый закон сохранения, либо совершенно необычные частицы…

Впрочем, проблема этих удивительных частиц оказалась глубже, чем можно представить себе, рассуждая о том или ином варианте унитарной классификации.

Высшие симметрии микромира часто сравнивают с красивым замком. Действительно, группировка огромного количества адронов по определенным свойствам напоминает своеобразную архитектурную работу — все элементы выстраиваются в какую-то четкую взаимосвязанную конструкцию, которая воспринимается гораздо легче, чем отдельные разбросанные элементы. Такое упорядочивание, по сути дела, означало создание спасительного ковчега, позволившего пережить трудные времена резонансного потопа, но его вполне разумно сравнивать и с возведением замка.

Но тут-то в ответ на необычайную щедрость природы, которая ввела в микромир свыше 200 адронов, физики решили проявить предельную экономичность, граничащую со скупостью. Этот шаг, к обсуждению которого мы сейчас переходим, привел к тому, что в замке высших симметрий замаячили настоящие призраки…


Нашествие призраков

Как и герои древних преданий, призраки микромира имели реальных предков и довольно любопытную родословную. История появления этих призраков как раз и связана с удивительным сочетанием щедрости природы и скупости физиков.

Скупость эта проявилась довольно рано — еще тогда, когда адронный мир, казалось бы, строился всего из двух типов частиц — нуклонов и пи-мезонов. О ка-мезонах и гиперонах существовали лишь предварительные данные, а до резонансного потопа было совсем далеко. Но даже два типа адронов показались физикам излишней роскошью для таблицы элементарных частиц. Летом 1949 года Э. Ферми и его девятнадцатилетний аспирант Ч. Янг написали статью, которая прямо так и называлась: «Являются ли мезоны элементарными частицами?»

Авторы начали с естественного предположения о том, что в природе существуют антинуклоны (кстати, антипротон и антинейтрон будут открыты только через несколько лет после появления их статьи). Далее они высказали гипотезу, что пи-мезон представляет собой просто связанное состояние нуклона и антинуклона, а не особую элементарную частицу, как это думал X. Юкава, и попытались оценить основные свойства этого составного ядерного кванта. Правила составления наблюдаемых пи-мезонов можно проследить, пользуясь простой зарядовой арифметикой: положительно заряженный пи-мезон должен состоять из протона и антинейтрона, отрицательно заряженный — из нейтрона и антипротона, и нейтральный пи-мезон — из смеси пар протон — антипротон и нейтрон — антинейтрон. Во всех случаях у мезонов оказываются правильные значения электрических зарядов, а их барионные заряды равны нулю.

Модель Ферми — Янга была интересна, но в некоторых отношениях непоследовательна. Трудно было, например, объяснить природу сил, склеивающих тяжелые частицы — нуклон и антинуклон — в сравнительно легкую — пи-мезон. Поэтому многие физики сначала отнеслись к этой модели без особого энтузиазма. Однако заложенные в ней идеи — прежде всего стремление обходиться предельно малым числом действительно элементарных частиц — были исключительно полезны, и через несколько лет эти идеи стали интенсивно развиваться.

После того как «странные» частицы — ка-мезоны и гипероны — окончательно утвердились в качестве особого класса адронов, стало ясно, что одним нуклоном при построении составной модели частиц не обойтись. Ведь нуклон представлял собой образ двух барионов, не имеющих «странности» (протона и нейтрона), а из них никак нельзя было построить, скажем, «странный» ка-мезон. Поэтому физикам пришлось привлекать третью фундаментальную частицу — один из «странных» мезонов или гиперонов. Именно по этому пути и пошли создатели первых универсальных моделей составных адронов советский теоретик академик М. Марков и японский ученый С. Саката.

Несколько более наглядная модель С. Сакаты представляет собой прямое развитие идей Э. Ферми и Ч. Янга. В качестве трех фундаментальных частиц он выбрал протон, нейтрон и лямбда-гиперон и показал, что из них можно в принципе выстроить все остальные частицы адронного семейства. Пи-мезоны строились в этой схеме по тем же правилам, что и в модели Ферми — Янга, а для «странных» мезонов и гиперонов использовались чуть более сложные правила той же зарядовой арифметики (с учетом «странности»). Например, ка-мезон с отрицательным электрическим зарядом и «странностью» минус единица можно построить из лямбда-гиперона (электрический заряд — ноль, «странность» — минус единица) и антипротона (электрический заряд — минус единица, «странность» — ноль), а отрицательно заряженный кси-минус-гиперон со «странностью», равной минус два, — из двух лямбда-гиперонов и одного антипротона.

