Глава 13. ПАДАЯ ВВЕРХ

Морщины времени

В начале 1990-х годов скептики, имевшие собственные излюбленные теории, продолжали ставить под сомнение как модель Большого взрыва, так и теорию инфляции{263}. На встрече Американского астрономического общества, проходившей в январе 1990 года в Арлингтоне, штат Виргиния, Джон Мазер, научный руководитель проекта FIRAS, одного из трех приборов, находившихся на борту обсерватории СОВЕ, представил первые результаты, полученные с помощью этого космического аппарата. В своей книге «Морщины времени» (Wrinkles in time) Джордж Смут и Кей Дэвидсон описывают момент, когда Мазер продемонстрировал график, изображенный на рис. 13.1: «Когда на экране проектора возникло изображение, на мгновение в воздухе повисла тишина. Затем публика встала и раздался взрыв аплодисментов»{264}. Чернотельная природа реликтового излучения окончательно подтвердилась{265}.

Спектр реликтового излучения согласно измерениям СОВЕ

Рис. 13.1. Спектр реликтового излучения, измеренный с помощью спектрофотометра в далеком инфракрасном диапазоне (FIRAS). Нижняя шкала соответствует обратной длине волны, которая прямо пропорциональна ее частоте. Кривая соответствует планковскому спектру черного тела для температуры 2,75 К. Изображение предоставлено Центром космических полетов Годдарда

В тот момент казалось, что истинность теории Большого взрыва уже нельзя поставить под сомнение. Ни одна предложенная альтернатива не способна была объяснить эти результаты без необходимости в специально сделанных допущениях. Однако инфляционная модель все еще оставалась под угрозой опровержения.

Ее заклятые противники, в том числе известные астрономы Фред Хойл и Джефри Бербидж, чей великий вклад в разработку модели звездного нуклеосинтеза не стоит преуменьшать, продолжали высказываться на этот счет и даже утверждать, что инфляционная модель уже опровергнута, поскольку подтверждающие ее эмпирические данные отсутствуют.

Но они слегка погорячились.

Двадцать третьего апреля 1992 года Смут выступил перед полным залом на собрании Американского физического сообщества в городе Вашингтоне, показав серию карт РИ. Как и в случае с его коллегой Джоном Мазером двумя годами ранее, Смуту аплодировали стоя, когда он продемонстрировал эффекты, названные им морщинами времени, полностью подтвердившие прогнозы инфляционной модели.

Стивен Хокинг с некоторым преувеличением назвал это «научным открытием века, если не всех времен». Смут сказал, что это было «как будто увидеть Бога»[20]. Газета National Enquirer[21] (или какое-то подобное издание) опубликовала свою версию этой новости — лик Иисуса в небесах.

Предсказанные инфляционной космологией различия в температуре реликтового излучения после 10 лет напряженных поисков наконец подтвердились{266}. В 2006 году Мазер и Смут получили Нобелевскую премию по физике.

В книге Алана Гута «Инфляционная Вселенная» представлена упрощенная версия графика результатов, полученных обсерваторией СОВЕ. С разрешения автора она приведена на рис. 13.2{267}. Здесь представлена зависимость разности температуры реликтового излучения, возведенной в квадрат и усредненной по всем направлениям, от угла между двумя направлениями, измеренного с помощью дифференциального радиометра, в диапазоне от 0 до 180 градусов. Полученные данные полностью соответствуют форме графика, предсказанной теорией инфляции, хотя в книге Гут ничего не говорит об абсолютном значении эффекта, которое на рисунке было скорректировано, чтобы соответствовать данным.

Рис. 13.2. Зависимость различий в температуре реликтового излучения, возведенных в квадрат и усредненных по всем направлениям, от угла между двумя направлениями, измеренного с помощью дифференциального радиометра, в сравнении с прогнозами инфляционной модели. Абсолютные значения скорректированы таким образом, чтобы соответствовать данным. Изображение предоставлено Аланом X. Гутом

Однако вскоре стало понятно, что, если не будет обнаружено отклонение от основного реликтового фона хотя бы на 1/100000, инфляционная модель будет всерьез поставлена под сомнение, если не опровергнута.

В науке считается, что модель, которую нельзя опровергнуть, нельзя назвать научной. Но когда модель успешно проходит рискованное испытание, способное ее развенчать — такое, как описанное, — она зарабатывает право на серьезное отношение со стороны ученых. Но тут все же следует вставить предостерегающую ремарку, основанную на историческом опыте науки. Даже если модель проходит фальсификационную проверку, это не значит, что она утвердилась окончательно и что однажды ее не вытеснит более качественная модель. Однако, как мы вскоре увидим, в качестве составной части полноценной космологической модели инфляционная теория все еще предоставляет больше возможностей, чем может любая другая альтернативная модель.

В работе, интерпретирующей полученные результаты, рабочая группа СОВЕ сопоставляет данные своих наблюдений с множеством предложенных моделей. В результате было обнаружено, что измеренные значения анизотропии слишком велики по сравнению с неоднородностями, найденными в ходе галактических обзоров, следовательно, они должны иметь первичную природу. Ученые сделали вывод, что обсерватория СОВЕ предоставила «самые первые сведения о начальной стадии жизни Вселенной, вплоть до 1035 с после Большого взрыва»{268}.

Вначале ученые сочли, что, учитывая наблюдаемую плотность материи, первичных флуктуации в период инфляционного расширения порядка 10 5 было бы недостаточно, чтобы сформировались галактики. Однако ответ нашелся очень быстро (на самом деле кто-то из слушавших выступление Смута выкрикнул его вслух): «Темная материя!»

Как много ее требовалось? Как мы скоро узнаем, в точности столько, сколько, по-видимому, существует, — примерно в пять раз больше массы видимого вещества{269}.

Как показано на рис. 13.2, для углов порядка 30° распределение преимущественно плоское, что подтверждает предсказанную масштабную инвариантность. У нас нет нужды рассматривать этот спектр детальнее, поскольку в последующих экспериментах, о которых мы еще поговорим, получили существенно более качественные данные и, работая с меньшими углами, открыли структуру, определяющую раннюю Вселенную во всех подробностях.


