Открытое множество

Откры'тое мно'жество, точечное множество, не содержащее предельных точек дополнительного к нему множества (см. Множеств теория ). Любая точка О. м. является внутренней, т. е. имеет окрестность , содержащуюся целиком в О. м. Наряду с замкнутыми множествами О. м. играют важную роль в теории функций, топологии и др. отделах математики. Всякое (не пустое) О. м. на прямой является интервалом или суммой не более чем счётного числа интервалов.

О. м. можно рассматривать в евклидовом пространстве любого числа измерений, а также в произвольном метрическом пространстве или топологическом пространстве . Пересечение конечного числа и сумма любого числа О. м. являются О. м. Связные О. м. называются областями . Любое топологическое пространство может быть определено заданием своих О. м. Если же топологическое пространство задано системой своих замкнутых множеств, то О. м. определяются в нём как множества, дополнительные к замкнутым.

Загрузка...