— Не довольно ли детективных историй? Заманивающее, но пустое чтиво, недаром его называют «наркотическим».
— Как сказать. Английский математик и философ Б. Рассел говаривал, что предпочитает детективы А. Кристи современным романам, так как первые ему кажутся куда более реалистическими. Можно спорить, кого из авторов лучше привести в пример, но бесспорно, что хорошая литература о работе следователей тоже по-своему важна и поучительна, а не просто интересна.
— Сами себе противоречите: рентген в руках следователей — это тоже «важно и поучительно, а не просто интересно», тем не менее не хотите об этом рассказывать.
— Но разве только следователей? А исследователей вообще? Невыдуманные рассказы из истории науки не менее интересны.
В ночь на 29 июня 1174 года заговорщиками был убит сын Юрия Долгорукого Андрей Боголюбский, который, по выражению летописца, «хотя самовластцем быти на Русской земли». Как выглядел этот государственный деятель, который первым стал титуловать себя «великим князем всея Руси»?
Воссоздать его облик по черепу взялся профессор М. Герасимов, скульптор-антрополог и археолог. Но прежде надо было убедиться, действительно ли «мощи» князя являются его останками. Их отправили на рентген.
Детально изучив скелет, специалисты обнаружили различные повреждения — и застарелые, полученные в боях смелым предводителем ратников, и свежие, нанесенные перед самой кончиной. Но это не все. В шейном отделе позвоночника нашли изменения, которые должны были при жизни затруднять его сгибание. Такой человек волей-неволей ходил с высоко поднятой головой, что воспринималось современниками как чрезмерно горделивая осанка.
Результаты обследований не противоречили свидетельствам историков. Так, через 800 лет после гибели Андрея Боголюбского появился его скульптурный портрет, рожденный не фантазией художника, а мастерством ученого, выполненный как бы с натуры, фотографически точно.
Еще раньше, более 900 лет назад, умер первый законодатель Древней Руси Ярослав Мудрый (978–1054). Его останки, хранившиеся в Софийском соборе Киева, также подвергли рентгеноанатомическому изучению, и что же? Подтвердились летописные свидетельства, что князь сызмала страдал хромотой, вызванной какой-то болезнью правой ноги. Мало того, был поставлен диагноз: старый вывих тазобедренного сустава (с детских лет) и повреждение коленного (в зрелом возрасте). Вероятно, эти травмы вынудили князя отказаться от участия в ратных делах и посвятить себя мирному занятию, составлению свода законов, названного «Русской правдой».
Расположение костных балок в костном веществе подчинено определенным закономерностям. В зависимости от специфики выполняемой органом функции расположение балок иное, свое. Математические подсчеты показали: конструкция кости, архитектоника костного вещества идеально соответствуют функции, выполняемой этим органом. Изменяется функция — перестраивается костная структура.
Ориентация костных балок по силовым линиям, оптимальное соотношение минерального и органического вещества обеспечивают огромную механическую прочность и физиологическую активность кости. Бедренная, например, выдерживает давление в 1,5 тонны, большая берцовая — до 1,8 тонны. Это в 20–30 раз больше веса тела человека. Прочность кости в 9 раз выше, чем у свинца, и приближается к прочности чугуна.
В 1889 году на Всемирной выставке в Париже в качестве экспоната, символизирующего прогресс науки и техники конца XIX века, перед взором парижан и гостей предстала железная башня инженера А. Эйфеля, поразившая всех своим необычным видом и высотой (300 метров). Ее конструкция многим казалась нелепой. Считали, что она портит привычный и дорогой сердцу каждого француза вид Парижа. Башню назвали бесформенной грудой железа, гигантским призраком смерти.
Однако, поостыв от эмоций, приглядевшись и поразмыслив, люди увидели в железной конструкции исключительную рациональность, глубокий и точный расчет, и, что особенно поразило специалистов, она точно воспроизводила архитектонику кости. Все элементы башни работали только на сжатие или растяжение и ни одна балка на излом.
Прошло совсем немного времени, и Эйфелева башня завоевала сердца парижан, став достопримечательностью и символом Парижа наряду с Нотр-Дамом, Пантеоном, Лувром и другими замечательными творениями архитектуры.
Сейчас мы знаем, что наиболее совершенными являются конструкции, которые близки к структуре живой ткани. В связи с этим сейчас быстро развивается новая наука — бионика, изучающая и моделирующая процессы и конструкции живого организма. Как следствие этой тенденции родилась так называемая бионическая архитектура. Это направление науки требует глубокого проникновения в здание природы.
Но в отличие от металлической конструкции архитектоника костной ткани не является чем-то застывшим, мертвым, раз и навсегда законченным. Кость — живая, активно функционирующая ткань. На протяжении всей жизни человека здесь не прекращаются процессы перестройки — созидания и разрушения, обновления. Структура кости меняется с возрастом в соответствии с профессиональными и бытовыми привычками, а также в связи с различными физиологическими и патологическими сдвигами в организме. Все многообразие связей и механизмов перестройки костного вещества полностью не изучено. Но с достоверностью установлено: наибольшее влияние на кость оказывают околощитовидные железы, гипофиз, почки, надпочечники и половые железы.
Таким образом, кость можно рассматривать как своеобразное хранилище информации о жизни человека, о его развитии, о трудовой деятельности, привычках и болезнях.
Просвечивание останков позволяет извлечь массу информации об облике человека, даже о типе нервной деятельности, особенностях характера, привычках, профессии и т. д., и т. п. С хорошей точностью определяются возраст и дата смерти.
Благодаря искусству профессора М. Герасимова мы знаем теперь, как выглядели не только Ярослав Мудрый или Андрей Боголюбский, но и Иван Грозный, Тимур, Улугбек, другие исторические личности, а также питекантроп, синантроп, кроманьонец…
Памятуя об этом, попробуем разобраться еще в одном интересном вопросе.
Ярослав Мудрый умер в 76 лет. Андрей Боголюбский жил бы дольше, если бы не погиб в 63 года. Иные из наших предков отличались завидной долговечностью, которой не могут похвастать некоторые из наших современников, и вот…
«Я считаю, что с прогрессом культуры жизнь человека сокращается. Раньше люди жили по 150 лет, были выше ростом и с более крепким телосложением… Болезней было мало». Это из письма, присланного в «Известия» читателем из Кирова. Если бы подобные заблуждения были редкостью, тогда, может, и не стоило бы на них останавливаться. К сожалению, они весьма распространены.
Сразу же напрашивается возражение: прежде чем делать столь уверенные выводы, нужно математически строго проанализировать большой статистический материал, охватывающий множество поколений «от Ромула до наших дней». Верх наивности опираться здесь на единичные, к тому же отрывочные сведения, добытые у доморощенных теоретиков, незнакомых с научной обработкой выборочных данных.
На первый взгляд лучше всего сослаться на многочисленные исторические документы, фиксирующие годы жизни. Оказывается, нет. В «хронологической пыли бытописания Земли» мы найдем биографии «избранных» — преимущественно царей, князей и иже с ними, кто в первую очередь привлекал внимание летописцев. То есть прежде всего привилегированную публику, чья жизнь лучше оберегалась лекарями и вообще не была столь тяжкой, как у «простых смертных», составлявших большинство. Иначе говоря, такие примеры не будут репрезентативными — достаточно представительными, характерными для всего населения в целом.
Если же обратиться к демографической статистике, охватывающей всех и каждого, «от кесаря до косаря и слесаря», то она засвидетельствует: наши предки в массе своей были менее долговечны, чем мы. Правда, точные сведения о датах рождений и смерти (акты гражданского состояния, церковные записи) можно собрать разве лишь за последние 200–300 лет, да и то не по всем странам. Тем не менее положение небезнадежно. Так есть ли хотя бы крупица истины в библейских легендах о Мафусаиле и ему подобных патриархах, живших якобы по многу веков?
Ответить помогают вроде бы безмолвные, а на деле весьма красноречивые свидетели прошлого — ископаемые кости. Говорить их заставляют рентген и другие методы.
Обследуя человеческие скелеты, сохранившиеся еще от каменного века, специалисты многократно убеждались, что это большей частью останки людей, умерших задолго до 50 лет. В первобытной орде стариков не было. Если они не погибали «заблаговременно» в бою, от болезни, от голода или холода, их убивали свои же сородичи, для которых старики становились обузой.
«Долголетие, известное нам ныне, — явление более позднее, ставшее возможным лишь в условиях нашей цивилизации, — писал французский антрополог А. Валуа. — Только благодаря ей современный человек может достичь столь почтенного возраста. Для людей с ослабленной жизненной силой в древнем обществе не было места».
Средневековье? Его, как пишет профессор Э. Россет (Польша), «характеризует массовость преждевременных смертей и ничтожная доля лиц старших возрастов среди живущих».
Новое время… Во Франции XVIII века до 50 лет доживал лишь один из четырех новорожденных. В Германии до 60 — один из пяти. Лишь к концу XIX века это отношение поднялось до 60 процентов, да и то в одной лишь Дании. У нас (в Европейской России) накануне XX века оно держалось у 30-процентной отметки. Сейчас в СССР перевалило за 80 процентов.
Конечно, биологические возрастные пределы, данные нам в потенции, сегодня остаются такими же, как и сто и тысячу лет назад. «Меняется не прирожденная, передаваемая в виде задатка способность жить до 100 лет или несколько больше, а возможность проявить эту способность для большей или меньшей массы людей в зависимости от их социально-экономического положения», — пояснял советский ученый профессор З. Френкель.
Ну а от каких недугов страдали наши предки? Трудно найти человека, который мог бы полнее ответить на этот вопрос, чем профессор Д. Рохлин, член-корреспондент Академии медицинских наук СССР, заведующий кафедрой рентгенологии и радиологии 1-го Ленинградского медицинского института, автор монографии «Болезни древних людей».
В книге врач подвел итоги огромной работы, которую провел вместе с коллегами за 40 лет, собрав и обследовав десятки тысяч ископаемых костей, относящихся к самым разным эпохам — от палеолита до XX века. Археологические находки, а они прибывали в Ленинград со всех концов страны, постепенно сложились в уникальную коллекцию. Все кости после детального осмотра отправлялись на просвечивание. Так, к описаниям добавлялись рентгенограммы.
Анализ богатейшего материала позволяет опровергнуть ряд распространенных заблуждений.
Известно, что сейчас в любой развитой стране «душегуб номер один» — сердечно-сосудистые заболевания (до 60–70 процентов всех смертей). На втором месте — рак (до 20 процентов). Конечно, такого не было раньше, скажем, десятилетия назад. Неужто и впрямь недугов стало больше?
В начале XX столетия медицина считала их сотнями, а во второй его половине — уже десятками тысяч. А все симптомы нынешнему врачу и подавно не упомнить: они исчисляются сотнями тысяч. И с каждым новым изданием медицинской энциклопедии их значится все больше и больше.
Да, к реестру болезней пушкинской эпохи добавился новый список, в десятки раз больший. Но отсюда не следует, что недуги становятся многочисленней! Просто в то время медицина не различала их или не подозревала об их существовании. Объем информации в ее анналах удваивается сейчас каждые 6–8 лет. Но ведь новое можно узнать и о старом!
Исследуя мумии, ученые нашли: почти все древние египтяне, ухитрившиеся дожить до преклонного возраста, страдали атеросклерозом. С тех пор сам он не изменился. А знания о нем? Они стали расти, как снежный ком, с XIX века, когда атеросклероз выделили в особую форму заболевания.
Да, сейчас сердечно-сосудистые заболевания свирепствуют, как никогда. Но то же самое наблюдалось бы и во времена Пушкина. Если бы тогда каждое поколение сохраняло столь же значительную часть своего первоначального контингента до тех старших возрастов, когда особенно характерны сердечно-сосудистые заболевания.
По той же причине и рак вызывает сейчас больше смертей, чем десятилетия или века назад. Он и раньше всегда угрожал людям. Только наши предки гораздо реже доживали до встречи с ним. Ведь этот недуг характерен опять-таки для старших возрастов, а их достигало меньше, чем ныне, мужчин и женщин. От него страдали немногие, но все же страдали. При обследовании ископаемых костей найдены следы доброкачественных и злокачественных опухолей, метастазов (например, в позвонках женщины, умершей в III веке до новой эры).
Да, рак подстерегал всех, но его опережали другие болезни. Такие, как чума, холера, оспа, которые ныне полузабыты, ибо давно уже обезврежены.
Итак, увеличилась долговечность всех и каждого. И она тем больше, чем надежней оберегается здоровье от самых разных болезней. Но, с другой стороны, тем чаще приходится слышать, что у кого-то из наших знакомых рак или инфаркт. Ничего удивительного.
Когда удастся победить онкологические заболевания (может быть, еще до 2000 года), продолжительность жизни опять-таки возрастет. Но тогда еще более многочисленными окажутся жертвы тех недугов, с которыми имеют дело кардиологи. Спору нет, и сердечно-сосудистую систему со временем тоже будут лучше оберегать и спасать, но ее износ так или иначе неминуем. Ибо все люди смертны.
Подобные сдвиги в смертности по причинам обнаружены и для далекого прошлого. Установлено, например, что в каменном веке преобладала насильственная смерть. Свирепствовали и незримые убийцы — микробы; по сравнению с их злодеяниями меркнут даже массовые уничтожения людей по приказам Аттилы, Чингисхана, Тимура. В XIV веке эпидемии чумы унесли десятки миллионов жизней, едва ли не четверть тогдашнего населения Европы. Конечно, инфекции постепенно ретировались. Но уступили место другим врагам здоровья.
Короче говоря, неверно считать, что раньше болезней было меньше. Если же список их пополнялся, то потому, что люди, становясь долговечнее в своей массе, все чаще доживают до старческих немощей и хворей, которых раньше просто не замечали.
Такой вывод подтверждает и рентгенологическое исследование. Чьи бы останки ни изучались с его помощью: кости ли неандертальца, вырытые в крымской пещере Киик-Коба, или человека современного типа, скажем, скифов из могильников VIII–V веков до новой эры на Енисее, — всегда и всюду обнаруживались свидетельства преждевременной смерти от раны ли, от недуга ли, порой пустяковых (для нынешней медицины), или от подорвавшей жизненные силы изнурительной работы.
Найдены следы, оставленные рахитом, оститом, спондилезом, кариесом зубов, артрозом, одеревенелостью позвоночника, туберкулезом, подагрой, проказой и т. д., т. п.! Всем этим мучились наши предки. С той лишь разницей, что в отличие от нас страдали куда больше: тогдашние эскулапы мало чем могли им помочь.
Правда, рентген выявил и другое: недооценка древнего лечебного искусства неправомерна. Так, на территории СССР еще в каменном веке, тем более в железном и позже выполнялись довольно сложные хирургические операции (например, трепанация черепа). Хотя, конечно, примитивными инструментами и без наркоза.
Был развеян миф о том, будто из-за океана были «импортированы» возбудители некоторых инфекций. В 1530 году итальянский врач Д. Фракасторо порадовал любителей изящной словесности поэмой «Сифилис, или Французская болезнь». Считалось, что она распространилась благодаря легкомысленным французам, у которых стала весьма популярной, от менее ветреных, но более горячих испанцев, которые якобы завезли оную аж из Нового Света вместе с драгоценностями, методично отчуждавшимися у американских аборигенов конкистадорами.
Профессор Д. Рохлин убедительно показал, что эта болезнь встречалась в Азии (в Забайкалье) еще в I веке до нашей эры, то есть за 1500 лет до открытия Америки X. Колумбом (1492 г.).
— Ну а были ли наши предки выше нас?
— Нет, средний рост взрослых людей ныне повсюду примерно тот же, что и когда-либо прежде.
— Почему «примерно»?
— Очень просто: нельзя сказать, что он вообще не изменялся. Рентгеноанатомические и другие исследования подтверждают: конституция гомо сапиенс осталась такой же, как тысячелетия назад. Если же его рост в среднем порой постепенно увеличивался, то затем снова уменьшался, опять же постепенно, веками. Но эти так называемые эпохальные колебания были незначительными, в пределах нескольких сантиметров. Судя по массовым обследованиям, средний рост у наших соотечественников тот же, что и прежде: у мужчин — 167–168, у женщин — 156–157 сантиметров.
Что такое акселератор, ныне хорошо знают даже дети, а вот что такое акселерация, не очень хорошо знают даже взрослые. Действительно, можно услышать и прочитать: за последние 100–150 лет мужчины стали выше сантиметров на десять, женщины — на шесть-семь. При такой разнице в темпах «сильный» пол рано или поздно станет выше «прекрасного» на целый метр, а то и больше. Подобные умозаключения — софистика. Ибо люди за последние столетия не стали выше ни на шесть-семь, ни тем более на десять сантиметров.
Что же значит акселерация? Буквально — «ускорение», но какое? Прежде всего в физиологическом развитии детей и подростков, которое сейчас происходит быстрее, чем в прошлом. Например, окостенение хрящевой ткани и половое созревание у них начинается и заканчивается на год-другой раньше, чем у их сверстников в XIX веке. Нынешние «тинэйджеры» обгоняют тогдашних и в росте. У пятнадцатилетних юношей он теперь такой же, каким прежде становился только у восемнадцатилетних. Иначе говоря, тот период, когда тело быстро вытягивается в длину, наступает сегодня раньше, чем вчера. Но и заканчивается тоже раньше.
Вот что показал рентген. Окостенение хрящей, из которых состоит скелет новорожденных, у большинства детей происходит ныне года на два раньше, чем 40 лет назад. Оттого-то и вытягивание тела в длину тормозится в более раннем возрасте. Если в XIX веке молодые люди стремительно росли до 18–20 лет и даже дольше, то в XX — в основном до 17–19 (юноши) и до 16–17 (девушки).
Если же сравнивать ныне здравствующие и давно ушедшие поколения, перевалившие за тот рубеж, когда рост организма прекратился, то разница между ними окажется весьма и весьма малозаметной. Так, у взрослых москвичей в 1935 году он равнялся 167,5, а в 1965 — 167,8 сантиметра, то есть за 30 лет практически не изменился.
А как же та знаменитая фотография, которая породила столько пересудов? На ней изображен рослый современный парень рядом со средневековыми латами; он на голову выше их шлема. Но нельзя забывать: одно «да» — это еще не «да». Точно так же смешно судить о разнице между нами и нашими предками по контрасту между двухметровым Петром I и каким-нибудь москвичом среднего роста. Нужны не единичные, а достаточно многочисленные сопоставления (если выборочные, то репрезентативные).
Итак, нам не грозит участь, о которой Большая медицинская энциклопедия пишет: «Рост выше 185–190 сантиметров следует считать патологическим…» «Представление о том, что великаны обладают огромной физической силой, в большинстве случаев не соответствует действительности. Наоборот, они отличаются слабым здоровьем и редко доживают до старости… Жалуются на слабость, быструю утомляемость».
С другой стороны, теперь ясно, чего стоят досужие разглагольствования о том, что будто нашу планету когда-то населяли могучие великаны с железным здоровьем и необыкновенным долголетием. Трудами профессора Д. Рохлина и многих других палеопатологов, отечественных и зарубежных, убедительно опровергается это распространенное заблуждение.
«Вопреки легендам и преданиям картина прошлого встает перед нами не как безмятежное детство, не как молодость и зрелость, знавшая одни лишь триумфы, не как спокойная старость. Из пожелтевших летописей, из раскопок древних городищ встает наша Родина, очень часто „мечом сеченная, огнем паленная, слезами мытая, в крови добытая“». Так пишет автор книги «Болезни древних людей».
Наука снова и снова подтверждает слова В. Ленина: «Никакого золотого века позади нас не было, и первобытный человек был совершенно подавлен трудностью существования…»
Антропологические исследования не дают оснований опасаться, будто род людской хиреет, деградирует. И новые веские аргументы здесь дают нам объективнейшие свидетельства, добытые с помощью рентгеновских лучей.
Ну а мутагенные факторы? Если говорить о радиационном фоне, то его уровень несколько повысился за последние десятилетия. Но это не значит, что именно сейчас он самый высокий за все времена. Напротив, ныне он гораздо ниже, чем в древние эпохи, когда зарождалась жизнь на Земле. Тогда на нашей планете было гораздо больше таких излучателей, как трансурановые и другие неустойчивые элементы. Их запасы постепенно сокращались благодаря распаду и заметно оскудели, став теперь во много раз меньше, чем прежде.
По мнению академиков В. Вернадского, Н. Акулова, А. Опарина, лучистая энергия сыграла немалую роль в возникновении жизни на Земле. В 1926 году в очерках о биосфере В. Вернадский писал: «Твари Земли являются созданием сложного космического процесса, необходимой и закономерной частью стройного космического механизма, в котором, как мы знаем, нет случайностей».
Эту идею разрабатывает сейчас ленинградский ученый Ю. Кудрицкий. И он, и многие другие специалисты считают, что естественная радиоактивность — не просто неизбежность, но даже необходимость, без которой невозможно сохранение и развитие живых существ. Полагают, например, что она принимает участие в регуляции биологических ритмов у земных организмов.
Впрочем, если говорить начистоту, здесь еще много спорного, неизученного, что ждет своих исследователей.
— И все же бесспорно одно: к естественному облучению не стоит добавлять искусственное.
— Есть такая проблема, и она достаточно серьезна, но к чему ее излишне драматизировать? Вот, скажем, огонь — он тоже небезобиден и за долгую историю не только светил, не только грел — больно обжигал, вызывал пожары. Но, как бы там ни было, в итоге принес гораздо больше пользы, чем вреда. Так и рентген. При подведении баланса блага явно перевешивают на весах добра и зла.
«Сегодня жизнь Пушкина была бы легко спасена, — писал член-корреспондент Академии медицинских наук СССР И. Кассирский, проанализировавший заключение врачей (лучших столичных хирургов!), которые пытались помочь раненному на дуэли поэту. — Достаточно было извлечь пулю, наложить наружные швы на кишку и ввести в брюшную полость раствор пенициллина».
Вспомним: именно рентген сделал общедоступными антибиотики, избавившие стольких людей от неминуемой, казалось бы, гибели, начиная еще с времен второй мировой войны. Он же помогал точно определять, где застряли в тканях пули и осколки. Без него были бы обречены на безвременную смерть многие миллионы людей, а благодаря ему остались живы.
Заглянем в энциклопедию Брокгауза и Ефрона (1902 г.). Там черным по белому значится, что чахотка по масштабам опустошений «занимает первое место среди других болезней». Холера 1892 года, одна из сильнейших эпидемий, стоила России меньше жизней (300 тысяч), чем было унесено тогда же туберкулезом. А ведь смертность от него достигала максимума в цветущем возрасте — от 20 до 30 лет.
