В конце 1990-х годов началось массовое засорение интернета. Программы, именуемые «спам-ботами», программировались на то, чтобы узнать последовательность действий для подписки на бесплатную учетную запись электронной почты, а затем использовать ее для массовой рассылки рекламных сообщений десяткам миллионов людей, переполняя почтовые ящики. Эти же роботы могли регистрироваться на сайтах, а затем оставлять сотни рекламных объявлений в разделах комментариев. Интернет превращался в неуправляемое, недружелюбное и недоброжелательное место. В частности, казалось, он перестал быть примером открытости и простоты использования, предлагающим такие возможности, как бесплатная электронная почта. Когда компании вроде TicketMaster предлагали приобрести в интернете билеты на концерты по принципу «кто не успел, тот опоздал», подлые программы скупали их все, опережая реальных людей.
В 2000 году новоиспеченный выпускник колледжа 22-летний Луис фон Ан загорелся идеей решить эту проблему: нужно заставить регистрирующегося доказать, что он человек. Луис нашел то, что легко давалось людям, но представляло трудности для компьютеров: опознать в процессе регистрации искаженные, трудно читаемые буквы. Люди смогут расшифровать их и ввести правильный текст в считаные секунды, но компьютер будет поставлен в тупик. Компания Yahoo реализовала эту идею и стремительно сократила атаки спам-ботов. Фон Ан назвал свое творение Captcha (англ. Completely Automated Public Turing Test to Tell Computers and Humans Apart — «полностью автоматизированный публичный тест Тьюринга для различения компьютеров и людей»). Пять лет спустя около 200 миллионов Captcha стали вводиться ежедневно.
Это принесло Луису фон Анну, выходцу из гватемальской семьи, которая владела кондитерской фабрикой, широкую известность и работу преподавателя компьютерных наук в Университете Карнеги—Меллон, после того как ему была присвоена степень доктора философии. Благодаря своему изобретению в возрасте 27 лет он получил одну из престижных премий Фонда Макартуров[93] за «гениальность» в размере 500 тысяч долларов. Когда Луис понял, что каждый день миллионы людей тратили впустую около десяти секунд своего времени на ввод раздражающих букв и при этом огромное количество получаемой информации попросту выбрасывалось, он усомнился в гениальности своего изобретения.[94]
Луис фон Ан искал способы более продуктивного применения человеческой вычислительной мощности. В итоге был создан тест-преемник с подобающим названием ReCaptcha. Теперь, вместо того чтобы вводить случайные буквы, люди набирают два слова из проектов по сканированию текстов, которые не удалось распознать с помощью компьютерной программы оптического распознавания символов. Одно слово подтверждает, что его уже вводили другие пользователи (и, следовательно, является сигналом того, что пользователь — человек), а другое — новое слово, которое нужно уточнить. Чтобы гарантировать точность, система отображает одно и то же случайное слово до тех пор, пока примерно пять разных пользователей не введут его без ошибок, и только тогда слово считается правильным. Таким образом, данные имеют как основное назначение (доказать, что пользователь является человеком), так и второстепенное — расшифровать непонятные слова из оцифрованных текстов. Система ReCaptcha оказалась настолько полезной, что в 2009 году компания Google решила внедрить ее в свой проект сканирования книг.
Выгода от системы огромна, если учесть, сколько нужно людей для выполнения такой работы. Более 200 миллионов ReCaptcha вводятся ежедневно. Примерно 10 секунд, затрачиваемых на эту операцию, — это в общей сумме около полумиллиона часов в день. Минимальная заработная плата в США в 2012 году составляла 7,25 доллара в час. Если бы для уточнения слов, которые компьютер не мог понять, пришлось обратиться на рынок труда, это обошлось бы примерно в 35 миллионов долларов в день, или более чем 1 миллиард долларов в год. Но Луис фон Ан разработал систему, которая делает это, по сути, бесплатно.
История ReCaptcha подчеркивает, насколько важны повторные данные, особенно если это большие данные. В эпоху цифровых технологий мы осознали роль данных в поддержке операций, и нередко они сами становились товаром. В мире больших данных все снова меняется. Акцент переносится на потенциальное применение данных в будущем. Этот процесс влечет за собой далеко идущие последствия. Он влияет на то, как компании оценивают данные, имеющиеся в их распоряжении, и кому предоставляют к ним доступ. Он позволяет компаниям (а может быть, и вынуждает их) менять свои бизнес-модели, а также меняет отношение организаций к данным и способы их использования.
Информация всегда была необходима для рыночных сделок. Данные дают возможность проводить ценовые исследования, а те — определить объемы производства. Кроме того, на рынках давно торгуют определенными видами информации. Примеры тому — книги, статьи, музыка, фильмы, а также финансовая информация (такая как цены на акции). В последние несколько десятилетий подобная информация была объединена понятием личных данных. Специализированные брокеры данных в США, такие как Acxiom, Experian и Equifax, запрашивают кругленькие суммы за всеобъемлющие досье личной информации на сотни миллионов пользователей. С появлением Facebook, Twitter, LinkedIn, Foursquare и других платформ социальных сетей наши личные связи, мнения, предпочтения и примерный распорядок дня пополнили и без того огромный пул личной информации, уже имеющейся о каждом из нас.