Новые окна во Вселенную

Наблюдения РИ были не единственным значимым достижением 1990-х, еще одного знаменательного для астрономии и космологии десятилетия. Я лишь кратко упомяну несколько отдельных примеров, касающихся главным образом космологии.

В 1990-м шаттл «Дискавери» доставил на орбиту космический телескоп «Хаббл» (Hubble Space Telescope, HST). К сожалению, у его главного зеркала обнаружился серьезный дефект, требовавший ремонта прямо на орбите. Эта работа была выполнена в 1994 году командой еще одного космического шаттла — впечатляющее достижение. На мой взгляд, это был самый серьезный вклад в науку в период действия всей программы шаттлов. Другие экспедиции по обслуживанию телескопа «Хаббл» осуществлялись в 1997,1999,2002 и 2009 годах.

Телескоп «Хаббл», работающий в околоультрафиолетовом, видимом и околоинфракрасном диапазонах, позволил получить самые подробные изображения, когда-либо сделанные в астрономии, и составить карту Вселенной до самого горизонта событий. Этот телескоп, все еще работающий на момент написания этой книги, внес вклад в космологию, обеспечив значительно более точные оценки постоянной Хаббла и других ключевых параметров. В ходе наблюдений наиболее отдаленных глубин Вселенной с помощью этого телескопа обнаружилось, что самые далекие и старые галактики меньше размером и менее упорядочены, чем более близкие и молодые спиральные галактики. Это стало еще одним гвоздем в крышке гроба и без того давно мертвой стационарной модели Вселенной.

В 1990 году был пущен в работу «Кек-1» — десятиметровый оптический многозеркальный телескоп, расположенный на горе Мауна-Кеа. В 1998 году к нему присоединился «Кек-2». Вспомним, что Мауна-Кеа — лучшая точка для наблюдений с Земли, с которой можно исследовать не только видимую, но и инфракрасную область спектра. Телескопы обсерватории Кека стали одним из самых плодотворных проектов наземной астрономии последних лет. С помощью этих приборов были найдены одни из первых свидетельств существования планет вокруг звезд (помимо Солнца). Определив орбитальные скорости звезд, расположенных недалеко от центра нашей Галактики, телескопы «Кек» помогли установить тот факт, что в центре Млечного Пути находится черная дыра массой в 4 млн. раз больше массы Солнца.

В 1993 году от Гавайских до Виргинских островов была протянута антенная решетка со сверхдлинными базами (Very Long Baseline Array, VLBA) — 10 радиотелескопов, контролируемых удаленно из Нью-Мексико. Благодаря использованию метода интерферометрии с длинными базами удалось достичь угловой разрешающей способности от 0,17 до 0,22 угловой миллисекунды на 10 длинах волн, от 0,7 до 90 см. С помощью антенной решетки были обнаружены две гигантские черные дыры массой 150 млн. солнечных каждая, расположенных на расстоянии всего 24 световых лет друг от друга! Они находятся в центре галактики 0402+379 в 750 млн. световых лет от Земли.

На самом деле теперь нам известно, что в центре большинства, если не всех крупных галактик находятся черные дыры сверхвысокой массы.

В 1995 году на орбиту была запущена Инфракрасная космическая обсерватория (Infrared Space Observatory, ISO). Она была спроектирована для работы в диапазоне длин волн 1,5–196,8 мкм. С помощью этой обсерватории было проведено 26 тыс. успешных наблюдений, прежде чем она вышла из строя в 1998 году.

Что касается гамма-диапазона, еще в 1967 году спутники «Вела», спроектированные для обнаружения испытаний ядерного оружия на Земле, по счастливой случайности обнаружили однократные всплески гамма-излучения, разбросанные по небу случайным образом. Из-за их яркости большинство ученых сочли, что они исходят изнутри нашей галактики.

В 1991 году в космос запустили гамма-обсерваторию «Комптон». На ее борту находился в том числе инструмент для исследования вспышечных и транзиентных событий (Burstand Transient Source Experiment, BATSE), разработанный для обнаружения и анализа всплесков гамма-излучения. С его помощью было обнаружено всего 2700 всплесков, в среднем по одному в день. Благодаря этим наблюдениям стало понятно, что гамма-всплески берут начало в далеких галактиках, а значит, представляют собой огромные выбросы энергии.

Представители НАСА сообщили, что космический телескоп «Хаббл» обнаружил такой всплески, согласно расчетам, он вызван столкновением двух нейтронных звезд{270}.


Астрономия сверхвысоких энергий

Хотя сигналы, фиксируемые радиотелескопами, обычно описывают как радиоволны, как и любое другое электромагнитное излучение, они состоят из фотонов, то есть из частиц. Энергия фотона Е в потоке, составляющем электромагнитную волну, рассчитывается по формуле Е = hc/γ, где γ — длина волны. Если величина X выражена в метрах, это можно записать как E = 1,97∙10-7/γ эВ. Поскольку максимальная длина волны, доступная для наблюдений с помощью антенной решетки со сверхдлинными базами, — около 1 м, энергия фотона в этом случае меньше одной миллионной электрон-вольта.

В противоположной области спектра на борту обсерватории «Комптон» работал гамма-телескоп высоких энергий (Energetic Gamma Ray Experiment Telescope, EGRET). Максимальная энергия фотона, доступная ему, составляла 30 ГэВ = 3∙1010 эВ, что соответствует длине волны порядка 10-17 м.

В то время несколько человек, включая меня, стремились пойти еще дальше как в наращивании энергии, так и в типе искомых частиц. В середине 1970-х я участвовал в проекте, в ходе которого предполагалось установить большой детектор на дне океана, на глубине 4,8 км, в районе южного побережья (область Кона) Большого острова Гавайи. Проект получил название DUMAND — Deep Underwater Muonand Neutrino Detector («Глубоководный детектор мюонов и нейтрино»). Целью проекта было открытие целого нового окна[22] во Вселенную путем поиска космических сверхвысокоэнергетических нейтрино с энергией более 1 ТэВ (1012 эВ). Первоначально руководителем проекта был Фредерик Райнес, который в 1995 году разделил с Клайдом Кованом Нобелевскую премию по физике за совместное открытие нейтрино в 1956 году.

