Животные к старости становятся более восприимчивыми к заболеваниям. За защиту организма от болезней, которые вызываются патогенными бактериями, вирусами, грибами и другими чужеродными агентами, ответственна иммунная система. Эта система не очень хорошо развита у беспозвоночных, но у позвоночных она претерпела значительную эволюцию [127]. Птицы и млекопитающие обладают высокоразвитой и сложной иммунной системой. Млекопитающее способно защитить себя практически от любого чужеродного, "не своего" вещества, которое проникает в его организм. Такие вещества, которые не представлены в организме, называют антигенами. Иммунная система ответственна за сохранность любого органа, который может быть поврежден антигеном. Следовательно, нарушения функций иммунной системы при старении делают организм более восприимчивым к патогенным факторам, увеличивают частоту заболеваний и, следовательно, снижают функциональную активность организма. Имеется несколько основательных обзоров, касающихся иммунной системы и ее возрастных изменений [19, 24, 25, 48, 58, 70].
Иммунная система позвоночных состоит из костного мозга, тимуса, лимфатических узлов и селезенки (рис. 7.1). У птиц важной частью этой системы является фабрициева сумка. Она представляет собой дивертикул клоаки и является по природе лимфоидным образованием. Клетками, ответственными за создание иммунитета или за предохранение животного от антигена, являются лимфоциты. Развитие иммунокомпетентных лимфоцитов происходит у птиц и млекопитающих следующим образом [19]. Стволовые клетки лимфоцитов происходят из желточного мешка эмбриона. Они мигрируют в печень и селезенку эмбриона и далее в костный мозг. Определенные предшественники лимфоцитов мигрируют из костного мозга в тимус, где они, вероятно, подвергаются некоторой дифференцировке и формируются. Эти клетки затем покидают тимус и расселяются в тимус-зависимой зоне лимфатических узлов и селезенки. Поскольку они формируются в тимусе, их называют Т-лимфоцитами.
Рис. 7.1. Формирование клеток иммунной системы [70]
Т-клетки ответственны за клеточные иммунные реакции, которые защищают организм от патогенных грибов и вирусов. Они также ответственны за отторжение чужеродных тканей и трансплантатов — пересаженных органов и опухолей, за повышенную чувствительность (аллергические реакции) к некоторым антигенам и за аутоиммунные реакции. Иммунный ответ с участием Т-клеток характеризуется непосредственной атакой этими клетками антигена, поэтому такой иммунный ответ называют клеточным ответом, или клеточным иммунитетом. Различают следующие три класса Т-клеток: стимуляторы (хелперы), супрессоры и киллеры. Полагают, что они дифференцируются в тимусе таким образом, что приобретают специфические рецепторы на своей поверхности для распознавания специфических антигенов. Т-хелперы кооперируются с антигенспецифическими В-лимфоцитами и стимулируют выработку специфических белков, обозначаемых в дальнейшем антителами. Супрессорные Т-клетки подавляют выработку антител специфическими В-клетками к специфическим антигенам и, кроме того, препятствуют выработке В-клетками антител к клеткам и молекулам собственного организма. Специфические Т-киллеры распознают антигены типа трансплантатов от несовместимых доноров, опухолей, грибов и т. д., взаимодействуют с ними с помощью своих рецепторов и инактивируют или нейтрализуют их. Функции Т-клеток, возможно, реализуются через секреторные факторы, называемые лимфокинами, которые еще не полностью охарактеризованы. Т-клетки можно отделить от В-клеток, так как они имеют различные иммуноглобулиноподобные поверхностные рецепторы [113, 127]. Если удалить тимус у только что вылупившихся цыплят или новорожденных мышей и крыс, то клеточный иммунитет нарушается. Трансплантация тимуса молодых мышей старым особям или мышам, облученным с целью разрушения их иммунокомпетентных клеток, восстанавливает клеточный иммунитет у реципиентов. Таким образом, тимус участвует в клеточном иммунитете.
У птиц определенные лимфоциты мигрируют из костного мозга в фабрициеву сумку и спустя некоторое время — в лимфатические узлы и селезенку. Эти клетки называются В-лимфоцитами, поскольку они дифференцируются и созревают в фабрициевой сумке (англ. bursa). Эквивалент фабрициевой сумки у млекопитающих не известен. Предполагают, что местом созревания В-лимфоцитов может быть костный мозг. В-клетки ответственны за гуморальный иммунитет. При этом виде ответа клон В-клеток в лимфатических узлах и селезенке после контакта со специфическим антигеном, который достигает их по кровотоку, делится 6–8 раз для выработки высокодифференцированных плазматических клеток. Антиген каждого типа распознается специализированной В-клеткой только одного типа или клоном В-клеток. Для трансформации В-клеток в плазматические требуется их кооперация со специфическими Т-хелперами, также присутствующими в лимфоидных органах. Образующиеся плазматические клетки синтезируют большое число специфических белковых молекул, называемых антителами, или иммуноглобулинами (Ig), которые выделяются в циркулирующую жидкость, гумор. Иммуноглобулины циркулируют в жидкостях организма и при встрече с антигеном, индуцировавшим их синтез, связываются с ним и нейтрализуют его. Млекопитающие и птицы способны вырабатывать иммуноглобулины практически к любому антигену. Иммуноглобулины ответственны за иммунитет к бактериям и вирусам. Поскольку активное начало этого типа иммунитета присутствует в жидкости (гуморе), он называется гуморальным иммунитетом.
В-лимфоциты имеют на поверхности клетки белковые рецепторы, с помощью которых они распознают антиген. В-клетка каждого типа имеет белковый рецептор только одного вида и потому способна распознавать антиген только одного вида. Рецепторами являются иммуноглобулиноподобные молекулы (IgD или IgM), связанные с клеточной поверхностью своими COOH-концами [120]. Их NH2-концы находятся снаружи; они ответственны за распознавание антигена. Предполагают, что иммуноглобулиновые рецепторы синтезируются самой клеткой. Специфические антигенные молекулы связываются с поверхностными рецепторами В-лимфоцитов специфической группы и образуют комплекс антиген — иммуноглобулин. При этом для ответа В-клеток необходима кооперация Т-клеток специфического типа. Предполагают существование двух типов кооперативного действия Т-клеток, хотя точный механизм кооперации неясен. Некоторые Т-клетки кооперируются с В-клетками после их связывания со специфическими антигенами и стимулируют их к делению и выработке плазматических клеток, которые затем синтезируют молекулы иммуноглобулина специфического типа, направленные против данного антигена (рис. 7.2). Это стимулирующие (или хелперные) Т-клетки (рис. 7.3). Вместе с тем некоторые Т-клетки подавляют деление В-клеток после распознавания и, таким образом подавляют гуморальный иммунитет [17]; это Т-супрессорные клетки.
Рис. 7.2. Клональная селекция, приведенная здесь для B-клеток, относится также к Т-клеткам [92]. Существует большое число клонов, или семейств лимфоцитов, каждый из которых коммитирован к ответу на специфический антиген; они вырабатывают антитела к этому антигену даже до контакта с ним и выводят эти антитела на поверхность мембраны в качестве рецепторов (слева). Любой антиген, попавший в организм, связывается только с теми лимфоцитами, которые имеют соответствующие рецепторы на своей поверхности. Такое связывание индуцирует клетки для пролиферации, образования большего количества тех же антител и их секреции
Рис. 7.3. Лимфоциты — клетки, ответственные за иммунные реакции, — развиваются из стволовых клеток. Стволовые клетки мигрируют из костного мозга в тимус и превращаются в тимусные лимфоциты, которые в свою очередь мигрируют в периферические лимфоидные ткани и становятся Т-лимфоцитами. Другие стволовые клетки превращаются в костномозговые лимфоциты, которые мигрируют в периферические лимфоидные органы и становятся В-лимфоцитами. При встрече со специфическим антигеном Т-клетка активируется для осуществления клеточного иммунного ответа, а В-клетка активируется для секреции антител [92]
В тех случаях, когда антиген индуцирует синтез иммуноглобулинов В-клетками, которые действуют под влиянием Т-хелперов, комплексы рецептор — антиген движутся по поверхности клеточной мембраны и агрегируют в одной области этой мембраны, образуя так называемую "шапочку" (по англ. cap; рис. 7.4 и 7.5) [95]. Это происходит вследствие текучести мембраны. Затем комплекс рецептор — антиген поглощается клеткой. Далее следуют 6–8 циклов деления В-клеток в лимфатических узлах и селезенке, во время которых в них увеличивается содержание шероховатого эндоплазматического ретикулума и число полирибосом. Конечным результатом является выработка высокодифференцированных плазматических клеток, которые синтезируют молекулы иммуноглобулина преимущественно одного типа с большой скоростью, пока эти клетки не погибают в течение нескольких дней. Молекулы иммуноглобулина секретируются в кровь, где они встречают специфические молекулы антигена или частицы, связанные с ними, и нейтрализуют их. Таким образом, молекула антигена каждого типа стимулирует только специфический клон В-клеток, который делится и дифференцируется для выработки плазматических клеток. Эти клетки затем синтезируют иммуноглобулины, которые нейтрализуют данный антиген.