Так умер в 26 лет один из великих математиков норвежец Н. Абель. В том же возрасте тем же недугом был сражен Н. Добролюбов. «Какой светильник разума угас!» — скорбел об этой кончине Н. Некрасов, а ведь его самого ждала та же учесть. Палочка Коха навсегда прервала творческую деятельность В. Белинского в 37 лет, Ф. Шопена — в 39, А. Чехова — в 43 года.
Ныне эта болезнь сдала свои позиции столь заметно, что нет сомнений: окончательная победа над ней не за горами. Отступили многие враги здоровья. И здесь трудно переоценить роль рентгена. Сколь бы глубоко ни проник он в науку и технику, самой обширной сферой его применения остается по-прежнему медицина.
Видный советский ортопед-травматолог Н. Приоров сказал: «Мы гордимся славными именами крупнейших клиницистов прошлого века — Боткина, Захарьина и других, которые имели глаза и пальцы, проникающие сквозь толщу покровов, и умели видеть, ощущать там, где это было недоступно другим. Но то были выдающиеся одиночки — мастера и виртуозы своего дела. Сегодня с помощью рентгенологии это делают рядовые врачи».
Упомянутый несколькими строками выше профессор Г. Захарьин в своих лекциях проповедовал необходимость развивать наблюдательность, интуицию как основу успешного распознавания любых болезней. Он утверждал: настоящий врач половину диагноза ставит при первом же взгляде на пациента, остальное дополняется беседой. Объективные же исследования — пальпацией (прощупыванием), перкуссией (выстукиванием), аускультацией (прослушиванием) — считал разве лишь вспомогательными. Не очень-то верил и в лабораторные методы, которые в ту пору энергично внедрял молодой С. Боткин.
Тем более знаменательно, что рентгенология сделала общедоступными самым широким кругам врачей даже столь уникальные результаты, каких добивался Г. Захарьин, а заодно и С. Боткин. До нее многие недуги даже многоопытными специалистами распознавались только в далеко зашедших стадиях, в запущенном состоянии, когда было уже поздно. Благодаря ей медицина, оставаясь, конечно, в какой-то мере искусством, стала на прочный фундамент науки, сделалась куда более квалифицированной и в этом своем качестве поистине массовой.
Действительно, рентгенологическое исследование — не только самый эффективный метод диагностики, но и самый массовый. Благодаря ему, например, в клинике внутренних болезней ставится около 70 диагнозов из 100. Он преобразил самые разные области медицины. Внес огромный вклад в анатомию и физиологию, позволив заглянуть внутрь живых организмов, здоровых и больных, увидеть, как функционируют их органы в норме и патологии. Увидеть буквально воочию, а не умозрительно, не прослушиванием, прощупыванием, выстукиванием…
Как было раньше? Чтобы познать жизнь, изучали мертвецов. Да и это удавалось не всегда, по крайней мере до новейшего времени за «колдовство» с трупами церковь грозила не только небесной карой, но и жестокой казнью на земле. Тем не менее их вскрывали, похищая с кладбища, то есть заведомо шли на явное преступление. Что ж, наука не могла иначе, она должна была стать экспериментальной.
Этот поворот от бесплодного любомудрствования в отрыве от реальности, доведенного до абсурда средневековой схоластикой, к подлинному естествознанию, основанному на опыте, наметился еще в эпоху Возрождения. Но долго еще пришлось бороться против воинствующего идеализма и мракобесия. Его жертвой пал, например, испанский врач и мыслитель М. Сервет (1511–1553), первым высказавший догадку о малом (легочном) круге кровеносной системы. «…Протестанты перещеголяли католиков в преследовании свободного изучения природы, — писал Ф. Энгельс с горьким сарказмом. — Кальвин сжег Сервета, когда тот вплотную подошел к открытию кровообращения, и при этом заставил жарить его живым два часа; инквизиция по крайней мере удовольствовалась тем, что просто сожгла Джордано Бруно».
Конечно, где раньше, а где позже, полуторатысячелетний запрет препарировать трупы был отменен. Начался бурный прогресс анатомии. Но несмотря на все ее успехи, многое оставалось неясным вплоть до «рентгеновского года». А главное, до того ее результаты использовались медициной лишь косвенно. Знания, добытые при вскрытиях, переносились с мертвых на живых людей, причем всякий раз применительно к новому пациенту, хотя он в своем индивидуальном своеобразии мог резко отличаться от остальных. Каждый из нас по-своему неповторим, и недаром еще С. Боткин, призывал лечить не болезнь, а больного.
Выявлять у данного организма все особенности его внутреннего строения, притом в процессе жизнедеятельности, позволили именно икс-лучи. И очень скоро сложились несравненно более широкие представления о норме здоровья, о многоразличных ее вариантах, а не только о патологических отклонениях, что имело колоссальное значение для профилактики, равно как для терапии и хирургии.
То был настоящий переворот. Он начался почти одновременно во многих странах. Не составляла исключения и Россия. Конечно, ее культурная и хозяйственная отсталость мешала этому революционному обновлению, которое совершалось вопреки ей отечественными учеными.
Еще в феврале 1896 года В. Тонков представил в Петербургское антропологическое общество доклад о применении икс-лучей в изучении скелета. Так были заложены основы новой дисциплины — рентгеноанатомии, которая стала фундаментом современной диагностики. Ее развитие привело к принципиально важным находкам. Благодаря ей одни лишь остеопатологи, специалисты по недугам костей и суставов, описали почти 200 неизвестных ранее самостоятельных болезней.
Всего через три месяца после того, как мир услышал о новооткрытой радиации, ее начал использовать для систематического обследования пациентов А. Яновский в Петербургском институте усовершенствования врачей. В том же 1896 году И. Тарханов обнаружил первым ее биологическое действие. Через несколько лет оно было подтверждено со всей непреложностью многочисленными опытами. В 1906 году в России вышла монография Д. Решетилло по лучевой терапии.
В начале века у нас появились первые центры рентгенологии — петербургский, московский, одесский, харьковский. С 1907 года стал издаваться специальный журнал. В 1916 году пионеры рентгенологии собрались на свой первый всероссийский съезд.
И все же в дореволюционный период она у нас была развита очень слабо. Это лишний раз продемонстрировала неподготовленность России к первой мировой войне, хотя икс-лучи в боевой обстановке первым применил именно русский врач В. Кравченко, еще в русско-японскую кампанию 1903–1904 годов. Вопреки скептическим настроениям коллег он оборудовал на крейсере «Аврора» рентгеновский кабинет и в сражении под Цусимой обследовал раненых матросов, находя и извлекая осколки.
До революции в России насчитывалось не более 150 рентгеновских кабинетов, причем 2/3 находились в Петербурге, остальные в других крупных городах. Не хватало кадров, денег, оборудования. Аппаратура была импортной. Приобретать ее могли только отдельные больницы по милости благотворительных организаций и частных жертвователей.
Но вот пришел Октябрь 1917 года. Через несколько месяцев по инициативе профессоров М. Неменова и А. Иоффе, при поддержке наркомов А. Луначарского и Н. Семашко в Петрограде был основан первый в мире Институт рентгенологии и радиологии. Каждый из созданных там трех крупных отделов — физико-технический, медико-биологический и радиологический — вырос впоследствии в самостоятельный институт.
Этот научный и организационный центр стал прототипом других учреждений того же профиля у нас в стране. С 1920 года действовала Украинская рентгеновская академия в Харькове, с 1924-го — Центральный институт рентгенологии и радиологии в Москве. Затем появляются аналогичные учебно-исследовательские комплексы в Киеве, Ростове-на-Дону, Одессе, Свердловске, Воронеже, Баку, Ереване…
К началу 20-х годов наряду с медицинской рентгенологией возникает ветеринарная. Ее основоположники в СССР — Г. Домрачев, А. Вишняков, Г. Воккен. Занимается она диагностикой заболеваний домашних животных.
Ныне в СССР рентгенология располагает обширной сетью кабинетов (почти 20 тысяч), научных учреждений (примерно 20), кафедр в медицинских вузах и институтах усовершенствования врачей (около 100). Специалистов в этой области — десятки тысяч. Естественно, для нее создана отечественная материально-техническая база, которая стала закладываться еще в первую пятилетку.
В 1928 году заработал первенец советской рентгеновской промышленности «Буревестник», затем электровакуумный завод «Светлана» (оба в Ленинграде). Вскоре к ним прибавились «Мосрентген» в Москве, «Ренток» в Киеве, многие другие предприятия отрасли.
Развиваясь планомерно и взаимосвязанно, индустрия вещей (приборов) и индустрия идей (исследований) помогали друг другу идти вперед все быстрее. Совершенствовалась одновременно подготовка кадров. Прогресс всей системы «образование — наука — техника — производство» в кратчайший исторический срок вывел советскую рентгенологию на мировой уровень, позволил наладить беспрецедентные по размаху профилактические обследования населения.
Генеральная линия советского здравоохранения — профилактика, социальная гигиена. Понятно, что лучше предупреждать болезни, чем лечить их «в пожарном порядке». А если уж лечить, то на ранней стадии. Борьбе с ними у нас как раз и способствуют регулярные осмотры с просвечиванием грудной клетки у всех взрослых, желудка у лиц старше 50, грудных желез у женщин старше 35 лет и так далее.
Именно рентгенология заставила отступить туберкулез, который ныне в развитых странах постепенно уходит в прошлое. Именно она позволила заблаговременно распознавать злокачественные опухоли, что резко снизило вероятность трагического исхода. Полтора-два десятилетия назад пациенты, покидавшие здоровыми онкологическую клинику, были настолько редкими счастливцами, что их портреты с гордостью демонстрировались на медицинских конгрессах. Ныне в СССР уже приблизительно полтора миллиона людей избавлены от этого страшного недуга, слывшего некогда неизлечимым. «Раннее выявление рака спасает жизнь», — гласит девиз ВОЗ, Всемирной организации здравоохранения.
Есть немало серьезных болезней, которые долго ничем себя не проявляют внешне. Не запустить их, вскрыть, пока не поздно, помогают именно рентгеновские лучи. Они позволяют разобраться даже в тех случаях, когда отказала бы любая иная техника, не говоря уж об интуиции. Как мы только что убедились, ориентация на самочувствие пациента ненадежна. Многие хвори и недомогания, имея разные истоки, характеризуются схожей клинической картиной. Одинаковы симптомы, но не их происхождение. А чтобы вырвать корень зла, нужно знать истинную их природу. Тут-то и приходит на выручку бескровное «анатомирование» организма всепроникающим лучом, а не скальпелем.
Сейчас не осталось органов, которые были бы недоступны этому «всевидящему глазу» медицины.
— Сплошные дифирамбы! Они звучат как индульгенция от всех грехов.
— Погодите, не все разом. Рентген действительно великолепный инструмент, и надо в полной мере воздать ему должное. Но как и любой иной метод, он, разумеется, отнюдь не идеален. Его недостатки уже упоминались, их перечисление можно продолжить.
В 1928 году в Лондоне был воздвигнут обелиск, на котором высечены имена 136 человек, не щадивших себя в стремлении поставить икс-лучи на службу человечеству и погубленных смертоносной силой таинственных невидимок. В 1936 году в Гамбург-Эппендорфе установлен такой же монумент с надписью: «Памятник посвящается рентгенологам и радиологам всех наций, врачам, физикам, химикам, техникам, лаборантам и сестрам, пожертвовавшим своей жизнью в борьбе против болезней их ближних. Они героически прокладывали путь к эффективному и безопасному применению рентгеновских лучей и радия в медицине. Слава их бессмертна». А на гранях камня — печальный мартиролог со 169 фамилиями тех, кто скончался от облучения.
К 1959 году в списке жертв значились уже 360 человек, среди них — 13 наших соотечественников. Некоторые были мучениками из мучеников. У. Додд из Бостона умер от рака после 46 операций. Неужели такая участь неминуема?
Нет, ее избежал, например, В. Рентген. Возможно, и здесь сказалось его чутье. Рентген проявил известную осторожность в работе с икс-лучами. Во время своих опытов он прятался в оцинкованный шкаф, а вскоре и вообще перестал ими заниматься. Умер он в 78-летнем возрасте от рака, распознанного, кстати сказать, с их помощью.
Сегодня существует и продолжает совершенствоваться целый комплекс защитных мер, ограждающих каждого, кто сталкивается с ионизирующей радиацией, от ее вредного воздействия. Приняты предельно допустимые дозы: 5 рентген за год для тех, кто непосредственно имеет дело с ее источниками; 0,5 рентгена для работающих в смежных помещениях и 0,05 для остального персонала и всего населения.
В процессе эволюции животный и растительный мир выработал механизмы самообороны от облучения. Клетка делает все, чтобы устранить, нейтрализовать вызванные им повреждения. Конечно, такая система самоочищения от них не всесильна. И представляется весьма заманчивым поднять ее эффективность. Этой проблемой заняты биологи всех континентов.
А пока ничего не остается, кроме как всячески уменьшать риск, связанный с использованием проникающей радиации. Например, при рентгеновских процедурах ее направляют лишь на тот участок тела, где могут быть патологические изменения. Особенно тщательно оберегаются от нее половые железы — во избежание отрицательных генетических последствий. Профилактическое просвечивание детей до 12 лет в СССР запрещено. Со временем этот возрастной предел будет, несомненно, поднят. Конечно, обследуют и малышей, но в исключительных ситуациях, в случае крайней необходимости, по самым строгим показаниям.
Успешно решается и такая задача — сократить самое крупномасштабное из массовых профилактических обследований — рентгеновское, практикуемое десятками государств. Еще недавно оно проводилось у нас всегда и везде, поступал ли человек в специальные учебные заведения, устраивался ли на работу, не говоря уж о ежегодных медицинских осмотрах в порядке диспансеризации. Что оно собой представляет, знает, вероятно, каждый. Это прежде всего флюорография — фотосъемка с флюоресцирующего экрана.
Делается все, чтобы уменьшить вред облучения не только в диагностике, но и в терапии. Когда оно применяется при лечении, скажем, опухоли, то должно как можно меньше поражать здоровые ткани. Если злокачественное новообразование находится снаружи, все просто. А если оно упрятано глубоко внутри? Поток радиации направляют на него узким пучком, который к тому же перемещают, чтобы он не слишком долго воздействовал на одни и те же окружающие ткани и кожные покровы, лежащие на пути к мишени. Нередко используют электронный луч ускорителя (бетатрона), дающий максимум дозы не снаружи, а на той или иной глубине.
Предпринимаются попытки елико возможно заменить рентген другими «родами оружия».
Десятилетиями оставался он единственным средством удаления волос при грибковых и бактериальных заболеваниях, поражающих кожу под шевелюрой, бородой, усами. С его помощью удаляли волосы (до того приходилось прибегать к мучительной процедуре — выщипывать их вручную, все до единого, а ведь их на голове от 80 до 140 тысяч). За облучение ухватились как за спасательный круг: оно безболезненно приводило к облысению, разумеется, временному — на месяц-другой.
Зараза, которая, бывало, держалась годами, пропадала через несколько дней. Но какой ценой! Человек получал на каждое поле 450–500 рентген. Конечно, использовалось мягкое излучение с малой проникающей способностью, которое поглощалось преимущественно кожей. И все же… Сегодня волосы удаляют иначе, с помощью эпилинового пластыря, содержащего химическое вещество — эпилин. И только в тех случаях, когда химические препараты абсолютно непереносимы для организма, обращаются к рентгеновской радиации.
В последнее время у рентгеновской радиации появилось много конкурентов. Как ни странно, некоторые внутренние болезни удается распознавать снаружи — по температуре тела. Вернее, по ее отклонениям от нормальной. От какой именно? Она ведь, как известно, неодинакова на разных участках кожных покровов. Самая высокая — 36,8° (подмышечная впадина), самая низкая — 24–28° (кисти и стопы). Другие значения: 33,5–34° (лицо, шея), 30–32° (туловище, руки и ноги).
Ни для кого не секрет, что по этому распределению и его изменениям можно судить о состоянии здоровья. Порой даже на ощупь легко ощутить жар, прикоснувшись ко лбу или к тому месту, где появилась припухлость, краснота. Точные измерения помогают выявить патологический процесс, начинающийся где-то внутри организма и на первый взгляд ничем себя не выдающий. Распознать, например, еще в зародыше злокачественное перерождение ткани на той или иной глубине под кожей. Предсказать развитие инсульта, кровоизлияния в мозг. Там и тут — по местному изменению температуры. В первом случае — по ее повышению, вызванному бурным делением клеток. Во втором, по ее понижению, обусловленному сужением сосудов.
Это удается благодаря термовидению, которое все шире применяется в науке и технике. Речь идет о преобразовании инфракрасных (тепловых) лучей в видимый свет. Их испускает все, что нас окружает, но неодинаково интенсивно. Скажем, холодные камни построек — в меньшей степени, чем люди и животные. На экране получается мозаика светлых и темных пятен, которая складывается в целостную и четкую черно-белую картину.
Созданные на этом принципе инфракрасные бинокли позволяют хорошо разглядеть человека в полном мраке. В результате джентльменам удачи уже наивно обнадеживать себя словами песни, сочиненной в эпоху троек: «Была бы только ночка, да ночка потемней».
Так можно предупреждать и злодеяния, которые затеваются врагами здоровья внутри нашего организма. Тепловизоры становятся все чувствительней. Они регистрируют уже разницу в десятые доли градуса. Чем больше температурный контраст между соседними участками тела, тем четче изображение, которое дают на экране инфракрасные лучи, преобразуемые в видимые специальной аппаратурой.
Термовидение, как показывает само название, в чем-то аналогично рентгеноскопии, то есть предполагает визуальное наблюдение. Есть и подобие рентгенографии — термография (фото- или киносъемка на особую пленку). Правда, фиксированные изображения оставляют желать лучшего, и метод пока не вошел в клиническую практику достаточно широко. Однако даже предварительный опыт, который накоплен за последние годы, кажется весьма многообещающим в диагностике болезней сосудистой, нервной, эндокринной систем.
Участки кожи в тех местах, где затруднен приток крови, холоднее и дают на термограммах почернение. Появление темных пятен выше надбровных дуг свидетельствует о сужении сосудов, питающих мозг, и позволяет предсказать угрозу инсульта. Злокачественные опухоли, имея повышенную температуру, просматриваются на «тепловом портрете» как светлые «горячие очаги».
Глубинные патологические процессы, если они сопровождаются лишь местным разогреванием тканей, к сожалению, не регистрируются термографически. И уж тут-то, казалось бы, рентген вне (конкуренции, но…
Нельзя ли «всевидящее око» заменить «всеслышащим ухом»? Речь вот о чем. Оказывается, ткани можно зондировать на любую глубину, причем безвредно для них и безболезненно. Как? Ультразвуком. Вспомним: он давно уже используется для эхолокации на подводных лодках, которые с его помощью определяют расстояние до дна морского, до любых твердых объектов в жидкой среде. Еще раньше, чем людям, он стал служить животным: дельфинам и прочим китообразным, летучим мышам, которые могут благодаря ему свободно двигаться вслепую и охотиться в полной темноте. Посылают они его короткими импульсами, воспринимая затем эхо, вызванное таким «писком».
Наш организм, а он на 7/10 состоит из воды, — собрание всех агрегатных состояний, от жидкого (кровь) до газообразного (воздух в легких) и твердого (кости). Эти среды с их неодинаковой плотностью по-разному проницаемы для ультразвука. И он там не везде пронизывает нас насквозь беспрепятственно: где просто ослабляется, а где и отражается от преград.
Такое прощупывание неоднородностей, естественно, дает куда больше информации, чем прослушивание с помощью фонендоскопа или «невооруженным» ухом. А в иных случаях — больше, чем просвечивание. Обнаруживает, например, мельчайшие камни в почках, незримые для «всевидящего глаза» или слишком прозрачные для него чужеродные тела из пластмасс.
Во время интервенции во Вьетнаме американская военщина применила шариковые бомбы, начиненные пластмассовыми гранулами. Такая шрапнель прозрачна для рентгеновских лучей настолько, что они не в состоянии выявлять ее в теле у раненого. Ультразвук же легко справляется с этой проблемой.
Главное, однако, в другом: он безопасен не только для пациентов, но и для врачей, которые имеют с ним дело постоянно.
Еще одно немаловажное достоинство: аппаратура для акустического зондирования проще и вдесятеро дешевле, чем для рентгеновского просвечивания. Она бывает двух типов. В первом случае используется принцип эхолота, когда сравниваются посланные и отраженные сигналы (импульсы); источник и приемник находятся по одну сторону от пациента. Во втором случае звуковые волны пронизывают организм непрерывным потоком — точь-в-точь, как рентгеновская радиация. Тогда их генератор и детектор располагаются, естественно, друг против друга, а пациент посредине. Чаще всего применяется именно этот метод, который в отличие от эхолокационного называется трансмиссионным (от латинского «транс» — «через, сквозь» и «миссио» — «посылка, передача»).
Понятно, что увидеть звук, не просто незримый, но еще и неслышимый для нас, — не проблема для нынешней техники. Прежде всего вспомним, что он собой представляет. Это продольные колебания упругой среды. Пройдя через организм, они улавливаются таким же примерно датчиком, каким оборудован адаптер радиолы. Там они преобразуются в электрические сигналы, которые после усиления воспроизводятся на экране кинескопа в виде светящихся линий. Их форма многое скажет опытному глазу. Но обычно для расшифровки применяется автоматика. По точно измеренным параметрам специальное устройство определяет характеристики зондируемой среды. В частности, что очень важно, — глубину, на которой находится чужеродное тело или патологический очаг. Эта ценная особенность метода позволяет проводить послойное обследование организма.
Пока что результаты ультразвуковой диагностики поступают на выход в зашифрованной форме. Но их можно преобразовать и так, чтобы получать на экране обычную светотеневую картину изучаемой структуры, подобную рентгеновской. Это достигается с помощью электронно-акустического преобразователя. Проблема в том, чтобы поднять качество изображения, которое оставляет пока желать лучшего. Задача, несомненно, будет решена. И тогда звуковидение станет серьезнейшим конкурентом рентгенологии.
— Получается, что вы, специалист по рентгенологии, ее популяризатор и пропагандист, подписываете смертный приговор милой вашему сердцу дисциплине.