Подобно тому, как протон и нейтрон представляли собой различные состояния нуклона, 3 частицы: протон, нейтрон и лямбда-гиперон — должны были представлять 3 различных состояния некоторой фундаментальной частицы — сакатона. В воображаемом мире, где действует только предельно сильное взаимодействие, существовал бы единственный вид фундаментальных адронов — сакатоны. При включении умеренно сильных взаимодействий наблюдалось бы уже два типа частиц — нуклон и лямбда-гиперон, то есть тот же сакатон, как бы расщепленный на два наблюдаемых состояния. И наконец, при включении электромагнитных взаимодействий, когда в микромир допускались фотоны, способные реагировать на электрические заряды, нуклон, в свою очередь, расщеплялся, и появлялись все 3 известных легчайших бариона — протон, нейтрон и лямбда-гиперон.

Гипотеза о фундаментальной роли сакатона оказалась весьма привлекательной и чуть ли не десять лет владела умами исследователей микромира. Еще бы! Ведь, имея перед собой таблицу элементарных частиц, можно было буквально за несколько минут убедиться, что все адроны соответствуют той или иной комбинации из 3 легчайших барионов.

Следовательно, таблица истинно элементарных частиц становилась значительно короче: наряду с фотоном и лептонами она должна была включать только три адрона — протон, нейтрон и лямбда-гиперон, да и те оказывались на самом деле лишь тремя возможными состояниями одного адрона — сакатона…

Остальные адроны являлись составными частицами — вроде атомных ядер.

Но, конечно, физическое понимание такой составной модели не может быть ограничено формальным подбором правильных зарядовых комбинаций. Несмотря на многие интересные попытки улучшения, модель фундаментального сакатона так и не справилась с теми трудностями, которые она, можно сказать, унаследовала от своей предшественницы — модели Ферми — Янга.

Во-первых, аналогия между составными адронами и атомными ядрами не столь уж проста. Как вы помните, протоны и нейтроны, будучи связаны в атомное ядро, теряют на эту связь лишь малую долю своей массы — менее одного процента. Совсем другая ситуация наблюдается в том случае, когда мы пытаемся описать, скажем, пи-ноль-мезон как связанное состояние протона и антипротона. Ведь величина энергии связи протона с антипротоном в 13 раз превышает массу наблюдаемого связанного состояния: пи-ноль-мезона! Напрашивается вывод, что, во-первых, внутренняя структура составных адронов должна иметь какие-то качественные отличия от тех структур, которые известны нам из физики атомов и атомных ядер.

Во-вторых, по-прежнему нуждалась в объяснении природа сил, склеивающих сакатоны в составные мезоны и барионы.

В-третьих, было неясно, чем же качественно выделены именно протон, нейтрон и лямбда-гиперон среди всех других барионов и мезонов. Почему и в каком смысле именно они должны быть более элементарными, чем другие адроны? Ведь массы протона, нейтрона и лямбда-гиперона очень близки по величине к массам сигма- и кси-гиперонов. Тем более что, как вы помните, при создании унитарной классификации все эти нуклоны и гипероны очень естественно вписались в одну из «восьмерок», то есть должны были представлять собой просто 8 различных состояний какой-то одной частицы.

И вообще, согласно схеме унитарной классификации ни один из наблюдаемых мезонов или барионов ничем особым не выделен, ни один из них не может претендовать на роль более элементарной частицы, чем остальные адроны.

Вот именно это последнее обстоятельство и оказалось непреодолимой трудностью для модели фундаментального сакатона.

Сакатон вынужден был уйти из мира реальных частиц и поселиться в красивом замке унитарной симметрии на правах призрака, изменив имя и даже некоторые свойства.

В 1964 году М. Гелл-Манн и молодой теоретик из ЦЕРНа Дж. Цвейг обратили внимание на то, что существует отличная возможность описать все наблюдаемые адроны как определенные составные конструкции из некоторых новых частиц, которые тоже укладываются в схему унитарной классификации, но обладают весьма оригинальными свойствами, резко выделяющими их среди собратьев по микромиру. Речь шла как раз о тех объектах, которые должны были входить в унитарные наборы из трех частиц.

