Так, возможно, усмехнется здесь читатель. Уже и о пище будущего заговорили. А не лучше ль всерьез задуматься о делах сегодняшних, непосредственно связанных с решением продовольственной проблемы? Стоит ли скрывать — они у нас далеко не блестящи. Мяса и колбас, например, мы все еще производим явно недостаточно, да и о качестве последних, к сожалению, что-либо хорошее сказать трудно. Иной раз и не поймешь, из чего такая колбаса сделана. Безвкусная, трава травой. Одним словом, химия…
Ну что тут возразишь? Да и стоит ли?
Не только стоит — необходимо. И прежде всего потому, что проблема синтеза и конструирования пищи будущего — проблема ненадуманная. Она уже давным-давно значится в числе самых острых и злободневных. И не реши мы ее сегодня — завтра это окажется сделать куда как сложнее. Что же касается обвинений, выдвигаемых в наши дни в адрес химии, то они применительно к предмету данного разговора, мягко говоря, огульны и несправедливы.
Дело в том, что с самого начала возникновения технологии переработки естественных или, как принято говорить, натуральных продуктов химия всегда была ее доброй помощницей. И таковой, вне всяких сомнений, останется на вечные времена. Ибо только химии по силам настолько изменить, облагородить, наделить прекрасными вкусовыми качествами отнюдь не первосортные пищевые продукты — компоненты конкретного технологического процесса, — что достоинства конечного продукта оказываются на целый порядок выше их собственных.
Возьмите хотя бы те же колбасы… Мы так привыкли к тому, что они представляют собой чуть ли не вершину кулинарного и пищевого искусства, что основательно подзабыли, ради чего, собственно, их стали когда-то изготавливать. Между тем, еще в 1895 году словарь Брокгауза и Ефрона со всей откровенностью сообщал своим читателям: колбасное производство имеет своей целью «консервирование мяса и утилизацию в более вкусной форме сбоя, т. е. таких частей убойного скота, которые сами по себе не особенно пригодны для употребления в пищу».
В общем, как это, надеюсь, очевидно всем, колбасы никогда не относились к числу натуральных продуктов, а их качества всегда зависели от состава фарша и особенностей его обработки. Иными словами, вкусовые достоинства колбас определялись и определяются превращением различных веществ, в свою очередь, обусловленных химическими реакциями. И каждый раз, придумывая, изобретая рецепт (позже с появлением науки, обслуживающей пищевую промышленность, специалисты сказали бы — технологию) для нового сорта колбасы, мастер его «сочинял», конструировал.
Разумеется, при этом обязательно учитывались и национальные склонности, привычки, вкусы потребителей. Вот почему в одном фарше оказывалось больше говядины, чем свинины, для другого, наоборот, ее не жалели. Иной фарш солили умеренно, а какой-то крепко, да еще щедро перчили, сдабривали специями. При этом, конечно же, не все технологии, разрабатываемые в соответствии со вкусом и интуицией колбасников, оказывались удачными. Но зато те, что выдерживали испытания временем и покупательским спросом, прочно вошли в память нескольких поколений как «натуральные», а значит, и приготовленные из естественных и обязательно первоклассных продуктов. И никакие словарные разъяснения по поводу того, что задача колбасного производства — наиболее удачная утилизация сбоя, самых низкосортных частей туш, здесь не помогали. Вкусно, аппетитно, а стало быть, и полезно — вот как рассуждал, да и продолжает рассуждать покупатель. А он, как известно, всегда прав.
Покупательский спрос, и только он, будил и стимулировал фантазию мастеров. Но при этом они никогда не скупились на всевозможные добавки для фарша. Крахмал, например, клали для того, чтобы его структура сделалась лучше, надежнее удерживала влагу; добавляли в фарш и конину, если речь шла о выработке копченых колбасных изделий, и специи, и коньяк, а по необходимости — и мадеру. И все это непременно облагораживали… химическими компонентами. Без нитратов и нитритов ни один, даже самый прославленный мастер, варивший в своем чане чуть ли не центнер колбасы в день, обойтись не рискнул бы: без них она тотчас стала бы не розовой, а серой, сразу утратив аппетитный вид. А это значит, что на нее мгновенно упал бы спрос.
Но хотя опыт и интуиция мастеров и создавали порой действительно истинные чудеса гастрономии, делалось это всегда во имя единственной цели — прибыли. Потому-то нередко и поставлялись на прилавок такие сорта колбас, на производство которых шло мясо согласно сегодняшним требованиям санитарных служб совершенно непригодное к употреблению. Зато утилизация сырья при такой технологии, безусловно, полнейшая. Практически никаких отходов, все идет в дело. А ведь комплексность, безотходность и качество — три важнейших требования, предъявляемых и сегодня к производству пищевых продуктов. Более того, именно эти требования стали экономической основой разработки и создания новых пищевых продуктов. Разумеется, при единственном, но обязательном условии: их полной безвредности для человеческого организма. Так что, казалось бы, все идет по давно накатанным рельсам. Но почему в таком случае современные колбасы порой не сопоставимы с изделиями старых, «добрых» времен? И кто в том повинен?
Должен сказать, что уж никак не химия и не низкая квалификация мастеров. Скорее всего отступление от строгих требований технологии. А попросту — хищения, процветающие, к сожалению, пышным цветом на многих мясо- и пищевых комбинатах, когда в сумках и за пазухами оказываются продукты, которым согласно технологической карте надлежит быть совершенно в ином месте. Но, согласитесь, подобная «химия» уж никак не в компетенции науки, занимающейся созданием, конструированием и синтезом пищи вообще и будущей в частности.