Считалось, что теоретически высокоэнергетические нейтрино могут появляться из гигантских источников энергии, существующих в центрах активных галактик (см. описание активных галактик в главе 9). Поскольку они, по-видимому, происходили из более глубоких недр галактик, чем фотоны, мы надеялись, что они дадут нам информацию об этих колоссальных источниках энергии. В 1984 году я опубликовал в «Астрофизическом журнале» статью, в которой доказал, что активные галактики могут при определенных условиях производить сверхвысокоэнергетические нейтрино, доступные наблюдению{271}.

Предложенный метод все еще является основным для всех экспериментов, которые до сих пор проводятся в астрофизике сверхвысоких энергий наряду с экспериментами по распаду протона. Если заряженная частица движется быстрее скорости света в прозрачной среде, такой как вода или воздух (но все же медленнее, чем со скоростью с), она испускает электромагнитную ударную волну, называемую излучением Вавилова Черепкова, представляющую собой голубоватый свет, который можно обнаружить с помощью сверхвысокочувствительных фотодетекторов, называемых фотоэлектронными умножителями.

Проект DUMAND подразумевал установку большого массива этих фотодетекторов на дне океана, где фоновое космическое мюонное излучение минимально. В упомянутых в главе 11 экспериментах по регистрации распада протона Kamiokande и IMB также использовался этот метод: фотоэлектронные умножители устанавливались в больших цистернах с очень чистой водой на дне глубоких шахт.

Во время работы над проектом DUMAND в 1980-е я параллельно принимал участие еще в одном эксперименте, который, как мне казалось, должен был дать дополнительную информацию, полезную для проекта DUMAND. Рабочая группа под руководством Тревора Уикса из Гарвард-Смитсоновского центра астрофизики установила в обсерватории имени Уипла на горе Хопкинс в Аризоне очень недорогое зеркало диаметром 10 м, состоящее из плоских пластин, формирующих сферическую отражающую поверхность. В его фокусе было установлено несколько небольших фотоэлектронных умножителей.

Когда сверхвысокоэнергетический фотон гамма-излучения ударяется о верхнюю часть атмосферы, он генерирует ливень из тысяч электронов и других заряженных частиц, низвергающихся на Землю. Этот телескоп был спроектирован с целью обнаружить излучение Вавилова — Черенкова, возникающее в этом воздушном ливне.

В 1989 году, после того как я покинул проект на горе Хопкинс, чтобы поработать над аналогичным экспериментом ближе к дому, на горе Халеакала на острове Мауи, Уикс и его коллеги сообщили, что им удалось с высокой степенью статистической значимости обнаружить сигнал, идущий из Крабовидной туманности{272}. Крабовидная туманность представляет собой остатки сверхновой, вспышку которой зафиксировали арабские, китайские, индийские и японские астрономы в 1054 году.

Крабовидная туманность всегда считалась очень перспективной, и мы внимательно наблюдали за ней. В 1968 году в центре этой туманности был обнаружен вращающийся пульсар, который определили как нейтронную звезду. Магнитное поле нейтронной звезды, имеющее очень высокую скорость вращения — один оборот за 33,5 мс, — может ускорять электроны до очень высоких энергий. Когда они сталкиваются с окружающим газом, то образуют фотоны гамма-излучения, а также, как я надеялся, нейтрино.

Крабовидная туманность находится в пределах нашей Галактики. В 1992 году Уикс с коллегами сообщили об обнаружении внегалактического источника, блазара Маркарян-421. Мы с моим ассистентом Питером Горхэмом также считали блазары перспективными источниками, поскольку их лучи направлены в сторону Земли.

Тем временем исследовательская группа из Германии установила на Канарских островах еще один телескоп, названный HEGRA (High Energy Gamma Ray Astronomy — «Высокоэнергетическая гамма-астрономия»). В 1996 году данные с этого телескопа подтвердили наличие источников, обнаруженных в обсерватории имени Уипла, а в 1997 году исследовательская группа сообщила об обнаружении еще одного блазара, Маркарян-501{273}.

Итак, верхний предел энергетического спектра наблюдаемых космических сигналов сместился вверх еще на один порядок по сравнению с доступным комптоновскому гамма-телескопу высоких энергий (EGRET). Должен заметить, в денежном выражении это обошлось на много порядков меньше.

Но все же эти фотоны с энергией в триллионы электрон-вольт — на 18 порядков большей, чем фотоны радиоизлучения, обнаруженные с помощью антенной решетки со сверхдлинными базами (VLBA), — это не самые высокоэнергетические объекты во Вселенной. С тех пор как множество детекторов частиц заняли огромные территории на нашей планете, ученые наблюдают ливни из частиц, возникающие вследствие столкновения с атмосферой космических лучей, в том числе первичных космических лучей с энергией вплоть до 1 ЗэВ = 1021 эВ.

Однако существует предел энергии космических частиц, пересекающих Вселенную, названный пределом Грайзена — Зацепина — Кузьмина и равный 0,5 ЗэВ. Сверх этого предела они будут терять энергию в столкновении с частицами реликтового излучения. Таким образом, частицы с энергией порядка зептоэлектрон-вольт, вероятно, исходят из источников, относительно близких к Земле. Один из возможных источников — галактика М 87 в созвездии Девы, находящаяся «всего лишь» в 53 млн. световых лет от нас и имеющая активное ядро, в котором, по мнению ученых, имеется сверхмассивная черная дыра.

В то же время сверхвысокоэнергетические нейтрино не ограничены этим пределом, и только они позволяют наблюдать такие высокие энергии на больших расстояниях.