С легкой руки М. Гелл-Манна новые гипотетические частицы стали называться кварками. Необычное слово вызвало, конечно, удивление, но прижилось в физике чрезвычайно быстро. М. Гелл-Манн отыскал его в фантастическом романе «Поминки по Финнегану» — последнем произведении крупнейшего ирландского писателя Дж. Джойса. В этом романе некий таинственный голос вещает о «трех кварках», что звучит в контексте непонятно, но угрожающе. С другой стороны, в немецком языке слово «кварк» имеет совершенно безобидный смысл — «творог». Вот и пойми, что предрекается: то ли злые духи, то ли вкусные творожники…

Мне кажется, что кварк завоевал симпатии физиков по довольно простой причине, благодаря явному созвучию с привычным словом квант — чувствуется, что кварк должен быть осколком чего-то, и не просто частью, а чем-то с трудом отщепленным, скорее всего остроугольным…

Кварк вошел в физику полноправным наследником сакатона. В отличие от последнего он не должен был соответствовать каким-либо уже известным адронам. Однако подобно тому, как сакатон был единым представлением трех частиц — протона, нейтрона и лямбда-гиперона, кварк по праву наследования стал представлять три частицы, которые так и были названы по аналогии — пэ-кварк (p), эн-кварк, (n) и лямбда-кварк (λ).

Необычные свойства кварков выражались прежде всего в том, что их барионные и электрические заряды имели дробные значения в единицах зарядов протона или любой другой известной элементарной частицы. В частности, все барионные заряды кварков должны были составлять 1/3 заряда известных барионов. Пэ-кварк должен был, кроме того, иметь положительный электрический заряд, равный 2/3 заряда протона, а остальные два — эн- и лямбда-кварки — должны были иметь отрицательные заряды по (1/3). И наконец, лямбда-кварк еще обладал «странностью», равной минус единице (–1). При внимательном взгляде на кварки нетрудно заметить, что они действительно напоминают компоненты сакатона — протон, нейтрон и лямбда-гиперон — с той разницей, что барионные заряды кварков меньше на 2/3, а электрические на 1/3, чем у этих барионов.

Предсказание дробных зарядов у кварков показалось физикам весьма необычным, но оно, в сущности, не нарушало никаких фундаментальных законов природы. То, что, например, электрические заряды всех наблюдаемых частиц либо равны по абсолютной величине заряду электрона, либо больше его в целое число раз, — просто экспериментальный факт, смысл которого пока непонятен. И если обнаружились бы более мелкие порции электричества, то это стало бы просто нарушением традиции, а не каких-то определенных законов.

Гораздо более удивительным оказалось другое обстоятельство. Кварковая модель стала превосходным средством для наведения порядка в микромире и испытала большой успех в самых различных приложениях, но вот сами кварки, несмотря на чрезвычайно активные поиски, так и не удалось обнаружить.

Посудите сами. Любой известный барион без труда строится в виде комбинации из трех кварков. Скажем, протон должен состоять из двух пэ-кварков и одного эн-кварка, а отрицательно заряженный кси-минус-гиперон из эн-кварка и двух лямбда-кварков. Пользуясь все той же простой зарядовой арифметикой, можно составить и любой мезон — он непременно должен содержать какой-либо кварк и антикварк, чтобы суммарный барионный заряд этой комбинации был равен нулю. Например, положительно заряженный пи-мезон состоит из пэ-кварка и эн-антикварка, а отрицательно заряженный ка-мезон — из лямбда-кварка и пэ-антикварка. В общем, положив перед собой таблицу известных адронов и вспомнив заряды различных кварков, вы могли бы очень быстро установить кварковый состав всех частиц и античастиц.

Но успехи кварковой модели не ограничивались такой удачной классификацией адронов. Модель давала и вполне определенные предсказания о закономерностях, которые должны наблюдаться в процессах сильных, электромагнитных и слабых взаимодействий при рассеянии и распадах адронов. Большинство таких предсказаний удивительно хорошо подтверждается экспериментальными данными.