Однако есть и объективные причины, по которым пища наших дней действительно отлична от той, что еще совсем недавно довольствовались деды и прадеды. В первую очередь, наверное, к ним следует отнести несопоставимость современных масштабов пищевой индустрии с теми, что существовали в стране каких-нибудь несколько десятилетий назад. Между тем насытить миллионы людей дело совсем иное, чем обеспечить продуктами питания тысячи и сотни. Ведь снижение качества пищи прямо пропорционально увеличению объемов ее производства. Зависимость эта, увы, сомнению не подлежит. Да и что говорить о миллионах, когда вкусно накормить десять-двадцать человек и то труднее, нежели четверых. Спросите любую хозяйку, она вам непременно подтвердит достоверность данного утверждения. Да еще добавит, что самая лучшая пища рождается на домашнем очаге. Так оно, собственно, и есть.
В крестьянских семьях, например, где традиционно делают домашние колбасы, хорошо знают, насколько они аппетитнее, сочнее, ароматнее магазинных. Разница приблизительно такая же, как между борщом, любовно сваренным хозяйкой в кастрюльке для детей и супруга, и приготовленным поваром в большом общепитовском котле. Даже в случае абсолютной честности тех, кто этот котел заправлял, отличить домашний борщ от столовского труда не составляет. Одним словом, масштабность применения современной пищевой технологии никак не способствует улучшению вкусовых свойств продуктов. И хотя исправить здесь что-либо очень трудно, но объективности ради о данной «поправке» забывать не стоит. Да и о второй причине некоторого ухудшения качества продуктов стоит помнить. А она весьма существенна.
Дело в том, что современное натуральное сырье, используемое пищевой промышленностью, по многим показателям весьма отлично от того, что широко применялось еще чуть ли не вчера. А поскольку при всем разнообразии ассортимента продукции, выпускаемой пищевой индустрией, она в основном варьирует все теми же компонентами, что составляли основу производства и в прошлом и в позапрошлом веках, их вкусовые достоинства для нее, а значит и для нас, отнюдь не безразличны. А ведь сырые мясо, рыба, молоко, фрукты и овощи с тех пор заметно трансформировались. Почему?
Да потому, что в своем извечном стремлении к интенсификации человечество резко изменило саму окружающую среду. В результате такого насильственного вмешательства почва и вода оказались перенасыщенными минеральными удобрениями и солями, а воздух загазован, что, в свою очередь, не замедлило сказаться на свойствах продуктов растениеводства и животноводства. Любая домашняя хозяйка отметит с огорчением, что рыба сегодня плохо жарится, а в варке и вовсе невкусна, мука давно не «та», а промороженное мясо отнюдь несопоставимо с охлажденным.
Так что же сделать? Как найти выход из сложившейся, прямо скажем, непростой ситуации? Ведь интенсификацию сельского хозяйства не остановить, не замедлить, более того, уже в ближайшие годы она обязательно резко возрастет, а технология хранения и переработки сельхозпродукции еще более «ужесточится». Таково уж веление времени: чтобы идти с ним в ногу, необходимо из года в год наращивать мощности пищевой индустрии. И постараться, добавлю я, ни в коем случае не ухудшать качества выпускаемой продукции. Задача, согласитесь, сложная, многотрудная. Но вполне разрешимая, если в основу ее положить все то же конструирование, открывающее возможность создавать продукты, по вкусу, запаху, внешним признакам не отличающиеся от традиционных, а по составу и сбалансированности аминокислот, белков и витаминов значительно их превосходящие.
Однако разница между конструированием, к помощи которого столь удачно прибегали в свое время многочисленные изобретатели от кулинарии, и современным его аналогом так огромна, что даже простое их сопоставление лично мне представляется, мягко говоря, неправомочным. Ну, хотя бы потому, что возможности современного конструирования, базирующегося на достижениях всего арсенала естественных наук, в том числе и биотехнологии, практически неограниченны. Именно эта уникальная возможность использования для достижения цели как результатов отдельных наук, так и сочетания целого их комплекса, и превратили конструирование пищи в своеобразный универсальный ключ, с помощью которого открываются даже двери «о семи замках».
Постучимся и мы в одну из них. А за ней, как говорится, проблема из проблем. Суть же ее в следующем: человеческий организм остро нуждается в такой незаменимой (напомню — не синтезируемой самим организмом) аминокислоте, как лизин. Потребность в нем выявлена медиками и диетологами давно и достаточно точно — пять граммов в сутки.
Что ж, совсем немного, возможно, скажет читатель. Стоит ли из-за такого мизера и разговор заводить!
Стоит. А чтобы это мое утверждение не принималось голословно на веру, порассуждаем на данную тему вместе. Итак, 5 граммов лизина гарантируют нашему организму тот самый баланс в обмене веществ, без которого невозможно нормальное функционирование всех его жизнеобеспечивающих систем. А стало быть, невозможно и состояние гармонии, взаимообусловленности в их деятельности, того, что в конечном счете на языке повседневности именуется коротко и ясно — здоровьем.
Но раз человеческий организм не может сам синтезировать лизин, почему бы не помочь ему? — вроде бы само собой напрашивается разрешение этой довольно сложной дилеммы.
Так, собственно, мы и поступаем, ежедневно потребляя с пищей белок растительного происхождения, в котором лизин содержится. Съесть 200 граммов белка белого (пшеничного) хлеба — значит получить необходимые 5 граммов лизина. Просто?