— Ничуть не бывало. Так вопрос не стоит. Рентгенология долго еще послужит верой и правдой, пока не удастся найти нечто более эффективное и безвредное. К тому же не забудьте, что пациентом рентгеновского кабинета является не только гомо сапиенс, но и братья наши меньшие.
Зачем корове губная помада, зажимы для чулок, шпильки для волос, обручальное кольцо или, к примеру, медаль за многодетность? Натурально и положительно ни к чему, но недаром о неожиданно запропастившейся вещи исстари говорят: как корова языком слизнула.
«Что можно найти в желудке у коровы?» Такое сообщение напечатал доцент Московской ветеринарной академии В. Тарасов. Случается, пишет он, домашние животные, еще вчера здоровые, вдруг теряют аппетит, становятся вялыми, понурыми, еле плетутся за стадом. Ложась и вставая, стонут, постепенно чахнут, вызывая естественную жалость и желание хоть чем-нибудь помочь. Увы, не раз бывало, когда даже ценные экземпляры ценных пород отправлялись на убой. Причины внезапного недомогания? Они могли бы показаться загадочными, если бы не рентген.
Вот что извлек В. Тарасов из пищеварительного тракта домашних животных, проделав 220 хирургических операций: серебряные и медные монеты (на 56 рублей), гвозди и шурупы (1975 штук), куски проволоки (612), металлические обломки (363), патефонные и швейные иглы (274), гайки (92), ключи (86), булавки (66), осколки стекла (56), шпильки и заколки для волос (54), подшипниковые шарики (23), пуговицы (17), дамские зажимы для чулок (11), колесики настенных часов (9), фарфоровые ролики-электроизоляторы (7), крючки (6), броши (4), пули (3), крышки от дамских часов (2), чайные ложки (2), футляры для губной помады (2), наперстки (2), шпульки от швейной машины (2), остатки очков, зубной протез, блесну рыболовную, штопор, вилку, зажигалку, обручальное кольцо, наконец, медаль «Материнская слава». Тысячи предметов!
О вкусах, конечно, не спорят, прямо скажем, они несколько экстравагантны в столь пестром разнообразии. А в век научно-технической революции можно ожидать и не таких сообщений. Не стоит удивляться, если кто-то известит читателей, как буренка вместо нечленораздельного «му-му» разразилась вдруг хабанерой из «Кармен» или лекцией о жизни на Марсе: транзисторные приемники становятся все миниатюрнее.
А если всерьез, то в заботе о «братьях наших меньших», в частности о редких, исчезающих представителях фауны, люди не вправе пренебрегать рентгеном. Разумеется, медикам он нужнее, чем ветеринарам, не только сегодня, но и в обозримой перспективе.
Конечно, если бы им вдруг перестали пользоваться, то исчез бы и причиняемый рентгеном вред. Но такой гипотетический выигрыш утонул бы в колоссальном приросте заболеваемости и смертности. И недаром в крупных клиниках всего мира число рентгеновских процедур продолжает расти.
Да, проникающее излучение опасно в любых дозах, даже самых малых, но ведь это один из сотен, даже, может, тысяч факторов, которые сказываются на нас отрицательно. Между тем именно на него обращают особое внимание: как-никак грозные «таинственные невидимки». Потому, вероятно, среди прочих факторов нет ни одного, для которого были бы приняты столь жесткие нормы, как в отношении ионизирующей радиации. И ни в какой иной области правила техники безопасности не разработаны столь детально и не выполняются столь тщательно.
Сказанное — вовсе не повод для самоуспокоения. И по-прежнему предпринимаются энергичные усилия, с тем чтобы свести на нет радиационную опасность. Успехи налицо, достаточно сравнить то, что было, с тем, что стало.
Страшно подумать, какую дозу получал пациент при просвечивании на рубеже XIX–XX веков. Чтобы изготовить рентгенограмму грудной клетки взрослого человека, требовалась экспозиция в… полтора-два часа. Низкая чувствительность фотоэмульсии? Не только. Вся аппаратура в сопоставлении с нынешней была примитивной. Трубки, например, приходилось время от времени отключать для того лишь, чтобы дать им, слабосильным, отдых. С учетом этих вынужденных перерывов процедура отнимала весь рабочий день. Сегодня такой снимок делается за 1/10 секунды, то есть с выдержкой, которая в десятки тысяч раз короче, а его качество, понятно, несравненно выше.
Одно из важных усовершенствований появилось в первые же 10 лет XX века. Для съемки начали использоваться усиливающие экраны, между которыми располагали фотопленку. Благодаря этому при той же светочувствительности пленки экспозиция сокращалась в десятки раз. Соответственно во столько же раз снижалась лучевая нагрузка на организм.
Это привело к тому, что рентгенография по своей разрешающей способности превзошла рентгеноскопию. На снимках можно различать 40 линий в пределах каждого сантиметра, на просвечивающем экране — лишь 3 линии на сантиметр, то есть в 13 раз меньше.
Конструкторы, понятно, никогда не останавливались на достигнутом. Одна из важных задач, которую они поставили перед собой, — свести на нет так называемую динамическую нерезкость, обусловленную движением органов. Если задержать дыхание, легкие не будут изменять объем и форму, но сердце, например, никак не остановишь. Желудок тоже сокращается непроизвольно. Чтобы снимки его были четкими, необходимо уменьшить выдержку до 0,02 секунды. И стало быть, увеличить мощность рентгеновской аппаратуры до 50 киловатт как минимум. Значит, через трубку пойдет ток в 0,5 ампера при напряжении в 100 тысяч вольт. А это связано с целым рядом трудностей.
Конечно, добиться таких параметров — дело нехитрое. На практике они бывают и выше. Но чем жестче режим, тем больше энергии затрачивается впустую — на тепловые потери, которые и так уносят львиную ее долю (едва ли не 99 процентов!). Как видно, у рентгеновской трубки КПД ничтожно мал (около 1 процента). Он намного ниже, чем, например, у парового котла (20 процентов).
Впрочем, дело не только и даже, пожалуй, не столько в потерях энергии самих по себе. Главное в другом: чем интенсивнее выделяется тепло, тем сильнее нагревается анод. Он раскаляется зачастую до 2 тысяч градусов, из-за чего постепенно разрушается. И вот его стали делать вращающимся. Чтобы площадочка, куда бьют электроны, непрерывно перемещалась по его зеркалу, а остальная поверхность тем временем отдыхала, охлаждаясь. Такое решение позволило поднять мощность рентгеновских трубок с 5 до 50 киловатт. Но и этого оказалось недостаточно.
При некоторых обследованиях (скажем, при съемке сосудов сердца) экспозицию необходимо сократить до 0,001 секунды. И значит, соответственно увеличить мощность. Технически такое вполне реально: достаточно расширить площадочку на аноде, куда нацелен сфокусированный пучок электронов. Но тогда изображение проиграет в резкости. Поперечник этого фокусного пятна не должен превышать двух миллиметров. Идеальной была бы точечная мишень. Уже удалось получить такой источник с помощью лазера. Эксперименты обнадеживают.
Сейчас продолжаются попытки усовершенствовать анод так, чтобы он, с одной стороны, не перегревался, а с другой — стал более жаропрочным. Пока что его делают из таких тугоплавких материалов, как вольфрам, молибден. Возможно, пригодится графит, обладающий завидной термостойкостью. Если из него будет создан достаточно прочный и компактный анод, мощность трубки значительно увеличится.
Предстоит справиться и с другими задачами. При жестких режимах работы анод должен вращаться быстрее, иначе он расплавится. Однако при больших скоростях да еще высоких температурах не выдерживают подшипники. Нужна особая смазка: не только термостойкая, но и нелетучая, рассчитанная на работу в вакууме.
— Итак, все новые проблемы?
— Да, но и все новые поиски, новые находки. Без этого немыслимо развитие, которое всегда идет через преодоление противоречий.
— Но зачем окунаться в атмосферу вашей кухни нам, непосвященным?
— Ее нелишне почувствовать всем. В эпоху научно-технической революции не только рентгенолог или иной ученый — любой наш современник, сознает он это или нет, обязан мыслить иначе, чем его деды, не вправе ограничиваться простым исполнением привычных функций «по старинке». Не может не интересоваться: почему так, а не иначе и как лучше? Иначе говоря, должен не бежать от проблем, не закрывать их, а вскрывать, ставить и разрешать.
Что произошло бы с нашими современниками и потомками, если бы на Земле вдруг не стало серебра? Иные усмехнутся: никакой трагедии, проживем и без него. Чайные ложки, мол, да подстаканники можно делать из нержавеющей стали…
Что ж, ювелирная промышленность и впрямь легко обошлась бы без этого драгоценного металла. Куда труднее отказаться от него электротехнике, но и тут наверняка удастся подыскать достойную замену. А вот как быть кинофотоиндустрии? Это единственная из трех названных отраслей — главных его потребительниц, которая без серебра просто немыслима.
Кто не знает, что светочувствительной пленку делают соединения серебра? Всем известно и то, что она нужна не только кинооператору и фоторепортеру, но и тому, кто спасает людей от болезней, от смерти, — рентгенологу.
Вот уж подлинно драгоценный металл! В первую очередь для медицины. И это один из дефицитнейших элементов на Земле. По некоторым подсчетам, его мировых запасов хватит разве лишь на 20 лет. Конечно, какая-то его часть возвращается благодаря утилизации отходов, но именно часть. А расходы продолжают расти. Его экономия — одна из насущнейших задач, важность которой многие, к сожалению, все еще не осознали в полной мере.
Рентгеновская пленка имеет два эмульсионных слоя. Каждый квадратный метр содержит 14 граммов серебра. Используется же она в огромных и к тому же растущих количествах. Проблема налицо. А поиски, решения?
Мы помним, что такое флюорография. Что профилактические обследования населения этим методом, хотя и остаются массовыми, кое-где, однако, начали уже сворачиваться. В будущем их масштабы станут, вероятно, намного меньше, чем ныне. Сократится и расход пленки. Но сберегать ее в еще больших количествах позволило бы повсеместное распространение опыта, накопленного флюорографией.
Флюорограмма имеет только один светочувствительный слой. Кроме того, она по площади в 10–20 раз меньше крупноформатной стандартной рентгенограммы. И в большинстве случаев может ее заменить, что сулит немалую экономию. Конечно, изображение будет мельче. Но его можно увеличить для рассматривания с помощью специальных проекторов. Дело, понятно, не только в материальной выгоде. Если компактную флюорографическую камеру установить на электронно-оптический усилитель стационарного аппарата, можно полностью заменить крупноформатные снимки на 70- или 100-миллиметровые флюорограммы, снизив при этом лучевые нагрузки.
Такая комбинация обладает еще одним достоинством. Она позволяет запечатлеть исследуемый орган почти кинематографически — многократно с коротким интервалом по заданной программе. Например, с частотой 6 кадров в секунду. Это очень важно при регистрации быстротекущих процессов. Таких, как, скажем, глотание «бариевой каши» (контрастной массы) и ее продвижение по пищеводу.
Хорошо, а не уменьшится ли вместе с размерами изображения его диагностическая информативность? Да, если пленка 70-миллиметровая. Нет, если она 100-миллиметровая. Сделанные на ней снимки по разрешающей силе равноценны стандартным крупноформатным рентгенограммам. Правда, требуют увеличения, но при необходимости могут разглядываться и без проектора, невооруженным глазом.
Предположим, однако, что кто-то сочтет для себя абсолютно необходимым изображения в натуральную величину. Что ж, на них вовсе не обязательно расходовать пленку. Можно обойтись обычной писчей бумагой.
В народном хозяйстве давно уже применяется ксерография (от греческого «ксерос» — «сухой»). Она основана на способности селеновой пластины накапливать электростатический заряд, а затем терять его под действием видимых (или рентгеновских) лучей, сохраняя его на затемненных участках. В результате на поверхности пластины возникает скрытое изображение. Его проявляют, опыляя тонкодисперсным красящим порошком, который точно воспроизводит распределение света и теней. Рисунок затем перепечатывают на бумагу.
Так получают электрорентгенограммы, затрачивая на это 2–3 минуты. Одна селеновая пластина выдерживает 2–3 тысячи таких процедур, что позволяет сберечь до 3 килограммов серебра. Изображение мало уступает по качеству обычному рентгенографическому, а нередко бывает и более информативным: видны даже волосы, очень хорошо прорисовываются мягкие ткани.
Спору нет, всякая экономия должна быть разумной. Если есть возможности повысить эффективность диагностики, они должны быть реализованы, путь даже понадобятся дополнительные затраты. Вот, к примеру, уже упоминавшаяся цветная рентгенография. Ей необходима пленка, притом еще более дорогая, чем черно-белая. Но цель оправдывает средства: изображение оказывается информативнее. Как же его получают?
Есть несколько способов. Вот один из них. Обследуемый объект снимают трижды, каждый раз при ином напряжении рентгеновской трубки, то есть в лучах неодинаковой жесткости. Изготовляют три черно-белых негатива. Каждый из них окрашивают одним из основных цветов: первый — синим, второй — зеленым, третий — красным. Затем все три совмещают и делают один отпечаток на цветной пленке.
Все вроде бы просто и хорошо, но, к сожалению, пациент получает три дозы вместо одной. Этого недостатка лишен метод тоноразделения, предложенный в 1963 году немецким ученым Р. Гаройсом. Здесь нужна лишь однократная экспозиция. На снимке выделяют различные зоны плотности, и на каждую из них изготовляют свою копию рентгенограммы. В конце концов все совмещают на цветной пленке, получая условно окрашенное изображение.
Чтобы упростить такие превращения, создается специальная цветная пленка. Она имеет несколько слоев. Каждый реагирует на определенную интенсивность рентгеновской радиации. После проявления возникает черно-белое изображение, а после отбеливания — окрашенное. Самые светлые участки выглядят красными, более темные — зелеными, синими, фиолетовыми.
Такая рентгенограмма богаче информацией, но ее анализ требует определенного навыка и психологической перестройки. Алая кровь и коричневая желчь, контрастированные соответствующими препаратами, оказываются зелеными, как и кости, и все, что хорошо задерживает проникающую радиацию. Зато ажурная структура легких, прозрачная масса мягких тканей предстанет взору врача пурпурной.
Ясно, что тут нет ничего общего с естественной палитрой красок. Но ведь ее искажают и черно-белые снимки, к которым все мы давно привыкли. Почему бы не привыкнуть и к искусственно измененным цветам? В конце концов, ведь наше восприятие цвета также условно, потому что оно опосредовано нашими органами чувств. Об этом знали или догадывались даже древние. Материалист, мыслитель и поэт Лукреций писал:
Словом, не думай, что вещь, коль она обладает
окраской
Той иль иной, потому ее носит, что в ней основные
Тельца ее вещества окрашены цветом таким же.
Ибо у тел основных никакой не бывает окраски,
Ни одинаковой с той, что присуща вещам, ни
отличной.
— Если флюорография «почти кинематографична» (до 6 кадров в секунду), то, верно, есть и настоящие кинематографические скорости?
— Конечно. Существует рентгеновское кино с нормальной, ускоренной и замедленной съемкой. Есть также рентгеновское телевидение. Как и обычное, оно использует магнитную запись изображения.
— Что это дает? Экономится серебро?
— Не только. Рентгенологи получили наконец возможность выйти на свет из полумрака своих кабинетов, лучше наладить хранение архивных материалов.
28 декабря 1895 года — в тот самый день, каким В. Рентген датировал свое первое сообщение «О новом роде лучей», — в подвале «Гран-кафе» на бульваре Капуцинов в Париже состоялся первый публичный платный киносеанс.
Так начинало свой путь «синема», детище братьев Л. и О. Люмьер. Оно произвело фурор. Демонстрировались снятые на натуре сценки «Завтрак ребенка», «Политый поливальщик», «Выход рабочих с фабрики Люмьера». Кто бы подумал тогда, что их действующих лиц можно увидеть на экране не только движущимися, но и прозрачными, словно сделанными из стекла! Проследить, как функционируют пищевод и желудок малыша, сердце поливальщика, легкие рабочих и скелеты самих братьев Люмьер.
Ровесники — икс-лучи и «ожившие фото» — не могли не встретиться еще «на заре туманной юности». Что же получилось? Ничего, несмотря на все ухищрения тех, кто мечтал о союзе двух замечательных нововведений. Выяснилось, что киносъемка прямо с флюоресцирующего экрана неосуществима. Мешала слабая его яркость, и никто не знал, как ее усилить без резкого повышения лучевых нагрузок. Так разошлись пути Великого немого и «всевидящего глаза».
Минули десятилетия, и рентгенокинематография родилась заново. Этот синтез назревал исподволь: увеличивалась мощность трубок и чувствительность пленки, уменьшалась необходимая экспозиция и радиационная опасность. Но прежде всего он стал возможен благодаря перевороту в рентгенологии, начавшемуся в 50-е годы, когда появились электронно-оптические усилители.
Сегодня никого не удивишь установками, фиксирующими рентгеновское изображение с хорошей четкостью при малой выдержке (400 кадров в секунду и выше). Такая спешка, разумеется, не ради кинотрюков. Представьте, что изучается работа сердца и сосудов. Чтобы увидеть движение крови, прозрачной для рентгена, ее нужно «очернить» контрастными препаратами. Но непрестанно циркулируя, кровь стремительно разнесет их по своему ветвящемуся руслу, и те вмиг растают на глазах, как чернильная капля в быстрой струе воды. Тут-то и выручает «лупа времени», которая замедляет для наблюдателя быстротекущий процесс. Скажем, в десять раз, если съемку вести с высокой скоростью (например, 240 кадров в секунду), а демонстрацию — с нормальной (24) или пониженной (16 кадров).
И наоборот, бывают изменения, слишком неторопливые для нашего нетерпеливого разума; чтобы они воспринимались наилучшим образом, их сжимают во времени. Здесь могут пригодиться, кстати, скорости программированной флюорографии с ее 2–4–6 кадрами в секунду. Ту же ленту потом можно прокрутить быстрее (24 кадра в секунду).
Все это, несомненно, расширило возможности медицины. Тем не менее Великий немой рентгенологии, притязавший на титул короля в ее царстве, был вынужден уступить корону более удачливому претенденту. Как рабочий метод диагностики он был вытеснен почти отовсюду, если не считать обследования сердца, более молодым соперником — телевидением с его возможностью записывать изображение магнитным способом. Уделом рентгенокинематографии с ее эффектными фильмами о таинственных невидимках осталась в основном популяризация науки, работа в рекламных и учебных целях.
Что касается телевидения, то идею применимости его в рентгенодиагностике француз Довилье запатентовал еще в 1915 году. Прошло, однако, 40 лет, прежде чем проект был реализован. Мысль пробивалась теми же неторными тропами, спотыкаясь на тех же препятствиях, какие преодолевал синтез рентгена и кино.
Поначалу передающую телевизионную трубку нацеливали прямо на флюоресцирующий экран. После многочисленных неудач пытались обойтись без него, преобразуя икс-лучи в видеосигналы непосредственно, но и это не принесло успеха. Дело сдвинулось с мертвой точки лишь после того, как появились электронно-оптические усилители.
Электронно-оптический усилитель представляет собой вакуумную колбу с двумя электродами: катодом и анодом. Дно колбы покрыто люминофором. К нему прилегает пленка сурьмяно-цезиевого фотокатода. При просвечивании больного на входном экране появляется свечение, под влиянием которого в фотокатоде возникает эмиссия электронов. Свободные электроны в электрическом поле устремляются к аноду, где устанавливается выходной экран. На нем возникает уменьшенное изображение, яркость которого в несколько тысяч раз больше, чем яркость у входного экрана. Светотеневая картина стала настолько яркой, что ее можно теперь рассматривать на свету. При этом удается не только сохранить, но даже улучшить очень важную характеристику — разрешающую способность, а также уменьшить лучевую нагрузку на организм пациента.
Казалось бы, диагносты должны довольствоваться достигнутым. Наконец-то они обрели то, о чем мечтали! Однако такова диалектика прогресса — беспокойному человеческому разуму всегда мало уже завоеванного; лучшее — враг хорошего, но подавай именно лучшее.
Изображение, полученное с помощью усилителя, мог рассматривать только один человек (в монокуляр). Возникли трудности, связанные с необходимостью выполнять несколько операций одновременно: анализировать рентгеновскую картину, управлять аппаратурой, наблюдать за пациентом.
Новые проблемы — новые поиски — новые решения. На выходе электронно-оптического преобразователя устанавливается передающая трубка. От нее видеосигналы поступают на кинескоп телевизора. Эта двухступенчатая система вроде бы идеальна, но… Кто поручится, что завтра ею снова не будут недовольны?
Итак, рентгенотелевидение. Его достоинства? Высококачественное изображение, возможность менять его контрастность, получать не только позитивную, но и негативную картину, рассматривать одновременно целой аудиторией, передавать на любые расстояния обычной техникой связи — кабельной, радиорелейной. От привычной обстановки рентгеновского кабинета не остается и следа. Лучше не только больному, который облучается меньше; дистанционное управление позволяет врачу выйти из радиационно опасной зоны, вести все наблюдения из другой комнаты, из другого здания, из другого города.
И еще: можно работать при свете, электрическом или естественном. Раньше он только мешал рентгеноскопии. Теперь помогает. Причина проста. Чтобы разглядеть неяркое изображение, нужна темнота. А к ней глаза привыкают не скоро. Вспомните: войдя в зашторенный рентгеновский кабинет, когда белый день для вас внезапно сменяется ночным мраком, вы поначалу чувствуете себя словно ослепшим, хотя вам, собственно, ничего и видеть-то не надо. А каково врачу, который должен различать все детали на экране?
Светочувствительный слой глаза — сетчатка имеет два типа рецепторов: 100 миллионов палочек, они располагаются на периферии сетчатки, а в центре в области желтого пятна сосредоточено 6,5 миллиона колбочек, они предназначены для зрения при ярком свете. Светочувствительность колбочек довольно низкая, они реагируют только при яркой освещенности. Но зато разрешающая способность колбочкового аппарата гораздо выше, чем палочкового, а кроме того, колбочки способны различать цвета.
Благодаря двум типам рецепторов человек обладает способностью видеть в огромном диапазоне освещенности, когда самый яркий свет в миллиард раз сильнее самого тусклого. Переход от дневного к сумеречному зрению осуществляется с помощью зрительного пигмента. Этот процесс происходит плавно в течение 15–20 минут, у пожилых — еще дольше. Транжирится драгоценное время.