Не менее важно и другое — именно кварки позволяли верить в глубокий смысл обнаруженных законов симметрии микромира. Можно сказать, что гипотетические частицы наполнили жизнью красивый замок унитарных симметрий; без кварков он казался бы пустынной, наскоро сколоченной времянкой. Но кварки до сих пор так и остались призраками! Они приносят большую пользу, о них много сказано и написано, наконец, большинство физиков верят в их существование. Но их никто и никогда так и не наблюдал. Между тем история ловли кварков ничуть не уступает, даже, пожалуй, превосходит по драматизму охоту за космическими лучами.

Кварки искали не только на земле, под землей или под водой. Чтобы обнаружить какой-нибудь «зазевавшийся» призрак, перетирались в порошок целые метеориты. Их пытались зарегистрировать в самых первых образцах лунного грунта, с великими трудами и затратами доставленных на нашу планету.

Дело в том, что по крайней мере один из кварков должен был оказаться стабильным, и в силу закона сохранения электрического заряда его дробный заряд можно было бы обнаружить даже после всевозможных взаимодействий этого кварка с обычными частицами вещества. Именно поэтому физики уделяли большое внимание поиску кварков с дробными зарядами и в макроскопических кусках вещества.

Более того, физики обратились к анализу истории наблюдаемой вселенной и к исследованию строения звезд. Уже в 1965 году — всего через год после появления гипотезы кварков — советские теоретики Я. Зельдович, Л. Окунь и С. Пикельнер опубликовали большую статью под названием «Кварки: астрофизический и физико-химический аспекты». В этой работе были даны оценки допустимой плотности реальных кварков в связи с самыми различными возможностями их существования. Вывод был не слишком утешителен; кварков должно быть в 109–1018 раз меньше, чем нуклонов. Последующие теоретические и экспериментальные работы в основном подтвердили это заключение. Кварки, даже если они и существуют в виде отдельных частиц, — редчайшие «звери». Число нуклонов должно, по крайней мере, в тысячи миллиардов раз превышать число кварков…

И уж конечно, трудно перечислить все эксперименты по поиску кварков в потоках космических лучей и среди миллионов событий, полученных на крупнейших ускорителях мира. В программах «Серпухова» и «Батавии» кварковый эксперимент стоял на первом месте — еще только «прогревая» синхротроны для долгосрочной работы, физики пытались отыскать в регистрирующих устройствах следы дробно-заряженных частиц. Упорное нежелание кварков предстать пред нетерпеливыми взорами экспериментаторов стало вызывать тревожные размышления.



Как бы то ни было, а гипотетические частицы оказались предельно экономичным средством для «сборки» любого известного адрона. Поэтому сначала даже некоторые существенные неясности в отношении природы сил, связывающих кварки, не могли поколебать безграничной веры большинства физиков в их реальность. В пользу сторонников реальных кварков свидетельствовали и известные вам исторические аналогии.

Вспомните, заявляли они, сколько добрых дел успел совершить протон задолго до своего настоящего открытия. А за 15 лет до экспериментальной регистрации пи-мезона была правильно описана структура атомных ядер, причем ядерный квант до сих пор не раскрывает многих своих тайн. А сколько лет отделяет тюбингенское послание В. Паули от занесения в таблицу элементарных частиц «короля конспирации» нейтрино? А разве не пытались некоторые физики всего за три-четыре года до открытия антипротона придумать уродливую антивселенную с одними позитронами? Да что уж там маленькие сроки, каких-то 15–20 лет, продолжали они, атомистическая гипотеза дожидалась доказательств два с половиной тысячелетия! А ведь все успехи молекулярно-кинетической теории теплоты в прошлом веке связаны именно с атомистическими представлениями. Теперь же, изучив атомно-молекулярный, ядерный и «элементарно-частичный» уровни строения вещества, мы стоим на пороге нового, еще более глубокого уровня, и стоит ли предаваться сомнениям относительно реальности кварков, которые вот-вот окажутся превосходным примером предоткрытия?

Но тут-то и стали выясняться любопытные обстоятельства, показавшие, что простые исторические параллели проводить пока еще рано.

Во-первых, оказалось, что кварковую модель можно, а в некоторых случаях и необходимо, расширять и дополнять.