Не очень! Потому что 200 граммов этого самого белка содержится ни мало ни много в двух с половиной килограммах хлеба. Вот уж поистине: единого грамма ради — тысячи граммов «хлебной руды», которая отнюдь и не обязательна для организма. Зачем ему, скажем, лишний крахмал, дополнительные (помимо лизина) аминокислоты, без которых вполне можно обойтись, избыточные калории, наконец? Ведь с таким количеством хлеба человек получает их 8600 вместо 3000, необходимых для нормальной жизнедеятельности. И хотя «топка» нашего организма работает на мощнейшем химическом «топливе», но и ей не всегда оказывается по силам переплавить лишнюю «руду», к тому же значительно засоренную «пустой породой». Вот и складируются, оседают балластом в клетках лишние калории изо дня в день, из месяца в месяц. И уже нечем дышать, лишний вес мешает ходить, двигаться, работать.
Так что же? Безысходность?
Ни в коем случае! Если лизин добавлять непосредственно в хлеб, да еще в пропорции, соответствующей физиологическим потребностям человека, то уже 70 граммов белка такого обогащенного незаменимой аминокислотой хлеба окажется достаточным для покрытия нужд и потребностей организма.
Разумеется, и в этом случае нам придется съедать в день до килограмма белого хлеба, но все же килограмм — не два с половиной. К тому же и количество получаемых при таком употреблении хлеба калорий не превысит установленной медиками нормы — 3000.
Можно попробовать отыскать и наиболее рациональные способы введения в пищу столь необходимой нам незаменимой аминокислоты, и на этом тоже «сэкономить» сотню-другую калорий, но что ни придумывай, а привнести лизин в организм можно только извне. Разумеется, вариантов здесь существует довольно много.
Скажем, в хлеб его чаще всего вводят с сухим молоком, белок которого довольно богат лизином. А муку иногда обогащают синтетическими незаменимыми аминокислотами, «рожденными» в ферментере. Порой эти два способа сочетают, от чего вкусовые качества хлеба ничуть не страдают, а только улучшаются. Но все это, к сожалению, полумеры, лишь подступы к серьезной проблеме, так же серьезно именуемой: синтезирование белковой части пищи.
Разреши мы ее успешно — со всеми другими уж как-нибудь разберемся. Потому что и жиры, и углеводы (еще два основных компонента полноценной пищи) пищевая промышленность страны производит довольно давно и, надо сказать, успешно. С витаминами, без которых тоже невозможно сбалансировать по составу ни один пищевой продукт, надеюсь, вообще проблем не предвидится. Мы их выпускаем столько наименований и в таких количествах, что иной раз заглянешь в аптеку и, как говорится, глаза разбегаются. Чего только нет на витрине! А и А1, В и В16, С и Д, на любой вкус, для любого возраста, с учетом если не всех, то многих особенностей обмена веществ.
Правда, все это витамины, не предназначенные для применения в пищевой промышленности, и решение проблемы потребует введения в строй новых крупных мощностей. Но это, как говорится, дело второе. Главное в том, чтоб научиться синтезировать белок в больших количествах (малотоннажное производство мы давно освоили), в промышленных масштабах.
Не знаю, как долго наука билась бы над этой задачей, если б однажды умные люди не пришли к выводу, что делать этого… вовсе не требуется. Ну, в самом деле, для чего обязательно возводить белковый «небоскреб», если легче научиться синтезировать его составляющие «кирпичики»-аминокислоты? Тем более что в процессе пищеварения белок все равно распадается на те же аминокислоты, молекулы которых и попадают в конце концов к нам в кровь.
Кстати, именно синтезирование аминокислот, оказавшееся весьма реальным (позволю напомнить читателю, что несколько выше я уже рассказал об этом на примере треонина), и натолкнуло в свое время ученых еще на одну дерзкую мысль. А что, если, подумали они, создать такую смесь, такой аминокислотный «коктейль», чтобы любой их компонент усваивался организмом в темпе, соответствующем медленному пищеварению?
Возможно, что идея эта была порождена одной из критических ситуаций, которых в жизни бывает немало. Представьте себе хотя бы такую: реанимационная машина доставила в клинику человека, только что пережившего автомобильную катастрофу. Тяжелые травмы, полученные им, практически сделали невозможным нормальное питание, а лучше сказать — привычного способа питания. Между тем общеизвестно — выздоровление всегда находится в прямой зависимости от того, как и, главным образом, что больной будет есть. «Что» — это понятно, вероятно, согласится со мной читатель. А вот «как» здесь вроде бы и ни при чем.
— Очень даже причем, — посмею теперь возразить я. — Припомните-ка знаменитую «Тьму египетскую» Михаила Булгакова. Тот самый рассказ, в котором «интеллигентный» мельник выпивает разом все десять порошков хинина. «…Да, думаю, что валандаться с вами по одному порошку? Сразу принял — и делу конец…» А ведь неправильно и в не тех количествах принятая пища для тяжелобольного человека может оказаться не менее смертоносной, нежели пресловутый хинин. Вот здесь-то и нужна диета, компоненты которой представляли б собой некую «квинтэссенцию» самых необходимых для поддержания жизненного тонуса веществ.
И такая «пища» была в свое время создана, получив название диеты Виница. Она включала 51 вещество пяти различных групп, в том числе 20 аминокислот, 16 витаминов и жирную кислоту (этиловый эфир линолевой кислоты). Набор компонентов оказался поистине чудодейственным. Сроки выздоровления больных, питавшихся синтетической пищей, сократились, а подопытные животные, на которых параллельно велись испытания, чувствовали себя на ней превосходно. Казалось, они готовы были пребывать на «диете» неограниченно долго.
Но согласитесь, что хорошо для больного, не всегда оказывается по вкусу здоровому человеку, что охотно поедается животными, часто абсолютно не подходит людям. Другими словами, едва силы начинали возвращаться к получившему тяжелую травму или пережившему операцию человеку, он решительно отказывался от спасительной диеты, требуя привычной «земной» пищи с запахом и вкусом. Что ж, все логично и закономерно. Но диета Виница, которой так торопились пренебречь начинающие выздоравливать люди, уже свое дело сделала, воплотив в себе некий макет синтетической пищи, доказав миру саму возможность питания человека смесью синтетических веществ.