В момент написания этой книги «нейтринное окно» во Вселенную уже было открыто благодаря сверхновой 1987, а теперь появляются новые впечатляющие результаты наблюдений на значительно более высоких уровнях энергии. Однако, после того как были приложены огромные усилия, включая установку на дне океана множества очень сложных и дорогостоящих контрольно-измерительных приборов, проект DUMAND признали технически слишком сложным, и в 1995 году финансирующая организация — Министерство энергетики США — закрыла его. Тем не менее проект DUMAND послужил испытательным полигоном для самой идеи сверхвысокоэнергетической нейтринной астрономии, а на основании полученной информации был разработан ряд других похожих проектов. Как мы увидим в следующей главе, эти эксперименты начинают приносить плоды. В частности, в 2013 году появился отчет исследователей, работающих на Южном полюсе, о наблюдении 28 нейтрино с энергией свыше 30 ТэВ.


Масса нейтрино

В 1998 году заголовки все еще пестрели сообщениями о небесных нейтрино, когда в ходе эксперимента Super-Kamiokande были найдены первые убедительные свидетельства того, что нейтрино имеют массу. Мне удалось немного поучаствовать в этом эксперименте, который стал моим последним исследовательским проектом, до того как я вышел на пенсию в 2000 году. Однако я более двух десятилетий работал в области нейтринной физики и астрофизики, а использованный в этом открытии метод был предложен мной на состоявшемся в 1980 году семинаре, посвященном массе нейтрино, и его изложение опубликовано в сопутствующих материалах{274}.

Предполагалось, что нейтрино с ненулевой массой должны иметь свойство, известное как нейтринные осцилляции. Перечисленные в табл. 11.1 три вида нейтрино и их античастицы возникают в результате реакций слабых распадов, таких как бета-распад:

n → p + е + v-e,

где v-e — антинейтрино электронное. Однако у этих нейтрино нет определенной массы. Квантовое состояние каждого из них представляет собой комбинацию из трех других нейтринных состояний, при которых они имеют определенную массу, обозначаемых ν1, ν2, ν3. Их массы (энергии покоя) различаются, поэтому волновая функция, описывающая пучок нейтрино каждого из этих типов, будет иметь свою частоту. Из-за этой разницы со временем комбинация изменяется. Предположим, мы начнем с чистого пучка νμ. Co временем комбинация изменится, так что, если мы обнаружим отдельное нейтрино, есть некоторая вероятность того, что это будет нейтрино другого типа: νe или ντ. Нейтринные осцилляции не происходят при нулевой массе, поэтому факт наблюдения нейтринных осцилляции прямо свидетельствует о наличии у нейтрино массы.

Высокоэнергетические протоны космических лучей и другие ядра, сталкиваясь с атмосферой Земли, образуют множество короткоживущих пионов и каонов. Среди их продуктов распада значительное количество мюонов и электронных нейтрино и несколько меньшее количество тау-нейтрино. Чтобы достичь подземного детектора Super-Kamiokande, нейтрино, летящее прямо из верхнего слоя атмосферы, должно пролететь порядка 15 км. В то же время нейтрино, летящее прямо с противоположной точки Земли, преодолевает порядка 13 000 км, так что у него в запасе больше времени на осцилляции.

В ходе эксперимента Super-K была обнаружена асимметрия мюонных нейтрино, летящих «вверх» и «вниз», которая достигала почти 50% при самом высоком уровне энергии, равном 15 ГэВ. С точки зрения теории нейтринных осцилляции это означало, что между квадратами массы двух видов нейтрино существует разница{275}, находящаяся в диапазоне от 5∙10-4 до 8∙10-3 эВ2.

В ходе дополнительных экспериментов было точно установлено, что нейтрино различаются по массе и что по меньшей мере один вид нейтрино имеет массу порядка 0,1 эВ. Для сравнения: масса электрона, ранее считавшегося самым легким среди частиц с ненулевой массой, равна 5,11∙105 эВ, что в 10 млн. раз больше[23].

Кроме того, в 1998 году в ходе эксперимента Super-K с помощью нейтрино было получено изображение Солнца, показанное на рис. 13.3. Фотография была сделана ночью сквозь толщу Земли — впервые людям удалось увидеть, как выглядит ядро звезды{276}. Тем, кто думает, что Солнце исчезает, опускаясь вечером за горизонт, эта картинка докажет, что оно на самом деле никуда не делось.

Масатоси Косиба получил в 2002 году Нобелевскую премию по физике за руководство камиоканскими экспериментами.

Рис. 13.3. Изображение ночного Солнца, полученное сквозь толщу Земли с помощью нейтрино в ходе эксперимента Super-Kamiokande. Изображение предоставлено Р. Свобода, Калифорнийский университет в Дэвисе (сотрудничество Super-Kamiokande)

Темная материя

Как мы уже знаем, одной из главных проблем с первоначальной моделью Большого взрыва было то, что, если бы в самый первый эмпирически определяемый момент нашей Вселенной средняя плотность вещества в ней превышала критическую плотность более чем на 1/1060, произошел бы моментальный коллапс Вселенной. Если бы она была настолько же ниже, Вселенная начала бы расширяться с такой высокой скоростью, что к настоящему времени по большей части опустела бы. Эту проблему назвали проблемой плоскости, поскольку она требует, чтобы пространство Вселенной было почти абсолютно евклидовым. Инфляционная модель решает проблему плоскости, поскольку, согласно ей, пространство расширилось на много порядков, так что стало плоским, а плотность вещества в нем — критической.

Однако астрономы давно знают, что плотность видимого вещества во Вселенной, большая часть которого представлена светящимися звездами и звездной пылью, далеко не равна критической. Хотя довольно убедительные свидетельства существования большой невидимой части Вселенной, называемой темной материей, появились еще в 1930-х, большинство астрономов не спешили признавать ее реальность по весьма разумной причине: они не могли увидеть ее непосредственно с помощью телескопов. Вывод о существовании скрытой массы можно было сделать, применив законы Ньютона к наблюдаемым орбитальным движениям звезд в галактиках.