Но главная потеря в другом. При каждом таком переходе от дневного зрения к сумеречному оно утрачивает остроту. Если прибегнуть к аналогии, это все равно что сменить в фотокамере пленку на более чувствительную, но не столь мелкозернистую, то есть проиграть в резкости. При слабой освещенности изображение для нас неясно, расплывчато, не столь четко расчленено на детали, как при нормальной. По остроумному замечанию одного специалиста, если ночью все кошки серы, это еще полбеды, беда в том, что ты никогда не уверен, кошки ли это вообще.
Понижается, кстати, не только разрешающая способность, но и скорость восприятия. Обследование удлиняется. Облучение тоже. Да еще адаптация, которая продолжается порой куда дольше, чем само просвечивание. Вот и стараются врачи как можно реже выходить из кабинета, сидя там как на приколе, что мешает рациональному использованию рабочего времени. Мало помогают и темные очки, которые они вынуждены надевать даже в помещении, когда выбираются на свет божий.
В темной комнате, которая все больше загромождается аппаратурой, трудно ориентироваться всем — и больному и персоналу. Проблема усугубляется тем, что рентгеновские кабинеты все чаще превращаются в настоящие операционные. А хирурги не хотят и не могут действовать на ощупь.
Становление современной рентгенологии происходило подобно сотворению мира. «Вначале существовал лишь вечный безграничный темный хаос». «Земля была безводна и пуста, и тьма над бездною». Но вот подобно лучезарному Аполлону родилось рентгенотелевидение. «И разлились потоки яркого света». Началась новая эра рентгенологии.
Рентгенотелевидение открыло зеленый светофор целому ряду новых технических возможностей. Возьмем, к примеру, видеомагнитную запись. Магнитная лента не содержит дефицитного серебра. Она не только дешевле, но и удобнее в обращении. Ее не нужно обрабатывать: ни проявлять, ни закреплять, ни сушить. Видеомагнитная запись позволяет воспроизводить на телеэкране любое исследование снова и снова для самоконтроля или для последующих уточнений. Это позволяет сократить время просвечивания и, стало быть, снизить дозу облучения пациента. Наконец, магнитную ленту проще хранить, чем огнеопасную кинопленку. Может быть, теперь удастся разрешить проблему рентгеновских архивов.
— Неужели рентгенолог обязан быть еще и архивариусом?
— А почему же нет? Архивное дело — это одна из сфер нашей деятельности, одна из областей рентгенологии.
— А зачем нужны рентгеновские архивы? Дабы оправдаться в случае неверного диагноза?
— Нет, для тщательного анализа и сопоставления, чтобы меньше было неточных диагнозов и печальных исходов.
«Я в голове принес домой весь фон картины „Петр I и Алексей“ — с камином, с карнизами, с четырьмя картинами голландской школы, со стульями, с полом и освещением; был всего один раз, чтобы не разбивать впечатления, которое вынес», — писал русский художник Н. Ге о работе над известным своим полотном.
Столь точно воспроизвести все детали увиденного позволила феноменальная зрительная память, которая называется эйдетической («фотографической»). Будь эта удивительная способность у всех у нас, тогда врач, может, и не обращался бы к архиву, где хранятся рентгенограммы с результатами прежних обследований, а по мере надобности просто восстанавливал бы мысленно, «прокручивая» их перед своим внутренним оком. Но дар эйдетика встречается исключительно редко.
«Ох уж этот склероз!» — сетуем мы подчас на свою память, полагая, будто ее огрехи обусловлены лишь патологическими изменениями в кровеносных сосудах, питающих мозг. Не возводите напраслину на свои естественные «архивы под черепной крышкой». Так уж они устроены, что через определенное время стирают какую-то часть информации, чтобы освободить место для новой. Установлено: через полчаса улетучивается до 40 процентов того, что мы узнали впервые. На следующий день остается уже не 60 процентов полученных сведений, а всего 35, через трое суток — 25, через месяц — примерно 20, и так далее. Это нормально.
Между тем болезни исчисляются десятками тысяч, а симптомы сотнями тысяч, и с прогрессом диагностики их количество постепенно растет. Ясно, что все это не упомнить нормальному человеку. Просто невозможно, а главное — не нужно. Когда память загромождается без разбору всякой всячиной, это опасно не только перегрузками для мозга. Необъятная масса бессвязных сведений мешает вычленять суть, лишает мышление гибкости, делает его консервативным, бескрылым, сковывая воображение, заставляя соскальзывать в привычную колею стандартных схем. А ведь анализ, проводимый диагностом, — отнюдь не механический перебор вариантов, но самый настоящий творческий акт, в основе которого и логика и интуиция.
«Я знал человека, который никогда ничего не забывал, — рассказывает профессор К. Платонов, видный наш психолог. — Он был буквально задавлен воспоминаниями и не мог выразить ни одной собственной мысли. Он воспроизводил прочитанные ему несколько дней назад большие газетные статьи, смысла которых не понимал. И в то же время не умел пересказать своими словами даже детскую книжку». Случай, конечно, патологический. Не все эйдетики таковы. Но и тем из них, кто имеет «нормально феноменальную» память, вовсе не обязательно заполнять ее до отказа.
Короче говоря, рентгеновские архивы необходимы. Они нужны и специалисту, особенно молодому, чтобы возвратиться, скажем, к какому-то интересному случаю в собственной практике, не попавшему еще ни в один учебник или справочник. Они нужны и студентам, когда те постигают премудрости диагностики на различных примерах, как типичных, так и исключительных.
Представьте: при просвечивании обнаружено затемнение в легких, подозрительное на ателектаз — спадение, вызываемое нарушением проходимости бронха. Опухоль? Если да, то необходимо срочное хирургическое вмешательство. Но подобную же картину дает и недуг, при котором операция противопоказана, цирроз легкого на почве пневмонии или туберкулеза, перенесенных раньше.
Собран консилиум. При обсуждении выясняется, что пациент года два назад лежал в клинике с болезнью органов дыхания. И тут очень важно установить, какие элементы рентгенологической картины — последствия старого, заглохшего процесса, а какие — нового, угрожающего страданиями и смертью.
Человек за свою долгую жизнь переносит различные заболевания, которые оставляют свои следы. Перед рентгенологом возникают примерно те же проблемы, что и перед археологом на раскопках древнего городища: сменялись эпохи и цивилизации, культурный слой покрывался пеплом пожарищ и прахом запустения… Чтобы заставить говорить тот пласт, который оказывается главным, определяет сегодняшнее состояние больного и наилучшее лечение, нужно отбросить все, что не имеет или почти не имеет значения, затрудняя трактовку картины.
В подобной ситуации всегда нелишне иметь для сравнения рентгенограммы, отражающие предысторию недуга. Если обследования проводились и прежде, очень важно сопоставить их с новейшими, особенно в диагностике некоторых злокачественных опухолей, имеющих на ранних стадиях сходство с доброкачественными.
…Мужчина 46 лет, еще недавно вполне здоровый, обращается к врачу с воспалением легких. Выявляется шаровидное образование в легком, заставляющее подозревать рак. Но есть сомнение: аналогичная картина наблюдается при доброкачественных опухолях и кистах, не требующих экстренных мер. Если образование маленькое и расположено в глубине легочной ткани, к нему затруднен доступ для зондирования через бронхи и для пункции через грудную стенку. Ни клиническое состояние больного, ни лабораторные данные в таких случаях не позволяют поставить точный диагноз. Единственный критерий надежности для предоперационной диагностики — оценка темпов, какими растет опухоль. Злокачественные новообразования развиваются быстро, доброкачественные — медленно.
К счастью, в архиве найдена рентгенограмма нашего больного, полученная несколько месяцев назад в связи с профилактическим осмотром. На ней нет ничего такого, что заставило бы подозревать рак. Иное дело теперь. Значит, требуется незамедлительное хирургическое вмешательство…
Это реальный случай из практики. После успешной операции есть все основания надеяться на благополучный исход.
Да, архивные материалы — необходимейшее подспорье. Надобность в них возникает повседневно. К сожалению, сплошь да рядом за ними приходится отправлять сотрудника, отрывая его от непосредственной работы в клинике. А сколько таких нарочных бегает по всей стране! Курьеры, курьеры, курьеры — 10 тысяч одних курьеров… Вот где трудовые резервы!
Между тем куда легче и быстрее заполучить информацию из ее хранилища с помощью телекоммуникационной связи. По селектору вызывается архив, и тотчас на экране кинескопа появляется изображение органов, обследованных месяцы или годы назад. Другой телевизор демонстрирует картину просвечивания, которое проводится сейчас, в данную минуту, в любом из рентгеновских кабинетов (а их десятки в крупной больнице, где обслуживаются сотни больных ежедневно).
Ясно, что наладить такие службы повсюду немыслимо без видеомагнитной записи. Она позволяет воспроизводить изображение многократно для более тщательного или более квалифицированного анализа без повторного облучения. Техника ее несложна и недорога. Вся аппаратура умещается в чемодан средних размеров. Не так уж много места занимают и кассеты с лентой, ширина которой — от 2,5 до 5 сантиметров.
Разрешающая способность? Сравните: 10 линий на сантиметр для рентгенотелевидения, 3 линии на сантиметр — для обычного просвечивания, когда наблюдение ведется в темноте, 40 линий на сантиметр — для снимков со стандартного двойного флюоресцирующего экрана, которые рассматриваются, естественно, на свету. Желательно, конечно, добиться ее повышения. Но и на нынешнем своем уровне видеозапись имеет неоценимые достоинства, предоставляет огромные возможности, которые необходимо реализовать полнее.
Она сулит настоящий переворот всей системы рентгеновских архивов. Хранение и поиск информации в них превратились в серьезнейшую проблему. Тысячи снимков, большей частью ценных, а подчас уникальных, приходится регулярно списывать и уничтожать: не хватает места. Пытаются их микрофильмировать, снижается качество изображения. Да и найти их в этом случае оказывается не проще, порой даже сложнее.
А если их перевести на магнитную ленту? Тогда, нажав кнопку, можно было бы воспроизводить на телеэкране нужные результаты прежних обследований. Конечно, многое еще надо сделать, чтобы усовершенствовать имеющуюся аппаратуру, разработать новую, наладить ее массовый выпуск. Но игра стоит свеч.
Широкие перспективы сулят открытия и изобретения последнего времени. Например, голография. С ее помощью в принципе возможно все 27 миллионов томов Государственной библиотеки СССР имени В. И. Ленина втиснуть в объем одной книги. В США создана система видеозаписи, использующая лазер. Она в 300 раз эффективнее обычной. На одном диске диаметром 30 сантиметров фиксируется до 50 тысяч телевизионных кадров. Нужное изображение с того или иного микроучастка считывается лазерным лучом автоматически при посредстве мини-компьютера.
— Но и добрую старую рентгенографию рано сдавать в архив, если она обеспечивает более высокую разрешающую способность, чем любой иной метод, включая видеомагнитный, не правда ли?
— Да, у нее есть свои преимущества. Но их тоже надо использовать полнее. Можно, например, поднять информативность снимков, как бы собрать с того же поля дополнительный урожай.
«Лучший способ продлить жизнь — это не укорачивать ее», — говорил древнеримский философ Сенека. Простейший способ поднять урожаи — это уберечь их от потерь, скажет вам любой рачительный хозяин.
Хорошо, но при чем тут рентгенология?
К ней применимы аналогичные правила. Поле, с которого диагност снимает плоды трудов своих, — изображение. Урожай? Информация. Она зависит от разрешающей силы, которую обеспечивает тот или иной метод. Максимум тут на первый взгляд уже достигнут: это 40 линий на сантиметр при съемке на двухстороннюю пленку, располагаемую между двумя флюоресцирующими экранами. Но именно на первый взгляд.
Информативность снимков можно, оказывается, повысить, если не терять ее при изучении, а, напротив, сохранять во всей полноте. Чтобы выжать ее до последней капли, нужны не только теоретические знания и практический опыт, но также соответствующие техника и организация.
Рентгеновское отделение напоминает цех, выпускающий многоразличные изделия. Наряду с крупноформатными снимками на двуслойной пленке — флюорограммы, ксерографические отпечатки на обычной бумаге, кинофильмы и так далее. Но все они являются, по существу, лишь полуфабрикатами. Ибо нужны не сами по себе, а ради последующей работы с ними. Окончательной готовой продукцией здесь оказывается информация. Ее получают, используя разнообразные приспособления, — многосекционные негатоскопы, флюороскопы, кинодешифраторы, всевозможные проекторы и прочие демонстрационные средства. Извлечь ее наиболее полно, не потеряв ни единой драгоценной крупицы, — таково назначение всей этой аппаратуры.
Разумеется, задача начинает решаться раньше, еще на стадии съемки. Объект фотографируют в разных проекциях, в разных фазах жизнедеятельности, скажем, сокращения и расслабления сердца. Понятно, почему иное обследование сопровождается изготовлением многих рентгенограмм, а то и многих серий. При контрастном исследовании сердечно-сосудистой системы, например, необходимо сделать минимум 10 снимков. С тем чтобы детально разобраться во всех ее особенностях на всех этапах кровообращения — артериальном, капиллярном, венозном.
Кроме того, привлекаются архивные материалы. Вместе с новыми результатами они обрушиваются на голову диагноста настоящей лавиной. Когда же информация падает такой Ниагарой, найти и сохранить каждую мало-мальски ценную ее каплю не очень-то просто.
Проблема усугубляется необходимостью просматривать рентгенограммы многократно и длительно. При изучении некоторых динамических процессов требуется точная оценка весьма незначительных изменений. Приходится снова и снова сравнивать отдельные снимки друг с другом в разных сочетаниях, в неодинаковой последовательности. Рано или поздно это вызовет утомление, а оно ухудшает восприятие информации, что ведет к ее потерям.
Если серию негативов разглядывать на небольшом негатоскопе, утрачивается цельность восприятия: картина изучается по частям. Кроме того, непроизводительно расходуется время на поиск и перестановку рентгенограмм. Если у вас одного это отняло 5 минут, то у аудитории в 50 зрителей — более 4 человеко-часов.
Можно ли рационализировать процедуру? Несомненно. Например, использовать большие многосекционные негатоскопы, на которых размещаются десятки, даже сотни снимков одновременно. На один такой аппарат можно установить всю дневную продукцию рентгеновского отделения, после чего ее легко анализировать многократно всем присутствующим без томительного ожидания, когда наконец появится нужный кадр.
Привести демонстрационные средства в соответствие с технологией рентгеновского производства — одна из актуальнейших задач, без решения которой немыслима научная организация труда.
Допустим теперь, что дело поставлено идеально, с учетом всех человеческих факторов. Устранены все задержки, фрагментарность восприятия и прочие помехи. Нельзя ли повысить информативность изображения? Вроде бы нет: ведь оно содержит в себе только то, что содержит, и ничего больше. А «из ничего и не выйдет ничего», как заметил еще В. Шекспир, устами своего короля Лира повторив по-английски древнюю латынь («экс нигило — нигиль», то есть «из ничего — ничего»).
Вспомним, однако, не менее древний софизм: «То, чего я не терял, я имею. Я не терял рогов. Следовательно, я их имею». Перед нами логический трюк. В обоих случаях речь идет о том, чего человек не терял, но сначала о том, что он имел и мог потерять, а затем о том, чего не имел и не мог потерять. Неверный вывод обусловлен недопустимой погрешностью умозаключения: подменой понятия.
А теперь представим такую ситуацию. На негативе не видно никаких рогов. Если же они отсутствуют, то ни утратить, ни тем паче обрести их невозможно. И вдруг они появляются на снимке после соответствующей его обработки… Мыслимо ли такое?!
В 1954 году был изобретен логетрон. Этот электронно-оптический прибор предназначался поначалу для того, чтобы улучшать репродукции с аэрофотоснимков. Но уже в 1955 году обнаружилось, что он способен повышать информативность и у рентгенограмм. Принцип действия? Смягчение контрастов. Самые плотные участки негатива ослабляются, как при передержке в фотографии, самые прозрачные, напротив, усиливаются, как при недодержке. И бывает, возникают новые детали. Но откуда они, если «из ничего — ничего»?
Ясно, что они не появляются с бухты-барахты, а лишь выявляются из-под спуда. Выравнивание резких перепадов между черно-белыми крайностями вскрывает лишь то, что было упрятано в недрах эмульсии, завуалировано, например, фоном. Как бы там ни было, информативность повышается. Так что читатель может быть спокоен: если у него не было рогов при съемке, то даже логетронирование их не прибавит.
Современные логетроны наделены способностью осуществлять так называемую субтракцию — вычитание. Для этого на два негатоскопа ставятся две рентгенограммы. Одна, к примеру, с контрастированными сосудами, другая обычная, сделанная без контрастирования (введение в организм непрозрачных для проникающей радиации веществ). Второй снимок с помощью рентгенотелевизионной системы превращается в позитив. Оба видеосигнала с двух передающих трубок поступают через усилитель на кинескоп. Наложение позитивной картины на негативную приводит к тому, что «минусы» и «плюсы» взаимно уничтожаются, вычитаются. Так устраняются все мешающие тени. Остаются лишь контрастированные участки, которые теперь выглядят гораздо отчетливей.
Что же получается? Обеспечивая наивысшую разрешающую способность, рентгенография тем не менее прибегает к услугам рентгенотелевидения, даром что оно отстает по этому важному параметру. Мораль? Не стоит абсолютизировать тот или иной метод, ибо ни один из них не идеален. Каждому свое. Наиболее разумный подход здесь, пожалуй, очевиден: сочетать их так, чтобы преимуществами одного компенсировались недостатки другого.
— Вероятно, можно повысить информативность изображения, если превратить его из плоского в объемное?
— Совершенно верно. Так и делают.
— Я не раз проходил обследование в поликлинике, но так не делал никто и никогда.
— Значит, не требовалось. Метод сложноват и потому применяется не столь широко.
— А что тут сложного? Даже дети малые легко осваивают стереоскоп, который выпускается специально для них. Прибор — проще не придумаешь.
— Если бы в рентгенологии все было так просто!
В 1832 году Л. Неккер удивил научную общественность простеньким рисунком, который мог бы показаться пустячком для детской забавы, а на деле стал поводом для серьезных размышлений.
Возьмите тетрадь в клеточку. Начертите куб, используя всюду, где только можно, готовые вертикали и горизонтали. Все ребра его должны выглядеть одинаково, сплошными темными линиями. Пририсуйте посредине небольшое колечко. Вы получите знаменитую фигуру Неккера, которая вошла в историю психологии.
Когда на чертежик смотришь долго и внимательно, колечко кажется изображенным то на передней, то на задней грани куба. Перед нами «перевертыш», для которого оба варианта равнозначны, и один переходит в другой попеременно, порой как бы помимо нашей воли. Какая поверхность ближе к нам?
«Система восприятия придерживается сначала одной, а затем другой гипотезы и никогда не может прийти к решению, так как однозначного ответа нет, — поясняет Р. Грегори в книге „Глаз и мозг“. — Восприятие и мышление не существуют независимо друг от друга. Фраза „я вижу то, что я понимаю“ — это не детский каламбур, она указывает на связь, которая действительно существует».
А если вглядеться в рентгеновское изображение? Мы увидим сложное сочетание пятен и линий, где тени наслаиваются друг на друга. Оно тоже может нам подбросить загадку, которую каждый разгадает по-своему («вижу то, что понимаю»). Например, при восприятии глубины.
При просвечивании грудной клетки на фото запечатлен обломок швейной иглы. Где он расположен? В мягких тканях спины или груди? В средостении, в пищеводе, в позвоночнике? А может, в сердце или аорте? По снимку, если проекция одна, определить невозможно. А если не одна? Тогда, конечно, легче. Но и несколько рентгенограмм, полученных с разных позиций, под разными углами зрения, дают лишь весьма ориентировочное представление о пространственном соотношении элементов. Тени многочисленных анатомических структур, накладываясь одна на другую на экране или на пленке, порождают путаницу, в которой не всегда просто разобраться, чтобы точно оценить расстояние до чужеродного тела.
Иное дело стереорентгенография, которая превращает плоское изображение в объемное. Суть ее не требует долгих пояснений. Изготовляют два снимка, которые составляют так называемую стереопару: на них одна и та же картина, но на одном она запечатлена так, как ее видит левый глаз, на другом — как правый. При рассматривании обоих негативов в специальный аппарат они совмещаются в один, и мы начинаем воспринимать глубину.
Идея нехитрая, но ее воплощение потребовало громоздкого и дорогого оборудования. Упростить его, удешевить, сделать удобней в применении — задача будущих исследователей.
Еще сложнее для технической реализации оказалась стереорентгеноскопия. Она осуществлена лишь недавно благодаря внедрению рентгенотелевидения. Пациента просвечивают двумя трубками, которые включаются поочередно, 50 раз в секунду каждая. Обе серии импульсов поступают на электронно-оптический преобразователь, откуда они попеременно, синхронно с работой трубок, снимаются двумя телевизионными системами. Обе картины совмещаются в одну при разглядывании через полупрозрачное зеркало с помощью поляризационных очков.
Предстоит еще преодолеть целый ряд трудностей, чтобы сделать эти методы более совершенными и удобоприменимыми. Немалые надежды возлагаются здесь на голографию. А пока в широкой практике глубину залегания, пространственную структуру, форму и величину патологических образований оценивают чаще всего более простыми средствами, например с помощью томографии — послойных снимков. Представьте себе: больной лежит на столе. Над ним движется рентгеновская трубка, а пленка под больным в этот момент перемещается в противоположном направлении. Только те элементы, которые находятся на уровне оси вращения рычага, соединяющего трубку и пленку, оказываются резкими, остальные выше- и нижележащие размазываются к становятся невидимыми. По серии снимков, отображающих такие плоские дольки толщиной в несколько миллиметров, легко установить, где находится чужеродное тело или болезненный очаг. Это ценнейшее подспорье для диагноста при распознавании самых разных недугов, особенно легочных.
…Молодая женщина вошла в кабинет врача, устало опустилась на стул. На вопросы отвечала вяло. От наметанного глаза опытного медика не ускользнуло ее подавленное настроение, скрытое беспокойство, нежный румянец на щеках при общей бледности и худобе. Как самочувствие? Неважное: несколько месяцев назад переболела гриппом, через неделю пошла работать, хотя ощущение полного здоровья так и не вернулось. Сохранилось недомогание, покашливание, по вечерам повышается температура.