Но еще задолго до Виница эту возможность предвидел один из корифеев химии, французский ученый М. Бертло. Вот что он писал по данному поводу в 1897 году: «Часто говорят о будущем человеческого общества, и я хочу представить его таким, каким оно будет в 2000 году, разумеется, с точки зрения химика.
Тогда уже не будет ни пастухов, ни хлебопашцев: продукты питания будут создаваться химией. Не будет ни шахт, в которых добывается каменный уголь, ни горной промышленности. Благодаря успехам химии и физики будет решена проблема топлива. Все это мечты, и как их реализовать?
Основная задача науки в том, чтобы открыть неистощимые источники энергии. Непрерывные успехи науки рождают в нас надежду подчинить себе эти источники неисчерпаемой энергии. Например, чтобы использовать внутриземное тепло, достаточно вырыть скважину в 4–5 тыс. м глубиной, и эта задача нам посильна даже при современном состоянии техники, не говоря уже о технике будущего. В этих скважинах вода будет нагреваться и достигать давлений, способных приводить в действие машины. Земное тепло будет использоваться как неисчерпаемый источник термоэлектрической энергии.
Но вернемся к предмету нашего разговора — химии. При наличии такого источника энергии легко и экономично можно производить химические продукты в любое время, в любом пункте земного шара.
В этом и заключается экономическое решение самой важной задачи, а именно: производства продуктов питания. В основном эта проблема уже решена: синтез жиров и масел осуществлен за последние сорок лет, синтез азотсодержащих продуктов тоже недалек, а над синтезом сахара и углеводов сейчас усиленно работают…
…Проблема продуктов питания — проблема химии. Когда будет получена дешевая энергия, станет возможным осуществить синтез продуктов питания из углерода (полученного из углекислого газа), из водорода (добытого из воды), из азота и кислорода (извлеченных из атмосферы).
Ту работу, которую до сих пор выполняли растения при помощи энергии солнца, мы уже осуществляем и в недалеком будущем осуществим в более широких масштабах, ибо власть химии безгранична…
Азотистые вещества, синтетические жиры, крахмал или сахар — все это будут изготовлять наши заводы в огромном количестве; производство искусственных продуктов питания не будет зависеть ни от времени года, ни от дождей, ни от засухи, ни от мороза, наконец, все это не будет содержать болезнетворных микробов — первопричины эпидемий и врага человеческой жизни. Химия осуществит коренной переворот, важность которого никто не может представить. Исчезнет разница между урожайными и неурожайными районами.
Но не думайте, что в этой всемирной державе могущества химии исчезнут искусство, красота, очарование человеческой жизни. Если землю перестанут использовать для выращивания продуктов сельского хозяйства, она вновь покроется травами, лесами, цветами, превратится в обширный сад, орошаемый подземными водами, в котором люди будут жить в изобилии и испытают все радости легендарного „золотого века“…»
Сегодня, стоя у порога века XXI, мы видим, сколь справедливыми и провидческими оказались во многом предсказания великого Бертло. Одного не учел исследователь: инертности нашего мышления, раз и навсегда связавшего понятие синтезированной пищи с понятием ненатуральной. Традиционная приверженность к тем или иным блюдам, продуктам, запахам, вкусам оказалась столь сильной, что даже многие пищевые продукты, созданные из самых «разнатуральных» компонентов, воспринимаются как «синтезированные». Где уж тут полностью перейти на синтезированную пищу, когда и «сконструированная» из натуральных продуктов, она вызывает самое негативное отношение.
Мне доводилось, например, не раз и не два отведывать бифштекс из… сои. Сочный, аппетитный, с ароматным запахом молодой говядины, он удовлетворил бы самым изысканным гастрономическим вкусам, но лишь в том случае, если тот, кто ел, не знал, что мясо здесь заменено соей — своеобразным «чемпионом» среди растений по содержанию белка.
В общем, Бертло в своей увлеченности несколько переоценил нашу способность рационального отношения к пище и недооценил традиционность вкусов, приобретших статус своеобразного культа. Предложите, к примеру, французу окорочек лягушки — он сумеет отдать ему должное, а вот среди русских навряд ли найдется смельчак, рискнувший хотя бы пригубить столь изысканное блюдо. Но даже диаметрально противоположные по вкусовым привязанностям люди, как правило, едины в неприятии синтетической пищи. И это стойкое неприятие необходимо преодолеть. Как? Вопрос не простой. Ну, наверное, прежде всего воспитанием, постепенным включением в ежедневный рацион отдельных синтетических продуктов.
Правда, синтетическая пища все чаще вербует себе сторонников среди тех, кого заставляют прибегнуть к ней своеобразные условия работы и всевозможные жизненные обстоятельства.
Возьмите тех же космонавтов. Им постоянно приходится довольствоваться супами, вторыми блюдами и десертами, упрятанными в тубы. И хотя мне самому не доводилось попробовать этой сугубо специализированной пищи, знаю, что по вкусу и запаху она вполне соответствует существующим в жизни аналогам. А вот по внешнему виду, форме, облику — увы! — ничего схожего.
Правда, судя по печальному опыту с соевыми бифштексами, абсолютно и внешне и по вкусовым качествам воспроизводящими достоинства мясных и все же не пользующихся популярностью, дело здесь опять же в привычках и традиции. Не зря же все побывавшие в космосе, где длительное время питаются «консервами из квинтэссенций», так мечтают по возвращении на землю испить холодной воды и вкусить нечто до боли привычное — черного хлеба, например, крепко сдобренного солью.