Рис. 7.4. Перемешивание поверхностных антигенов человека и мыши в гибридных клетках дало первое явное доказательство того, что белки способны перемещаться по клеточной поверхности. Заражение клеток человека и мыши вирусом вызывает их слияние. Если к слившимся клеткам добавить антитела к антигенам мембраны клеток человека и мыши, соединенные с разными флуоресцирующими красителями, то сначала антигены человека и мыши располагаются на соответствующей половине клетки, но через 40 мин инкубации при 37 °C оба антигена распределяются по всей мембране гибридной клетки
Рис. 7.5. Перераспределение всех иммуноглобулиновых рецепторов В-лимфоцита при добавлении одного антигена доказывает моноспецифичность этих клеток. Когда антиген флагеллин добавляют к суспензии В-лимфоцитов мыши, этот белок связывается иммуноглобулиновыми рецепторами небольшого участка поверхности клеток; образовавшиеся комплексы антиген — антитело перемещаются на одну сторону антигенсвязывающих клеток и формируют 'шапочку'; такие комплексы в виде 'шапочки' видны на одной из клеток после обработки антителами к флагеллину, связанному с родамином [92]
Стволовые клетки (предшественники) лимфоцитов мультипотентны. Они дифференцируются и формируются в Т- и В-клетки в тимусе и костном мозгу соответственно при помощи механизмов, которые пока не выяснены. Считают, что за созревание Т-клеток отвечает тимозин, гормон тимуса. Голдстейн [37] сообщил, что тимозин включает в себя ряд полипептидных гормонов. Фракция тимозина α1 является кислым и термостабильным белком. Его полипептидная цепь состоит из 28 аминокислотных остатков и имеет мол. массу ~3108. Фракция α1 вызывает в субпопуляциях Т-клеток изменения, характерные для процесса созревания, а также функциональные изменения in vitro и in vivo. После клинического применения тимозина у детей с врожденным иммунодефицитом обнаруживают увеличение числа Т-клеток и стимуляцию их функции. Сообщают также, что в клинике тимозин увеличивает время жизни больных раком.
Важным свойством иммунной системы является то, что, к счастью, ее лимфоциты не реагируют на собственные клетки и молекулы, иначе эти клетки были бы разрушены, как только собственные лимфоциты стали бы иммунокомпетентными. Предполагают, что это свойство приобретается во время эмбрионального развития за счет разрушения тех предшественников В- и Т-лимфоцитов, которые несут рецепторы для распознавания клеток и молекул хозяина как "своих". В результате в организме развивается толерантность к собственным структурам, т. е. он становится невосприимчивым к действию своей иммунной системы. Оставшиеся предшественники В- и Т-клеток созревают в костном мозгу или тимусе, где появляются клоны В- и Т-клеток, иммунокомпетентные в отношении специфических антигенов. Согласно другой точке зрения, сохраняются все типы В-лимфоцитов, но активность тех из них, которые способны вырабатывать антитела к собственным клеткам организма, подавляется особыми супрессорными Т-клетками. Когда нарушается или снижается в пожилом возрасте функция Т-супрессоров, В-клетки вырабатывают антитела к собственным клеткам и молекулам организма; так возникают аутоиммунные заболевания.
Основная структура иммуноглобулина включает две короткие, или легкие (L), и две длинные, или тяжелые (Н), цепи. Отсюда молекулярная формула мономера иммуноглобулина L2H2. L-цепь содержит ~216 аминокислотных остатков, и ее мол. масса составляет ~25000. Н-цепь содержит 430 аминокислотных остатков, а ее мол. масса ~50000, т. е. мол. масса Ig ~150000. NH2-конец половины L-цепи, содержащий около 108 остатков, называется вариабельной (V) областью, так как в этой области обнаруживают большинство замен аминокислотных остатков L-цепи различных Ig. Более того, эта область имеет три гипервариабельных (hv) участка, где находится наибольшее число изменений. COOH-конец полуцепи называется константной (С) областью. Каждая L-цепь. ковалентно связана с одной Н-цепью S — S-связью через цистеиновый остаток ее COOH-конца. Известны два типа L-цепей — каппа (χ) и лямбда (λ), которые отличаются друг от друга аминокислотными последовательностями константных областей. Обе L-цепи любого Ig принадлежат к одному типу, χ или λ. L-цепи синтезируются в шероховатом эндоплазматическом ретикулуме на полисомах, состоящих из 6–8 рибосом. Их синтез происходит независимо от синтеза Н-цепей.
Около 108 остатков NH2-конца Н-цепи, что является первой ее четвертью, составляют вариабельную область. В каждой вариабельной области имеются три гипервариабельных участка. Остальные три четверти Н-цепи являются константной областью. Две Н-цепи Ig ковалентно связаны друг с другом S — S-связями в их константных областях. По последовательности константных областей различают пять типов Н-цепей: альфа, (α), дельта (δ), эпсилон (ε), гамма (γ) и мю (μ); они положены в основу классификации иммуноглобулинов, в соответствии с которой последние разделяются на пять классов: IgA, IgD, IgE, IgG, IgM. Иммуноглобулины D, E и G представлены мономерами. Иммуноглобулин А имеет мономеры и димеры (L2H2)2. Иммуноглобулин М содержит только пентамеры (L2H2)5. Димеризации IgA способствуют две экстраполипептидные цепи — связывающая цепь (J) и секреторный компонент (SC). Пентамерная форма IgM существует благодаря наличию J-цепей, которые ковалентно связывают пять мономеров. Иммуноглобулины всех пяти классов имеют углеводные компоненты, прикрепленные к константным областям их Н-цепей.
Иммуноглобулин А подразделяется на два подкласса по типу Н-цепей: α1 и α2. IgG объединяет четыре подкласса, так как имеются 4 типа γ-цепей: γ1, γ2, γ3 и γ4. Каждый класс или подкласс иммуноглобулинов имеет несколько аллельных вариантов, которые являются взаимоисключающими формами и отличаются аминокислотными последовательностями вариабельных, особенно гипервариабельных участков. Этим объясняется способность животного организма продуцировать для борьбы с тысячами антигенов, которые могут встретиться, иммуноглобулины многих тысяч типов.
Строение иммуноглобулина G иллюстрирует рис. 7.6. Рис. 7.7 дает представление о некоторых характеристиках различных иммуноглобулинов. Гипервариабельные области L- и Н-цепей одной половины молекулы Ig участвуют в связывании одной молекулы антигена, т. е. каждый Ig связывает две молекулы одного и того же антигена. Для выяснения роли различных участков молекулы в иммунном ответе был предпринят структурный анализ IgG. После обработки папаином происходит разрыв S — S-связей в NH2-концевых участках двух Н-цепей, в результате чего освобождаются два антигенсвязывающих фрагмента, каждый из которых содержит L-цепь и NH2-концевой участок одной Н-цепи. COOH-концевые участки двух Н-цепей, соединенные S — S-связями, называются кристаллизуемыми фрагментами Fc. Они ответственны за другие биологические функции, такие, как транспорт иммуноглобулинов крови матери эмбриону через мембрану плаценты во время внутриутробного развития и взаимодействие с клеточной мембраной иммунокомпетентной клетки.
Рис. 7.6. Строение иммуноглобулина G
Рис. 7.7. Класс иммуноглобулинов определяют по типу тяжелой цепи в молекуле. Имеется 5 классов тяжелых цепей: μ, γ, α, δ и ε; классы γ и α имеют подклассы. Кроме того, каждый иммуноглобулин может иметь любую из двух типов легких цепей — χ или λ. Некоторые Ig образуют олигомеры или комплекс, состоящий из нескольких субъединиц. IgM обычно представляет собой пентамер, содержащий пять субъединиц и добавочную 'соединительную' цепь, или J-цепь. IgA может быть мономером, димером или тримером, состоящим соответственно из 1, 2 и 3 субъединиц. J-цепь представлена олигомерными формами и димером; в слюне и слезах она связана с еще одним полипептидом — секреторным компонентом (SC; от англ. secretory component) [19]
Вариабельность иммуноглобулинов
Каждый клон В-лимфоцитов вырабатывает плазматические клетки, которые синтезируют Ig только одного типа. Вариабельные и константные области L- и Н-цепей Ig кодируются различными генами [10, 23, 75, 93, 119, 128]. Имеются три семейства генов иммуноглобулинов. Полагают, что одно семейство состоит из набора генов, кодирующих вариабельные области как L-, так и Н-цепей. Близко на той же хромосоме расположено второе семейство, состоящее из меньшего числа генов, которые кодируют две константные области L-цепи, χ и λ. Третье семейство кодирует константные области различных классов и подклассов Н-цепей. Гены внутри каждого семейства сцеплены, но сами семейства не сцеплены. Каждое семейство генов Ig представлено в гаплоидном наборе хромосом, полученном от одного родителя, только один раз. Предполагают, что проявляются гены только одной из двух хромосом, поскольку известно, что даже у индивидуума, гетерозиготного по генетическому маркеру Ig, в каждой плазматической клетке выражается только один аллель. Это явление называется аллельным исключением [19].