Обычное клиническое обследование не показывало никаких особых отклонений от нормы. Настораживала лишь рентгенограмма. На ней выявлено затемнение в верхушке легкого. Что это? След затянувшейся пневмонии? Рак? Туберкулез? Без томографии ответить трудно. Когда ее применили, обнаружились туберкулезные очаги. В одном из слоев хорошо просматривалась каверна-полость распада, которая осталась незаметной на обычной рентгенограмме, замаскированная плевральными наслоениями и рубцово-склеротическими изменениями…
Еще иллюстрация, опять-таки из практики. Нужно обследовать верхнегрудной отдел позвоночника, но как лучше? При обычной рентгенографии понадобились бы две проекции — прямая и боковая. Но в боковой на силуэты позвонков наложатся плотные тени плечевого пояса с его массивными мышцами и костями, а также легких с их густой сетью сосудов. Возникнет такая мешанина, что в ней утонет интересующий врачей объект. Зато на томограмме он будет выделен в чистом виде.
А теперь заглянем в область стоматологии, где рентген прочно обосновался с давних пор.
Малыш жалуется на зубы, но не может показать точно, где именно ему больно. Боится дяди доктора, плачет горючими слезами при виде инструментов. Но соглашается «сфотографироваться с помощью таинственных невидимок». И вот, наконец, просвечивание. Увы, впустую: квадратик пленки очутился не на месте то ли из-за невразумительных ответов несмышленого пациента, то ли потому, что был сдвинут языком ребенка. Повторять облучение? Но да каких же пор?
У человека 32 зуба. Какой из них плох, не всегда установишь при наружном осмотре. Что же, делать десятки снимков? Перспектива не из приятных. А нельзя ли обойтись одним, который даст панорамное изображение обеих челюстей целиком? Такая возможность есть.
До того как она появилась, методика оставалась неизменной десятилетиями. В полость рта помещалась пленка форматом 3×4 сантиметра, а снаружи — рентгеновская трубка. Но при этом на негативе получались 2–3 зуба из 32. Теперь они могут быть запечатлены все до единого вместе за один раз. Каким же образом? Ведь они расположены подковой! Не установишь же вокруг них по дуге батарею излучателей? Разумеется, нет: источники радиации помешали бы друг другу, дважды просвечивая некоторые участки эмульсионного слоя.
Найдено иное решение. Пленка и трубка поменялись местами: первая очутилась снаружи, вторая внутри, во рту. Трубка, естественно, должна быть миниатюрной, к тому же безопасной для пациента. Лишь в 1959 году был сконструирован аппарат «Панорамикс», который удовлетворял этим требованиям. Название достаточно красноречиво: в одном слове слились понятия «панорамный снимок» и «икс-лучи».
И все же врачи были недовольны. Пациента приходилось облучать дважды, чтобы обследовать обе челюсти. Ибо «Панорамикс» за один сеанс снимал лишь одну из них, верхнюю или нижнюю. Ту и другую сразу позволяет запечатлеть панорамная томография. Преимущество немаловажное: хорошо видно, каков прикус, как лучше ставить пломбы, коронки, заменять естественные зубы искусственными.
При таком методе не только пленка, но и трубка находятся вне ротовой полости: первая располагается полукругом спереди, последняя — сзади. Во время экспозиции та и другая двигаются синхронно. Пучок лучей проходит через узкую щель. И в каждый данный момент времени на фотоэмульсии фиксируется лишь узкая полоска будущей рентгенограммы (во избежание проекционного искажения).
— Если так углубляться в детали, получится нечто похожее на томографию самой рентгенологии, ее методического и технического арсенала. Между тем такая «послойная анатомия» достойна разве лишь учебника. Для непосвященных же достаточно сделать как бы панорамный снимок всей рентгенологии, чтобы самое значительное выделить крупным планом, а остальное дать фоном. Что у вас, например, «самое-самое»?
— Все зависит от того, что взять за основу сравнения.
— Не вес же и не габариты аппаратов! Смешно хвастать: у нас-де самая крупная в мире установка. Не ясно ли, что главное — качество, эффективность?
— Верно, но задумывались ли вы над этими понятиями?
Рассказывают, И. Гайдн как-то поспорил с В. Моцартом, что сумеет исполнить без подготовки любые, пусть даже «самые-самые», из опусов, которые когда-либо сможет написать его юный, но уже прославленный коллега. Тот принял пари и, не откладывая дела в долгий ящик, в пять минут сочинил небольшую фортепьянную пьесу. Маститый композитор, который был на 22 года старше В. Моцарта, торжественно уселся за инструмент, мелодия полилась, но… После первых же тактов наступила неожиданная пауза.
На чем же споткнулся признанный виртуоз? Требовалось взять правой рукой очень высокую ноту, левой — очень низкую, а заодно стукнуть в клавишу посредине. Опытный маэстро, спасовав публично, заявил, что этот аккорд не берется вообще. В. Моцарт улыбнулся и тотчас опроверг оппонента, сыграв свою вещь от начала до конца. В «заколдованном месте» автор нажал среднюю клавишу… носом.
Этот эпизод фигурирует под рубрикой «самое невероятное» в книге Б. Фелтона и М. Фаулера (США) «Самое лучшее, самое худшее, самое невероятное». Нельзя ли найти нечто подобное в рентгенологии?
Самое невероятное — объять необъятное. Нелегко охватить всю гамму ее методов и приборов, но еще труднее сделать акцент на чем-то особом. Здесь не выручит обычный орган обоняния, как в только что приведенном историческом анекдоте. Тут требуется необыкновенное чутье, а в эпоху научно-технической революции с ее небывалыми темпами изменений может отказать даже весьма тонкий «нюх аналитика». Впрочем, некоторые вещи очевидны.
Лучшее, что есть в рентгенологии, — рентгеновские лучи. Они ее породили. Без них не было бы ни ее самой, ни ее грандиозных успехов, равно как и ее проблем, поисков, решений.
Худшее? Опять-таки рентгеновские лучи. Вернее, не сами они, а их вредное воздействие, но оно с ними связано неразрывно. Уменьшить его желательно, но свести на нет полностью, к нулю, можно лишь ценой проигрыша в эффективности. Приобретая одно, мы теряем другое.
Теоретически принцип ясен: максимум пользы при минимуме опасности. А практически с ростом первой нередко увеличивается и вторая. Вот и попробуйте найти «самое-самое»… Понятно, сколь нелегко искать конструкторам оптимальное решение — не просто неплохое, одно из приемлемых, но наилучшее в заданных условиях, при многочисленных ограничениях. Хотя разумный подход к качеству рентгеновской техники вроде бы очевиден: ее назначение — способствовать распознаванию и лечению болезней, то есть главное в том, насколько эффективна она для здравоохранения.
Как бы там ни было, с этих позиций можно выделить два переворота в ее развитии. Первый связан с внедрением электронно-оптических усилителей: увеличилась разрешающая способность, уменьшилась лучевая нагрузка, появилось рентгенотелевидение, началось дистанционное наблюдение за пациентом во время просвечивания, изучение изображения на экране не в темноте, а на свету.
Вторая революция сопряжена с автоматизацией рентгеновских процедур.
С 1896 года не одно десятилетие дело ограничивалось в основном простой инструментализацией кабинетов. Они оснащались аппаратурой для просвечивания, съемки, фотолабораторных работ… Если прибегнуть к аналогии с музыкой, рентгенолог стал похож на исполнителя-универсала, играющего на всех инструментах, от барабана до органа, хотя по смыслу своей деятельности должен напоминать скорее дирижера. Врач есть врач, он обязан целиком посвящать себя больным, а не приборам. Он не в состоянии физически, не вправе морально ломать голову над тем, сколько нужно киловольт и миллиампер подать на трубку, какую выбрать выдержку и т. д., и т. п. (сейчас все эти параметры устанавливаются автоматически).
Потом началась моторизация оборудования, его движущихся узлов. У врача высвободились силы и время, с тем чтобы он мог их больше уделять больному. Одновременно все ощутимее давала себя знать нужда в совершенной системе управления, в защите от возможных ошибок. И вот наметился переход от механизации к автоматизации, при которой человек становится рядом с машинами не как их придаток, а как контролер и регулировщик, как дирижер оркестра. Он взваливает на их плечи все нетворческие функции. Это стало возможно, по существу, лишь в послевоенный период, с появлением электронно-вычислительной техники, которая особенно бурно развивается в последние 2–3 десятилетия.
Благодаря автоматике все шире входит в практику программированное управление всей диагностической процедурой. Например, при обследовании сердечно-сосудистой системы аппаратура сама вводит контрастное вещество в организм, включает и выключает высокое напряжение, продвигает пленку, перемещает пациента, регулирует последовательность и интервалы съемки. И так далее.
На XIII Международном конгрессе рентгенологов (1973 год, Мадрид) была развернута экспозиция, которая стала впечатляющим парадом «самого-самого». Посетители выставки, даже видавшие виды специалисты, не скрывали своего изумления прогрессом в этой области медицины.
Пять крупнейших западных фирм, в том числе «Дженерал электрик» (США), «Сименс» (ФРГ), «Филипс» (Голландия), представили полностью автоматизированные системы для рентгенографии. Что же здесь интересного?
Долгие десятилетия фотолабораторная обработка снимков была самым узким местом технологического процесса в рентгеновском кабинете. Велась она по старинке, в ванночках и баках, вручную. Посмотреть мокрый негатив удавалось лишь через 20–30 минут, а сухой — несколько часов спустя. Иное дело теперь. Существуют проявочные машины. Одни с холодильник средних размеров, другие еще меньше. Благодаря использованию концентрированных реактивов и высокотемпературных режимов, сушке путем отжимания на вальцах экспонированная пленка через полторы минуты полностью готова к употреблению. Отпала необходимость в специальной фотолаборатории с ее темнотой и сыростью.
А на мадридском конгрессе была продемонстрирована малогабаритная проявочная машина, вмонтированная в рентгеновский аппарат. Дальше всех пошла «Сименс»: она показала полностью автоматизированную установку, подающую снимки прямо на стол врача.
Неузнаваемо изменилось оборудование кабинетов. Еще недавно в них можно было видеть открытые громыхающие цепные и зубчатые передачи, висящие над головой кабели, рубильники, придававшие медицинскому учреждению вид механической мастерской. Все это уже ушло либо вот-вот уйдет в прошлое, уступив место кнопочно-кибернетической машинерии, отличающейся компактностью, удобными и элегантными формами, радующей глаз окраской, простотой в эксплуатации.
Увы, восхищение сменяется унынием, когда справляешься о ценах на эти прекрасные новинки. Современная рентгенодиагностическая установка стоит на международном рынке от 100 до 300 тысяч долларов — в десятки раз больше, чем 30–40 лет назад, притом отнюдь не самая дорогая. Есть и за 700 тысяч. Такова, например, система, сочетающая в себе элементы рентгеновского аппарата и скеннера.
Это последнее слово действительно «самое-самое» в рентгеновской технике. Вместо флюоресцирующего экрана — панель с кристаллическими детекторами. Попадая на них, проникающая радиация в зависимости от своей интенсивности возбуждает те или иные электрические эффекты в каждом элементе такой мозаики. Сигналы обрабатываются компьютером и подаются на выход в цифровом виде, а затем в расшифрованном.
Разрешающая способность — непревзойденная. Стало возможным то, что еще недавно казалось немыслимым: различать без введения контрастных препаратов ткани, мало отличающиеся друг от друга по плотности. Коммивояжеры английской фирмы ЭМИ утверждают, что можно даже отличить серое вещество головного мозга от белого… Уже за счет одного повышения зоркости аппаратуры, сократив продолжительность исследования, можно снизить лучевую нагрузку на организм пациента.
Будущее, по всей видимости, за такими комбинированными скенирующими устройствами. Но самое перспективное пока остается и самым дорогим. Чтобы как можно шире внедрять современнейшую рентгенотехнику, ее нужно удешевить. А рост ее стоимости, к сожалению, продолжается, грозя «бюджетным взрывом».
Этой проблемой озабочен весь мир. Ее специально обсуждали представители 32 государств, собравшиеся на I Международный симпозиум по планированию рентгенологических и радиологических отделений в Хельсинки в 1972 году.
В капиталистических странах, которые оказались в жестких тисках социально-экономических проблем, серьезно задумались над тем, как рациональнее использовать дорогостоящее оборудование. И надо заметить, на симпозиуме было высказано немало интересных рекомендаций, заслуживающих нашего внимания.
— Коммерческий подход ко всему и вся вошел в плоть и кровь буржуазного общества, но не социалистического. Стоит ли нам сводить рентгенологические проблемы к бухгалтерским? Для нас здоровье людей превыше всего, и нечего тут заниматься экономией.
— Считать полезно везде и всегда. Если медицинская помощь у нас бесплатная, это не значит, что она достается даром нашему обществу. Напротив, она стоит немало, и необходимо сделать все, чтобы каждый вложенный в нее рубль приносил максимальный эффект.
— Что же вы предлагаете?
— «Самое-самое», что только можно желать, — это прежде всего НОТ.
«Руки, написавшие за 20 лет 400 романов и 35 драм, — это руки рабочего!» Так отпарировал однажды автор «Графа Монте-Кристо» реплику из толпы: мол, А. Дюма-отец — аристократ. Если даже учесть, что он пользовался плодами трудов не только своих, но и чужих (предшественников, современников, а главным образом специально нанятых «литературных кули»), все равно плодовитость знаменитого французского прозаика близка к пределам человеческих возможностей. Большинство других за десятилетия творческой активности написали во много раз меньше, хотя ничем другим не занимались, кроме литературной деятельности.
Между тем есть люди, которые, не будучи по профессии писателями, не гонясь за славой, создают манускрипт за манускриптом, причем на службе, в рабочее время, когда должны заниматься другим делом. Кто же они? Врачи, которых в СССР 850 тысяч. Любой из них мог бы поспорить с Л. Толстым. Ибо непрестанно — по принципу «ни дня без строчки» — на языке деловой прозы излагает человеческие драмы и трагедии, сдавая ежегодно в архив по нескольку пухлых папок под рубрикой «история болезни», а за всю трудовую жизнь — кто около 100 томов, а кто и побольше.
Речь идет о юридических документах, без которых нельзя. Но разве нельзя без такой писанины, когда бумага заслоняет пациента? Если сократить ее до минимума, сколько времени высвободится у наших врачей! Это будет равнозначно умножению их численности: разумеется, дело не столько в количественном, сколько в качественном росте медицинского корпуса и обслуживания.
В предыдущей главке рентгенолог сравнивался с музыкантом, который из исполнителя-универсала, владеющего различными инструментами, становится дирижером их автоматически действующего ансамбля. Естественно, и тут, где он уподобляется писателю, говорить о переходе к новейшим техническим средствам, которые подсобили бы ему гораздо больше, нежели в свое время А. Дюма-отцу помогали наемные «литературные чернорабочие». Правда, здесь прогресс кажется не столь заметным: гусиные перья — авторучки — пишущие машинки… Но это лишь на первый взгляд.
Уже есть автоматические печатающие устройства с блоками магнитной памяти. Достаточно проставить в дескрипторе магнитным или даже обычным карандашом точки над соответствующим заданием, и протокол напечатает машина. Разрабатываются также системы автокодирования с помощью электронного мозга.
Для связи с архивом пригоден дисплей: настольный прибор наподобие телевизора, соединенный с компьютером. Он в считанные минуты сыщет в «банке данных» и выдаст на экране любую историю болезни. В тексте вы можете делать подчеркивания, а затем стирать их, используя электронный карандаш (он же ластик). Выделенные вами строки, абзацы, страницы легко передать, бесшумно нажав кнопки, на такие же экраны вашим коллегам в других помещениях, притом со скоростью, которая в десятки раз выше, чем у телетайпа. Любой материал по вашей команде будет мгновенно размножен автоматически буквопечатающим аппаратом.
Это не фантастика, а реальность. Такая техника уже применяется за рубежом. Впрочем, на первых порах можно обойтись и меньшим. Взять хотя бы диктофоны. Голос столь же индивидуален, как и почерк, но при всей своей специфичности не страдает неразборчивостью. Каракули же эскулапов исстари служили мишенью для насмешек как символ каббалистики (а нынешний борзописец от медицины оставляет в спешке такие закорючки, которые не расшифровать подчас и опытному следователю).
Здесь впору предварить читательское возражение, которое напрашивается вроде бы само собой. Дескать, и без того накладно оснащать рентгеновский кабинет даже необходимейшей техникой — современнейшей диагностической аппаратурой, которая становится все дороже. Где уж тут, мол, тратиться на всякие там диктофоны и дисплеи! Но в том-то и дело, что это не мода, не роскошь, а необходимость.
Сберечь каждому из 850 тысяч наших врачей хотя бы по часу за смену означает выиграть дополнительно свыше 100 тысяч рабочих человеко-дней.
Как говорил К. Маркс, к экономии времени сводится в конечном счете вся экономия. Да, нужны дополнительные капиталовложения. Но разве они себя не оправдывают? Понятно, чтобы они окупились сторицей, требуются не ориентировочные, на глазок, прикидки, а точные расчеты, математически строгие планы, опирающиеся на научно обоснованные прогнозы.
Здоровье бесценно, и бухгалтерский подход может показаться странным. Однако он не только теоретически необходим, но и практически существует! Бесплатная для всех нас медицинская помощь — не манна небесная для общества. На нее надо направлять немалые средства. И они изыскиваются. Бюджетные ассигнования на здравоохранение в СССР увеличиваются. В 1950 году они составили 2,1 миллиарда рублей, в 1960-м — 4,8 миллиарда, в 1970-м — 9,9 миллиарда, в 1976-м — 11,8 миллиарда. К этому количественному росту можно добавить качественный, если все более щедрое финансирование сочетать со все более рациональным расходованием. Эта проблема особенно актуальна в связи с задачами, поставленными XXV съездом КПСС на пятилетку качества и эффективности.
Подсчитано, что наука может поднять свою продуктивность в 4–5 раз без дополнительных капиталовложений. Каким же образом? Благодаря более совершенной организации. Возможно, то же самое относится к медицине в целом, к рентгенологии в частности. Имеется в виду, конечно, НОТ — научная организация труда. Без нее здравоохранение рано или поздно перестанет удовлетворять самым необходимым требованиям. В поликлиниках появятся хвосты очередей, стационары переполнятся до отказа, пациентам не будет обеспечиваться надежная диагностика и эффективное лечение. И это невзирая на то, что контингент врачей в СССР составляет 1/3 мирового, тогда как население страны — лишь 1/16 часть человечества.
Как добиться, чтобы каждый коллектив функционировал с максимальной эффективностью? Как подобрать и расставить кадры с учетом психологической совместимости? Как высвободить врача от нетворческой, технической работы, чтобы использовать его умственную энергию по прямому назначению? Как рационализировать все операции, чтобы и физические усилия персонала расходовались наиболее целесообразно, не тратились на непроизводительные движения? Какой аппаратурой оснастить отделение, чтобы ее комплектование было обосновано не только функционально, но и экономически? Как разместить? Какими должны быть мебель, окраска стен, освещение, планировка помещений?
Отвечая на эти и другие подобные вопросы, доныне еще исходят нередко из пресловутого здравого смысла, хотя он тысячекратно подводил его поклонников, не знающих толком, что такое НОТ, не желающих или не умеющих считаться с ее требованиями, с рекомендациями психологов, антропологов, математиков, экономистов, инженеров, художников-конструкторов (дизайнеров)…
Научная организация труда отличается от обычной прежде всего тем, что опирается не только на здравый смысл, но и на строгие расчеты, которые основаны на постижениях различных областей, как старых, скажем, физиологии, гигиены и санитарии, так и молодых, например, инженерной психологии, технической эстетики.
Среди новых дисциплин особого внимания заслуживает эргономика (от «эрго» — «работа», «номос» — «закон»). Она изучает людей в процессе труда, во взаимодействии со всей окружающей их на рабочем месте средой, отыскивает оптимальное соотношение между их возможностями и потребностями с учетом возможностей и потребностей производства. Цель — гуманизация труда, повышение его эффективности.
— Вроде убедительно, только слишком общо. Как говорил Гамлет, — слова, слова, слова… А что за ними?
— Если вас интересует конкретика, за ней дело не станет. Возьмем для примера проектирование зданий.
— Но вы же рентгенолог, а не архитектор!
— Совершенно верно. Именно потому мне виднее недостатки и преимущества тех или иных архитектурных решений: я испытал их на себе.
«Я верю, придет день, когда мы, заболев и не ведая причины недуга, доверимся физикам, которые, ни о чем у нас не спрашивая, возьмут кровь, выведут на основании ее анализа несколько величин, после чего, заглянув в таблицу логарифмов, исцелят нас какой-нибудь пилюлей, — писал А. де Сент-Экзюпери. — И все-таки, случись мне заболеть, я, пожалуй, пойду к старому сельскому врачу, который взглянет на меня искоса, пощупает мой живот, выслушает мои легкие, потом, немного покашляв, раскурит свою трубочку, почешет бороду и, чтобы вернее меня исцелить, улыбнется мне… Разумеется, я преклоняюсь перед Наукой. Но я преклоняюсь и перед Мудростью».
Подобная ностальгия, щемящая тоска по стародедовскому укладу медицины представляется анахронизмом. Эпоха сельских лекарей с их бесхитростными приемами врачевания, с пиявками и стетоскопами миновала. Онаучивание, технизация, индустриализация — вот современные тенденции здравоохранения. И все же А. де Сент-Экзюпери был по-своему прав. Думается, многие не променяли бы добрую улыбку доктора Айболита на холодный блеск самоновейшей аппаратуры…
Лечить не болезнь, а больного… Но как это сделать, если индивидуальность его личности заслоняется флюорографами, томографами, логетронами и прочими «графами» и «тронами»? Сердечность врача, его обходительность нужны пациентам не меньше, чем техническая вооруженность и научная компетентность. Проявить же свою человечность во всей полноте ему мешает отнюдь не только загруженность писаниной, о которой уже говорилось. Время тратится нерационально и на многое другое, что связано, как ни странно, в значительной мере с непродуманными архитектурно-планировочными решениями.
Как тягостны минуты, проведенные у дверей рентгеновского кабинета! И не только потому, что всякое ожидание томительно, особенно в спешке, но еще и потому, что вы больны и обостренно реагируете даже на мелочи, которые здоровый человек почел бы за пустяки, не заслуживающие внимания. Вам кажутся бесконечными и бессмысленными хождения этих эскулапов туда и обратно, взад-вперед. Ваша раздражительность дает себя знать и во время приема, что мешает установлению психологического контакта с врачом.