Однако проблема привычности хотя и большой, но не главный камень преткновения на пути создания новой пищи. Ей-то как раз вполне можно придать любой внешний облик, в том числе традиционного блюда. Но… все мы знаем, например, как широко используются белковые добавки при изготовлении фарша. Такой фарш даже получил название «Особый». Он более питателен, нежели целиком изготовленный из натурального мяса. И все-таки приверженцев у него несколько меньше, чем у обычного. Почему?
Ответить на этот вопрос несложно: вкус и запах белкового фарша несколько иной, нежели у традиционного. И здесь тоже никакой загадки нет. Просто белок, включенный в его состав, сам по себе ни тем, ни другим не обладает. Хотя именно органолептические данные комбинированных продуктов (сочетание внешнего вида, запаха, вкуса) и являются, как правило, главной причиной нашего с вами их невосприятия.
Но конструирование пищи — нечто большее, чем воссоздание заново «препарированных» для тщательного исследования естественных продуктов, ибо главная цель такого воссоздания — непременное улучшение образцов, избавление их от тех просчетов, которые когда-то, конструируя то или иное вещество, допустила природа.
И, возвращаясь к фаршу с белковыми добавками, скажу, что сделать его полнейшим аналогом натурального и по органолептическим качествам сегодня уже не составляет трудности, потому что ученые Института элементоорганических соединений АН СССР разработали способы синтезирования серусодержащих органических соединений, придающих мясу специфический запах.
Популярный журнал «Химия и жизнь» в одной из своих публикаций сообщил своим многочисленным читателям об этом достижении как всегда по-деловому и общепонятно: «Они прошли медико-биологические испытания и допущены для ароматизации пищевых продуктов. Аналогичный ароматизатор — 2-метил-3-меркаптопропанол-1 создан Физико-химическим институтом АН УССР, и уже осваивается его опытное производство.
Необходимость разложить запах на составные части и воссоздать его синтетическим путем иногда возникает даже в том случае, когда речь идет о природных пахучих веществах. Например, лимонная эссенция — комплекс эфирных масел лимона — широко используется в кондитерском деле, производстве различных напитков. Но в последние годы на лимонных плантациях советских субтропиков обыкновенный лимон заменен лимоном Мейер с повышенной устойчивостью к холодам и болезням. Однако у него несколько иной запах: его эфирные масла содержат много тимола и не могут заменить обычную лимонную эссенцию. Только недавно в Институте биохимии растений АН СССР найден способ „отредактировать“ этот запах, отделить от эфирных масел лимона Мейер тимол и ввести в них недостающие карбонильные соединения и эфиры терпеновых спиртов».
Но сколь ни значительны вышеназванные проблемы, существует еще одна, от которой в конечном счете зависит вкусовое достоинство конечного продукта. Это — структурообразование. На ней мне и хотелось бы остановиться подробнее. Тем более что разговор на данную тему непременно приведет нас еще к одной «двери о семи замках», которую общими усилиями мы попытаемся «открыть». Но задумаемся прежде над таким, казалось бы, несложным вопросом, как много или мало мы едим.
— Много, — молниеносно отреагируют на него одни. — Чего уж тут думать, когда вокруг столько тучных людей.
— Мало, — ответят другие. — Доказательства? Пожалуйста. Согласно Продовольственной программе каждый из нас должен потреблять в год мяса 70 килограммов, а мы и 60 никак не осилим…
Так кто же из высказывающих столь противоположные точки зрения в конце концов прав?
Сразу скажу — оба. Потому что мы действительно переедаем, потребляя с пищей гораздо больше калорий, нежели это позволено нашим малоподвижным образом жизни. И одновременно недоедаем, учитывая недостаток белков в той пище, которую едим. Как же состыковать эти две проблемы, приведя их в более строгое соответствие?
Только обратившись к одному из аспектов конструирования пищи — структурообразованию — и попытавшись в нем отыскать тот самый неиспользованный резерв! Он и позволит разрубить гордиев узел, довольно прочно затянутый сейчас в силу различных обстоятельств на проблеме создания оптимальных по своему составу и структуре продуктов питания.
Такой резерв существовал, как говорится, испокон веков. С того самого момента, когда человек, быть может, еще не осознавший себя таковым, сорвал с дерева первый плод. А вместе с ним вкусил и клетчатку, судьба которой с гастрономической точки зрения сложилась, скажем прямо, очень сурово. Потому что чем цивилизованней становилось общество, тем решительней изгоняло оно из пищи злосчастные волокна. А тот, кто их употреблял (ну, скажем, ел яблоко с кожей), причислялся к клану бескультурных.
Грубая пища выживалась из нашего рациона столетиями. Причем тенденция эта проявлялась повсеместно, чуть ли не на всех континентах. Да и как мог позволить себе человек, достигший невиданного могущества, есть то же, чем питался его полудикий предок! К тому же пищевые волокна для организма — балласт. И это действительно так: они минуют наш пищеварительный тракт, не подвергаясь практически никаким изменениям. Целлюлоза и гемицеллюлоза, различные пектиновые вещества и лигнин — не что иное как клеточные стенки растений — в лучшем случае попадали в хлев скоту, который, как было давно подмечено, без грубых кормов обходиться не может.
А человек? Разве его органы пищеварения не атрофируются без постоянной нагрузки? Разве им не нужно трудиться, дабы всегда поддерживать свой тонус?
Первыми негативные последствия пренебрежения к пищевым волокнам ощутили медики: слишком много появилось в клиниках больных с жалобами на перебои в работе кишечника, желудка. Стремление понять причину неожиданной «эпидемии» привело к анализу пищи. При этом выявилось любопытное обстоятельство: чаще всего недугами пищеварения страдали люди, полностью исключившие из своего рациона весь растительный балласт.