Каков же механизм, благодаря которому в организме животного вырабатываются тысячи типов различных иммуноглобулинов? Этот механизм должен обеспечить селективную экспрессию только одного из двух генов L-цепи, χ или λ; при этом вариабельный ген должен функционировать вместе с константным. По данному механизму определенный вариабельный ген должен функционировать вместе с одним из пяти константных генов для Н-цепи: α, δ, ε, γ, μ. Неизвестно, сколько имеется вариабельных генов. В соответствии с теорией гаметического наследования в геноме представлена вся совокупность необходимых вариабельных генов, однако для их размещения потребовалось бы очень много места. Сторонники теории соматических мутаций полагают, что многообразие вариабельных генов создается мутационным процессом и потому не наследуется.
В настоящее время считается, что гетерогенность антител (т. е. способность организма вырабатывать разнообразные иммуноглобулины для того, чтобы справиться с любым антигеном), вероятно, зависит от наличия в геноме 4–6 генов для вариабельных областей. Согласно этому взгляду, гетерогенность возникает благодаря сочетанию вариабельных генов с очень небольшим числом генов константной области, а также благодаря перестановкам и комбинациям между L- и Н-цепями. Дальнейшие изменения вариабельных генов могут быть вызваны рекомбинациями и соматическими мутациями [10, 25, 93, 103, 104, 119, 128]. Это возможно благодаря существованию гипермутабельных (hv) областей вариабельных генов, которые могут быть предрасположены к таким мутациям.
Гены вариабельных и константных областей L- и Н-цепей не соседствуют друг с другом [10, 23, 75, 93]. В стволовых клетках эмбриона они разделены большими промежуточными областями. Во время процессинга в костном мозге или в фабрициевой сумке V- и С-гены, очевидно, сближаются путем перестройки ДНК, но остаются разделенными промежуточной последовательностью. Селекция V и С-геное возникает, вероятно, после того, как антиген связывается с В-лимфоцитом. При этом V- и С-гены транскрибируются как единый предшественник гетерогенной ядерной РНК (гяРНК), имеющий нетранслируемую последовательность. Затем гяРНК подвергается в ядре сплайсингу и процессингу, в результате чего появляется зрелая мРНК, которая транслируется с образованием L-цепи, имеющей смежные V- и С-области. Описанная модель иллюстрируется рис. 7.8 и 7.9 [93]. В ней видны черты, сходные с транскрипцией и образованием предшественников мРНК для овальбумина и глобулина, которые также имеют промежуточные нетранслируемые последовательности, или интроны.
Рис. 7.8. Двухстадийная модель интеграции константной и вариабельной области гена [93]. Стадия 1: перестройка ДНК и коммитирование клеток к V-гену. На этой стадии V- и С-гены ДНК зародышевой клетки разъединены. В антителопродуцирующей клетке эти гены сближаются, но их все-таки разделяет промежуточная нуклеотидная последовательность. Такая перестройка, или транслокация, ДНК представляет собой классическое 'интеграционное' событие, которое позволяет индивидуальной антителообразующей клетке коммитироваться к V-гену. Стадия 2: функциональная интеграция (связывание V- и С-областей в мРНК). На этой стадии в результате транскрипции активированного гена образуется предшественник ядерной РНК, который включает V-, С-области и промежуточную последовательность. Функциональная интеграция V- и С-областей происходит во время процессинга молекулы-предшественника преимущественно путем образования петли из промежуточных последовательностей и сшивания V- и С-областей. Таким образом, формируется молекула мРНК, на которой образуется полипептид Ig. Полагают, что другие вставки в V-области устраняются при сплайсинге ядерной РНК
Рис. 7.9. Гипотетическая схема экспрессии одного гена VH и многих генов СН [93]. 1. Пул локусов гена VH обозначен набором генов, связанных с несколькими генами СН, расположенными в данном порядке. Для экспрессии выбирается единственный V-ген (VH) и происходит перестройка ДНК, в результате которой гены VXH и С сближаются. Между генами VXH и СН может присутствовать, а может и отсутствовать промежуточная последовательность (обозначена S). В процессе такой перестройки клетка коммитируется к VH-гену и активируется единица транскрипции Н-цепи. 2. В результате транскрипции единицы Н-цепи образуется гигантская молекула предшественника ядерной РНК, которая включает V — С-промежуточную последовательность, VXH-ген и СН-гены. 3. При образовании мРНК в ходе внутриядерного процессинга этой гигантской молекулы может возникать любая комбинация генов VXH и СН. 3а. Например, мРНК VXHCμ может образоваться посредством формирования петли из промежуточной V — С-области, сшивания VXH- и Cμ-областей и деградации оставшейся РНК. 3б. мРНК VXHCδ образуется из того же предшественника формированием петли из последовательностей S и Сμ и сшиванием областей V и Сδ. 3 в. Аналогично образуется мРНК VXHCγ. Поэтому одна клетка может одновременно вырабатывать один, два или три вида мРНК с одним и тем же геном VH, но с разными генами СН. Спейсерные последовательности, которые расположены между СН-генами, определяют специфичность процессинга: эти гипотетические последовательности элиминируются при процессинге ядерной РНК. Данная модель является минимальной, так как она не учитывает гены Сα и Сε, которые тоже могут участвовать в подобном процессе благодаря тому, что предшественник гяДНК может содержать один из этих или оба СН-гена
Механизм, по которому все плазматические клетки, образованные клоном В-клеток, вырабатывают иммуноглобулин только одного типа, по-видимому, включает особое расположение специфических молекул Ig на специфических клонах В-лимфоцитов, подходящее для того, чтобы они могли служить рецепторами. Это может происходить во время созревания стволовых клеток в фабрициевой сумке или костном мозге. Связывание специфического антигена со специфическим иммуноглобулиновым рецептором стимулирует деление В-клеток. На этой стадии может также происходить селекция вариабельного гена, константного гена для χ- и λ-цепей и константного гена для Н-цепи с целью синтеза специфического иммуноглобулина.
Легкие и тяжелые цепи транслируются раздельно на полисомах шероховатого эндоплазматического ретикулума плазматических клеток. Легкие цепи ковалентно связываются с новообразованными тяжелыми цепями. Затем молекулы иммуноглобулина проникают в аппарат Гольджи, где в Н-цепи включается углеводный компонент, после чего молекула секретируется плазматической клеткой. Процесс синтеза молекулы Ig завершается за несколько минут. Поскольку весь белоксинтезирующий механизм плазматической клетки запрограммирован на синтез молекул только одного типа, как в случае ретикулоцитов, синтезирующих только глобин, каждая плазматическая клетка способна в 1 с дать несколько тысяч молекул Ig.
Ответ животного на антиген проверяется введением 0,1–0,5 мг антигена, эмульгированного в полном адъюванте Фрейнда (FCA). Для выявления антител используют иммунодиффузию по Ухтерлони или иммуноэлектрофорез в агаровом геле в сыворотке. Если материал обладает антигенными свойствами и животное не имело с ним контакта ранее, Ig определяется через 6–7 дней после введения. Это называется первичным ответом. Введение разрешающих доз антигена с интервалами в 7-10 дней вызывает нарастание уровня Ig в сыворотке примерно до 30-го дня, после чего этот уровень выходит на плато. Если затем прекратить введение антигена, то уровень Ig падает и примерно через три месяца антитела уже не определяются. Если тот же антиген затем ввести через несколько месяцев, то Ig появляются в сыворотке через 3–4 дня, т. е. гораздо быстрее, чем в первый раз. Это называется вторичным ответом. Полагают, что первоначально введение антигена стимулирует специфические В-клетки к делению. Некоторые из этих делящихся клеток образуют плазматические клетки для синтеза Ig. Вместе с тем другие превращаются в долгоживущие клетки памяти. Считают, что именно эти клетки памяти ответственны за раннее распознавание того антигена, который вызвал первичный ответ (рис. 7.3).
Изменения В- и Т-клеток
Для изучения причин снижения иммунной функции были использованы методы in vivo и in vitro [70]. Метод in vivo включает введение суспензии клеток селезенки мыши-донора сингенному, или генетически совместимому, реципиенту, чья иммунная система разрушена облучением или иммунодепрессантами. В этом методе оценивается способность клеток селезенки молодых и старых доноров формировать колониеобразующие единицы (CFU) в селезенке реципиента (рис. 7.10). При использовании другого метода in vivo клетки селезенки мыши-донора помещают вместе с антигеном в диффузионную камеру, которую имплантируют под кожу облученной мыши-реципиента и затем определяют у нее титр антител. Такие исследования проводят с целью установить, вызвано ли снижение иммунной функции изменениями окружения лимфоидных клеток или внутренними изменениями в самих клетках.