Хождения можно сократить, свести к минимуму, если усовершенствовать планировку рентгеновского отделения. Правда, без них все равно не обойтись. И потому лучше, если вы их не будете видеть вообще. Стало быть, надо отделить холлы, где пациенты ждут своей очереди, от технологического коридора, который служит для персонала путем сообщения между различными службами больницы То есть опять-таки изменить планировку.
Перед нами лишь один пример того, как важно продуманное решение. Разумеется, оно нужно и по иным причинам. От него зависит производительность труда врачей, а значит, и качество медицинского обслуживания.
У нас немало сделано, многое делается, но еще больше предстоит сделать, чтобы оно поднялось на более высокий уровень.
В 1968 году ЦК КПСС и Совет Министров СССР приняли постановление «О мерах по дальнейшему улучшению здравоохранения и развитию медицинской науки в стране». Одна из главных задач — эффективнее использовать капиталовложения при строительстве лечебных учреждений и возводить только крупные больницы: в городах — на 300–1000 коек, в сельской местности — на 200 и более. Чтобы обеспечить максимально высокое качество диагностики и лечения с применением современной техники.
Есть три основные схемы проектирования. Во-первых, централизованная, или блочная (больница размещается либо в одном, либо в немногих зданиях, составляющих единое целое). Во-вторых, децентрализованная, или павильонная (несколько отдельных корпусов, каждый имеет свое назначение). В-третьих, смешанная (главное здание плюс самостоятельные флигели-отделения). Последней чаще всего придерживаются в СССР.
В 1976 году у нас было 30 тысяч больниц (без госпиталей). Давайте посетим некоторые из них и сравним организацию рентгеновской службы. Выберем, естественно, примеры наиболее распространенной планировки.
Вот, скажем, городская многопрофильная больница с поликлиникой и стационаром на тысячу коек, размещенная в пяти корпусах. В каждом — по два-три рентгеновских кабинета, а всего — 11. Из них три обслуживают поликлинику, один — приемный покой, семь — стационар. Привязанные к тому или иному отделению, они разбросаны не только по разным зданиям, но и по разным этажам. Не связаны друг с другом функционально и не профилированы: каждый рассчитан на самые разнообразные виды обследований.
Целесообразна ли такая планировка? Судите сами. Она прежде всего неэкономична. Аппаратура дублируется и не эксплуатируется с наибольшей отдачей. Располагая двумя рабочими местами, любой кабинет в данный момент использует только одно. Кроме того, при своей универсальности он не может быть оснащен специализированным оборудованием. Это мешает специализироваться и сотрудникам.
А если преодолеть рассыпную планировку? Допустим, все отделения размещены в одном 12-этажном здании. Все кабинеты — на одном этаже. При такой централизации количество их сокращается до девяти, а качество всей службы повышается (прежде всего профилированием). В одном можно обследовать только сердце, в другом — сосуды, в третьем и четвертом — пищеварительный тракт, в пятом — легкие, шестой отвести для флюорографии, седьмой — для томографии, восьмой и девятый — только для снимков (один обслуживает приемный покой, другой — стационар).
Оборудование теперь дублировать не нужно. Его легко специализировать. Достигнутая экономия позволит оснастить некоторые кабинеты более дорогой, зато самой современной аппаратурой. И таким образом наладить более высококвалифицированную медицинскую помощь.
Но тут нельзя не оговориться. Преимущества такой организации реализуются полностью лишь в случае, когда ей благоприятствует архитектурное решение. А в той больнице, где мы только что побывали, рентгенологическому отделению пришлось отвести двенадцатый этаж, хотя втаскивать туда громоздкую аппаратуру не очень-то сподручно. Почему же не первый? Очень просто: только там, на самой верхотуре, потолки достаточно высоки. А внизу поднять их до необходимых трех метров не смогли проектировщики, вынужденные следовать окостенелому стандарту. И вот санинспекция наложила вето.
Предположим, один кабинет удалось все-таки оставить внизу, в приемном отделении. Он оказался оторванным от остальных. А остальные? На двенадцатом этаже они растянулись вдоль 100-метрового коридора, стиснутые узкой коробкой главного корпуса, имеющей всего 12–16-метровую ширину. При такой планировке они разобщены между собой и удалены на большое расстояние от фотолабораторий, от диктофонной, машинописной и прочих вспомогательных служб. Неизбежны те же долгие хождения, взаимные помехи, а то и заторы при встречных потоках персонала и пациентов.
Еще один недостаток: рабочие зоны оказываются перемешанными. Между тем следует четко их размежевать. Каким образом? Начнем с их количества и предназначения. Во-первых, целесообразно отделить холлы для пациентов, ожидающих приема. Во-вторых, процедурные, где проводятся обследования. В-третьих, пультовые, откуда управляют аппаратурой. В-четвертых, фото-лабораторный комплекс. В-пятых, помещения для анализа рентгенологических материалов. Наконец, в-шестых, комнаты для вспомогательных служб и персонала.
А теперь об их группировке. Какая лучше? Если кабинетов не более шести, то параллельная, в шесть рядов. Если больше, то концентрическая, блоками по 6–8 кабинетов вокруг фотолабораторного комплекса, который является средоточием любого современного отделения, малого или крупного. Это должен быть именно комплекс, а не просто проявочная. Для него характерны маленькие комнаты для автоматов, обрабатывающих пленку, и большой светлый зал — своеобразный внутренний дворик — для предварительного просмотра рентгенограмм, которые в готовом виде подаются сюда из машин и сортируются здесь несколькими лаборантами.
Как при параллельной, так и при концентрической планировке пациенты общаются с персоналом только в процедурной. Когда обследование закончено, они возвращаются в холл для ожидания, а сотрудники — в фотолабораторный комплекс. Оба потока (они, как видно, направлены в противоположные стороны) разделены и не мешают друг другу. Больного не раздражают «бесконечные хождения персонала», да и дистанции «челночных рейсов» не превышают десятка метров.
Рентгенограммы поступают не обратно в процедурную, а в особое помещение, достаточно просторное (40 квадратных метров), оснащенное всем необходимым для их изучения: многосекционными негатоскопами, монтажным столиком, кинодешифратором, проекторами, флюороскопами, логетроном и прочей аппаратурой. Если две такие комнаты имеют раздвижную стенку, их легко превратить в конференц-зал. Это особенно важно там, где нужны учебные аудитории: в клиниках, которые являются базами медицинских институтов.
При такой планировке рабочие места максимально приближены друг к другу, каждый технологический этап естественно переходит в последующий, как на поточной линии. Вместо разбросанных, разрозненных ячеек получается единая гармоничная структура. Обретается новое качество: органическое целое оказывается больше, чем простая арифметическая сумма отдельных частей, не связанных друг с другом.
Такой видится современная рентгеновская служба. Рентгенодиагностическое отделение, по сути, не имеет аналогов в медицинских учреждениях. Являясь медицинским подразделением и обслуживая больных, оно заключает в себе элементы промышленного производства. По сути дела, это своеобразное производство со сложной технологией, а если это так, то мы должны прийти к выводу о необходимости иных, нестандартных подходов к их проектированию. Современное рентгенодиагностическое отделение нельзя втиснуть в прокрустово ложе типового проекта. Совершенно очевидно, что назрела острая необходимость пересмотреть отжившие архитектурные каноны. Рентгенологическую службу лучше всего размещать в специальных пристройках, имеющих в ширину не 12–16, а 30–36 метров.
И еще: очень важно учитывать перспективу развития. Скажем, превращение больницы в базу мединститута. Подобный симбиоз взаимовыгоден: клиники получают дополнительно квалифицированных бесплатных консультантов из числа педагогов, а кафедры вуза — базу для студенческой практики. Если это не предусмотрено проектом, неизбежно «уплотнение», которое стесняет обе стороны, согласившиеся на такое содружество.
Рационализации планировки препятствуют и некоторые санитарные нормы. Они гласят: в каждом производственном помещении должны быть окна. Например, в процедурной — целых два. Но что получается на деле? Их обычно заколачивают наглухо, в лучшем случае зашторивают, заклеивают плотной черной бумагой, чтобы дневной свет не мешал рентгеноскопии. И как правило, держат закрытыми, отворяя лишь после работы, чтобы проветрить комнату. Иначе говоря, в них нет особой надобности. Свежий воздух? Его может нагнетать вентиляция. Да и рентгенолог ныне все меньше времени проводит в процедурной, все больше — в светлом демонстрационном зале.
Итак, вовсе необязательно выстраивать кабинеты по линейке вдоль наружной стены, дабы обеспечить каждый своей парой окон. Концентрическая или параллельная конфигурация несравненно удобнее для врачей и больных, выгоднее для государства.
И это не единственный пример, когда строительные нормы, правила, инструкции, примененные формально, приносят больше вреда, чем пользы, хотя и продиктованы заботой о человеке, о пациенте и враче. Благие намерения оборачиваются медвежьей услугой.
— Благими намерениями вымощена дорога в ад, но не относится ли это и к вам? Заботясь о читателе, вы попадаете в парадоксальное положение, когда дух книги противоречит ее букве. Назначение популярной литературы — не просто просвещать, но также заинтересовывать предметом разговора, а при такой детализации он становится скучным и непосвященному профану, которому эти подробности малопонятны, и тем паче специалисту, которому они известны.
— Ничего подобного. Жизнь показывает: поразмышлять над ними знатокам все как-то недосуг, вероятно, из-за узкого профессионализма. Ну а что касается непосвященных, то какие же они непосвященные, коли дочитали книгу до этой страницы? Кстати, недаром вы сами проявили интерес к конкретным вещам, скрытым за общими словами, и справедливо: НОТ — такая область, где нет мелочей.
«Не было гвоздя — подкова пропала. Не было подковы — лошадь захромала. Лошадь захромала — командир убит. Конница разбита — армия бежит. Враг вступает в город, пленных не щадя, — оттого, что в кузнице не было гвоздя!» Кому из нас не знакома сызмала эта стихотворная притча, переведенная с английского С. Маршаком?
Но одно дело знать и совсем другое — усвоить заключенную в ней простую мораль: невнимание к мелочам может обернуться бедой. Все великое начинается с малого. Да и от великого до смешного — один шаг, короткий путь, который начинается опять-таки с малого. Таково значение «мелочей».
Может ли подвергнуться смертельной опасности город, если не окажется какого-нибудь винтика в рентгеновской технике, этой кузнице здоровья? Судите сами. Растет население и его скученность в крупных центрах. Все плотнее потоки пассажиров на транспортных линиях. Множатся постоянные и мимолетные контакты между людьми: дома и на работе, на улице и в метро, в кинотеатрах и аэропортах. В таких условиях чрезвычайно важно вовремя опустить шлагбаум на пути любой инфекции, способной ныне легко и быстро, со скоростью авиалайнера, порхать из города в город, с континента на континент, вызывать мгновенные вспышки эпидемий.
Заблаговременно и надежно распознавать болезни помогает, как мы знаем, рентгеновская аппаратура. Она все совершеннее и зачастую все сложнее. Между пациентом и врачом — целый комплекс приборов и методов. И отсутствие самомалейшего винтика в многосложном этом хозяйстве может привести к несчастью.
Ныне для рентгенологии характерно интегрирование со смежными областями здравоохранения. Она все дальше отходит от того традиционного уклада, который сама же утвердила в первые десятилетия своего существования. Ибо все больше оснащается не только «сугубо рентгеновским» оборудованием, но и таким, которое, казалось бы, не имеет к ней прямого отношения, а на деле играет немаловажную роль.
Иные кабинеты превращаются в операционные и, значит, не могут обойтись без хирургических принадлежностей. Впрочем, любой из них должен иметь полный комплект разнообразнейшего инвентаря. Например, стеклянный медицинский шкаф с инструментами. Их лучше хранить по наборам в зависимости от недуга: один применяется при легочных, другой при сердечно-сосудистых, третий при желудочно-кишечных заболеваниях. Нужна специализированная мебель. Скажем, столики для фотолаборатории (они оборудуются откидными многосекционными ящиками для пленки разного формата), для процедурной (один для инструментов, другой для бариевой массы и прочих контрастных препаратов). И так далее. Нехватка «мелочей» может сорвать обследования, крайне необходимые для точного диагноза и эффективного лечения.
Среди «проблемок», досаждающих рентгенологии, есть на первый взгляд прямо-таки курьезные. Например: какой пол лучше? Да не подумает читатель, что будет обсуждаться вопрос о феминизации медицины (у нас 4/5 врачей — женщины). Речь идет о прекрасном, но коварном поле — паркетном. Зачем он в рентгеновских кабинетах, которые предназначены отнюдь не для танцев? Он никак не способствует поддержанию чистоты. Плитка намокает и ссыхается, в щели набивается грязь, которую оттуда не выскребешь. Линолеум куда гигиеничнее, к тому же дешевле, хотя и должен укладываться на деревянный настил. Среди разнообразных нынешних пластиков можно найти любые нетоксичные, не накапливающие электростатических зарядов, великолепно моющиеся. Тем не менее рентгеновские кабинеты продолжают украшаться паркетом, словно они не медицинские учреждения, а увеселительные заведения.
А каким должно быть освещение? Очевидно, в одних случаях сильным, в других слабым (для работы в полутьме). Процедурной нужны четыре его источника: один в том месте, где раздеваются пациенты, второй над кушеткой, третий на письменном столе, четвертый на потолке. Всюду — лампы по 15 ватт. Вопросы вроде бы простейшие из простых, выеденного яйца не стоят, но ими мало кто занимается так, как они того заслуживают. Решают их, как бог на душу положит, кто в лес, кто по дрова.
То же самое с цветом света. Иные считают, что он должен быть красным, который обеспечивает наилучшую адаптацию. Но тогда неминуемо быстрое утомление и снижение работоспособности. Зеленый лучше: он вызывает пусть не столь заметный, зато более устойчивый подъем активности, не раздражает, а, напротив, успокаивает нервную систему, обостряет зрительное восприятие. Синий, фиолетовый не годится из-за отрицательного психофизиологического воздействия.
Фартуки и перчатки из просвинцованной резины… Они должны быть эластичней, легче, удобней, чем существующие, и в то же время надежней защищать от облучения. Мелочи? Но они как соринки в глазу.
Важная задача — рационализировать движения исполнителя, который сам не всегда задумывается над тем, как их сделать наиболее целесообразными, экономными, быстрыми и точными. За смену он может совершить их тысячи, смертельно устать, но так и не принести никакой пользы.
Представьте: обследуется желудок. Нужно ввести газово-контрастную массу. При четкой организации эта процедура отнимает две минуты. Лаборант протягивает руку к шкафу, где тотчас находит на определенных местах все нужные препараты в стеклянных баночках, чайную ложку и пачку нарезанных бумажных листков. Взяв бумажку с шипучей смесью, пациент высыпает порошок на язык, запивает глотком воды — и вся недолга.
А в жизни бывает не совсем так и даже совсем не так. Лаборант долго шарит в полумраке по полкам, пытаясь найти предметы, которые не были уложены в порядке. Отрывает врача от дел вопросами, тот отвечает, а время идет. Вдруг выясняется, что какой-то препарат запропастился невесть куда. Приходится идти за ним в соседнее клиническое отделение. Это не только лишнее хождение, но и потеря адаптации к темноте. По возвращении лаборант плохо ориентируется в кабинете, спотыкается, хватается не за те рукоятки, а время бежит неудержимо. Между тем у больного из желудка эвакуировалась вся контрастная масса, надо ее принимать еще раз. Все волнуются, раздражаются, ошибаются…
А если еще экран ползет кверху или книзу из-за того, что не сбалансирован противовесом, если он катится влево или вправо, потому что штатив перекошен, если изображения наслаиваются друг на друга, так как кассеты «проскакивают», если ширма может рухнуть при каждом движении, если… Хватит! Никаких «если» там, где речь идет о судьбе пациента. Иначе все эти «мелочи», суммируясь, уподобятся ложке дегтя в бочке меда. И пойдут насмарку огромные затраты государства на современную рентгеновскую технику, которая становится все дороже. Главное же, проиграет здравоохранение, не поднимется качество медицинской помощи населению.
Действительный член Академии медицинских наук СССР И. Давыдовский, лауреат Ленинской премии, сетовал, что 15–16 процентов диагнозов в клиниках оказываются неверными и, кроме того, 14 процентов — неточными. Такую пропорцию констатировали и зарубежные авторы. Не сказалось ли здесь отсутствие НОТ?
Правда, приведенные цифры несколько устарели: они взяты из книги «Хирургические ошибки» Н. Краковского и Ю. Грицмана, выпущенной в 1967 году. Возможно, с тех пор положение вещей улучшилось.
Но как и тогда, остается в силе высказывание авторов об истоках таких погрешностей на примере собственных упущений: «Мы можем откровенно признаться в том, что многие из этих личных ошибок, конечно, можно было бы предупредить, если бы у нас в дни нашей молодости было больше теоретических знаний, практического опыта, а главное — умения организовать правильно свой труд».
Одним из обязательных элементов научной организации труда на современном этапе является комплексирование.
Возможности рентгенологии в диагностике различных заболеваний сегодня практически не ограничены. Вопрос только в том, целесообразно ли во всех без исключения случаях применять весь комплекс средств, которыми она располагает.
Можно быть патриотом своего метода, специальности, но это совсем не мешает оставаться честным человеком. Нельзя из метода делать панацею, как бы он ни был хорош, иначе он будет скомпрометирован. Каждый метод имеет свои возможности, пределы показания и противопоказания.
Нужно учитывать, что развивается не только рентгенология, но и другие дисциплины, другие методы исследования: лабораторные, биохимические, эндоскопические и пр., которые часто оказываются более простыми, дешевыми, менее обременительными для больного, а в ряде случаев более эффективными.
Сейчас разработано такое большое количество методов исследования, что, если их применить на одном пациенте, не выдержит не только больной, но даже самый здоровый человек. Недаром говорят: для того чтобы лечиться, нужно иметь крепкое здоровье.
Сегодня при обследовании больных уже невозможно придерживаться старого методологического принципа «от простого к сложному». С каждым годом все острее ставится вопрос необходимости выбора наиболее рационального, оптимального для данного случая комплекса диагностических средств, позволяющего идти к диагнозу кратчайшим путем с наименьшими затратами времени, материальных средств, духовных и физических сил больного.
Переоценка возможностей метода так же вредна, как и его недооценка. За излишнюю самоуверенность врача часто расплачивается больной. И рентгенолог, и терапевт, да и сам больной опасно заблуждаются, полагая, что раз при рентгенологическом исследовании ничего не найдено, значит, нет серьезного заболевания. Никак не простительно взваливать на рентгенолога непосильные задачи.
Мы сталкиваемся подчас с непреодолимыми трудностями в распознавании рака легкого. У больного сухой надсадный кашель, да еще прожилки крови в мокроте — признаки, характерные для рака легкого. В дополнение ко всему в мокроте обнаруживаются клетки, подозрительные на рак, а на рентгенограммах нет ничего.
Отчетливо представляя пределы возможностей рентгенологического метода, сегодня именно рентгенологи как никогда остро ставят вопрос о необходимости выработки оптимальных диагностических комплексов на основе четкой регламентации показаний и последовательности применяемых диагностических средств с учетом информативности каждого из методов и характера заболевания.
Комплексность — это один из основных методологических принципов современной диагностики. Причем под комплексностью подразумевается не параллельное и независимое использование различных методов. Комплексность — это четкая регламентация используемых методов с учетом их возможностей и особенностей течения болезни.
Давайте посмотрим, как срабатывает этот тезис в диагностике заболеваний желудка. Среди всех органов пищеварения, желудок — основной объект рентгенологического исследования. Причина этого в высоком удельном весе заболеваний желудка.
Желудок чутко реагирует на все изменения в организме. Больны ли у человека легкие, сердце или почки, первым делом пропадает аппетит, а нередко появляются боли в подложечной области. У человека тяжелая травма, обширный ожог, опухоль надпочечника или поджелудочной железы, а в желудке развивается язва с резким сопутствующим воспалением. Вот почему исследованию желудка придается столь серьезное внимание.
Больные очень серьезно относятся к исследованию желудка. Без рентгена слова и назначения лечащего врача звучат неубедительно. И для этого есть серьезные основания, ибо диагностика желудочных заболеваний приобретает достоверность только после того, как рентгенологическое исследование обнаружило одно и исключило все прочие заболевания.
Вместе с тем было бы ошибкой любую боль в подложечной области рассматривать как проявление желудочного заболевания. Здесь находится поджелудочная железа, которая, воспаляясь, дает резкие боли. Здесь расположены регионарные лимфатические узлы, собирающие лимфу от всех органов брюшной полости и забрюшинного пространства, в эти узлы поступают не только пищеварительные соки, но также некоторые токсические вещества и даже болезнетворные микробы. Здесь же находится солнечное сплетение — самое мощное из всех нервных сплетений организма; оно болезненно реагирует на любой патологический процесс, в каком бы органе живота или забрюшинной области он ни находился.
Задача рентгенолога в этих случаях исключить первичное заболевание желудка, направить обследование больного по другому пути, чтобы найти основной недуг. К сожалению, задача не всегда оказывается легкой. Не обнаружив в желудке причины болей, рентгенолог нередко ставит себя и лечащего врача в затруднительное положение. Больного нужно лечить, а диагноза нет. Очень часто совершенно не опасные для жизни состояния (надо сказать, полностью еще не изученные) сопровождаются стойкими болями, которые на протяжении многих лет беспокоят больного, существенно не снижая общего самочувствия и работоспособности человека. В таких случаях лечащий врач и пациент, естественно, осаждают рентгенолога, требуя от него точного диагноза.
Иногда рентгенолог под давлением лечащего врача идет по пути наименьшего сопротивления. Обнаружив сомнительное утолщение складок слизистой оболочки, ставит безобидный, но удобный, так сказать, дежурный диагноз — гастрит, после чего все остаются довольны. Назначенное лечение нередко приносит больному облегчение, и это его тоже устраивает.
Ошибочная концепция, основанная на сомнительных, но однозначно расцененных рентгенологических данных, может повредить больному. Причем одинаково опасны как недооценка, так и переоценка возможностей рентгенологического метода исследования. Представленная ниже история болезни в этом отношении весьма поучительна.
Мужчина 42 лет почувствовал неприятные ощущения в подложечной области, возникающие вскоре после еды. К врачу не обращался. Спустя три месяца в связи с оформлением санаторно-курортной карты проходил рентгенологическое исследование желудка: обнаружилось неравномерное утолщение складок слизистой оболочки.