Хотя ценность данных уже давно не вызывает сомнений, прежде они воспринимались как дополнение к основной коммерческой деятельности или как довольно ограниченные категории интеллектуальной собственности и личной информации. Но в эпоху больших данных все данные без исключения будут рассматриваться как ценные сами по себе.
Говоря «все данные», мы имеем в виду даже самые сырые, самые, казалось бы, обыденные отрывки информации. Это могут быть показатели датчика температуры на заводском механизме. Или поток координат GPS в режиме реального времени, показатели акселерометра и уровень топлива в автомобиле — или в целом автопарке из 60 000 единиц. Или миллиарды старых поисковых запросов, или цены на все авиабилеты по всем рейсам коммерческих авиакомпаний США за прошедшие годы.
До недавнего времени не существовало простого способа сбора, хранения и анализа таких данных, что значительно ограничивало возможность извлечь из них потенциальную ценность. В знаменитом примере Адама Смита[95] производителю булавок, с которым он обсуждал разделение труда в ХVIII веке, потребовались бы наблюдатели, постоянно присматривающие за сотрудниками, а также проведение измерений и подсчет выпущенной продукции с помощью бумаги и пера. Даже измерение времени было бы затруднительным, учитывая, что надежные часы в то время были редкостью.[96] Ограничения технической среды сформировали взгляды классических экономистов на устройство экономики — то, о чем они едва ли имели представление, так же как рыба не знает, что она мокрая. Поэтому, рассматривая факторы производства (земля, труд и капитал), они, как правило, упускали из виду роль информации. Хотя за последние два столетия стоимость сбора, хранения и использования данных успела снизиться, до недавних пор это по-прежнему оставалось относительно дорогим удовольствием.
Характерное отличие нашего времени состоит в том, что большинство ограничений, присущих сбору данных, исчезли. Технологии достигли того уровня, когда получение и запись огромных объемов данных стали достаточно доступными. Данные можно собрать пассивно, без особых усилий со стороны тех, о ком ведется запись, и даже без их ведома. А поскольку стоимость хранения значительно упала, оправдать хранение данных проще, чем удалить их. В таких условиях к вашим услугам намного больше данных и по более низким ценам, чем когда-либо. За последние 50 лет стоимость цифрового хранения урезалась вдвое каждые два года, в то время как плотность хранимых данных увеличивалась в 50 миллионов раз.[97] В свете информационных компаний, таких как Farecast или Google, где на одном конце цифровой линии сборки поступают сырые факты, а на другом выходит обработанная информация, данные начинают восприниматься как новый фактор производства.
Непосредственная ценность больших данных очевидна тем, кто их собирает. По сути, сбор данных производится с конкретной целью. Магазины собирают данные о продажах для надлежащего финансового учета. Заводы контролируют выпуск продукции, чтобы обеспечить ее соответствие стандартам качества. Сайты регистрируют все действия пользователей, вплоть до области перемещения мыши, чтобы проанализировать и оптимизировать контент, предоставленный посетителям. Первичное использование данных оправдывает сбор и обработку информации. Записывая информацию не только о книгах, которые покупают клиенты, но и о веб-страницах, которые они посещают, компания Amazon знает, что данные послужат для формирования персонализированных рекомендаций клиентам. Таким же образом Facebook отслеживает обновления статуса и пометки «Нравится» пользователей, чтобы подобрать подходящие рекламные объявления для показа на своем сайте с целью получения дохода.
В отличие от материальных объектов (употребляемой пищи, горящей свечи и пр.), ценность данных не уменьшается по мере их потребления. Данные можно обрабатывать снова и снова. Они представляют собой то, что экономисты называют «неконкурирующим» товаром. Им могут пользоваться несколько человек одновременно без ущерба друг для друга. К тому же, в отличие от материальных благ, информация не изнашивается по мере употребления. Amazon с помощью данных о прошлых операциях формирует рекомендации для своих клиентов и делает это неоднократно не только для тех клиентов, от которых получены данные, но и для многих других.
Поскольку ценность данных не ограничивается одним конкретным случаем, их можно употребить в дело многократно как с одной и той же целью, так и с разными. Особенно важен для нас второй случай, поскольку мы пытаемся понять, насколько ценной будет для нас информация в эпоху больших данных. Мы уже рассмотрели примеры реализации потенциала данных, когда сеть магазинов Walmart проанализировала старые квитанции продаж и заметила выгодную корреляцию между ураганами и продажами Pop-Tarts.