Рис. 7.10. Схема метода клеточного переноса для исследования образования антител и стволовых клеток [73]
Функцию В-клеток в период старения определяют по уровню и скорости продукции Ig, вызванной антигеном. Уровень циркулирующих естественных иммуноглобулинов человека снижается с возрастом вскоре после инволюции тимуса, так же как и уровень тимозина [6]. У грызунов первичный, но не вторичный иммунный ответ на антиген в старости снижается [74, 81, 129]. Титр антител после введения антигена падает с возрастом как у мышей, так и у человека (рис. 7.11). Это указывает на то, что функция хелперных Т-клеток или их число после инволюции тимуса может снижаться, что в свою очередь влияет на функцию В-клеток [17]. В определенных случаях, однако, не обнаружено снижения первичного ответа на бактериальные и вирусные вакцины [32, 62]. Это может быть обусловлено либо предшествующим контактом с данным антигеном, либо тем, что на ответ не влияют хелперные Т-клетки.
Рис. 7.11. Снижение титров естественных антител к флагеллину Salmonella с возрастом и увеличение частоты антиядерных факторов у людей обоих полов [99]
С возрастом число В-клеток в селезенке, по-видимому, не изменяется. Об этом свидетельствует постоянное содержание а) клеток, несущих иммуноглобулиновые рецепторы, б) клеток, реагирующих на Т-независимый антиген, и в) клеток, чувствительных к анти-В-реагентам [1, 72]. У человека число циркулирующих В-клеток [22], а также скорость их пролиферации после стимуляции митогеном не меняются [54]. Однако не исключено, что изменениям подвержены субпопуляции В-клеток.
Исследования Прайса и Макинодана [91, 92] показывают, что для максимальной стимуляции образования иммуноглобулина старым мышам требуется в 10 раз больше антигена (эритроциты барана) по сравнению с молодыми. Степень реакции, т. е. число антителообразующих клеток, у молодых мышей также больше (в 25 раз). Это может быть обусловлено одной или несколькими следующими причинами: а) при старении изменяется ткань селезенки и, следовательно, окружение иммунокомпетентных клеток; б) способность В- и Т-клеток старых животных распознавать антиген снижается за счет внутренних изменений в самих клетках; в) снижается абсолютное число В- и Т-лимфоцитов; г) увеличивается число Т-супрессоров и д) снижается функциональная активность В- и Т-клеток, чувствительных к антигену.
С возрастом число стволовых В- и Т-клеток, которые преимущественно локализованы в костном мозгу, по-видимому, не снижается [15, 18]. Стволовые клетки костного мозга делятся в течение всей жизни [66]. Гемопоэтическая активность стволовых клеток, вероятно, также не уменьшается с возрастом [43J Однако нарушается нормальная скорость образования лимфоцитов и клеток крови; это обнаруживается по уменьшению продукции В-клеток после трансплантации костного мозга старого донора молодым тимэктомированным или облученным сингенным реципиентам [27]. Таким образом, скорость, с которой стволовые клетки пролиферируют и дифференцируются, с возрастом падает. Факторы, которые вызывают такие изменения, неизвестны.
Функция Т-клеток оценивается по замедленной кожной чувствительности, реакции трансплантата против хозяина, цитотоксичности, реакции на митогены и активности лимфокинов. Некоторые авторы показали, что иммунокомпетентность Т-клеток по реакции замедленной кожной чувствительности с возрастом снижается [7, 36, 38], так же как и способность мышей отторгать трансплантаты тканей [38, 64]. Это особенно заметно у короткоживущих мышей, склонных к аутоиммунным заболеваниям, но не столь выражено у долгоживущих мышей.
Пролиферативная активность Т-клеток после стимуляции митогенами in vitro у мышей всех линий с увеличением возраста ощутимо снижается [1, 63, 90]. Вместе с тем их цитотоксичность уменьшается незначительно [38], тогда как кооперативная или регуляторная роль Т-хелперов в образовании иммуноглобулинов В-клетками, особенно по отношению к чужеродным эритроцитам, снижается существенно [27, 42, 91, 92].
Частота инфекций, аутоиммунных заболеваний и рака в пожилом возрасте увеличивается. Поскольку снижается главным образом функция Т-, а не В-клеток, должна, вероятно, существовать корреляция между частотой этих заболеваний и компетентностью Т-клеток [16, 68, 107, 121].
Аутоиммунные заболевания
Предполагают, что аутоиммунные заболевания вызываются неспособностью иммунокомпетентных клеток распознавать другие клетки собственного организма; в этом случае к клеткам хозяина вырабатываются иммуноглобулины, как если бы они были "чужими". Аутоантитела разрушают ткани и приводят к аутоиммунным заболеваниям. Возможно, это обусловлено нарушением функции Т-супрессоров, которые считаются ответственными за аутотолерантность [20]. Хирокава и др. [50] сообщили, что у мышей активность Т-супрессоров с возрастом снижается. Возможно, что иммунокомпетентные В-клетки не реагируют на собственные клетки в раннем возрасте по той причине, что Т-супрессоры предотвращают эту реакцию, а не потому, что все В-клетки, которые "ошибаются", исчезают в раннем периоде развития. Так как число и функция Т-супрессоров при старении снижаются, те В-клетки, активность которых была ранее подавлена, начинают реагировать на клетки хозяина, вырабатывая к ним антитела и вызывая аутоиммунные заболевания. Это, однако, не объясняет, почему функция Т-супрессоров при старении снижается.
Индивидуумы, страдающие от аутоиммунных заболеваний, по-видимому, предрасположены к ним генетически. Тиреотоксикоз (болезнь Грейвса), спонтанная недостаточность надпочечников (аддисонова болезнь), пернициозная анемия, ревматоидный артрит, сахарный диабет взрослых и старческий амилоидоз являются аутоиммунными болезнями, которые преобладают в старческом возрасте. Вместе с тем красная волчанка, склеродермия и мышечная дистрофия — это аутоиммунные болезни, которые возникают в молодом возрасте. Аутоиммунные заболевания часто связаны также с вирусными инфекциями. Мыши, тимэктомированные сразу после рождения, имеют высокую частоту аутоиммунных заболеваний [82].
Изучение генетики иммунной системы, особенно тимус-зависимых иммунных функций, уже внесло некоторую ясность в понимание причин аутоиммунитета. Все позвоночные имеют гены главного комплекса тканевой совместимости (МНС; от англ. major histocompatibility complex). У мышей он называется Н-2 и расположен в хромосоме 17. У человека он называется системой HLA и расположен в хромосоме 6. МНС содержит группу из нескольких сотен генетических локусов и поэтому является примером супергена. Он контролирует и регулирует иммунный ответ, особенно тимус-зависимые функции [105, 123, 124]. Было сделано предположение, что МНС участвует в процессе старения [122]. Система Н-2 мышей содержит гены, контролирующие развитие специфических Т-супрессоров для иммунорегуляции цитотоксической реакции лимфоцитов, способность к развитию иммунного ответа на определенные антигены, восприимчивость к некоторым вирусам, аутоиммунные болезни, скорости снижения различных иммунных реакций, систему комплемента, возможно, систему для распознавания "своего" [8], кооперацию клеток Т — В и экспрессию тета-антигена в Т-клетках.
Поскольку почти все перечисленные функции в старческом возрасте нарушаются, анализ системы МНС может пролить некоторый свет на механизмы этих нарушений. Смит и Уолфорд [106] провели анализ продолжительности жизни семи линий мышей, конгенных по системе Н-2. Мыши с наибольшей продолжительностью жизни имели самую высокую реакцию на фитогемагглютинин (ФГА) в течение всей жизни. Линии с наименьшей продолжительностью жизни давали самую низкую реакцию. Поскольку система Н-2 ответственна за реакцию на ФГА, эти результаты указывают на изменения в данной системе генов, которая может не только контролировать иммунный ответ, но и влиять на продолжительность жизни.
Реакция лимфоцитов на чужеродные или измененные клетки, в том числе трансплантаты тканей, включает раннюю фазу, когда лимфоциты распознают трансплантат как антиген. Эта фаза носит название реакции смешанных лимфоцитов (MLR; от англ. mixed lymphocyte reaction), которая контролируется у мышей генами локуса Ia системы Н-2. За распознаванием следует образование Т-киллеров, осуществляющих клеточно-опосредованную лимфоцитотоксичность (CML; от англ. cellmediated lymphocytotoxicity), в процессе которой чужеродные клетки лизируются и разрушаются. Эта реакция контролируется K- и D-локусами системы Н-2 мышей и А- и В-локусами системы HLA человека. Сообщают, что MLR у старых мышей составляет едва одну треть от уровня реакции взрослых животных [63], a CML снижается еще больше [38].