Подобное состояние встречается довольно часто, в большинстве случаев оно протекает безобидно, одни его расценивают даже как вариант нормы, другие считают гастритом. Тем не менее рентгенологи знают, что за этой картиной банального гастрита может скрываться менее выраженное, но грозное заболевание — рак.
Рентгенолог знал, что рак желудка в начале своего развития дает скудную и нехарактерную картину. Нередко вокруг маленькой, еле заметной опухоли развивается выраженный отек и перестройка слизистой оболочки, маскирующие начинающийся процесс. Все это рентгенологи теперь знают и потому не спешат ставить диагноз гастрита, пока не убедятся, что за ним не скрывается что-то более опасное.
Если бы рентгенолог на основании полученной им формальной рентгенологической картины поставил диагноз безобидного гастрита, как это ни странно, все были бы довольны. Престиж рентгенологии был бы поддержан, поскольку не понадобилось кланяться каким-то там уточняющим методам исследования. Больной без задержки получал санаторно-курортную карту и через несколько дней грелся под южным солнцем у самого синего моря, избегая пряных, острых блюд, с удовольствием и благоговея перед всемогуществом медицины, кушал предписанные ему паровые котлеты, запивая минеральной водой, ежедневно принимал физиотерапевтические процедуры и был бы вполне счастлив.
К несчастью, события развивались именно так. Случилось, что больной не попал на гастроскопию. Может быть, он боялся глотать гастроскопическую трубку; может быть, расценил неуверенность рентгенолога как некомпетентность и обратился к профессору, которому положение арбитра не позволяет сомневаться; может быть, пациент очень уж просил не срывать ему отдых, тем более что путевка, как это часто случается, была «горящей». Словом, обследование было свернуто, пациент получил санаторно-курортную карту и, сочетая полезное с приятным, хорошо отдохнул и «подлечился». Вернулся он окрепший и жизнерадостный, «гастрит» его больше не беспокоил. Ни сам больной, ни участковый врач, ни лечащие врачи санатория не знали, что у него развивается рак.
Спустя некоторое время снова начало побаливать под ложечкой. За работой не придавал этому значения. Прошло еще полгода. И вот однажды, будучи в командировке в другом городе, наш пациент почувствовал себя плохо, открылась кровавая рвота. Больной был доставлен «скорой помощью» в клинику, где при рентгенологическом исследовании установили несомненный рак желудка.
Последовала операция. Опухоль удалили, но шансы на благополучный исход неизмеримо уменьшились по сравнению с тем положением, в котором больной находился при первом обращении.
У нас как при пожаре, чем раньше обнаружена болезнь, тем больше шансов спасти больного. Но вот беда, чем чаще рентгенолог высказывает подозрение на рак, тем уязвимее его позиция, поскольку ранняя диагностика часто только лишь предположительна, а это означает, что в каком-то проценте случаев высказанное рентгенологом предположение не подтвердится. Коллеги могут приклеить такому рентгенологу ярлык гипердиагноста и перестраховщика. Да и самому неприятно ошибаться.
Представьте себе ситуацию. Вас вызывают в операционную. Открыта брюшная полость. Хирург укоризненно качает головой, еще и еще раз ощупывает желудок, пытаясь найти то, что видел рентгенолог. Но нет, стенка желудка вне подозрений. Пришлось сделать небольшое окно и заглянуть внутрь желудка, и опять ничего. Что это? Ошибка рентгенолога или особая форма начального рака? Удалять или не удалять желудок? Вопрос к рентгенологу: «Вы уверены, что у больного рак?»
Бедный рентгенолог! Как он может быть уверенным, если существуют формы рака с очень неубедительной картиной. И чем меньше размеры опухоли, тем труднее ее выявить. Честь и хвала рентгенологу хотя бы за то, что он заподозрил опухоль. Тут необходимы другие, дополнительные методы исследования, рассеивающие сомнения до операции.
Еще несколько лет назад судьба рентгенологического диагноза решалась на операции так или примерно так, как это описано выше. Одного неподтвержденного случая было достаточно, чтобы репутация рентгенолога поколебалась. Естественно, что это в какой-то мере сдерживало рентгенологов высказывать подозрение на рак, ведь решался вопрос об удалении желудка.
В настоящее время на помощь рентгенологии пришел мощный союзник — эндоскопия. Благодаря изобретению волокнистой оптики эндоскопы стали тонкими и гибкими, что значительно облегчило проведение исследования. С помощью фиброскопа можно рассеять сомнения рентгенолога, осмотрев внутреннюю поверхность желудка или бронхов через оптику.
Современная эндоскопия в ряде случаев располагает даже бóльшими возможностями, чем рентгенологическое исследование. В связи с этим одно время даже возникло мнение о целесообразности замены рентгенодиагностики на более дешевую и эффективную эндоскопию. Но этого не произошло.
Эндоскопия не может полностью заменить рентгенологию. Дело в том, что при некоторых заболеваниях эндоскопия не эффективна. Кроме того, результаты эндоскопии оказываются значительно выше в тех случаях, когда она проводится прицельно, когда ей предшествует рентгенологическое исследование, когда уже обнаружены какие-то изменения, требующие уточнения, детализации.
С появлением гибких гастроскопов с фиброоптикой рентгенологи получили право чаще сомневаться, чаще высказывать подозрение на рак, не опасаясь, что больного сразу же положат на операционный стол. Обоснованная гипердиагностика, можно сказать, стала обязательным условием диагностики рака. И благодаря этому удельный вес больных с ранними формами рака возрос, а соответственно и надежды на благополучные отдаленные результаты лечения значительно увеличились.
— Нужно ли такое копание в подноготной, самовыворачивание наизнанку в духе достоевщины?
— «Только слабые духом, хвастливые болтуны и утомленные жизнью боятся открыто высказаться о своих ошибках, — писал выдающийся немецкий хирург XIX века Т. Бильрот. — Кто чувствует в себе силу сделать лучше, тот не испытает страха перед сознанием своих ошибок».
— Судя по всему, вы тоже «чувствуете в себе силу сделать лучше»? Если да, то неужели одной лишь НОТ?
— Не только. Многое даст проникновение в тайны врачебного мышления. И здесь поможет именно «саморазоблачение» диагностов, благодаря которому приоткроется святая святых нашего мозга.
Однажды видному советскому рентгенологу С. Рейнбергу почтальон вручил пакет со снимками позвоночника 12-летней пациентки, лежавшей с диагнозом «туберкулез костей». Изучив негативы, профессор пришел к иному выводу: недуг у нее совсем другой — белокровие. В туберкулезный санаторий была тотчас отправлена телеграмма: мешкать в таких случаях нельзя, промедление смерти подобно. Врачи, лечившие девочку, изумились: анализ крови противоречил столь смелому заключению. Но более тщательные обследования продемонстрировали правоту московского врача, снискавшего мировой авторитет.
Снайперская диагностика, «бившая в десятку» через любые расстояния, порой даже через государственные границы, не была редкостью в практике С. Рейнберга, ныне покойного (он умер в 1966 году). Это было еще в те времена, когда рентгенотелевидение оставалось мечтой.
Как-то в Москву пришли рентгенограммы из Афганистана. Знатная пациентка страдала от страшных болей в распухшем плече. В поисках облегчения она объездила многие страны. Светила английской и французской медицины предлагали ампутировать руку. Тогда отчаявшаяся женщина обратилась к советским специалистам. Профессор С. Рейнберг поставил заочный диагноз, который опять-таки оказался точным: злокачественная опухоль. И назначил рентгенотерапию. Мучительные боли утихли. Рука осталась цела.
В то же самое время не были редкими и случаи иного толка. Вот один из них, описанный в упоминавшейся выше книге «Хирургические ошибки». В 1962 году в одну из московских клиник поступил некто Л., у которого обнаружили рецидив язвенной болезни. Он был повторно оперирован, на сей раз с применением сшивающих аппаратов. Пациент выздоровел, выписался, уехал из столицы домой. Но вот беда: через несколько месяцев его сбила на улице автомашина. Подозревая переломы ребер, он обратился в поликлинику. Там, естественно, начали с рентгенограммы. Увидев на ней изображения танталовых скобок, женщина-врач заявила, что у него в животе забыто металлическое инородное тело. Встревоженный Л. срочно, самолетом, отправился в Москву и потребовал «ответа за халатность у людей в белых халатах». Недоразумение, конечно же, выяснилось незамедлительно.
Но тут возникает вопрос: как получилось, что в столь простом случае была допущена ошибка? Ведь общеизвестно, что танталовые скобки вообще не снимают с внутреннего шва специально (они безвредны для организма). Они дают весьма характерное изображение, по которому их трудно спутать с посторонними предметами, оставленными в организме по забывчивости.
Легче легкого обвинить рентгенолога в недостаточной компетентности. Не оправдывая его оплошность, вспомним, однако, как мешает ему порой отсутствие НОТ. Но сейчас речь о другом. Почему у одних «снайперский глаз», а у других, тоже весьма квалифицированных медиков, к сожалению, нередко такая вот «куриная слепота»? И как от нее избавиться?
Очевидно, ответить поможет поучительный анализ всех и всяческих погрешностей при распознавании болезней. Увы, он ведется далеко не так широко и глубоко, как того хотелось бы, хотя ценность его не подлежит сомнению. Еще великий русский хирург Н. Пирогов делал свои диагностические ошибки не просто достоянием гласности, но даже предметом широкого обсуждения, видя в этом путь к их устранению в будущем, к самосовершенствованию и для себя и для коллег.
С другой стороны, важно изучать, как приходят к правильным суждениям корифеи диагностики, чья мысль бредет к свету сознания через те же, что и у остальных, темные лабиринты подсознания.
Знаменитый немецкий естествоиспытатель Г. Гельмгольц отмечал: «Мысль осеняет нас внезапно, без усилия, как вдохновение». Говоря, что процесс этот протекает бессознательно, крупный русский математик В. Стеклов подчеркивал, что формальная логика здесь участия не принимает, истины добываются не умозаключением, а интуицией. Они входят в сознание в виде готовых результатов: поначалу без какого-либо доказательства, а уж потом обосновываются соответствующей аргументацией.
Такая точка зрения долгое время оспаривалась. Утверждалось, что у гомо сапиенс, человека разумного, первостепенную роль должны играть именно логические умозаключения, как дедуктивные (от общего к частному), так и индуктивные (от частного к общему). Примеры первых можно найти в выводах врача, когда он, изучая рентгеновскую картину, сопоставляет ее с уже известными ему, относит к определенному классу и таким образом ставит диагноз. Примеры вторых — теоретические обобщения экспериментальных результатов, скажем, в той же медицине. Биологи, физики, химики опираются, как правило, на индукцию, а вот математики — на дедукцию, хотя, конечно, противопоставлять одну другой нельзя.
Но вот начались попытки моделировать мышление с помощью компьютеров. И они терпели фиаско. Электронный мозг с его логическим аппаратом, однако без интуиции, так и не сравнялся с человеческим в своих потенциях, хотя в чем-то и превзошел его (например, в скорости вычислений). Да и у людей одни и те же знания (допустим, рентгенологические), которые в равной степени дает всем система образования, порождают, как мы убедились, неодинаковые успехи, скажем, в рентгенодиагностике.
Мало-помалу произошла переоценка ценностей. Откроем книгу «Мышление и творчество», выпущенную в 1976 году Госполитиздатом. Ее автор, киевский врач A. Лук, специалист по медицинской кибернетике, подчеркивает огромную роль, какую играет подсознание, интуиция. Процессы обработки информации нашим мозгом могут в тот или иной промежуток времени протекать так, что думающий человек не отдает себе в них отчета, хотя подчиняются они тем же законам, что и осознанное мышление. Однако, оговаривается А. Лук, многочисленные панегирики интуитивному, подсознательному началу затемняют один существенный момент: оно порождает как истинные, так и ложные выводы. Вот почему необходима их верификация, всесторонняя проверка логикой, практикой (например, теории — экспериментом).
Что же такое интуиция? «Инстинктом человеческого ума» называл ее великий Н. Лобачевский, русский «Коперник геометрии». Грубо говоря, это чутье, позволяющее нам узреть решения в готовом виде непосредственно, без их обоснования обычной логической процедурой. И еще: это неосознанный опыт, который вдруг всплывает в сознании благодаря «наитию», внезапному озарению (инсайту). К сожалению, трудно добавить что-либо более определенное. Ибо подсознание экспериментально почти не изучалось, хотя, несомненно, его можно исследовать объективными методами психологии и физиологии.
Впрочем, и сказанного достаточно, чтобы критически разобрать такое, например, суждение: «Эта способность не может приобретаться, а является прирожденным свойством исключительных людей, — считал тот же B. Стеклов, — но приходит она в действие… через посредство опыта». Великий математик не во всем прав. Нет людей, абсолютно лишенных интуиции, хотя, конечно, ею наделены все по-разному: одни больше, другие меньше. Способности неодинаковы, но они есть у каждого, свидетельствует советская педагогика, и задача в том, чтобы выявлять их заблаговременно и развивать как можно полнее.
Если интуиция — неосознанный опыт, то, стало быть, ее возможности тем значительней, чем богаче этот багаж информации. А он пополняется обучением, воспитанием. Разумеется, подготовка специалиста тем эффективнее, чем лучше соответствует она требованию учить мыслить, поскольку совершенно недостаточно просто-напросто «нашпиговывать» память цифрами, фактами, цитатами, чужими идеями. И многие преподаватели развивают именно эту способность, создавая проблемные ситуации, когда каждый ученик должен самостоятельно сделать уже сделанное открытие или изобретение (естественно, с помощью педагога).
Надо сказать, решение таких учебных задач, как и настоящих проблем, имеет в принципе ту же психологическую структуру, что и самый сложный творческий акт. Обычно выделяют такие слагаемые. Первое — накопление знаний и навыков, которые необходимы, чтобы уяснить требуемое и поставить задачу. Четко сформулировать ее — это уже решить наполовину. Второе — сосредоточение усилий, поиск дополнительной информации. Если трудности все же не преодолеваются, наступает… Третье — переключение на другие занятия, как бы «бегство от проблемы», причем возможен переход от умственного труда к физическому или к отдыху. Подсознание продолжает работать, приближая решение, порой даже во время сна. Это инкубационный период. И вот…
Четвертое — озарение. Надо подчеркнуть, что оно не означает возникновение непременно гениальной идеи. Осенившая вас догадка может оказаться не ах какой необыкновенной; так чаще всего и бывает. Но какой бы она ни была, скромной или великой, она рождается скачкообразно, не вытекая из первоначальных посылок постепенно, то есть как бы минуя промежуточные этапы логических обоснований. Это как прыжок через пропасть вместо переползания по канатам (их ведь так и не удалось перекинуть на втором этапе).
Конечно, не всем дано преодолеть препятствие, которое по плечу сверхталантам, но все могут взять барьер тех или иных масштабов, перенесясь через него на крыльях интуиции. Что и делают весьма часто. Например, при разгадывании загадочной картинки. Здесь, правда, разрыв логической последовательности ничтожен, но он есть.
Наконец, пятая, завершающая, стадия — верификация. Она необходима всем: и высокоодаренным, и менее способным, — ибо никто не застрахован от ошибок интуиции. Вспомним: к ложным выводам приходил даже великий Н. Пирогов. Впрочем, в его оправдание надо сказать, что у него на вооружении не было рентгенотехники, которая сделала массовой точную диагностику, доступную прежде только проницательнейшим умам. Но и такой виртуоз, как С. Рейнберг, не мог считать себя безгрешным, не мог не проверять свои заключения. Что уж говорить о специалистах с менее зорким глазом, с менее богатым опытом, осознанным и неосознанным.
Скороспелое суждение врача, будто оперированный Л. носит в себе инородное тело, забытое хирургами, рухнуло, как карточный домик. Но стоило ли больному лететь за этим срочно за тридевять земель? Нет, в эпоху развитой телефонии отрицательный результат легко было получить на месте. Разумеется, не пациенту, а врачу, в чьи обязанности входит всесторонняя верификация своих предположений.
Чем меньше скоропалительности и самонадеянности, чем больше самокритичности и взаимопроверки, тем ниже процент ошибок. Нельзя не согласиться с А. Луком: лучший диагност не тот, кто мгновенно определяет болезнь, а тот, кто при ее распознавании рассматривает наибольшее число вариантов, оставляя лишь самый вероятный.
Итак, нельзя недооценивать интуицию, но и переоценивать тоже. Она должна идти рука об руку с логикой. И конечно, нельзя забывать о верификации. Она должна венчать и скромные догадки, и великие гипотезы. Путь от фикции к факту, сколь бы многотрудным он ни был, медику необходим в еще большей степени, чем физику. Там, где речь идет о здоровье и жизни людей, не может быть недоработок, даже если они кажутся «мелочами». С недоделками недопустимо принимать даже дом, тем паче диагноз.
Здесь таится немало возможностей сделать диагностику еще надежней, чем прежде, и мы не вправе их упускать. Вскрыть эти неиспользованные резервы поможет дальнейшее совершенствование системы образования. Молодой специалист должен не только иметь знания, но уметь мыслить, а этому в школе, средней и высшей, покамест практически не учат.
Конечно, наука о мышлении сложилась не так давно, по существу, в наш век, хотя ее истоки уходят в глубины столетий. Ныне она идет вперед семимильными шагами, притом ускоренно, суля поистине революционный переворот в развитии человеческих способностей. Рано или поздно к уже освоенным ресурсам коры и подкорки, сознания и подсознания добавятся новые, которые еще предстоит разведать.
«Если бы мы умели заставить наш мозг работать хотя бы в половину его возможностей, то для нас никакого труда не составило бы выучить десятка четыре языков, запомнить „от корки до корки“ Большую Советскую Энциклопедию, пройти курс десятка учебных заведений, — читаем у И. Ефремова, фантаста, который был не только писателем, но и крупным ученым, палеонтологом. — Человечество за многие тысячелетия своего существования еще не научилось учиться. Открытие секретов учения, преодоление мощных защитных систем психики, немедленно вступающих в действие при отсутствии интересов, при переутомлении однообразием, должно стать одной из главных возможностей общего подъема интеллектуального уровня здорового человека коммунистического будущего».
Задача грандиозная, но она уже поставлена. Если же есть ее формулировка, то, быть может, это уже половина решения.
— Не увлекайтесь, иначе вы еще больше отвлечетесь от рентгенодиагностики, от конкретных ее запросов уйдете к общим вопросам логики, интуиции и т. д. и т. п.
— К распознаванию болезней применимы все открытия науки о мышлении, которые были и будут сделаны. Если верно, что неиспользуемые резервы нашего мозга превышают 96 процентов его потенций, то это справедливо и по отношению к рентгенологам.
— И все же лучше вернуться к родным пенатам рентгенодиагностики. Читателя интересует не столько ее фантастическое завтра, сколько реальное сегодня: как сделать ее надежней?
— Пока что здесь больше вопросов, чем ответов. Впрочем, анализ трудностей — шаг к их преодолению: формулировка проблем — часть их решения.
Что в воздухе я вижу пред собою?
Кинжал! Схвачу его за рукоять. —
А, ты не дался! Но тебя я вижу!
Иль ты, зловещий призрак, только взору,
А не руке доступен? Или ты
Лишь детище горячечного мозга,
Кинжал, измышленный воображеньем?
Но нет, я вижу, чувствую тебя,
Как тот, что мною обнажен…
Тупей ли зренье у меня иль лучше
Всех чувств, не знаю. Но тебя я вижу!
Эти строки из «Макбета» свидетельствуют, что еще сотни лет назад было отлично известно: смотреть и видеть — не одно и то же. Герой шекспировской трагедии, даже закрыв глаза, не избавился бы от своей галлюцинации.
Подобные болезненные представления возникают в сознании как след прежних, а не сиюминутных восприятий. Если такой сон наяву пригрезится в полумраке рентгеновского кабинета врачу, определяющему болезнь, то диагност, узревший не то, что есть на самом деле, может в отличие от Макбета зарезать без ножа, одним лишь словом своего приговора.
Понятно, почему рентгенология не вправе не интересоваться законами восприятия, хотя они относятся, казалось бы, к чуждой ей сфере — психологии. Чтобы изображения на экране или на снимке не искажались воображением, мало иметь острый глаз, зоркий ум, уметь видеть, что в них есть и чего нет. Помогает специальная дисциплина — скиалогия (от «скиа» — «тень», «логос» — «учение»).
Большинство из нас, верно, и не подозревает, сколь часто мы видим предметы не такими, каковы они в действительности. Их неправильное восприятие, иллюзия, явление нормальное, обусловленное естественными психофизиологическими свойствами системы «глаз — мозг». Но степень искажения зависит и от наших индивидуальных особенностей, от нашего душевного состояния в данный момент, от эмоциональной возбудимости, от того, насколько напряженно ожидаем мы что-то (принимая порой желаемое за действительное), от подверженности навязчивым идеям, от усталости.
Такая зависимость восприятия от этих и других факторов, от общего содержания нашей психической жизни, от наших знаний, опыта определяется как апперцепция. Иллюстрации, наглядно поясняющие термин, легко найти в литературе. Дон-Кихот, например, узрел в баранах и мельницах рыцарей-супостатов, а в тазике для бритья — великолепный шлем, достойный храброго идальго из Ламанчи. Не стоит, однако, думать, будто для столь оригинальной трактовки реального надо «свихнуться» за чтением куртуазных романов, на которых помешался герой Сервантеса. В одной документальной повести о таежных изыскателях рассказано, как кто-то из них принял крохотного полосатого зверька — бурундука, спрятавшегося в зарослях на близком расстоянии, за тигра.
А ошибки в оценке форм и размеров? Если вы полагаете, что буква В на этой странице состоит из двух равновеликих половинок, верхней и нижней, то легко убедитесь в своем заблуждении, перевернув ее «вверх ногами». Дамские портные знают, что их клиентки в платьях с горизонтальными полосами будут казаться ниже и круглее, а с вертикальными — выше и худее.
Нарисуйте рядом одинаковые черные силуэты двух человеческих лиц, повернутых друг к другу в профиль «носом к носу». Белое пространство между ними может восприниматься то как пустое место, то как ваза. В последнем случае два черных пятна около нее будут выглядеть уже не физиономиями, пустыми местами. Это знаменитый феномен «чередование фигуры и фона», подвергнутый изучению датским психологом Э. Рубиком. Такие «перевертыши» (к ним относится и упоминавшийся выше куб Л. Неккера) занятно рассматривать в популярной книжке. Совсем не так забавно иметь с ними дело на экране или на снимке, когда они мешают распознать болезнь.