Кто-то мог подумать, что эти законы следует подкорректировать для описания движения в астрономических масштабах, и ученые даже предложили несколько таких моделей. Однако, согласно принципу бритвы Оккама, не стоит бросаться заменять существующую теорию, в особенности так прочно устоявшуюся, как закон всемирного тяготения Ньютона, если есть другой вариант. Итак, до сих пор существование темной материи представляет собой наиболее экономное решение{277}. Заметьте, что, хотя место закона всемирного тяготения Ньютона заняла общая теория относительности, это не меняет выводов касательно скрытой массы, поскольку закон Ньютона в этом случае все еще применим.

Но все же, чтобы инфляционная модель и гипотеза темной материи имели право на существование, оставалось решить некоторые проблемы. Как описывается в главе 9, впечатляющий успех теории первичного нуклеосинтеза в отношении расчетов точной распространенности легких ядер, в особенности дейтерия, доказал, что барионная плотность, то есть плотность известной нам материи, составляет в лучшем случае 5% от критической. Сюда входит не только светящееся вещество (галактики и пр.), на которое приходятся жалкие 0,5%, но также все тела, состоящие из атомов (планеты, коричневые карлики, черные дыры), которые не испускают излучения, поддающегося регистрации. Темная материя не просто темная — это вообще не материя, какой мы ее знаем.

Поскольку, чтобы оставаться незамеченной, темная материя должна быть электрически нейтральной, стабильной и слабо взаимодействующей, среди знакомых нам элементарных частиц единственным кандидатом на роль такой материи являются нейтрино. Они не относятся к барионам.

В основном рассматриваются две модели темной материи: горячая темная материя с релятивистскими частицами, то есть движущимися со скоростями, достаточно близкими к скорости света, чтобы их могла описывать релятивистская кинематика, и холодная темная материя, состоящая из нерелятивистских частиц. Однако не следует забывать о промежуточном варианте — теплой темной материи. Гравитационная масса частиц горячей темной материи, по существу, равна их кинетической энергии, поскольку энергией покоя можно пренебречь. И напротив, гравитационная масса Частиц холодной темной материи по большей части равна их инертной массе, поскольку кинетической энергией можно пренебречь. Температура, то есть кинетическая энергия темной материи, должна равняться температуре РИ, поскольку они находятся в равновесии и сами по себе не создают тепло, хотя реликтовое нейтринное излучение несколько холоднее, его температура — 1,95 К. В случае теплой темной материи ни одним видом энергии пренебречь нельзя. Однако, поскольку температура Вселенной в космических масштабах изменяется с огромной скоростью, обычно переход какой-либо частицы из горячего состояния в холодное также происходит очень быстро.

Нейтрино были первыми кандидатами на роль частиц горячей темной материи. Как мы выяснили в предыдущем разделе, масса по меньшей мере одного вида нейтрино не превышает 0,1 эВ, у остальных она еще меньше. Итак, будут ли космические нейтрино горячими или холодными, зависит от их температуры. Переход из холодного состояния в горячее произошел примерно через 1 млн. лет после Большого взрыва. До этого момента нейтрино с такой массой были горячими, позже они стали холодными.

Однако при такой массе количество нейтрино, требуемое, чтобы обеспечить достаточную часть критической плотности, должно быть порядка 1090, что крайне маловероятно. Для сравнения: количество реликтовых нейтрино «всего лишь» 1088, примерно столько же, сколько фотонов в реликтовом излучении. Атомов в 1 млрд. раз меньше. Таким образом, гипотеза темной материи, состоящей из знакомых нам легких нейтрино, в свете последних данных о РИ по большей части исключается и нам нужно искать новых кандидатов на роль ее частиц. Правильным порядком действий в такой ситуации будет вначале исследовать те возможности, которые требуют привлечения как можно меньшего числа новых гипотез.

В то время как в рамках стандартной модели кандидатов не осталось, существуют два варианта, которые требуют не полного пересмотра теории, но лишь небольшого ее расширения, — это стерильные нейтрино и аксионы.

После открытия массы известных нам нейтрино стало ясно, что должен существовать еще один вид нейтрино, до сих пор не обнаруженный. Считается, что эти дополнительные нейтрино стерильны, то есть взаимодействуют только гравитационно или в лучшем случае очень слабо. Если эти кандидаты на роль частиц темной материи обладают массой, поддающейся измерению, скажем, большей, чем несколько сотен электрон-вольт, то они все еще вписываются в физику стандартной модели, слегка расширенной, чтобы включить параметры, описывающие эти состояния{278}.

В период написания этой книги проводился ряд новых наблюдений, результаты которых внезапно выдвинули стерильные нейтрино на передний план программы поиска темной материи. Об этом мы поговорим в главе 14.

Еще один гипотетический кандидат на роль темной материи, все еще вписывающийся в основные положения стандартной модели, — это аксион, частица, предложенная еще в 1977 году для решения некоторых специальных проблем квантовой хромодинамики. По оценкам ученых, он должен иметь массу менее 1 эВ.


ВИМП-частицы и суперсимметрия

Других кандидатов на роль холодной темной материи в рамках минимально измененной стандартной модели не существует. Если это не стерильные нейтрино и не аксионы, то это должно быть что-то абсолютно новое. Такие частицы объединяют под общим названием «вимп-частицы» (от англ. WIMP — Weakly Interacting Massive Particle, что означает «слабовзаимодействующие массивные частицы»). Вероятнее всего, они должны быть нерелятивистскими и иметь большую массу. Долго фаворитом была одна из частиц, предсказанных в рамках расширенной версии стандартной модели, включающей суперсимметрию (SUSY), описанную в главе 11. Общее название вимп-частиц в рамках теорий суперсимметрии — нейтралино. Были предложены четыре возможных типа нейтралино, которые являются фермионами-суперпартнерами калибровочных бозонов стандартной модели.

