Плодоносящие идеи

Однажды физик с мировым именем назвал своего молодого коллегу релятивистским инженером. Но просил не говорить ему об этом, считая, наверное, что такая необычная и «приземляющая» характеристика может обидеть ученого. Тот, однако, был польщен (я знаю об этом, что называется, из первых рук). Инженер, создающий сооружения из разогнанной до околосветовой скорости неосязаемой материи, которую он при этом изучает, что может быть интереснее?! Так рассуждал молодой ученый.

С этого памятного разговора прошло более четверти века. «Релятивистский инженер» давно уже признан физиком мирового класса. Скоро «инженерия» такого типа — конструирование устройств из раскаленной плазмы или синтез гена — станет уже обыденной задачей ученых.

Более того, такое свободное обращение с «кирпичиками», лежащими в основе живой и неживой материи, есть некий символ нынешней ступени развития науки: не просто стремительно сокращается расстояние между накоплением фундаментальных знаний и превращением этих знаний в конкретное, ощутимое благо. В значительной степени нарушается и традиционное разделение труда между этими двумя сферами научной деятельности.


На прицеле — вирусы

Известно, что любой вирус, проникнув внутрь клетки человека, животного или растения, должен обязательно сбросить подавляющую часть своих защитных белковых одежд. Молекула нуклеиновой кислоты вируса, несущая сведения о всех его злокозненных свойствах, оказывается в этот момент гораздо более доступной для воздействия. В таком виде она дает начало сотням новых вирусных частиц. Вирусный пожар губит пораженную клетку и перебрасывается на соседние, охватывая зачастую весь организм. Так, вирус клещевого энцефалита поражает клетки человеческого мозга, вирус ящура — клетки кожи и слизистых оболочек животных, икс вирус — клетки картофеля и иных растений.

Мысль сибирских исследователей из Института цитологии и генетики заключалась в том, чтобы воспользоваться оголенностью вирусных нуклеиновых кислот внутри клетки и атаковать их в этот период с помощью ферментов, называемых нуклеазами.

Многочисленные исследования показали, что нуклеазы действительно тормозят синтез вирусных нуклеиновых кислот и прерывают размножение разнообразных вирусов, не нанося ущерба организму. Ученые овладели, таким образом, новым оружием против многочисленных возбудителей опасных заболеваний. Клинические испытания, проведенные по предложению института, показали, что нуклеазы полезны при лечении тяжелых вирусных поражений глаз, кожи, нервной системы.

Отдельно следует сказать о вирусном клещевом энцефалите. Недавно завершены многолетние испытания рибонуклеазы в Западной Сибири, на Урале, Дальнем Востоке. Их проводили опытные специалисты разных клиник страны. И вот к каким выводам они пришли: применение рибонуклеазы в три-четыре раза сокращает трагические исходы болезни, облегчает ее течение — вдвое быстрее исчезают основные признаки заболевания, значительно меньше страдает от «вирусного пожара» головной и спинной мозг. И никаких побочных эффектов от лекарства. Его уже производит промышленность и получают клиники.

Вирусы человека, животных и растений устроены и действуют почти одинаково. Поэтому и бороться с ними можно одним оружием.

На Международном конгрессе пчеловодов в Москве был признан успех советских ученых в борьбе с вирусным параличом пчел. В большинстве стран мира, где занимаются пчеловодством, известна эта губительная болезнь, от которой не спасало ни одно средство, а сбор меда уменьшался наполовину. Нуклеазы, широко испытанные совместно с Московской ветеринарной академией и Дальневосточным научно-исследовательским ветеринарным институтом, стали первым надежным средством защиты пчел. Сибирские исследователи разработали теорию и экспериментально доказали ее справедливость, а далее теория, воплощенная в новые препараты, шагнула не только в медицинские клиники, но и в практику сельского хозяйства.


Внимание: время атаковать!

Давняя мечта генетиков и селекционеров — направленные мутации. Не сотни вариантов случайных наследственных изменений, из которых приходится кропотливо отбирать полезные, а предельно точное воздействие на генетический аппарат.

Представьте себе почтальона, который попал в новый типовой квартал, где на домах не успели вывесить номеров. Легко ли ему будет доставить письмо некоему Сидорову по нужному адресу! (Сам же Сидоров безошибочно узнает свой типовой дом, ибо, пользуясь терминологией биохимиков, «имеет к нему высокое сродство».)

Примерно в том же положении оказываются химические вещества-реагенты, направленные экспериментатором к основному веществу наследственности — ДНК. Здесь они сталкиваются с проблемой неосведомленного почтальона: однообразная длинная молекула не имеет для них выделенных точек — адресов. И в случае химического мутагенеза проблема обычно решается примерно так: многократно повторенное известие бросают по все почтовые ящики всех домов в надежде, что и Сидоров его получит. Вот почему вероятность мутации определенного гена при этом чрезвычайно мала: из миллиона химических ударов по наследственному аппарату бактерий в цель попадает только один.