Гуморальный иммунный ответ, который требует Т-кооперации, также заметно снижается с возрастом [61, 73]. Т-супрессоры, которые важны для регуляции иммунного ответа и для предупреждения развития аутоиммунитета, контролируются 1-локусом системы МНС у мышей [105]. Есть сообщение, что активность Т-супрессоров в MLR у старых мышей увеличивается [102], хотя Хирокава и др. [50] отмечают общее снижение активности этих клеток у старых мышей. Их число падает у короткоживущих новозеландских черных мышей (NZB), чувствительных к аутоиммунным расстройствам [114]. Эти исследования показывают, что тимус-зависимые иммунные реакции с возрастом ослабевают, так же как функция Т-хелперов и Т-супрессоров. О тимус-независимых реакциях как функции возраста информация очень скудна.
У людей, страдающих сахарным диабетом взрослых, наблюдаются признаки ускоренного старения: артериосклероз в раннем возрасте, повышение уровня аутоантител и амилоидоз островков Лангерганса. При этом заболевании отмечено также повышение активности гена HLA-B8 системы МНС [118]. Таким образом, между активностью системы МНС и аутоиммунным заболеванием имеется корреляция. Основной вопрос заключается в том, на какие факторы влияет система МНС в пожилом возрасте.
Другие примеры аутоиммунных заболеваний, которые связаны с системой МНС, можно наблюдать у людей, страдающих амилоидозом и наследственной атаксией — телеангиэктазией, обычными болезнями пожилого возраста [121]. Амилоид — это гиалиновый продукт, который откладывается в межклеточном веществе. Предполагают, что амилоидоз обусловлен снижением функции Т-клеток и некоторым усилением функции В-клеток. Наследственная атаксия — телеангиэктазия у человека является иммунодефицитным заболеванием, которое контролируется рецессивным геном. Обычно болезнь проявляется в 6-летнем возрасте, когда у больных исчезают сывороточные и секреторные иммуноглобулины А и Е, уменьшается тимус, наблюдается дефицит клеточного иммунитета. С возрастом для таких больных характерна склонность к развитию опухолей, раннее поседение и ослабление функций половых желез.
Предполагают несколько причин повышения частоты аутоиммунных заболеваний и Т-дефицита в пожилом возрасте: а) усиление иммунной реактивности, вызываемой, возможно, активацией генов иммунного ответа системы МНС; б) повреждение тимуса; в) дефект клеток-мишеней, который приводит к такому изменению их поверхности, что лимфоциты принимают их за "чужие" клетки, и г) происходящий в результате снижения числа Т-супрессоров выход в кровоток некоторых запрещенных клонов лимфоцитов, который находится под контролем супрессорных или регуляторных Т-клеток. Даже если считать эти факты убедительным доказательством взаимосвязи аутоиммунитета и функции тимуса, все же неясно, приводит ли снижение функции иммунной системы к развитию аутоиммунитета или наоборот.
Рак
Частота рака у больных с пониженной иммунной функцией выше, чем средняя. Как у людей, так и у животных вероятность появления опухолей к старости повышается [13, 86, 117]. Известно, что инфекционные и аутоиммунные заболевания чаще встречаются у людей с иммунодефицитами, у которых нарушен главным образом клеточный иммунитет [68, 97]. Это подтверждается следующими данными. Если у больного в условиях иммунодепрессивной терапии развивается аллогенная опухоль, то после прекращения терапии такая опухоль отторгается [86], т. е. иммунодефицит предрасполагает к развитию опухолей. Дальнейшее подтверждение этой связи вытекает из следующих наблюдений: если мышь заразить латентным вирусом, то иммунная система подавляется [53]; заражение мышей вирусом лейкоза подавляет иммунный ответ [30]; у короткоживущих мышей опухоли и аутоиммунные болезни появляются до снижения иммунной функции [80, 132]; продолжительность жизни короткоживущих мышей линии AKR с тимомой после удаления тимуса удваивается [77, 84]; у короткоживущих мышей линии NZB, которые погибают от аутоиммунного заболевания, снижение функции иммунитета прямо связано с уменьшением числа Т-клеток. Таким образом, доступные в настоящее время данные говорят в пользу того, что при снижении иммунной функции в пожилом возрасте не только повышается восприимчивость животных и человека к инфекционным заболеваниям, но увеличивается склонность к аутоиммунным заболеваниям и к развитию опухолей. Если система МНС и участвует в индукции рака, то причина изменений ее функции остается невыясненной.
Имеется ряд примеров, подтверждающих корреляцию между дефицитом иммунокомпетенции и неоплазией. Частота рака примерно в 10–20 раз выше у людей, которые с детства имеют иммунодефицит. Хотя они живут недолго, у них наблюдают высокую заболеваемость раком [108]. Частота рака у людей, имеющих иммунодефицит во взрослом состоянии, также выше, чем у обычных людей [31, 108]. Больные, которым вводили антилимфоцитарную сыворотку (АЛС), имеют более высокую заболеваемость раком потому, что, как полагают, АЛС специфически подавляет функцию Т-клеток [109]. После иммунодепрессии частота спонтанных опухолей у животных и человека возрастает примерно в 350 раз. К тому же после иммунодепрессии у животных легче приживаются трансплантаты опухолей, а частота метастазов пересаженных опухолей выше [83, 108]. Смертность у людей, имеющих дефицит клеточного иммунитета, выше, чем у обычных людей.
Причина высокой частоты неоплазий при иммунодефиците неизвестна. Высказано предположение, что "иммунный надзор" необходим для элиминации злокачественных клеток, которые могут нести "не свои" антигены [13]. Считается, что злокачественное заболевание возникает из-за ослабления в пожилом возрасте Т-клеточного надзора, в результате чего появляются злокачественные клетки. Однако исследование Т-дефицитных мышей (мыши, родившиеся с дефектным тимусом) показало, что Т-клетки не существенны для надзора за некоторыми опухолевыми клетками [110, 111]. Другая возможность заключается в том, что при иммунодефиците онкогенные вирусы лучше размножаются, так как усиление активности Т-супрессоров при неопластических заболеваниях препятствует действию Т-киллеров, которые осуществляют надзор. Итак, взаимосвязь злокачественных заболеваний с иммунодефицитом не вызывает сомнений, но что из них является следствием, а что — причиной, пока неизвестно; механизм, посредством которого одно может влиять на другое, остается невыясненным.
Ослабление функции тимуса
Несколько авторов сообщили о том, что структурная и функциональная инволюция тимуса заканчивается в периоде, предшествующем завершению роста. Морфологические исследования Эндрью [4] и Сантисбибена [101] показали, что вес лимфоидной ткани тимуса начинает снижаться вскоре после достижения половой зрелости. Это происходит главным образом за счет атрофии коркового вещества (рис. 7.12); затем следует снижение уровня тимозина и числа Т-клеток [59]. Сколько-нибудь заметного уменьшения размеров лимфатических узлов и селезенки не наблюдали, но число центров размножения в этих органах снижается [16, 59, 89]. Количество циркулирующих Т-клеток прогрессивно падает после прохождения зрелого возраста, а их число у 60-70-летних людей составляет только ~70 % уровня, характерного для молодых [5, 22, 96]. У мышей функция Т-клеток при старении также снижается [38, 39, 68, 88, 112, 116]. Устойчивость к аллогенным опухолевым клеткам и пролиферативный ответ клеток селезенки на аллогенные клетки с возрастом быстро падают [88].
Рис. 7.12. Возрастные изменения компонентов тимуса человека [9]
Т-клетки проходят через тимус. Тимус подвергается обратному развитию вскоре после достижения половой зрелости, и этому сопутствует снижение определенных функций иммунитета. Предполагают, что ослабление иммунной функции вызвано уменьшением активности тимуса. Некоторые экспериментальные данные подтверждают это предположение. Снижение тимус-зависимых функций иммунитета возникает в период половой зрелости, когда тимус начинает подвергаться инволюции, и, следовательно, задолго до того, как проявляются иммунодефицитные заболевания пожилого возраста [74]. Иммунодефицит, амилоидоз и аутоиммунитет у неонатально тимэктомированных и генетически восприимчивых мышей можно предупредить или устранить пересадкой тимуса от молодых сингенных но не от старых мышей [26, 134]. Системная красная волчанка и рассеянный склероз у человека [40], а также патология мышей NZB, которая напоминает системную красную волчанку, вероятно, вызваны реакцией хозяина на некоторые вирусные антигены [78, 130]. Заболевание у мышей NZB развивается после снижения Т-ответа [110]. Начало этого заболевания можно замедлить введением тимоцитов молодых сингенных мышей [35]. У человека синтез антител к ядрам клеток, который является Т-зависимым, с возрастом усиливается [99].