Ученые не сомневались в том, что во время первых запусков Большого адронного коллайдера им удастся обнаружить данные, подтверждающие теорию суперсимметрии. Однако этого не произошло. Значительная часть теоретических изысканий последних 40 лет основывалась на суперсимметрии, в частности большинство теорий квантовой гравитации (теория супергравитации) и М-теория. Если теория суперсимметрии не подтвердится во время следующего запуска БАК, который начнется в 2015 году, все эти теории, вполне возможно, ожидает крах.

Если это случится, многие физики будут разочарованы, но отнюдь не все, включая меня. Серьезные открытия в физике обычно приводят к появлению более простых теорий с меньшим количеством переменных параметров. Теория суперсимметрии увеличивает количество настраиваемых параметров примерно вдвое, а М-теория имеет 10500 различных вариаций{279}. Несмотря на всю их математическую красоту, в моих глазах экспериментатора это уродует их.

Но проблемы, с которыми столкнулись космологи в конце второго тысячелетия нашей эры, на этом не заканчиваются. К 1998 году было установлено, что темная материя, какой бы ни была ее природа, составляет в лучшем случае около 25% критической плотности Вселенной. Недоставало еще трех четвертей массы, требуемой инфляционной моделью. Вновь теория инфляции оказалась на грани опровержения. Но природа и тут пришла ей на помощь.


Темная энергия

С тех пор как Хабблв 1929 году впервые построил график зависимости скоростей разбегания галактик от расстояния до них, астрономы непрерывно совершенствовали свои измерения, однако тенденция к линейной зависимости сохранялась. Это значит, что угловой коэффициент H, которому соответствует скорость расширения Вселенной, оказался постоянным. На самом деле его и назвали постоянной Хаббла.

Однако нет никаких причин, по которым Н, скорость расширения Вселенной, должна быть постоянной. Ожидалось, что в какой-то момент график начнет загибаться книзу по мере того, как взаимное гравитационное притяжение будет замедлять расширение. То есть расширение Вселенной должно замедляться.

Но в 1995 году космологи Лоуренс Краусс и Майкл Тернер отметили, что, согласно существующим на тот момент данным, во Вселенной действует положительная космологическая постоянная, которая на деле вносит свой вклад в критическую плотность Вселенной. Они отметили, что вследствие этого должно происходить ускоряющееся расширение, проявляющееся в увеличении скоростей разбегания галактик на больших расстояниях, то есть график начнет загибаться вверх{280}.

Ранее, в 1982 году, о том, что космологическая постоянная может иметь положительное значение, заявлял выдающийся французский астроном Жерар Анри де Вокулер{281}. Он заметил, что распространенность квазаров в пространстве свидетельствует о небольшой положительной кривизне, которая может быть следствием действия положительной космологической постоянной.

Как нам теперь известно, дальнейшие наблюдения подтвердили существование этого эффекта, но до тех пор не все ученые принимали выводы, сделанные в этих работах, и осознавали их значение.

Скорости разбегания галактик легко измерить с помощью их красных смещений. Но, как мы уже знаем, измерение расстояний всегда было непростой задачей для астрономов. В 1990-х годах две исследовательские группы приняли в качестве нового эталона светимости, так называемой стандартной свечи, особый вид сверхновых, образующихся в результате взрыва белых карликов. Этот метод существенно повысил точность оценки расстояний до самых удаленных галактик.

Белые карлики представляют собой остатки относительно типичных звезд (таких как наше Солнце), которые сожгли все свои запасы термоядерного горючего. Тусклый свет, который они все еще излучают, обусловлен остатками тепловой энергии. Если масса белого карлика не превышает 1,38 солнечной массы, он будет оставаться относительно стабильным. Однако если он является частью двойной звезды, то может за счет своей соседки прирастить массу, так что ее станет достаточно для того, чтобы произошел взрыв сверхновой. Это явление называется сверхновой типа 1а. Поскольку взрыв происходит при достижении определенной массы, пиковая светимость сверхновой во всех таких случаях будет примерно одинаковой.

Согласно закону сохранения энергии, интенсивность света сверхновой будет падать пропорционально квадрату расстояния до нее. Таким образом, измеряя наблюдаемую светимость сверхновой типа 1а, определяемую на основании ее кривой блеска (изменения яркости со временем), расстояние до нее можно определить с небывалой точностью.

Одна из таких исследовательских групп называлась High-Z Supernova Search Team («Хай-зет сверхновая»), ее руководителями были Брайан Шмидт из Австралийского национального университета и Адам Рисе из Института исследований космоса с помощью космического телескопа. В эту группу входили 25 астрономов из Австралии, Чили и Соединенных Штатов, занимавшихся анализом данных наблюдений, полученных в филиале Европейской южной обсерватории и чилийской обсерватории «Ла-Силья».

Другая группа, под руководством Сола Перлмуттера из Центра астрофизики элементарных частиц при Калифорнийском университете в Беркли, называлась Supernova Cosmology Project («Проект космологии сверхновых»). В ее состав входил 31 ученый из Австралии, Чили, Франции, Испании, Швеции, Соединенного Королевства и США. Они анализировали данные, полученные в ходе обзора сверхновых Calan/Tololo, проведенного на базе Межамериканской обсерватории «Серро-Тололо», также расположенной в Чили.

В сентябре 1998 года группа High-Z опубликовала свидетельства в пользу того, что на больших расстояниях кривая Хаббла изгибается вверх{282}. Первого июня 1999 года исследователи из проекта Supernova Cosmology опубликовали свои результаты, которые трактовали как доказательство положительного значения космологической постоянной с 99%-ной достоверностью.

Результаты, полученные группой High-Z, продемонстрированы на рис. 13.4. В верхней части показана зависимость используемой в астрономии единицы измерения, называемой модулем, расстояния (она основана на соотношении видимой и абсолютной светимости), от красного смещения z (мера скорости разбегания). Данные сравнили с тремя моделями, предполагающими различные значения ΩM — энергетической плотности материи и ΩL — энергетической плотности вакуума, каждая из которых является частью критической плотности. В нижней части показана разница между экспериментально определенным модулем расстояния и его ожидаемым значением в модели, где ΩM = 0,2, ΩL = 0. Хотя величина ошибки в каждой отдельной точке велика, данные в целом ясно свидетельствуют в пользу модели, в которой энергия вакуума преобладает над энергией материи. В случае преобладания материи кривая графика данных изогнулась бы вниз, поскольку взаимное гравитационное притяжение галактик на больших расстояниях замедлило бы скорость их разбегания. Вместо этого мы наблюдаем ускорение, свидетельствующее о гравитационном отталкивании. То есть скорость расширения Вселенной увеличивается. Источник этого отталкивания был назван темной энергией, согласно этим данным, ее плотность составляет порядка 70% от критической.