Как вы помните, в процессе развития теории симметрий физики столкнулись с возможностью введения нового, почти сохраняющегося квантового числа — «очарования». С точки зрения кварковой модели это связано с существованием четвертого «очарованного» кварка (или цэ-кварка (с), как его часто называют). Цэ-кварк может иметь тот же электрический заряд, что и пэ-кварк, но, кроме того, ему приписывается значение «очарованности», равное единице. Интересно, что в модели с четырьмя кварками можно вообще избежать введения дробных зарядов — все кварки смогут соблюсти традицию микромира.

Реальные «очарованные» частицы — так называемые дэ-мезоны — были обнаружены совсем недавно, в мае 1976 года, группой Дж. Гольдхабера. Эти новые мезоны должны содержать наряду с обычным кварком и «очарованный» цэ-кварк. Интересно, что четвертый кварк еще до открытия дэ-мезонов выполнял в теории важные обязанности. Дело в том, что в теории слабых взаимодействий адронов, ограниченной представлением о трех фундаментальных кварках, предсказывалась сравнительно большая вероятность распада нейтрального ка-мезона на положительный и отрицательный мюоны. Между тем этот распад вообще не был обнаружен экспериментально. Это оказалось очень неприятным сюрпризом для современной теории, и длительное время было неясно, откуда возникает запрет на такой распад. Высказывались даже гипотезы о нарушении тех или иных фундаментальных принципов физики. Однако выход нашелся на довольно простом пути — как раз учет четвертого «очарованного» кварка в структуре адронов позволит теоретикам объяснить отсутствие ненаблюдавшегося распада.

В этом плане физики часто говорят, что четвертый кварк проник в число фундаментальных составляющих адрона «по запросу» теории слабых взаимодействий. Зато другое, более крупное расширение таблицы кварков произошло из-за одной неприятной особенности в объяснении структуры адронов, которая возникла буквально вместе с трехкварковой моделью.

Некоторые адроны должны были составляться из набора одинаковых кварков, и хотя бы два из них вынуждены были находиться вдвоем или втроем в одинаковом состоянии.

Попытки найти выход из столь трудного положения начались сразу же после появления гипотезы кварков и привели к модели с утроенным кварковым миром, сформулированной в 1965 году академиком Н. Боголюбовым и его учениками и независимо от них американскими теоретиками М. Ханом и И. Намбу. Предполагалось, что существует три типа кварков, различающихся по какому-то признаку. Впоследствии этот признак назвали «цветом» и условились «раскрашивать» кварки одной из трех красок — желтой, синей или красной. Обычные адроны считались «белыми» частицами, что, естественно, имеет место при равномерном смешении трех указанных цветов (проверьте сами, если увлекаетесь рисованием). Теперь, например, тот же омега-гиперон включает уже три разноцветных лямбда-кварка, и никаких неприятностей с применением принципа Паули не возникает — ведь речь идет о трех различных частицах. В общем, как вы видите, кварковая модель находится в процессе развития и существуют различные интересные варианты оригинальной реализации призраков в будущих экспериментах.

Но еще любопытней оказалась другая точка зрения. Многие физики, подавленные неудачами в поиске кварков с дробными или целыми зарядами, стали утверждать, что призраки никогда и не объявятся. Во всяком случае, их нельзя будет зарегистрировать как обычные частицы по следам и даже косвенными методами, как в случае резонансов. Они могут существовать только внутри адрона, навеки запертые в своей темнице гигантскими силами, которые не убывают, а возрастают с увеличением расстояния. Так что никакими могучими воздействиями кварк из адрона добыть невозможно, и тогда уж действительно стоит говорить о «бедненьких привидениях».

Последующее развитие эксперимента и теории превратили эти первоначальные подозрения в весьма правдоподобную гипотезу. Судя по всему, следующий уровень строения вещества не желал повторять пройденное…

Итак, настал момент, когда необходимо подвести некоторые итоги. Мы с вами стали свидетелями различных периодов в развитии физики элементарных частиц. Казалось бы, не так уж далеки те времена, когда было открыто очень мало частиц, скажем, только три — электрон, фотон и протон, — и естественно, что современники рассматривали их как истинно элементарные «кирпичики мироздания». Когда количество известных частиц увеличилось едва ли не в 100 раз, физикам стало ясно, что «кирпичиков» слишком много, чтобы каждый из них мог претендовать на такую почетную роль. Прежде всего свое сложное устройство продемонстрировали адроны — именно они стали первыми кандидатами на роль составных «элементарных» частиц и, по сути дела, утратили право называться элементарными.

