7. С чего начинать

Начинать надо с размышлений. О биогазовых установках Вы можете прочитать в СМИ, в сети Интернет, увидеть по телевизору, увидеть «живьем», получить информацию при обучении в вузе или на каких-нибудь курсах. И после этого у Вас может возникнуть желание создать такую биогазовую установку. Желание — это уже первая составляющая успеха.

Биогазовая установка — это объект, на вход которого подаются различные материалы и энергия, а на выходе возникают другие материалы и энергия. Значит, надо подумать, откуда брать то, что надо подать на вход, и куда девать то, что получится на выходе. Если Вы в состоянии ответить на эти вопросы, значит, вторая составляющая успеха у Вас уже тоже есть.

Строительство биогазовой установки требует значительных затрат. Функционирование биогазовой установки тоже требует определенных затрат. Но работающая биогазовая установка приносит доход. Значит, нужны финансовые расчеты, подтверждающие окупаемость вложенных в строительство средств и дальнейшую экономическую выгоду от эксплуатации биогазовой установки. Расчеты эти очень сложные и базируются на многих других расчетах (стоимости строительства, стоимости эксплуатации, дохода от продаж энергии, косвенного дохода от замещения покупной энергии получаемой с биогазовой установки, дохода от продаж биогумуса, дохода от замещения минеральных удобрений биогумусом на собственных посевных площадях и т. п.). Тем не менее, надо убедиться для начала хотя бы, что у Вас хватит собственных средств, или же Вы сможете оперативно привлечь инвестиционные или кредитные средства, чтобы без задержек построить и запустить биогазовую установку. Как ни цинично это звучит, но в 99 % случаев биогазовая установка — не для бедных.

Если Вы думаете о большой биогазовой установке, такие расчеты надо заказывать специалистам. Предварительные расчеты для Вас могут сделать бесплатно, но уточненные расчеты требуют больших трудозатрат и поэтому стоят денег. Малую установку можно рассчитывать и самостоятельно, но строительство ее собственными силами не всегда целесообразно, и поэтому на каком-то этапе приходится привлекать специалистов. Далее мы покажем, что же и как можно подсчитать самостоятельно до того, как задавать вопросы специалистам.

Желание считать не надо. Оно или есть, или нет. Поэтому начнем сразу с входных материалов и энергии. Для бесперебойного функционирования биогазовой установки необходима бесперебойная подача сырья. Сырьем должна быть органика, но не любая. Не подходит сырье с высоким содержанием лигнина, а это древесина, солома. Не подходит сырье, пропитанное смолами, а это сырье, содержащее опилки хвойных деревьев. Не подходит сырье с низким содержанием органического сухого вещества, то есть, с повышенной влажностью. Влажность исходного сырья не должна быть больше 94 %. Для переработки очень влажного сырья применяются другие типы реакторов и техпроцессов. Не подходит сырье с высоким содержанием бактерицидных веществ. Это сточные воды с синтетическими моющими веществами, это отходы, интенсивно покрытые плесенью. Не подходит сырье, в котором начался, интенсивно идет или уже закончился процесс аэробного брожения. Это, например, гниющий навоз.

В остальных случаях сырье обычно годится для анаэробной переработки. Еще бывает ограничение, когда сырье не может быть переработано самостоятельно без добавок другого сырья. Например, это жир. Он не гомогенизируется с водой, очень быстро с ней расслаивается, поэтому из него невозможно приготовить субстрат. Но в качестве добавки (кофермента) к растительному сырью, навозам или пометам он может существенно повысить удельный выход биогаза.

Итак, необходимо определить, какие типы сырья есть у Вас, сколько каждого типа сырья образуется в среднем ежесуточно, какая влажность, зольность и плотность у каждого типа сырья.

Если Вы — владелец крупных источников сырья и у Вас есть достаточные средства, Вы можете заказать соответствующие исследования свойств сырья в лаборатории. Если Вы думаете лишь о малой установке, то в большинстве случаев можно обойтись собственными силами и античной методикой измерений.