Тогда сравнили рацион госпитализированных с тем, что еще совсем недавно ели наши предки, практически не знавшие подобных болезней, и удивились. Они, оказывается, были куда как дальновиднее нас. В одной из статей, посвященных проблеме конструирования пищи, заместитель начальника Управления агропромышленного комплекса Госкомитета СССР по науке и технике А. Н. Богатырев приводит, например, такой любопытный факт: «Вполне достаточное количество пищевых волокон (а заодно и некоторых витаминов) содержал некогда рацион солдата русской армии: три фунта — около 1300 г — черного хлеба и два раза в день по порции щей и каши. А многие ли из нас сейчас осилят ежедневно такое количество грубой пищи?»
Думаю, что единицы. Между тем, кроме чисто механического стимулирования органов пищеварения, безусловно, остро необходимых в век гиподинамии, пищевые волокна выполняют еще и обязанности своеобразных санитаров. Ведь некоторые из них обладают способностью абсорбировать (впитывать в себя и выводить из организма) ядовитые и вредные продукты полураспада (обмена) веществ и даже химические вещества, привнесенные в наш организм из внешней среды. Обратите внимание, в диетических магазинах столицы появились отруби, так долго отсутствовавшие на их прилавках.
И в чистом виде, и вместе с мукой грубого помола они успешно выполняют те самые функции, о которых я только что рассказал. К тому же волокна отрубей и свеклы связывают еще и некоторые желчные кислоты, определяющие, в свою очередь, уровень холестерина в крови. Есть среди пищевых волокон и рекордсмены по удалению из организма веществ, входящих в состав выхлопных газов автомобилей. Они способны нейтрализовывать даже свинец.
Удивительно ли, что интерес к пищевым волокнам во всем мире резко возрастает? К тому же ведь это возобновляемое сырье… Его можно получить из растений в неограниченном количестве. Причем из растений любых. Даже древесина — кладезь пищевых волокон. Недаром в ГДР древесную целлюлозу добавляют в муку. На вкусовых достоинствах хлеба, испеченного из нее, это никак не сказывается, а черствеет он гораздо медленнее обычного. Да и калорийность хлеба с целлюлозной добавкой падает почти на целую четверть.
Есть и в нашей стране поучительный опыт включения пищевых волокон в состав продуктов. Так, Тираспольский консервный завод еще несколько лет назад освоил выпуск кабачковой икры с добавлением волокон люцерны. Икра осталась такой же вкусной, как и прежде, а консистенция ее значительно улучшилась.
Но, кроме всего прочего, использование в пищевой промышленности растительных волокон обладает еще одним достоинством. Некоторые из них содержат витамины, недостаток которых резко ощущается по весне, а некоторые способствуют их синтезированию самим организмом.
Одним словом, включение растительных волокон в качестве обязательных компонентов в продукты питания отнюдь не превращают их в какой-либо суррогат, а лишь значительно улучшают структуру.
Разумеется, разнообразить и усовершенствовать пищу можно за счет всех ее компонентов. В том числе и за счет жиров. Помните поговорку: живет, мол, человек, как сыр в масле катается. Она когда-то олицетворяла собой не только характер питания, но и целый стереотип образа жизни: изобилие-то, достаток ассоциировались чаще всего с жирной пищей.
Но вот минули годы. Уже давным-давно не существует в стране проблемы простого насыщения, а характер всех продовольственных вопросов приобрел непредсказуемый прежде аспект. Сейчас речь идет прежде всего о создании изобилия научно обоснованных, сбалансированных по своему составу продуктов питания. А это, согласитесь, нечто другое, нежели простое увеличение выпуска хлебобулочных и макаронных изделий, круп, масла.
Безусловно, путей «выравнивания» соотношения компонентов в пищевых продуктах существует довольно много. И каждая страна по-своему пытается нивелировать их перенасыщение жирами, а вместе с тем и калориями. Однако в определении «виновника» такого перенасыщения единодушны все: имя его — молочный жир. Как же снизить употребление последнего? Или, на худой конец, заменить на нечто более «легкое»?
США, например, избрали путь решительного сокращения производства и, стало быть, употребления сливочного масла, отдав предпочтение различным сортам и видам маргаринов.
Что ж, как говорится, каждому свое. Для нашей страны такой путь неприемлем, поскольку употребление сливочного масла в СССР традиционно привычно, а маргарин при всех его достоинствах используется лишь в кулинарии и, надо сказать, в весьма ограниченных количествах. Вот почему мы предпочитаем сохранить сливочное масло в номенклатуре пищевых продуктов, резко снизив, однако, содержание в нем молочного жира.
Вам наверняка уже встречались такие сорта масла. Например, «Крестьянское» (в нем 75 процентов жира), «Бутербродное» (60 процентов), «Здоровье» (только 40 процентов). Все они, безусловно, очень полезны людям пожилого возраста и тем, кому по состоянию здоровья молочный жир вреден.
Но даже такой, без сомнения, облегченный путь отвыкания от традиционного, привычного продукта питания вызывает некоторое недовольство. В первую очередь со стороны медиков, поскольку с уменьшением содержания в масле молочного жира в нем сокращается и количество витамина А. Во-вторых, со стороны покупателей, поскольку потребительские качества новых сортов несколько иные, чем у традиционных, так как сама технология их создания определена целевым назначением продукта.
«Бутербродное» — разве название сорта не говорит о том, что его нужно намазывать на хлеб? Однако большинство из нас упорно пытается на «Крестьянском» масле жарить, да еще при этом ворчит, что масло-то странное, пенится. Не химия ли причастна к его созданию?
Что ж, могу сказать с полной ответственностью, — нет, не химия. Все конструированные пищевые продукты в наше стране вырабатываются из натурального, естественного сырья растительного или животного происхождения.