Кварковая модель подытожила в определенном смысле наши представления о возможной составной природе адронов. Их классификация выглядит на сегодняшний день столь убедительно, что большинство физиков уверены в правильности гипотезы о кварковом строении. Все сильней становится подозрение — скорее уже уверенность! — что кварки должны сыграть примерно такую же роль в понимании таблицы элементарных частиц, как атомы в понимании периодической системы элементов Д. Менделеева.

Потому многие физики склонны считать, что уже существует принципиальная схема для построения таблицы истинно элементарных частиц, где не найдется места ни для одного из экспериментально открытых на сегодняшний день адронов! Что же должно включаться в эту гипотетическую таблицу?

В ней по-прежнему будут обитать фотон и четыре типа лептонов. Впрочем, эксперимент указывает и на возможное образование нового типа лептонов — тяжелого эл-лептона, масса которого значительно больше массы мюона. К ним присоединятся своеобразные субадроны: 12 кварков, а для обеспечения связи между кварками могут вводиться особые частицы глюоны (от английского glue — клей).

Стоит еще раз напомнить, что кварки, о которых здесь сказано, являются лишь различными состояниями одной частицы, которые существуют в нашем реальном мире, где включены все типы взаимодействий. То же самое относится и к глюонам — на самом деле можно говорить об одном глюоне, имея в виду его расщепление на 8 различных состояний в нашем реальном мире.

К этим частицам впоследствии может присоединиться еще один гипотетический тип частиц — так называемые дубль-вэ-мезоны и зэт-ноль-мезоны — особая разновидность квантов, обеспечивающих слабые взаимодействия элементарных частиц подобно тому, как фотоны обеспечивают электромагнитные взаимодействия.

К обсуждению гипотетических переносчиков взаимодействия глюонов, дубль-вэ- и зэт-мезонов мы еще возвратимся в следующей главе. Здесь же для нас важно почувствовать общую современную тенденцию к сокращению числа истинно элементарных частиц.

В таком проекте адронам отводится роль сложных составных объектов, все свойства которых можно выводить из их кварковой структуры, подобно тому, как все свойства атомов можно вывести, зная законы их строения, из ядер и электронов. Казалось бы, все выглядит просто и пригоже — стоит только отыскать кварки и другие, пока гипотетические, частицы, и мы сможем получить экспериментально обоснованную новую картину микромира.

Но не будем забывать, что перед нами только проект, причем проект, основанный на довольно прямой аналогии с устройством уже известного атомного уровня строения вещества. А ведь история не очень любит «возвращаться на круги своя». Не все так уж просто с применением аналогий при движении в глубь вещества. Далеко не все так просто…

Нет, например, никакой уверенности, что мы действительно сумеем извлечь кварки из адронов в виде каких-то отдельно существующих частиц. Не исключено и такое на первый взгляд парадоксальное положение дел, что вопрос о кварках вне адронов вообще лишен смысла. Что же касается поведения кварков и их свойств, когда они находятся внутри адрона, то отнюдь не ясно, можно ли говорить вообще о движении каких-то объектов типа обычных элементарных частиц в столь плотном веществе. Ведь средняя плотность адрона примерно в 1014 раз превышает плотность обычной воды, и ни одно из известных науке веществ не обладает даже близкой плотностью…

Как должны вести себя силы, действующие между кварками? Пока на этот вопрос мы можем отвечать, пользуясь лишь косвенными данными, то есть непосредственно изучая только силы взаимодействия между адронами или между адронами и лептонами или адронами и фотоном. Если реальные кварки не будут обнаружены, то у нас так никогда и не появится иного способа исследования межкварковых сил.

Что же может получиться? Не сведется ли все к тому, что кварки так и нельзя будет отделить от наблюдаемых адронов и изучить независимым образом? Но в таком случае адроны должны будут по-прежнему фигурировать в таблице элементарных частиц…

Видимо, реальная ситуация в физике элементарных частиц несколько сложней, чем мы до сих пор ее себе представляли. И необходимо подробней разобраться в свойствах тех взаимодействий, которые обусловили наблюдаемое многообразие микромира…


Так может выглядеть в недалеком будущем таблица элементарных частиц

Загрузка...