Не так давно новосибирские ученые высказали мысль, у которой оказалась завидная судьба всех простых и остроумных идей: когда она была произнесена, показалось просто удивительным, как до сих пор это не приходило никому в голову. Тем более что идея эта опирается на достаточно хорошо изученное свойство наследственного вещества.

Известно, что размножение клетки начинается с самоудвоения репликации нуклеиновой кислоты. Причем волна репликации постепенно движется вдоль длинной молекулы наследственного вещества. Исследования показали: участок молекулы, который в данный момент удваивается, значительно более чувствителен к воздействию химических мутагенов — факторов, вызывающих изменения в наследственных записях. Точно изучив движение волны репликации, можно выбрать наиболее подходящий момент для воздействия на интересующий нас ген.

Итак, беспорядочные химические или радиационные атаки на наследственное вещество уступают место коротким, буквально по минутам рассчитанным ударам в момент репликации определенного гена. При этом вероятность мутации этого гена неизмеримо возрастает, а с нею — вероятность запланированных полезных изменений. И наш «почтальон» несет всего лишь одно послание: для Сидорова, и только для него.

Следовательно, можно быстрее получить неслыханную продуктивность микроорганизмов, синтезирующих лекарства, в том числе антибиотики, ферменты, или, к примеру, выключить некоторые участки бактериальной нуклеиновой кислоты, несущие болезнь.

Такой подход был экспериментально разработан в Сибири и в США независимо и почти одновременно (наши исследователи чуть опередили американских коллег).


Вакцина для картофеля?

Природа одарила наперстянку мощной защитой от вредных насекомых. Вкусив сок этого растения, они гибнут. А человек сознательно использует гликозиды наперстянки в очень малых дозах для стимуляции сердечной деятельности. Это широко известные препараты дигиталиса.

О том, что растения наделены устойчивостью к вредным влияниям, невосприимчивостью к болезням, догадаться нетрудно, иначе на Земле вряд ли бы существовали те формы жизни, которые сделали ее цветущей планетой.

Среди миллионов микроорганизмов в воздухе, в воде, в почвах есть масса охотников полакомиться питательными веществами, заключенными в стеблях, листьях и плодах растений. Но картофель, например, подвержен всего нескольким болезням, а к тысячам других устойчив…

Каждый наслышан об иммунитете человека и животных, об одной из самых мощных его армий — антителах, оперативно стягивающих свои силы к очагу болезни по кровеносным магистралям… А невосприимчивость растений? Ведь они лишены кровеносной системы и не способны образовывать антитела. На чем же основан их иммунитет?

В лаборатории иммунитета растений Института биохимии Академии наук СССР имени А. Баха стремятся найти главное слагаемое сложного понятия невосприимчивости к болезням. Совсем недавно здесь было установлено, что растения, хотя и не образуют антитела, наделены тонким механизмом, который помогает «распознать» возбудителя болезни и тотчас его отторгнуть.

Это совсем новая страница микробиологии — изучение иммунитета растений к микроорганизмам. Первую скрипку здесь играет «скрытое воинство» растительной клетки — фитоалексины. Речь идет о своеобразных антибиотиках, фитонцидах, которых нет в здоровом растении. Но как только оно вступает в контакт с болезнетворным началом, все меняется: в клетках, непосредственно примыкающих к очагу инфекции, быстро синтезируются фитоалексины свойственной только ему химической природы.

Однако любой фитоалексин может защитить растение от многих болезней. Главное, чтобы синтез фитоалексинов начался быстро: промедление в буквальном смысле смерти подобно, ибо растение оказывается беззащитным.

Как ни странно, «включает» биосинтез фитоалексинов сам микроб. Из возбудителя наиболее опасной болезни картофеля — фитофторы, например, удалось выделить четыре соединения, способных «запускать» всю систему защитных реакций, включая и производство фитоалексинов.

Вполне понятно, что микроб (здесь речь идет о паразитарных грибах) всячески маскирует от растения такого рода вещества, либо скрывая их за клеточными мембранами, либо выставляя вперед при контакте с клеткой другие соединения и лишая, таким образом, растение способности защищаться.

В институте поставили простой и наглядный эксперимент: ломтики картофеля обработали веществами, выделенными из возбудителя фитофторы. Срезы оказались устойчивыми ко всем разновидностям этой болезни.

Опыты перенесли на поля Института картофелеводства, плодоводства и овощеводства Белоруссии. Перед посевом клубни картофеля обработали одним из испытанных в лаборатории веществ. И на полях был получен очень обнадеживающий результат: картофель оказался более устойчив не только к фитофторе, ко всем болезням, заметно увеличился урожай.

Похоже, исследователи стоят на пороге принципиально новых подходов к защите растений от болезней, которые наносят огромный ущерб сельскому хозяйству всего мира. Подход этот основан на повышении жизнестойкости самих растений с помощью безвредных для окружающей среды веществ.

Загрузка...