Рис. 13.4. Результаты экспериментов исследовательской группы High-Z Supernova. Изображение взято из статьи: Riess Adam G. et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant//Astronomical Journal, 116, 1998. — №3:1009. © AAS. Используется с разрешения правообладателя

Может показаться, что при этом нарушается закон сохранения энергии, но это не так. Вспомните, в главе 5 мы говорили о том, что первый закон термодинамики, по сути, представляет собой обобщенную форму закона сохранения энергии, которую можно применить к любой материальной системе — газу, жидкости, твердому телу или плазме. Как правило, расширяющийся газ совершает работу, как это происходит в цилиндрах автомобиля (при условии, что он имеет двигатель внутреннего сгорания). Это происходит благодаря тому, что большинство газов имеют положительное давление вследствие движения составляющих их молекул и их столкновений со стенками сосуда.

Однако, согласно общей теории относительности, давление, вызываемое положительной космологической постоянной, имеет отрицательное значение. Это значит, что по мере расширения объема это давление выполняет отрицательную работу. В отличие от хорошо знакомых нам расширяющихся газов расширяющаяся Вселенная с отрицательным давлением работает сама на себя. Поскольку количество работы равняется увеличению внутренней энергии, закон сохранения энергии соблюдается.

В 2011 году Перлмуттер, Рисе и Шмидт разделили Нобелевскую премию по физике за сенсационное доказательство того, что Вселенная падает вверх.

Как уже упоминалось, это открытие не стало полной неожиданностью. Космологам было хорошо известно, что положительная космологическая постоянная, введенная Эйнштейном в рамках его общей теории относительности, вызывает гравитационное отталкивание. В самом деле, мы уже знаем, что де-ситтеровская Вселенная, которая не содержит ни материи, ни излучения, а только положительную космологическую постоянную, расширяется экспоненциально и является простой инфляционной моделью ранней Вселенной. Теперь, похоже, инфляционное расширение продолжается и в наши дни, хотя происходит значительно медленнее.

Давайте коротко рассмотрим задействованные в нем физические процессы. Космологическая постоянная (см. главу 6) равносильна скалярному полю постоянной энергетической плотности, равномерно заполняющему Вселенную. Поэтому, так как Вселенная расширяется, ее общая внутренняя энергия увеличивается по мере увеличения объема.

Хотя ускоряющееся расширение Вселенной может быть следствием действия космологической постоянной, это не обязательное условие. Другая возможность заключается в том, что Вселенная может быть заполнена квантовым полем, имеющим отрицательное давление. Это поле ученые назвали квинтэссенцией. В других областях физики отрицательное давление тоже не является чем-то неслыханным. В некоторых диапазонах давления и температуры газ Ван-дер-Ваальса имеет отрицательное давление. При этом его молекулы расположены настолько близко друг к другу, что их электронные облака отталкиваются и молекулы испытывают результирующее действие сил притяжения.

Кванты поля квинтэссенции должны представлять собой бозоны, вероятнее всего, с нулевым спином. Ожидаемое отрицательное давление этого поля обусловлено квантово-механической тенденцией бозонов к конденсации. Большинство наиболее передовых космологических моделей включают возможность существования квинтэссенции, не предполагая по умолчанию, что источником ускорения Вселенной является космологическая постоянная.


Проблема космологической постоянной

В 1989 году Стивен Вайнберг указал на существование так называемой проблемы космологической постоянной{283}. Из-за принципа неопределенности минимальная энергия квантового гармонического осциллятора не равна нулю, поскольку он никогда не находится в состоянии абсолютного покоя. Минимальный уровень энергии соответствует энергии нулевых колебаний.

С точки зрения математики квантовое поле эквивалентно квантовому гармоническому осциллятору. Итак, если взять, к примеру, квантовое электромагнитное поле и удалить из него все его кванты (фотоны), в нем все же останется энергия, несмотря на полное отсутствие фотонов. Вайнберг связал плотность энергии вакуума, обусловленную космологической постоянной, с квантовой энергией нулевых колебаний. Когда он провел соответствующие расчеты, оказалось, что она на 120 порядков больше, чем максимальное возможное значение, которое она может иметь, согласующееся со всеми данными наблюдений.

На самом деле Вайнберг рассматривал только фотоны, которые относятся к бозонам. Фермионы имеют отрицательную энергию нулевых колебаний, которая частично компенсирует положительную энергию бозонов. Это взаимное погашение было бы полным, если бы Вселенная обладала суперсимметрией. Но это не так — во всяком случае, на низких уровнях энергии. Итак, мы все еще имеем расхождение на 50 порядков — в этом и заключается проблема космологической постоянной.

Любые расчеты, которые слишком далеко отходят от данных наблюдений, определенно ошибочны. Ученые предложили множество вариантов решений этой проблемы. Некоторые из них я рассматриваю в своей книге «Заблуждение о точной настройке» (The Fallacy of Fine-Tuning){284}, но ни одно из них не заслужило всеобщего одобрения со стороны физиков. Тем не менее для меня очевидно, почему эти расчеты ошибочны.

Расчет плотности энергии вакуума включает в себя сумму плотности по всем квантовым состояниям в некотором объеме пространства. Но максимальное количество квантовых состояний в единице объема равно числу состояний черной дыры того же объема. Легко доказать, что число квантовых состояний черной дыры пропорционально площади ее поверхности, а не объему. Если провести расчеты, суммируя квантовые состояния поверхности, а не объема, то получится значение, согласующееся с данными наблюдений.