Измерить плотность можно методом Архимеда с помощью ведра и пружинных весов. Для этого пустое ведро взвешивается. Затем ведро заливается водой почти доверху и взвешивается. На месте уровня ставится метка. Поскольку плотность воды составляет 1000 кг/м3, то помеченный уровень соответствует объему в литрах, равному весу ведра с водой минус вес пустого ведра в килограммах. Потом воду из ведра выливают и добавляют некоторое количество сырья и опять взвешивают ведро. Разность веса сырья в ведре и ведра — это вес сырья. Потом в ведро доливается вода до метки, и ведро опять взвешивается. Разница в весе ведра с водой и сырьем и ведра с сырьем в килограммах соответствует объему долитой воды в литрах. Соответственно, объем сырья — это разность измеренного ранее объема по метке и вычисленного объема долитой воды. Теперь остается только разделить вес сырья на объем сырья, чтобы получить его плотность.

Влажность и зольность сырья просто определить невозможно, поэтому эти параметры берутся из статистических таблиц. Свежая растительность обычно имеет влажность около 70 %. Навоз без мочи имеет влажность 65–70 %. Помет имеет влажность 75 %. Навоз с мочой имеет влажность 80–85 %. Влажность и зольность нужны для вычисления суточного выхода биогаза будущей биогазовой установки. Влажность и плотность нужны для вычисления геометрических размеров будущей установки. Зная их, можно вычислить объем суточной дозы субстрата и размеры емкостей биогазовой установки. Однако суточную дозу субстрата можно вычислить приблизительно экспериментальным путем. Для определения количества воды, которое нужно добавлять в сырье для приготовления субстрата, не обязательно нужно знать влажность сырья. В субстрате нас интересует, прежде всего, вязкость. Воду (или фильтрат) в субстрат добавляют, прежде всего, для получения нужных механических свойств. Влаги, изначально имеющейся в сырье, обычно уже достаточно для обеспечения процесса анаэробного брожения. Но для эффективного протекания этого процесса в мезофильном или термофильном режимах, а также на стадии гидролиза, субстрат надо тщательно перемешивать. Поэтому субстрат должен быть настолько текучим, чтобы его можно было прокачать по трубам и перемешать механическими или гидравлическими мешалками. Обычно необходимую текучесть имеет субстрат влажностью не менее 88 %. Но мы можем определить это экспериментально с помощью того же ведра и весов.

Взвесим ведро. Добавим сырье в ведро и взвесим. Получим вес сырья. Небольшими порциями будем добавлять воду в ведро и тщательно перемешивать с сырьем. Процесс добавления воды прекратим, когда полученный субстрат станет достаточно текучим для беспрепятственного перемешивания (консистенция жидкой сметаны). Взвесим ведро и вычтем из полученного веса вес ведра с сырьем. Получим вес воды. Разделим его на вес сырья и получим соотношение веса воды и веса сырья для приготовления субстрата. Теперь, зная суточную порцию сырья, мы можем посчитать и суточный вес субстрата. Плотность сырья мы измерили в предыдущем опыте. Плотность воды известна. Значит, мы можем посчитать плотность субстрата. А, зная, суточный вес субстрата, мы можем посчитать суточный объем субстрата.

Обычно, плотность субстрата близка к плотности воды, и поэтому можно для приблизительных расчетов принимать плотность субстрата равной плотности воды. Но для расчета больших установок такая погрешность может иметь заметное финансовое выражение.

Например, плотность навоза КРС влажностью около 70 % обычно составляет около 950 кг/м3. Плотность куриного помета влажностью около 75 % составляет около 1100 кг/м3. Соответственно, плотность субстрата влажностью 90 % из навоза КРС составляет 979, 38 кг/м3, а плотность субстрата влажностью 90 % из куриного помета составляет 1045,63 кг/м3. Разброс небольшой, но иногда его стоит учитывать.