Если считать, что частота рака в обычной популяции только 1:300, то у людей с иммунодефицитами, выявленными в детстве, она составляет 1:20, несмотря на то что продолжительность периода, в течение которого обычно развивается рак, у них меньше [31]. Как у животных, так и у человека иммунодепрессия под действием лекарств способствует увеличению заболеваемости раком [11]. Например, риск развития ретикулосаркомы у больных с иммунодепрессией примерно в 350 раз выше, чем у здоровых людей. Иммунодепрессия способствует приживлению пересаженных опухолей, а также метастазированию у человека и у животных [11, 135]. У людей со сниженным клеточным иммунитетом более высокая смертность, чем в общей популяции [69, 97]. Все эти наблюдения свидетельствуют о том, что с возрастом Т-клеточная функция нарушается, и это приводит к увеличению частоты рака, аутоиммунных и других заболеваний. Замедление или предупреждение снижения функции Т-клеток может отсрочить начало этих заболеваний или по крайней мере облегчить их протекание и тем самым замедлить процесс старения.
Некоторые данные, полученные in vitro, подтверждаются наблюдениями in vivo. Пролиферативный ответ Т-клеток на растительные митогены ФГА и конканавалин А у мышей и человека с возрастом значительно снижается [1, 29, 41, 56, 63, 88, 90, 97]. Вряд ли это обусловлено уменьшением связывания митогенов с рецепторами клеточных мембран [54], так как количество 125I-ФГА одинаково в молодых и старых клетках. Причиной могут быть молекулярные изменения, поскольку известно, что уровень циклического ГМФ (cGMP) после стимуляции митогеном в старых клетках увеличивается меньше, чем в молодых [45]. Правда, Эгервол и др. [2] сообщают, что при 37 °C ФГА одинаково стимулирует к делению и молодые, и старые клетки. Митотическая активность была изучена по включению 3Н-тимидина (рис. 7.13). Точность считывания ДНК-полимеразой в лимфоцитах двух доноров разного возраста тоже была одинаковой, хотя "старый" фермент оказался более термолабильным. Известно, кроме того, что ацетилирование гистонов в лимфоцитах, стимулированных ФГА, с возрастом снижается [85]. У мышей по мере старения замедляется образование цитотоксических лимфоцитов в смешанной культуре [47] и ослабевает функция Т-хелперов [42, 46, 91, 92].
Рис. 7.13. Снижение митогенного ответа на фитогемагглютинин со стороны Т-клеток селезенки долгоживущих мышей [52]
Тимэктомия у взрослых мышей способствует снижению их иммунного ответа, что заметно по ослабленной реакции трансплантата против хозяина, уменьшению уровня антител, вырабатываемых к бычьему сывороточному альбумину, ослабленному ответу на ФГА и плохому общему состоянию [79, 115]. Когда тимус мыши-донора в возрасте от 1 дня до 33 мес пересаживают бестимусным молодым реципиентам, наблюдают снижение с возрастом донора дифференциации или созревания клеток-предшественников с образованием функционально активных Т-клеток у реципиента. При этом вторичное заселение лимфоцитами органов реципиента и реактивность его Т-клеток к ФГА резко уменьшаются.
Кэй [55, 56] наблюдала прекращение миграции стволовых клеток в тимус у мышей после 6–8 нед. Это может быть причиной снижения выработки дифференцированных Т-клеток типа хелперов, супрессоров и киллеров, обеспечивающих специфические иммунные реакции, что подтверждается следующими наблюдениями. Доля Т-клеток, несущих тета-антиген, с возрастом снижается, так же как и число тета-антигенов на поверхности клетки [12]. Продолжительность жизни короткоживущих карликовых мышей с гипофункцией гипофиза может быть увеличена с 4 до 12 мес введением клеток лимфатических узлов, но не костного мозга или тимоцитов [26]. Это указывает на то, что снабжение специализированными клетками лимфатических узлов, которое требуется для нормальной иммунной функции, прекращается в раннем периоде жизни и что благодаря восполнению этих клеток животные приобретают защиту от болезней и их продолжительность жизни увеличивается. Уровень тимусного гормона (тимозина) в сыворотке начинает снижаться после инволюции тимуса [6]. Этот гормон требуется для дифференцировки Т-клеток. Описанные исследования свидетельствуют о том, что с возрастом нарушается функция тимуса, который отвечает за предохранение организма от инфекционных и аутоиммунных заболеваний, а также от рака. Следовательно, может происходить постепенное ослабление устойчивости организма к указанным заболеваниям, что приводит к снижению жизнеспособности. Однако нарушения функции характерны не только для тимуса, они отмечаются почти во всех органах. Итак, главный вопрос остается открытым: как и почему нарушается функция тимуса после достижения половой зрелости? Другая группа клеток, включающая главным образом макрофаги, играет вспомогательную роль в иммунном ответе. Как именно они вовлекаются в иммунные реакции, неизвестно. По своей природе они являются фагоцитами и обычно противостоят антигенам до встречи последних с В- и Т-клетками. С возрастом фагоцитарная активность перитонеальных вспомогательных клеток мышей не меняется; об этом свидетельствует активность лизосомных ферментов: катепсина D, β-глюкуронидазы и кислой фосфатазы. То же самое можно сказать и об их способности индуцировать антителообразование [44, 87]. Вспомогательные клетки селезенки также не теряют способность кооперироваться с В- и Т-клетками, необходимую для инициации иммунного ответа [46].
Попытки коррекции иммунной функции
Поскольку к старости функция иммунитета ослабевает и одновременно увеличивается частота инфекционных и аутоиммунных заболеваний, а также склонность к развитию опухолей, полагают, что возникновение этих заболеваний можно предупредить или отсрочить улучшением иммунного статуса животного. Для усиления иммунокомпетентности организма после достижения половой зрелости был предложен ряд мер: изменение рациона, пересадка иммунокомпетентных клеток, оперативное вмешательство, применение лекарственных препаратов и понижение температуры тела. Мак-Кей и др. [76] первыми сообщили, что при снижении калорийности пищи продолжительность жизни крыс значительно увеличивается. Уолфорд и др. [125] показали, что при ограниченной калорийности пищи иммунная система у крыс развивается медленно и также медленно ослабевает. Таким образом, рацион влияет на скорость развития и угасания иммунной функции. Было показано также, что в указанных экспериментальных условиях отдаляется момент возникновения старческих болезней [98]. Пища с низким содержанием жира, но богатая белком, способствует подавлению развития аутоиммунных заболеваний и увеличению продолжительности жизни мышей [28]. Изменением рациона иммунная функция может быть улучшена на определенный период, но в конце концов она снижается.
Пересадка большого числа клеток (108 клеток на одно животное) лимфатических узлов молодой мыши короткоживущему реципиенту с гипофизарной карликовостью и недостаточностью гормона роста увеличивает продолжительность его жизни в 3–4 раза [26]. Очевидно, клетки лимфатических узлов стимулируют функцию гипофиза или выполняют некоторые гипофиз-зависимые функции. После упомянутой выше пересадки у мышей NZB их продолжительность жизни увеличивалась только на 1 мес [65], а развитие заболеваний не предотвращалось [131]. Введение клеток тимуса молодых мышей старым животным линии A/J препятствовало появлению некоторых типов аутоантител, но продолжительность жизни при этом увеличивалась незначительно [133]. Однако когда клетки тимуса и костного мозга одновременно пересаживали от молодых старым мышам, то иммунный статус последних существенно улучшался и их продолжительность жизни увеличивалась [49, 71].
В качестве хирургических методов исправления иммунного статуса было предложено удаление тимуса и селезенки. Фюрт [33] показал, что если удалить тимус у мыши линии AKR, восприимчивой к тимоме, перед появлением признаков опухоли, то продолжительность жизни животного увеличивается. Удаление селезенки у мыши линии BC3F1 в 2-летнем возрасте непосредственно перед развитием ретикулосаркомы также приводит к увеличению продолжительности ее жизни (в 2 раза) [3]. Создается впечатление, что селезенка является местом развития вирус-зависимой опухоли, причем хирургическим путем не только можно предотвратить появление опухоли, но и увеличить продолжительность жизни.
Для улучшения иммунной компетентности старых животных использовали многие препараты, в том числе гормоны. Применение гормона тимуса быка увеличивает продолжительность жизни короткоживущих, восприимчивых к аутоиммунным заболеваниям мышей [21], но подобный эффект отсутствует для долгоживущих мышей [94]. Химические препараты типа меркаптоэтанола, полинуклеотидов, витамина Е и полиионов несколько усиливают иммунную функцию (ссылки см. в работе [60]), но основания для применения таких препаратов недостаточны, так как проведенные исследования еще не позволяют глубоко разобраться в причинах старения.
Продолжительность жизни рыб значительно увеличивается, если их содержать при низкой температуре, особенно во второй половине жизни [34, 67]. Причиной может быть снижение скорости метаболизма, что способствует замедлению старения. При низкой температуре метаболизм подавляется и одновременно замедляется созревание иммунной системы. Если этот способ применить на ранних стадиях развития, то можно достичь увеличения продолжительности жизни.