Правда, его достоинства и возможности открываются сейчас несколько в ином, соответствующем задачам дня аспекте. Ибо речь идет о создании пищи, само существование которой еще совсем недавно казалось невозможным сразу по нескольким причинам. Ну во-первых, потому, что в ее появлении не было потребности. И традиционная пищевая технология, складывавшаяся в условиях главенствования физического труда, ставила своей задачей прежде всего создание продуктов, компенсирующих энергетические затраты организма. А задача, как известно, определяет выбор средств. В данном случае — подбор сельскохозяйственных культур и способов их переработки. К тому же и научного, глубокого осмысления самой биологической ценности пищи до поры до времени не существовало.
И, наконец, не было глубокого фракционирования (разделения) компонентов пищи, ибо оно тоже смогло появиться лишь на базе определенных знаний и научных достижений.
Между тем вопрос «хлеба насущного» из года в год приобретал все большую остроту, ибо, помимо удовлетворения прямых потребностей в нем самого человека, приходилось думать и о других нахлебниках той трофической (пищевой) цепи, в которую он входил, причем на правах только третьего «компаньона». Лидировали же в ней всегда растения, так как одни они, используя солнечную энергию, способны из неорганических веществ синтезировать (обратите внимание на слово «синтезировать», оно вас не настораживает в таком контексте?) органические. За ними следовали растительноядные животные, а потом уж Его Величество Homo sapiens.
И нужно сказать, что от щедрого стола, накрытого самой природой, доставалось ему при всех хлопотах и расходах не так уж и много. Ведь конверсия, то есть эффективность превращения белковых веществ, содержащихся в кормах, в белок продуктов животноводства очень невысока. Как только эта неутешительная истина предстала перед человечеством во всей своей наготе, оно просто не могло не задуматься над ее экономическим аспектом.
Ну, в самом деле, как рациональнее, выгоднее использовать энергетическую мощь одного гектара земли? Вырастишь на нем сою — прокормишь одного человека 5560 дней, пшеницу — 2218, рис или кукурузу не более 1883 дней. Ну а если продукцию того же гектара использовать для производства молока, мяса, птицы, свинины, говядины?
Цифры окажутся и того скромнее. И человек сможет «продержаться» на полученных с него продуктах соответственно 590, 463, 323 и 193 дня.
Вывод, как говорится, напрашивался сам собой: разумнее всего синтезировать биологически ценную пищу из растительного сырья. При этом можно, было б одновременно «убить» даже не двух, а гораздо больше «зайцев». Во-первых, в изобилии обеспечить человечество пищей, во-вторых, превратить пищевую индустрию в отрасль, независимую от природных условий. И, наконец, в-третьих, сконцентрировать всю индустрию проектов питания в одном месте, исключив тем самым те непроизводительные потери, которыми так грешит современное сельское хозяйство.
Заманчиво, верно? И не о том ли мечтал еще четверть века назад выдающийся ученый, академик А. Н. Несмеянов, излагая IX Менделеевскому съезду по общей и прикладной химии свои мысли по проблемам синтеза пищи:
«Синтетическая пища, несомненно, должна быть снабжена всеми необходимыми солями и витаминами…
…Роль остальных трех групп (белков, жиров, углеводов. — Авт.) — в обеспечении организма энергией и строительным материалом. Большую часть первой функции несут углеводы и жиры, большую часть последней — белки…
Они являются единственными поставщиками азота для организма. Строясь из аминокислотных остатков и распадаясь в пищевом тракте на аминокислоты, они поставляют эти структурные кирпичи для создания собственных белков организма, причем из 20 необходимых организму разнообразных аминокислот 8 так называемых незаменимых непременно должны содержаться в пище. Для детей к ним добавляется девятая — аргинин…
Белки для человека — самая дефицитная и дорогая часть пищевого рациона, и самая ценная и дефицитная составная их часть — группа незаменимых аминокислот.
При резкой белковой недостаточности развиваются специфические болезни, известные жителям Южной Америки, Индонезии, Южной Азии и Африки. Авторитеты считают, что более половины населения земного шара систематически голодает (получает в сутки менее 2200 ккал), особенно выражен в пище дефицит белка. Бразилец Ж. Кастро написал серию книг „География голода“, где можно найти описание различных аспектов и подробностей проблемы голода и недоедания. Считают, что мировой дефицит белка в год равен 15 млн. т. Менее освещена проблема некомпенсированного питания, приводящая к другому кругу болезней, основная из которых ожирение. В том и другом случае белковая недостаточность сводится к дефициту некоторых незаменимых аминокислот…
Главное сейчас… получение белкового ингредиента пищи. Есть еще одна возможность индустриального получения белка — микробиологический путь, независимый от сельского хозяйства…»
И вновь научное предвидение себя оправдало. Именно с помощью микробиологического синтеза сегодня можно получать пищевой белок из любого сырья, содержащего белок кормовой.
И не только из хорошо освоенных микробиологической промышленностью кормовых дрожжей. Современная микробиология значительно расширила способы и методы его извлечения из самых разных источников: например, из растительных отходов и отходов переработки древесины.
Но не зря, говоря о конструировании пищи, я счел нужным оговориться в той части своего рассказа, где речь шла о возможности использования иных, нетрадиционных пищевых резервов сырья, употребив весьма расплывчатое словечко «пока». Кто знает, может, правы все же М. Бертло и А. Н. Несмеянов, разделенные во времени более чем столетием, но утверждавшие одно и то же с одинаковой страстностью: проблема пищи — проблема химии.