Теперь возьмем пример начального расчета для малой биогазовой установки. Допустим, у Вас ежесуточно образуется 100 кг навоза КРС. Его объем составляет примерно 105 л, что соответствует плотности 952 кг/м3. Для приготовления субстрата надо добавить воду в соотношении 3:2 по весу (это, как и плотность, определяется экспериментально, как описано выше). То есть, в сутки получится 250 кг субстрата. Суточный объем субстрата при этом получается 255 л.

Оптимальная длительность цикла брожения субстрата из навоза КРС в мезофильном режиме составляет 16 суток. Значит, с учетом 20 % газового буфера, объем реактора составит 0,255*16/(100-20)*100= 5,1 м3. Реакторы малых биогазовых установок обычно выбирают из готовых емкостей стандартной линейке объемов. Поэтому понадобится бочка объемом 5 куб.м. для основного реактора. Емкость для подготовки сырья должна иметь объем с запасом перекрывающий потребность в сырье между промежутками добавления свежей порции. Обычно свежее сырье к малой биогазовой установке доставляют один раз в сутки. Поэтому для подготовительной емкости достаточно взять бочку или корыто объемом в 1,5 раза больше суточной дозы субстрата, то есть примерно 400 литров.

Обычно зольность навоза КРС, собираемого методом соскребания, составляет около 22 %. Это значит, что в сухом веществе навоза находится 78 % органического сухого вещества. Суточная порция органического сухого вещества составит 100*(100-70)/100*78/100=23,4 кг. Выход биогаза из 1 кг ОСВ навоза КРС составляет 0,2–0,4 м3. Значит, наша установка в сутки будет вырабатывать 4,68-9,36 м3 биогаза. Первая цифра чаще подтверждается на практике. Учитывая плотность биогаза 1,13 кг/м3, суточные потери массы составляют 5,3 кг. То есть, на выходе получится 245 кг или около 250 л шлама ежесуточно. Для хранения его в течение 120 суток понадобится лагуна объемом не менее 0,25*120=30 м3.

Теперь попробуем подсчитать потенциальный доход. 5 м3 биогаза сами по себе практически ничего не стоят, тем более, что от 1 до 5 м3 биогаза у сутки может уйти только на подогрев субстрата в реакторе. Так что, в холодное время года на биогаз от такой установки можно и не рассчитывать. А вот шлам может представлять какую-то ценность. В Европе розничная цена биогумуса влажностью 40–60 % составляет примерно 500 EUR за тонну. Выходной шлам имеет влажность около 92 %. Если привести его к влажности 50 % (среднее от 40 % и 60 %), то из 245 кг суточного выхода шлама получится 39,2 кг биогумуса, что соответствует 19,6 EUR по европейским розничным ценам. Итого, за год установка выработает биогумуса на 7154 EUR. Это максимум дохода, который можно выжать из такой биогазовой установки. Кстати, примерно столько же, или немного меньше составит ее стоимость.

Но возможность извлечь именно такой доход представляется сомнительной, для этого должен быть налажен собственный розничный канал сбыта. Скорее всего, в самом лучшем случае будет канал сбыта биогумуса по оптовой цене в розничную сеть. А оптовая цена ниже, как минимум, в 2 раза. А наиболее вероятный сценарий — это когда весь шлам будет использован на собственных полях, садах и огородах. В этом случае доход будет состоять из прироста урожайности выращенной продукции и суммы замещения минеральных удобрений и пестицидов.

Как видим, в зависимости от организации применения и сбыта продукции биогазовой установки, доход может отличаться в разы, а сроки окупаемости — на годы. Поэтому можно сделать простой и логичный вывод о том, что биогазовая установка сама по себе не представляет никакой ценности, и только в комплексе и в составе определенной инфраструктуры может приносить доход.

Еще один неявный вывод из всего вышеописанного: себестоимость и стоимость обслуживания биогазовой установки растет нелинейно с ростом ее пропускной способности, а потенциальный доход — линейно, а иногда и скачкообразно. Таким образом, потенциал окупаемости и прибыльности у больших биогазовых установок выше, чем у малых за счет более высокой удельной производительности на единицу вложенных средств и большего разнообразия выпускаемой продукции.

Загрузка...