Более строгий подход к улучшению иммунного статуса животных заключается в пересадке иммунокомпетентных клеток молодых доноров старым совместимым реципиентам. Если клетки донора будут нормально функционировать в течение длительного времени, то старое животное будет меньше болеть и проживет дольше. Поэтому необходимо типировать по антигенам тканевой совместимости иммунокомпетентные клетки и молодых доноров, и старых реципиентов, как это требуется при переливании крови. Еще более реальным и эффективным методом может стать хранение иммунокомпетентных клеток больных, взятых у них в юности, и переливание этих клеток тем же людям, когда они состарятся. Так можно избежать реакции трансплантата против хозяина. Клетки селезенки остаются живыми даже после хранения в течение 16 лет [70]. Есть данные о том, что стволовые клетки и ткань тимуса молодых мышей, пересаженные старым мышам, увеличивают продолжительность жизни последних [51].
Иммунная система ответственна за защиту организма от различных болезней, которые вызываются патогенными факторами. Известно, что частота инфекционных и аутоиммунных заболеваний, а также рака после достижения половой зрелости возрастает. Иммунокомпетентность человека и животных при старении снижается. Возможно, что за потерю здоровья в зрелом возрасте ответственны повреждение иммунной системы и сопутствующая ему склонность к заболеваниям.
Иммунные реакции животных и человека на различные чужеродные вещества, вирусы, бактерии и чужеродные клетки осуществляются лимфоцитами двух видов — В- и Т-клетками. В-клетки формируются в фабрициевой сумке у птиц и в костном мозгу у млекопитающих. После стимуляции специфическим антигеном они вырабатывают специфические антитела или иммуноглобулины. Иммуноглобулин инактивирует антиген. Функция В-клеток зависит от кооперации с Т-клетками. Исследования последних лет показывают, что функция В-клеток с возрастом существенно не нарушается.
Т-клетки формируются в тимусе. Известны три вида Т-клеток: хелперы, супрессоры и киллеры. Т-хелперы необходимы для образования иммуноглобулинов В-клетками. Т-супрессоры подавляют образование иммуноглобулинов и, по-видимому, ответственны за аутотолерантность, так как они удерживают лимфоциты от реакции на собственные клетки хозяина. Т-киллеры непосредственно реагируют с антигенами и инактивируют их. Исследования in vivo и in vitro показали, что число Т-клеток различных видов после достижения половой зрелости снижается, а их функционирование ухудшается. Некоторые функции Т-клеток, вероятно, контролируются сложным набором генов — системой МНС. Не исключено, что ослабление Т-функций вызвано изменениями этих генов.
Хотя причина нарушения иммунной функции остается неясной, были предприняты попытки стимулировать эту функцию у старых животных путем пересадки иммунокомпетентных клеток от молодых животных. Такие методы позволяют отсрочить на некоторое время возникновение болезни и увеличить продолжительность жизни.
1. Adler W. H., Takiguchi T., Smith R. T. J. Immunol., 107, 1357–1362 (1971).
2. Agarwal S. S., Tuffner M., Loeb L. A. J. Cell Physiol., 96, 235–244 (1978).
3. Albright J. F., Makinodan T., Deitchman J. W. Expl. Gerontol., 4, 267–276 (1969).
4. Andrew W. In: Cellular Changes with Age (G. H. Thomas, Ed.), Springfield, Illinois (1952).
5. Augener W., Cohnen G., Reuter A., Brittinger G. Lancet, 1, 1164 (1974).
6. Bach F. J., Dardenee M., Salomon J. C. Clin. exp. Immunol., 14, 147–256 (1973).
7. Baer H., Bowser R. T. Science, 140, 1211–1212 (1963).
8. Bevan M. J. Nature, 256, 419–421 (1975).
9. Boyd E. Amer. J. Dis. Child, 43, 1162–1214 (1932).
10. Brack C., Hirama M., Lenhard-Schuller R., Tonegawa S. Cell, 15, 1-14 (1978).
11. Braun W., Yajima Y., Ishizuka M. J. Reticuloendothel. Soc, 7, 418–424 (1970).
12. Brennan P., Jaroslow B. Cell. Immunol., 15, 51–56 (1975).
13. Burnet M. F. Immunological Surveillance, Pergamon Press, Oxford (1970).
14. Cerilli J., Hattan D. Amer. J. Clin. Pathol., 62, 218–223 (1974).
15. Chen M. G. J. Cell Physiol, 78, 225–232 (1971).
16. Chino F., Makinodan T., Lever W. H., Peterson W. J. J. Gerontol., 26, 497–507 (1971).
17. Clamen H. N., Chaperon E. A. Transplant. Rev., 1, 92-113(1969).
18. Coggle J. E., Proukakis C. Gerontologia, 16, 25–29 (1970).
19. Cooper M. D., Lawton A. R. Sci. Amer., 231, 58–72 (1974).
20. Cunningham A. J. Transplant. Rev., 31, 23–43 (1976).
21. Dauphinee M. J., Talal N., Goldstein A. L., White A. Proc. nat. Acad. Sci., USA, 71, 2637–2641 (1974).
22. Diaz-Jouanen E., Strickland R. G., Williams R. C., Jr. Am. J. Med., 58, 620–628 (1975).
23. Dreyer W. J., Bennett J. C. Proc. nat. Acad. Sci. (USA), 54, 864–868 (1965).
24. Edelman G. M. Sci. Amer., 223, 34–42 (1970).
25. Edelman G. M. Cold Spring Harbor Symp. Quant. Biol., 41, 891–902 (1977).
26. Fabris N., Pierpaoli W., Sorkin E. Nature, 240, 557–559 (1972).
27. Farrar J. J., Loughman B. E., Nordin A. A. J. Immunol., 112, 1244–1249 (1974).
28. Fernandes G., Yunis E. J., Jose D. G., Good R. A. Int. Arch. Allergy Appl. Immunol., 44, 770–782 (1973).
29. Fernandez L. A., MacSween J. M., Langley G. R. Immunology, 31, 583–587 (1976).
30. Friedman H., Ceglowski W. S. Prog. Immunol., 1, 815–829 (1971).
31. Fudenberg H. H. Amer. J. Med., 51, 295–298 (1971).
32. Fulk R. V., Fedson D. S., Huber M. A., Fitzpatrick J. R., Kasel J. A. J. Immunol, 104, 8-13 (1970).
33. Furth J. C. J. Gerontol., 1, 46–52 (1946).
34. Gerbase-Delima M., Liu R. K., Cheney K. E., Mickey R., Watford R. L. Gerontologia, 21, 184–202 (1975).
35. Gershwin M. E., Steinberg A. D. Clin. Immunol. Immunopathol., 4, 38–45 (1975).
36. Giannini D., Sloan R. S. Lancet, 1, 525–527 (1957).
37. Goldstein A. L. Symp. Immune System, XI Internat. Cong. Gerontol., pp. 22–23, Japan (1978).
38. Goodman S. A., Makinodan T. Clin. exp. Immunol., 19, 533–542 (1975).
39. Grossman J., Baum J., Fusner J., Condemi J. J. Allergy Clin. Immunol., 55, 268–275 (1975).
40. Gyorkey F., Min K. W., Sincovics J. G., Gyorkey P. New Eng. J. Med., 280, 33 (1969).
41. Hallgren H. M., Buckley C. E., Gilbertsen V. A., Yunis E. J. J. Immunol., Ill, 1101–1107 (1973).
42. Hardin J. A., Chuseo T. M., Steinberg A. D. J. Immunol., Ill, 650–651
43. Harrison D. E. Proc. nat. Acad. Sci., USA, 70, 3184–3188 (1973).
44. Heidrick M. L. Gerontologist, 12, 28 (1972).
45. Heidrick M. L. J. Cell. Biol., 57, 139a (1973).
46. Heidrick M. L., Makinodan T. J. Immunol., Ill, 1502–1506 (1973).
47. Hiwano T., Nordin A. A. J. Immunol., 117, 1093–1098 (1976).
48. Hirokawa K. In: Immunity and Aging (T. Makinodan and E. Yunis, Eds.), 51–72, Plenum Press, New York (1977).
49. Hirokawa K., Albright J. W., Makinodan T. Clin. Immunol. Immunopathol., 5, 371–376 (1976).
50. Hirokawa K., Hatakeyawa S., Sado T. Sym. Immune System. Xlth Internet. Cong. Gerontol., p. 2, Tokyo (Abs.) (1978).
51. Hirokowa K., Makinodan T. J. Immunol., 114, 1659–1664 (1975).
52. Hori Y., Perkins E. H., Halsall M. K. Proc. Soc. exp. Biol. Med., 144, 48–53 (1973).
53. Hotchin J. E. In: Tolerance, Autoimmunity and Aging (M. M. Sigel and R. A. Good, Eds.), Charles С Thomas, Springfield (1972).