Назад к истоку

Как мы уже знаем, наблюдаемое нами реликтовое излучение появилось в тот момент, когда через 380 000 лет после Большого взрыва сформировались атомы, а фотоны рассеялись в стороны от оставшейся части вещества. В то время поверхность Вселенной имела участки неоднородной плотности, сформировавшиеся из первоначального источника за этот период времени. С тех пор Вселенная расширилась в 1100 раз и температура излучения упала с 3000 K до 2,725 K.

В ходе наблюдений анизотропии реликтового излучения исследователи измеряют различия в температуре в двух направлениях, разделенных углом θ. Когда они исследуют реликтовое излучение в двух областях неба, разделенных углом θ = 180°, и обнаруживают различие в температуре, это называется дипольной анизотропией. Вспомните, что этот конкретный вид анизотропии, появляющийся вследствие нашего движения относительно реликтового фона, был обнаружен Смутом и его группой, когда они отправили свой новый дифференциальный микроволновой радиометр в полет на борту самолета-разведчика У-2 в 1976 году. При исследовании ранней Вселенной этот эффект вычитается.

Когда наблюдатели смотрят на четыре области, разделенные углом 90°, и видят различие в температуре, они говорят о квадрупольной анизотропии. Это фоновый эффект движения Млечного Пути, и его также игнорируют. В общем случае для угла θl в градусах имеется порядок мультиполя l = 180/ θl, и, как мы увидим, чем выше этот порядок, то есть чем меньше угол, тем важнее он для нас.

Если мы построим график зависимости квадрата относительного перепада температур от l, то получим так называемый угловой спектр мощности. На основании этих измерений с помощью теоретического анализа и компьютерной симуляции можно сделать реконструкцию спектральной плотности мощности звука, вызванного первичными флуктуациями. Обсерватория СОВЕ, ограниченная угловой разрешающей способностью 7°, имела предельное значение порядка мультиполя l = 20. Однако этого было достаточно, чтобы подтвердить, что флуктуациям хотя бы приблизительно была свойственна масштабная инвариантность, предсказанная инфляционной моделью. Согласно расчетам, при углах менее 1°или l > 200 в угловых спектрах должны появиться пики, соответствующие гармоникам изначальных акустических колебаний (см. главу 11).


Переходя на сторону победителей

Еще до объявления результатов СОВЕ исследовательские группы со всего мира поспешили примкнуть к побеждающей стороне, к тому, что было признано одной из величайших научных возможностей, существовавших когда-либо, — возможности оглянуться назад, на первые моменты жизни Вселенной. На своем веб-сайте Lambda, посвященном исследованиям реликтового излучения, НАСА перечисляет 20 экспериментов, которые проводились на протяжении 1990-х годов с использованием либо наземных телескопов, либо высотных аэростатов, разработанных специально для измерения анизотропии{285}.

Большинство этих приборов имели большую угловую разрешающую способность, нежели была у обсерватории СОВЕ (7°), хотя с их помощью и нельзя было получить такое же количество данных, как с помощью орбитального спутника. Канадский телескоп SK, установленный в городе Саскатуне, провинция Саскачеван, имеет угловую разрешающую способность 0,2–2° в шестичастотных полосах между 26 и 46 ГГц, покрывая таким образом диапазон значений l от 54 до 404{286}.

Еще большее впечатление производит Австралийский компактный массив радиотелескопов (Australia Telescope Compact Array, ATCA), состоящий из пяти антенн диаметром 22 м каждая, расположенных на расстоянии 30,6 м друг от друга в направлении с востока на запад. Угловая разрешающая способность этого массива составляет впечатляющие 2' (угловые минуты) (0,03°) при частоте 8,7 ГГц, и он покрывает значения l от 3350 до 6050{287}. Результаты этих экспериментов дали первые намеки на то, что нам еще многое предстоит узнать о РИ, в частности, что при меньших углах его спектр не плоский.

Хотя теперь быстрее всего было бы перейти к последним результатам, в этой и следующей главах я собираюсь представить в хронологической последовательности серию графиков все увеличивающейся точности, для того чтобы продемонстрировать, как работает наука, и для того, чтобы отдать дань уважения первопроходцам этого впечатляющего пути новых научных открытий.

На рис. 13.5 изображен угловой спектр вплоть до l = 1000, полученный в результате 17 экспериментов, по состоянию на 1998 год. На этом графике можно увидеть первые (существенные) акустические пики.

Рис. 13.5. Обобщенные данные по угловой анизотропии РИ по состоянию на 1998 год. Изображение из работы: HancockS. et al. Constraints on Cosmological Parameters from Recent Measurements of Cosmic Microwave Background Anisotropy // Monthly Notices of the Royal Astronomical Society, 294, 1998. — № 1 (February 11): L1-L6. Использовано с согласия издательства Оксфордского университета

В тот же период проводились два выдающихся эксперимента, BOOMERANG и MAXIMA, с использованием высотных аэростатов. Собранные при этом данные позволили значительно усовершенствовать график спектральной плотности. Об этих результатах, а также о работе еще более впечатляющего аппарата под названием «Микроволновый анизотропный анализатор Уилкинсона» (Wilkinson Microwave Anisotropy Probe, WMAP) и о космической обсерватории «Планк» мы поговорим в следующей главе.

Итак, в конце второго тысячелетия нашей эры мы получили убедительные свидетельства в пользу того, что в первые моменты жизни нашей Вселенной происходило экспоненциальное расширение, называемой инфляцией, которое завершилось примерно на 10-32 доле секунды. Спустя несколько миллиардов лет более спокойного расширения наша Вселенная снова начала раздуваться экспоненциально, хотя и со значительно меньшей скоростью, и это, вероятно, будет продолжаться вечно. В какой-то момент далеко в будущем обитатели планеты, все еще согреваемой Солнцем, не смогут увидеть во Вселенной ничего, кроме Млечного Пути и гало галактики Андромеда, когда две эти галактики сольются, поскольку все остальное будет находиться за пределами видимости.

Загрузка...