Жизнь, как говорится, покажет, не будем торопиться с выводами. Тем более что существует по данному поводу еще одно весьма авторитетное мнение. Принадлежит оно Дмитрию Ивановичу Менделееву: «Как химик я убежден в возможности получения питательных веществ из сочетания элементов воды, воздуха и земли помимо обычной культуры, т. е. на особых фабриках и заводах, но надобность в этом еще очень далека от современности, потому что пустой земли еще много… и я полагаю, что при крайней тесноте народонаселения раньше, чем прибегать к искусственному получению питательных веществ на фабриках и заводах, люди сумеют воспользоваться громадной массой морской воды для получения массы питательных веществ, и первые заводы устроят для этой цели в виде культуры низших организмов, подобных дрожжевым, пользуясь водою, воздухом, ископаемыми и солнечной теплотой».
Полностью разделяя эту точку зрения нашего великого химика, добавлю, что именно биомассе, полученной микробиологическим путем, и отдает предпочтение отечественная пищевая промышленность. Ибо только она способна поставлять последней пищевые компоненты, безвредность которых для человеческого организма гарантирована самым строгим ОТК на свете — природой.
А ведь синтезируя, создавая пищу наших дней и ближайшего будущего, мы ориентируемся в первую очередь именно на природные образцы. Эталоном же сбалансированности по аминокислотному составу пищевого продукта учеными всего мира признано грудное женское молоко.
Приблизиться к подобному составу хотя бы по основным компонентам, значит, решить одну из сложнейших проблем создания пищи.
И здесь переоценить роль биотехнологии очень трудно. Ибо только она располагает уникальной возможностью получения необходимой для производства пищевых компонентов биомассы, во-первых, дешево, а во-вторых, в самые сжатые сроки.
Судите сами, чтобы мясной скот вдвое увеличил свой вес, потребуется более 1000 часов откорма, цыпленку «хватит» и 400 (вот, кстати, почему во всех странах мира, кроме нашей, где еще действуют несоответствующие затратам производства цены, мясо птицы намного дешевле говядины), а микроорганизмам (бактериям и дрожжам) для такой же точно «наработки» окажется достаточным немногим более часа. Так что комментарии, как говорится, излишни.
Можно привести еще великое множество примеров, когда биотехнологические методы оказываются самыми выгодными при получении пищевых продуктов. И не только белка.
Взять, к примеру, проблему синтетических подсластителей. В частности, аспартама. Его производство уже налажено в США в широких масштабах, а теперь над той же проблемой работают и отечественные биотехнологи. Аспартам — интенсивный синтетический подсластитель, в 200 раз слаще сахара, и потому его потребление может быть сведено к весьма малым количествам.
Для получения аспартама необходимо иметь две аминокислоты — аспарагиновую и фенилаланин. Их, в свою очередь, тоже необходимо синтезировать. В общем, проблема достаточно сложна, поскольку в ней переплетены многие аспекты биотехнологии. Вот что по этому поводу сказал в одном из своих интервью член-корреспондент АН СССР В. Г. Дебабов:
«…Итак, сначала — аспарагиновая кислота. На лабораторном уровне биотехнологический способ ее получения уже разработан в академическом Институте биохимии имени А. Н. Баха под руководством члена-корреспондента АН СССР И. В. Березина. Очень эффективный способ: берется колонка с иммобилизованными клетками, сверху подаются исходные вещества — фумаровая кислота и аммиак, а снизу вытекает раствор L-аспарагиновой кислоты, причем работать колонка может очень долго без замены „начинки“…
Далее — фенилаланин. Производить его микробиологическим методом пока никто не умеет. Но у нас и тут есть кое-какой задел. Прежде всего, мы имеем штамм коринебактерии, который вырабатывает фенилаланин. Относительно мало, правда, но мы надеемся его усовершенствовать.
И здесь нам очень помог еще один академический институт — Институт молекулярной генетики. Дело в том, что генетика, а тем более генная инженерия коринебактерий изучены плохо и, главное, до сих пор в распоряжении ученых не было плазмиды, которую можно было бы нагрузить нужным геном и ввести в клетку коринебактерий. А теперь такая плазмида появилась — этим мы обязаны недавно скончавшемуся Роману Бениаминовичу Хесину-Лурье, замечательному биохимику и молекулярному биологу, работавшему в Институте молекулярной генетики. На время отпуска он обычно отправлялся куда-нибудь в поход и всегда привозил с собой коллекции собранных бактерий. И вот в одной из таких коллекций нашлась плазмида, которая может передаваться коринебактериям. Теперь, имея эту плазмиду, мы можем, с одной стороны, теоретически изучать генетику коринебактерий, что само по себе очень интересно и важно, а с другой — уже генноинженерными методами совершенствовать наш штамм.
Наконец, имея аспарагиновую кислоту и фенилаланин, нужно будет получать из них сам конечный продукт — аспартам… У нас уже есть метод, позволяющий соединять… защищенную аспарагиновую кислоту с метиловым эфиром фенилаланина — после этого достаточно убрать защитную группу, и получится аспартам. Очень красиво выглядит такой синтез. Оба исходных вещества растворимы в воде — вы прямо на лабораторном столе сливаете растворы, добавляете немного фермента, и у вас на глазах выделяется нерастворимый продукт…
Правда, предстоит поработать еще с ферментом, который нужен для этой реакции. Он выпускается отечественной промышленностью, но такой фермент для наших целей недостаточно чист. Мы придумали хороший способ его очистки с помощью аффинной хроматографии, которым пока пользуемся, но для крупномасштабной технологии он неудобен. Поэтому придется пойти по уже привычному для нас генноинженерному пути — клонировать ген, производящий этот фермент, ввести его в ту же самую сенную палочку, и она будет делать такой фермент, какой нам нужен».
Согласитесь, перспективы весьма обнадеживающие.