54. Hung C. Y., Perkins E. H., Yang W. K. Mech. Age. Dev., 4, 103–112
55. Kay M. M. B. Proc. nat. Acad. Sci., USA, 72, 3521–3525 (1975).
56. Kay M. M. B. In: Genetic Effects of Aging (D. Bergsma and D. Harrison, Eds.), p. 213, A. R. Liss, New York (1978).
57. Kay M. M. B. Fed. Proc, 37, 1241–1244 (1978).
58. Kay M. M. B. Mech. Age. Dev., 9, 39–59 (1979).
59. Kay M. M. B., Mendoza J., Denton T., Union N., Lajiness M. Mech. Age. Dev. (1978). (In press.)
60. Kay M. M. B., Makinodan T. Clin. Immunol. Immunopathol., 6, 394–413 (1976).
61. Krishimoto S., Takahama T., Mizumachi H. J. Immunol., 116, 294–300 (1976).
62. Kishimoto S., Tsuyuguchi I., Yamamura Y. Clin. exp. Immunol., 5, 525–530 (1969).
63. Konen T. G., Smith G. S., Walford R. L. J. Immunol., 110, 1216–1221 (1973).
64. Krohn P. L. Proc. Roy. Soc. (B), 157, 128–147 (1962).
65. Kysela S., Steinberg A. D. Clin. Immunol. Immunopathol., 2, 133–136 (1973).
66. Lajtha L. J., Schofield R. Adv. Gerontol. Res., 3, 131–146 (1971).
67. Liu R. K., Watford R. L. Gerontologia, 18, 363–388 (1972).
68. Mackay I. R. Gerontologia, 18, 285–304 (1972).
69. Mackay I. R., Whittingham S., Mathews J. D. In: Immunology and Aging (T. Makinodan and E. Yunis, Eds.), p. 35, Plenum Press, New York (1977).
70. Makinodan T. (1977). In: The Handbook of the Biology of Aging (C. E. Finch and L. Hayflick, Eds.), pp. 379–408, Reinhold, New York (1977).
71. Makinodan T. Mech. Age. Dev., 9, 7-17 (1979).
72. Makinodan T., Adler W. H. Fed. Proc, 34, 153–158 (1975).
73. Makinodan T., Perkins E. H., Chen M. G. Adv. Gerontol. Res., 3, 171–198 (1971).
74. Makinodan T., Peterson W. J. Proc. nat. Acad. Sci., USA, 48, 234–238 (1962).
75. Matthyssens G., Tonegawa S. Nature, 273, 763–765 (1978).
76. McCay C. M., Crowell M. F., Maynard L. A. J. Nutri., 10, 63–79 (1935).
77. McEndy D. P., Boon M. C., Furth J. Cancer Res., 4, 377–383 (1966).
78. Mellors R. C., Huang C.-Y. J. exp. Med., 124, 1031–1038 (1966).
79. Metcalf D. Nature, 208, 1336 (1965).
80. Metcalf D., Moulds R. Intern. J. Cancer., 2, 53–58 (1967).
81. Metcalf D., Moulds R., Pike B. Clin. exp. Immunol., 2, 109–120 (1966).
82. Milter J. A. F. P., Howard J. G. J. Reticuloendothel. Soc, 1, 369–392 (1964).
83. Morse H. C., Steinberg A. D., Schur P. H., Reed N. D. J. Immunol., 113, 688–697 (1974).
84. Nakakuki K., Shisa H., Nishizuka Y. Acta Haematol., 38, 317–323 (1967).
85. Oh Y. H., Conrad R. A. Life Sci., 11, 677–684 (1972).
86. Penn I., Starzl T. E. Transplantation, 14, 407–417 (1972).
87. Perkins I. H. J. Reticuloendothel. Soc. (Abs.), 9, 642–643 (1971).
88. Perkins E. H., Cocheiro L. H. Mech. Age. Dev., 6, 15–24 (1977).
89. Peter C. P. J. Gerontol., 28, 265–275 (1973).
90. Pisciotta A. V., Westring D. W., Deprey C., Walsh B. Nature, 215, 193–194 (1967).
91. Price G. B., Makinodan T. J. Immunol., 108, 403–412 (1972).
92. Price G. B., Makinodan T. J. Immunol., 108, 413–417 (1972).
93. Rabbitts T. H. Nature, 275, 291–296 (1978)
94. Radl J., Adler W. H. Prog. Immunol., 2, 412 (1974).
95. Raff M. C. Sci. Amer., 234 (5), 30–39 (1976).
96. Reddy M. M., Goh K. J. Gerontol., 34, 5–8 (1979).
97. Roberts-Thomson I. C., Whittingham S., Young-Chaiyud U., Mackay I. R. Lancet, 2, 368–570 (1974).
98. Ross M. H., Bras G. J. Natl. Cancer Inst, 47, 1095–1113 (1971).
99. Rowley M. J., Buchanan H., Mackay I. R. Lancet, 2, 24–26 (1968).
100. RygaardJ., Povlson C. O. Transplantation, 17, 135–136 (1974).
101. Santisbeban G. A. Anat. Rec, 136, 117–126 (1960).
102. Segre D., Segre M. J. Immunol., 116, 735–738 (1976).
103. Seidman J. G., Leder P. Nature, 276, 790–795 (1978).
104. Seidman J. G., Leder A., Nau M., Norman B., Leder P. Science, 202, 11–17 (1978).
105. Shreffler D. C. In: HLA and Disease (J. Dausset and A. Svejgaard, Eds.), 32–45, Williams and Wilkins, Baltimore (1977).
106. Smith G. S., Walford R. L. Nature, 270, 727–729 (1977).
107. Smith G. S., Walford R. L., Mickey R. J. Natl. Cancer. Inst., 50, 1195–1213 (1973).
108. Southam C. M. Amer. J. Clin. Pathol., 62, 224–242 (1974).
109. Stewart P. B., Bell R. Nature, 227, 279 (1970).
110. Slutman O. J. Immunol., 109, 602–611 (1972).
111. Stutman O. Science, 183, 534–536 (1974).
112. Stutman O., Yunis E. J., Good R. A. Proc. Soc. exp. Biol. Med., 127, 1204–1207 (1968).
113. Szenberg A., Marchalonis J. J., Warner N. L. Proc. nat. Acad. Sci., USA, 74, 2113–2117 (1977).
114. Tateal N., Steinberg A. D. In: Current Topics in Microbiology and Immunology, p. 70, Springer-Verlag, New York (1974).
115. Taylor R. Nature, 208, 1334–1335 (1965).
116. Teague P. O., Yunis E. J., Rodey G., Fish A. J., Stutman O., Good R. A. Lab. Invest, 22, 121–130 (1970).
117. Teller M. N. Adv. Gerontol. Res, 4, 25–43 (1972).
118. Thomsen M., Platz P., Andersen O. O., Christy M., Lyngsoe J., Nerup J., Rasmussen K., Ryder L. P., Nielson L. S., Svejgaard A. Transplant. Rev., 22, 125–147 (1975).
119. Valbuena O., Marcu K. B., Weigert M., Perry R. P. Nature, 276, 780–784 (1978).
120. Vitetta E. S., Uhr J. W. Transplant. Rev, 14, 50–75 (1973).
121. Watford R. L. The Immunologic Theory of Aging, Munksgaard, Copenhagen (1969).
122. Walford R. L. Fed. Proc, 33, 2020–2027 (1974).
123. Walford R. L. In: HLA System: New Aspects (G. B. Ferrara, Ed.), 105–127, Elsevier, Amsterdam (1977).
124. Walford R. L. In: The Genetics of Aging (E. L. Scheider, Ed.), pp. 383–401, Plenum Press, New York (1978).
125. Walford R. L., Liu R. K., Mathies M., Gerbase-Delima M., Smith G. S. Mech. Age Dev, 2, 447–454 (1974).
126. Waller C. S., Claman H. N. J. Immunol, 115, 1438–1443 (1975).
127. Warr G. W., Marchalonis J. J. Quart. Rev. Biol, 53, 225–241 (1978).
128. Weigert M., Gatmaitan L., Loh E., Schilling J., Hood L. Nature, 276, 785–790 (1978).
129. Wigzell H., Stjemsward J. J. Natl. Cancer Inst, 37, 513–517 (1966).
130. Yoshiid T., Mellors R. C., Strand M., August J. T. J. exp. Med, 140, 1011–1027 (1974).
131. Yunis E. J., Fernandes G., Stutman O. Amer. J. Clin. Pathol, 56, 280–292 (1971).
132. Yunis E. I., Fernandes G., Teague P. O., Stutman O., Good R. A. In: Tolerance, Autoimmunity and Aging (M. M. Siegel and R. A. Good, Eds.), 62-119, Charles C. Thomas, Springfield (1972).
133. Yunis E. J., Greenburg L. J. Fed. Proc, 33, 2017–2019 (1974).
134. Yunis E. J., Martinez C., Good R. A. Nature, 204, 850–853 (1964).
135. Zukposki C. F., Killen D. A, Ginn E., Matter B., Lucas D. O., Seigler H. F. Transplantation, 9, 71–74 (1970).