Подобные «оборотни» действительно наблюдаются рентгенологами. И вызывают разночтения при анализе одной и той же картины. Например, полостные образования в легких описывались одними как кольцевидные тени, другими — как округлые просветления.
Бывают и другие иллюзии. Из двух белых кружков более светлым кажется тот, что лежит на черном фоне, а из двух черных темнее тот, что на белом фоне. При остеомиелите омертвевший и отторгнутый кусочек кости, лежащий в прозрачной гнойной полости, выглядит более интенсивным, хотя минеральных солей может содержать столько же, сколько и окружающая его здоровая кость.
Как видно, фон, на котором расположены детали картины, влияет на их восприятие. Это свидетельствует о том, что информация, полученная какой-то площадочкой сетчатки, перерабатывается не изолированно, а в зависимости от сигналов, поступающих на соседние участки.
На первый взгляд глаза-то и водят нас за нос, но… «Наши чувства не обманывают нас — не потому, что они всегда правильно судят, а потому, что они вовсе не судят», — подметил еще И. Кант чуть ли не 200 лет назад. А за две тысячи лет до него Лукреций, древнеримский коллега немецкого философа, выразил ту же мысль не менее изящно тяжеловесным гекзаметром в своей поэме «О природе вещей»:
Наши глаза познавать не умеют природу предметов,
А потому не навязывай им заблужденье рассудка.
Да, глазами человек лишь смотрит, а видит мозгом. Как же протекает этот процесс? Еще недавно считали, что проекции объектов на сетчатку поступают оттуда к анализаторам подкорки и коры по зрительным нервам, как по световодам — пучкам стеклянных волокон, способным передавать изображение в неизмененном виде. Однако верификация такого предположения выявила его несостоятельность.
Оказывается, глаза посылают в мозг иную информацию. Не готовый образ, а электрические импульсы, в которых он закодирован и которые там дешифруются. Есть соблазн сравнить это с телепередачей по кабелю, по которому распространяются видеосигналы. Но такая аналогия весьма приближенна, она лишь поверхностно описывает внешнюю сторону феномена, не проникая в его внутреннюю суть. А подлинный биофизический механизм его до сих пор не раскрыт. Несомненно одно: вызванные у нас под черепной крышкой возбуждения не являются прямой проекцией оптической картины с сетчатки в мозг.
Как бы там ни было, образы, возникающие в нашем сознании под воздействием нервных импульсов, создают довольно точное представление о рассматриваемом предмете. Конечно, субъективное, порой искаженное апперцепцией, но более или менее верное. Вспомнить хотя бы такой факт: на сетчатке, словно на пленке в фотокамере, объекты получаются перевернутыми. Но мозг расценивает их адекватно реальной действительности, как бы ставя с головы на ноги.
Зрительный аппарат в процессе эволюции приобрел удивительную способность конструктивного видения. С накоплением опыта иллюзорная, ошибочная информация корректируется, благодаря чему некоторое время спустя восприятие тех же предметов становится более правильным, чем поначалу. Это самосовершенствование необходимо каждому рентгенологу. Если он «набил глаз», то справляется с иллюзиями куда легче, нежели совсем еще зеленый молодой специалист.
Усвоить такие навыки, к сожалению, непросто. Рентгеновское изображение настолько необычно, что его трудно с чем-нибудь сравнить. Театр теней? Но там силуэты на экране имеют принципиально иную природу. По ним мы не в состоянии определить, каким непрозрачным объектом они образованы — двухмерным или трехмерным. Объемное тело, скажем, человека отбросит такую же тень, как и плоская фигура, вырезанная по его контуру из картона.
Рентгеновская картина является трансмиссионной. То есть получена просвечиванием, которое делает наш организм как бы стеклянным. И она в себе суммирует многочисленные тени — следы различных анатомических структур, распределенных по всей толще нашего тела. По плоскому изображению на экране мы можем судить об объемной картине, о внутреннем строении объекта.
Конечно, для новичка это нелегкая задача. Он с трудом угадает даже хорошо известные органы. Неискушенный человек на рентгенограмме грудной клетки увидит разве только задние концы ребер: они более толстые и плотные. Лишь с опытом приходит способность различать едва заметный узор, образованный легочными сосудами, а затем и тонкие нюансы этой картины при ее усилении или ослаблении, связанном с тем или иным патологическим состоянием. Чем активней тренировка, тем быстрее вырабатывается такая зоркость.
С чего начинается умение видеть? С умения смотреть. Казалось бы, о чем тут говорить, если оно дано всем от природы? И все же нельзя не задуматься над его улучшением.
У любого из нас глаза «ощупывают» объект, перебегая от одной наиболее характерной его точки к другой. Так у всех, но у каждого на свой манер. У иных этот путь обхода не столь рационален, не так упорядочен, как того хотелось бы. И приводит к большей потере информации, к меньшей точности представлений о рассматриваемых объектах. Но эти движения управляемы, поскольку они произвольны, так что их можно организовать научно, по самой разумной схеме. Для этого надо определить ключевые точки и последовательность их фиксации, а затем упражнениями закрепить наиболее рациональный путь обхода. НОТ применительно к собственным глазам? Почему бы и нет, если она способна повысить эффективность рентгенодиагностики?
Советская рентгенология несет в себе глубокие традиции отечественной медицины. Ее отличительными чертами является клиницизм, функционализм и целостное понимание организма. Все эти принципы между собою тесно связаны, все они сводятся к тому, чтобы врач любой специальности, исследуя любой орган, всегда видел перед собой больного.
Смотрит ли рентгенолог легкие или изучает скелет, любую рентгенологическую картину, он должен увязывать с общим состоянием организма, с его конституцией, возрастом, полом, с показателями крови и других систем и, конечно же, с состоянием психики пациента. Исследуя желудок, нужно составить сначала представление об этом органе как о целостном образовании, о его положении, форме и размерах, состоянии рельефа внутренней поверхности и контурах, а потом уже давать характеристику локальных, то есть местных патологических изменений. Тот, кто отходит от этой методологической концепции, попадает в курьезные ситуации.
Много лет назад молодому рентгенологу было доверено исследование одного больного. Это был еще не старый, но довольно изнуренный болезнью человек, который жаловался на боли в подложечной области. Врач с энтузиазмом принялся за исследование желудка, будучи уверенным, что непременно найдет там опухоль. Он даже несколько разочаровался, не найдя ничего существенного. И только потом, вспомнив, что нарушил одну из основных заповедей рентгенолога, вернулся к грудной клетке и был немало обескуражен, обнаружив у больного тяжелую форму туберкулеза легких. А рентгенологу следовало знать, что больные туберкулезом часто страдают болями в подложечной области, и это ни в коей мере не должно вводить врача в заблуждение, уводя в сторону от диагноза.
Можно не видеть сам очаг поражения, который бывает сравнительно небольшим, но уже по тому, какое положение занимают ребра и как дышат легкие, как смещается диафрагма и как ведет себя средостение в разные фазы дыхания, можно сказать, чем страдает больной. Вот что значит правильный методологический подход: он определяет методику и технику исследования, а в конечном счете решает успех диагностики и лечения.
И все же одно дело смотреть, другое — видеть. Главное, конечно, выработать у себя особую форму видения, которой требует специфика рентгеновского изображения. А тут начинающих подстерегает масса подвохов.
Картина на экране или на снимке искажается не только иллюзиями, и не только наложение теней друг на друга мешает ее расшифровке. Одни и те же объекты могут выглядеть по-разному, а различные — одинаково. Вспомним: цилиндр, шар, конус в определенных проекциях дают круглый силуэт, пирамида и куб — квадратный. Если просвечивается сферическое образование, в центре которого есть полость, тень получится кольцевидной, одинаковой и для туберкулезной каверны, и для опухоли с распадом.
Лучи от трубки идут разбегающимся снопом. Если объект расположен не в центре, а на периферии обследуемого поля, изображение вытягивается (если это шар, то вместо круга мы увидим овал). Меняются не только формы, но и размеры. Из двух равновеликих уплотнений в легочной ткани крупнее покажется то, которое ближе к источнику радиации.
Эти и им подобные «шумы» могут заглушить сигнал опасности или, напротив, вызвать ложную тревогу. Ясно, почему столь актуальна задача устранения всех и всяческих помех. Конечно же, она решается всеми и всяческими способами. Избежать ошибок помогает их тщательный анализ, который не прекращается и позволяет вносить все новые поправки.
Считается, например, что плотные очаги, вызванные хроническим процессом, дают на экране потемнение большей интенсивности, а острые воспалительные — меньшей. На самом деле это не так. Если они одного размера и положения, то и тень будет одинаковой. Ибо плотность всех мягких тканей и жидкостей в нашем организме приблизительно одна и та же (близка к единице). Зато чем крупнее патологическое образование, тем гуще тень.
Чтобы вернее оценивать формы, размеры, положение болезненных очагов, широко практикуется многопроекционность. Если пациента, стоящего лицом к экрану, поворачивать правым плечом вперед, все элементы, находящиеся сзади, смещаются вправо, а те, что спереди, — влево. Движения обеспечивают трехмерность восприятия, создавая правильные представления об изучаемом объекте. И это не единственный прием, который используется рентгенологами.
— Вот уж подлинно: мильон терзаний!
— Но и мильон дерзаний — попыток разрешить проблемы безошибочной диагностики.
— А нельзя ли привлечь на помощь электронный мозг, чтобы он подсобил человеческому анализировать изображение?
— Такие попытки тоже предпринимаются. Правда, успехи пока что скромные. И тем не менее многообещающие.
«Д-р Эшби полагает, что действительно можно создать машины более умные, чем их создатели, и я в этом с ним полностью согласен», — писал в 1953 году Н. Винер. Заявление отца кибернетики вдохновило ее энтузиастов во всем мире. Заговорили и о реальной возможности распознавать образы автоматически. Дескать, если удастся обучить компьютер отличать букву А в любом начертании от всех прочих, то почему нельзя научить его отличать собаку от кошки, несмотря на все разнообразие пород? Ну и, конечно, сердце от печени, легкие от ребер на флюоресцирующем экране, а там уж рукой подать до машинной рентгенодиагностики…
Однако и скептики подняли голос. «Даже определение абсолютно точных и строгих правил узнавания буквы А во всех видах, встречающихся хотя бы в печатном тексте, — грандиозная задача», — напомнил американский математик У. Питтс и выразил сомнение, что ее вообще удастся когда-либо решить. А профессор М. Таубе (тоже США) в книге «Компьютеры и здравый смысл. Миф о думающих машинах» (1961 г.) высказался со всей прямотой: «Энтузиастам вычислительных машин следует либо прекратить болтовню об этом, либо принять на себя серьезное обвинение в том, что они сочиняют научную фантастику с целью пощекотать читателям нервы в погоне за легкими деньгами и дешевой популярностью».
Что же получилось?
Еще в 1957 году родился «Марк-1». Так был назван перцептрон — автоматический зрительный анализатор, построенный Ф. Розенблаттом (США) и ставший первой из немногих технических моделей восприятия. В дальнейшем распознавание образов моделировалось преимущественно математически на цифровых электронно-вычислительных машинах. Появились компьютеры, которые анализировали снимки звездного неба и ядерных реакций.
В 60-х годах «узнающие» программы были составлены и успешно испытаны в СССР. Один из инициаторов этих работ, М. Бонгард, так комментировал результаты, полученные при его участии: «Пишущие о кибернетике любят заканчивать статью заклинанием: раз человек составил программу, значит, он передал ей часть своих знаний; посему-де машина никогда не будет умнее своего создателя. Про автомат, узнававший нефтеносность пластов, никак не скажешь, что программисты передали ему свои знания: ведь мы ничего не понимали в геологии! Откуда же программа получила все необходимые сведения? Только благодаря наблюдению и, если хотите, „творческому осмыслению“ примеров, продемонстрированных при обучении. Становится понятной роль хороших „машинных педагогов“. Благодаря им универсальная программа получила специализацию в геофизике. А могла приобрести ее в медицинской диагностике или в промышленной дефектоскопии».
Компьютеры нашли свое место и в рентгенологии. Они применяются при статистической обработке материалов клинико-рентгенологических исследований, с их помощью можно устанавливать взаимосвязь между признаками, выявляя таким образом причину и следствие; электронно-вычислительные машины уже ставят диагнозы. Наконец, предпринимаются настойчивые попытки применить ЭВМ для анализа флюорограмм, отбирать из огромного их количества те, которые заставляют подозревать болезнь. Такая предварительная сортировка значительно облегчает работу врача: ему остается просмотреть лишь 0,01 первоначального количества снимков.
Результаты пока, честно говоря, довольно скромные. Но нельзя забывать, сколь нелегкое это дело — распознавание болезней методами рентгенодиагностики. Формализовать его для машины необычайно трудно: не обладая интуицией, она требует детальнейших инструкций, расписывающих каждый логический шаг.
Впрочем, работа продолжается, и небезуспешно. Появилось уже несколько диагностических алгоритмов. В их основе различные формы логики — детерминистская, вероятностная, эвристическая. Первая (ее название происходит от латинского «определенный») позволяет с самого начала отсечь явно негодные варианты. Круг возможных заболеваний резко сужается. Но какое же из них у пациента?
Начинается вероятностный анализ. Отбираются наиболее правдоподобные гипотезы. Получается целый ряд возможных недугов. Но какой именно у данного человека при данных симптомах? Прибегают к дополнительному, уточняющему обследованию. Оно снова сужает круг предположений, переводит диагностику опять на детерминистскую основу.
Есть еще эвристический алгоритм. Он сочетает элементы человеческого мышления и машинной формальной логики. Это, пожалуй, самый многообещающий принцип: роботово — роботу, а человеку — человеческое.
Машина механически перебирает все имеющееся в ее памяти множество признаков. Человеческое мышление более экономно. Врач оперирует, как правило, малым набором признаков, зато использует множество конъюнкций (соответствий, взаимосвязей между признаками). Перебирая многие комбинации признаков, он сразу же отбрасывает наименее вероятные варианты и сосредоточивается на наиболее вероятных. Здесь человек намного превосходит машину, хотя и страдает такими недостатками, как субъективизм, неполнота информации, отсутствие жесткой диагностической логики, широкая индивидуальная вариабельность…
В век ЭВМ мы по-новому начинаем смотреть на старый метод познания — аналогию. Метод аналогии, или метод поиска прецедента заключается в сравнении одного случая неизвестного класса с другим, известным, случаем.
На фоне могучих соперников — индукции и дедукции — аналогия всегда считалась чем-то вроде Золушки. К ней прибегали в тех случаях, когда личного или коллективного опыта недоставало. Да, если уж говорить честно и откровенно, познание от частного к частному не могло считаться полноценным в силу скромных возможностей человеческой памяти и мимолетности человеческой жизни. Не может опыт одного человека быть достаточным для того, чтобы в каждой конкретной ситуации, требующей принятия решения, удалось вспомнить подобный случай из своей практики. Вот почему неубедительно звучат слова доктора, пусть даже убеленного сединами: «А помните, у нас был подобный случай…» или «Я помню…»
Аналогией в теории познания называется умозаключение, в котором вывод делается на основании сходства между объектами без достаточного исследования всех условий. В медицине это означает диагностику по сходству некоторых признаков. А так как многие заболевания проявляются похожими сочетаниями признаков — синдромами, то бывают ошибки. Пользуясь аналогией, врач иногда выделяет сходство по некоторым формальным, несущественным признакам, не учитывая различия по признакам, которые, хотя и слабо выражены, или вообще не выявлены, но являются главными, отражающими сущность заболевания.
Иное дело ЭВМ. В память машины можно занести огромное количество наблюдений из практики. Проявления болезней многообразны, но это многообразие не бесконечно, оно лимитировано определенными вариантами, поддающимися учету и программированию.
Существование динамических стереотипов в деятельности головного мозга доказал великий русский физиолог И. Павлов, а затем канадский ученый Г. Селье блестяще подтвердил это примерами из области патогенеза заболеваний.
Если вариабельность проявлений болезней не беспредельна, при достаточном объеме памяти обязательно встретится точно такой же случай. Только человек на протяжении своей жизни не в состоянии накопить и помнить такое количество наблюдений, которое позволило бы ему на все случаи жизни найти в своей памяти точно такой же достоверно подтвержденный случай. А машина может.
Мышление рентгенолога на пути к диагнозу проходит по крайней мере четыре этапа. Первый — условно назовем скиалогическим, когда оценивается качество изображения, определяется изучаемый орган, проекция и методика исследования. Второй — семиотический, когда происходит поиск симптомов заболевания. Третий этап — синдромный. Из обнаруженных симптомов формируется модель синдрома, иначе говоря, модель неизвестной пока болезни, которую нужно отнести к определенному классу заболеваний. Четвертый этап нозологический, на котором наконец определяется, какому недугу отвечает данный комплекс признаков.
Давно было известно, что одна и та же болезнь может проявляться разными вариантами, именуемыми масками, то она походит на одно заболевание, то на другое, то на третье, словом, на все, что угодно, только не на самое себя, — поди тут разберись.
Диагностируя новый случай, врач, почти не задумываясь, примеряет его не ко всей абстрактной модели болезни рака, туберкулеза или ревматизма, а именно к тому варианту, который похож на его случай. И вот когда начались первые попытки использования ЭВМ для диагностики заболеваний, то на первых порах в память машины стали заносить усредненные модели заболеваний, сваливая в кучу все разнообразные проявления болезней, получалась своеобразная абракадабра.
Возьмем, к примеру, рак легкого. Одна его форма похожа на воспаление легких, другая на кисту. Смешай их вместе, получится какая-то кистопневмония, то есть нечто несуразное.
Машину обвиняли в неспособности поставить диагноз, а виновата не машина, а учитель, заложивший в нее неверную информацию. Попробовали разделить заболевание на несколько синдромов — дело пошло лучше. Вот, оказывается, в чем собака зарыта: мешал информационный шум.
Неудачи машинной диагностики и их осмысливание привели к формированию нового направления медицины — изучению и формированию синдромов в каждом заболевании. Оно оказалось очень плодотворным и одним из самых перспективных научных направлений современной клинической медицины. Для рентгенологии это означало переход от описательно-феноменологического уровня на более высокий корреляционный уровень.
…Пытаясь заглянуть в будущее, на 20 лет вперед, профессор Н. Амосов нарисовал такую картину. Человек обратился в поликлинику или больницу. Беседа с врачом. Всестороннее обследование с применением разнообразнейшей аппаратуры. Наряду с рентгеном — ультразвуковое зондирование. Никакой боли: ее снимает легкий электрический наркоз.
Диагностические машины сами записывают и расшифровывают кривые. Анализируя «быстрее мысли» огромные массивы информации, представляя врачу данные о состоянии всех основных органов. Распознавая болезни, советуют, как лучше исцелить пациента. Информационно-поисковая система выдает любые сведения незамедлительно.
В лечении господствуют два метода — химические и электрические (электромагнитные) воздействия.
Резюмируя, профессор Н. Амосов подчеркивает: «Все это будет возможно только при условии широкого применения кибернетических методов в медицине».
Трудно сказать, что будет с рентгенологией через 50–100 лет, так же как трудно сказать, что станет к этому времени со всей медициной.
Может быть, все решит биохимия, которая позволит регистрировать тончайшие сдвиги гомеостаза, характерные для каждого заболевания. Сейчас биохимия развивается бурными темпами, это очень перспективная область медицины.
Может быть, удастся регистрировать иммунные сдвиги в организме, специфичные для различных заболеваний. Не исключено, что, активно воздействуя на иммунитет, удастся предупреждать и излечивать различные болезни, включая злокачественные опухоли.
Может быть, тогда рентгенология вообще отомрет. И не будет проблем снижения лучевых нагрузок, исчезнет проблема подведения максимальной дозы к очагу поражения во время лучевой терапии, люди перестанут биться над тем, как повысить разрешающую способность рентгеновского изображения, отодвинется опасность «бюджетного взрыва» и т. д.
Но это в далеком будущем, а пока рентгенология развивается бурными темпами. Как ни дорого рентгеновское оборудование, больницы продолжают оснащаться все более совершенными и соответственно все более дорогими рентгеновскими аппаратами. Все это говорит об огромной роли рентгенологии в современной медицине.
Рентгенология оказалась на гребне научно-технической революции потому, что она явилась благодатной почвой для использования в гуманных целях достижений самых передовых отраслей науки и техники: механики и оптики, теплотехники и электротехники, химии и ядерной физики, металловедения, кинематографии, радиотехники и телевидения. Темпы развития рентгенотехники сегодня явно опережают возможности реализации ее достижений в клинической практике. Вследствие несоответствия темпов роста возникла проблема интегрирования, стыковки рентгенологии с другими смежными дисциплинами.
Если процесс развития рентгенологии неразрывно связан с ее удорожанием, очевидно нужно подумать о том, как рациональнее ее использовать. Если мы не можем сделать рентгеновские аппараты дешевыми, то мы очевидно должны сделать все, для того чтобы рентгенологические исследования стали экономически более обоснованными.
В своем докладе на XXV съезде КПСС А. Косыгин так определил задачи здравоохранения в новой пятилетке: «…Повысить качество медицинского обслуживания, улучшить организацию труда врачей и среднего медицинского персонала, поднять эффективность работы лечебных учреждений». Таким образом, вопросы организационные сегодня выступают на передний план. Выполняя эти задачи, рентгенолог и лечащий врач вместе с экономистом должны сесть за один стол и подсчитать, когда, в какой конкретной ситуации без рентгенологического исследования обойтись нельзя, а когда его можно заменить простыми, дешевыми и эффективными средствами. Речь идет о разработке оптимальных диагностических комплексов применительно к различным типовым ситуациям.
Это трудно сделать в капиталистических странах. Если владелец частной клиники купил дорогой рентгеновский аппарат, он будет выкачивать из него прибыль, аппарат должен как можно быстрее окупиться и принести максимальный доход. Отсюда возникают необоснованные, с точки зрения клинических показаний, рентгенологические исследования. Так из пациентов выколачивают деньги. Это обстоятельство является немаловажным среди причин роста числа рентгенологических исследований в капиталистических странах. Объем рентгенологических исследований в крупных клиниках Запада растет пропорционально удорожанию рентгеновской аппаратуры, увеличиваясь ежегодно примерно на 10 процентов и соответственно удваиваясь каждые 7 лет.
В нашем обществе, лишенном подобных противоречий, можно трезво и спокойно решать вопросы гармоничного сочетания потребностей клинической практики с достижениями рентгенологии, которую мы вправе называть жемчужиной XX века.