Все это означает, что абсолютная ценность данных намного превышает ту, которую удается извлечь при первичном использовании. Компании могут эффективно работать с данными, даже если первое или каждое последующее использование приносит лишь небольшую толику ценности.
Для того чтобы получить представление о том, как повторное использование данных отражается на их конечной ценности, рассмотрим электрические автомобили. Станут ли они способом транспортировки, зависит от схемы логистики, которая так или иначе связана со временем работы аккумулятора. Водители должны иметь возможность быстро и удобно подзарядить аккумуляторы автомобиля, а энергетические компании — гарантировать, что энергия, полученная транспортным средством, не дестабилизирует сеть. На то, чтобы путем проб и ошибок прийти к теперешнему эффективному распределению АЗС, ушли десятки лет, но нам пока неизвестно, какой окажется потребность в подзарядке электрических автомобилей и где следует размещать для них зарядные станции.
Что удивительно, это не столько инфраструктурная задача, сколько информационная, и большие данные являются важной частью решения. В ходе проведенного в 2012 году исследования IBM в сотрудничестве с калифорнийской компанией Pacific Gas and Electric Company и автопроизводителем Honda собрала огромное количество информации, чтобы ответить на вопросы о том, когда и где электрические автомобили будут подзаряжаться и как решить проблему источников электропитания. IBM разработала сложную интеллектуальную модель, основанную на многочисленных входящих данных, таких как уровень заряда аккумулятора, местоположение автомобиля, время суток и доступные разъемы на ближайших станциях зарядки электромобилей. Компания связала эти данные с текущим потреблением электросети, а также статистическими данными о закономерностях энергопотребления. Анализ огромных потоков данных в режиме реального времени и статистических данных из нескольких источников дал IBM возможность определить оптимальное время и место для подзарядки электромобилей. Он также показал, где лучше всего строить станции для их зарядки.[98] С течением времени системе понадобится учитывать различия в ценах на таких станциях. Даже прогноз погоды придется брать в расчет (в солнечный день на близлежащих станциях, работающих на солнечной энергии, электричество будет в изобилии, но по прогнозу также может предстоять неделя дождей, в течение которой солнечные панели будут простаивать).
Система получает информацию, созданную с одной целью, и работает с ней повторно с другой — иными словами, данные переходят от первичного использования к вторичному. Это делает их гораздо более ценными с течением времени. Индикатор уровня заряда аккумулятора автомобиля сообщает водителю, когда требуется подзарядка. Энергетическая компания собирает данные об эксплуатации электросети, чтобы управлять ее стабильностью. Это примеры первичного использования. Оба набора данных находят вторичное применение — и новую ценность, когда рассматриваются с совершенно другой целью: определить, когда и где выполнять подзарядку, а также где строить новые станции обслуживания электромобилей. Помимо этих данных включается новая, вспомогательная информация — местоположение автомобиля и статистические данные о работе в сети. К тому же IBM использует данные не один раз, а многократно, постоянно обновляя свои сведения о потреблении энергии электромобилями, а также о нагрузке на электросеть.
Истинная ценность данных — как айсберг в океане. На первый взгляд видна лишь незначительная часть, в то время как все остальное скрыто под водой. Инновационные компании, которые понимают это, могут извлечь скрытую ценность и получить потенциально огромные преимущества. Проще говоря, ценность данных необходимо рассматривать с точки зрения всех возможностей их дальнейшего использования, а не только нынешнего. Мы могли убедиться в этом на многих рассмотренных примерах. Компания Farecast анализировала данные о продаже авиабилетов, чтобы прогнозировать будущие цены на авиабилеты. Компания Google повторно применила условия поиска, чтобы узнать показатели распространения гриппа. Доктор Макгрегор собирала показатели жизненно важных функций младенцев, чтобы прогнозировать развитие инфекций. Мори многократно изучал старые капитанские журналы, чтобы выявить океанские течения.
И все-таки важность повторного применения данных недооценивается как в бизнесе, так и в обществе. Мало кто из руководителей нью-йоркской компании Con Edison мог предположить, что информация о кабелях со времен 1800-х годов и записи о техническом обслуживании могут пригодиться для предотвращения будущих аварий. Потребовалось новое поколение статистиков, а также новое поколение методов и средств, чтобы высвободить эту скрытую ценность данных. До недавних пор даже многим технологическим и интернет-компаниям не было известно, насколько ценным бывает повторное использование данных.
Данные можно наглядно представить в виде энергии, как ее видят физики. Это хранящаяся, или потенциальная энергия, которая дремлет в каждом из объектов, будь то сжатая пружина или мяч на вершине пригорка. Энергия в этих объектах находится в скрытом (потенциальном) состоянии, пока не будет высвобождена (например, если отпустить пружину или подтолкнуть мяч, чтобы он покатился вниз). Тогда она становится кинетической, поскольку они движутся и прилагают силу к другим объектам физического мира. После первичного использования данных их ценность остается прежней, но только в «спящем» состоянии. Она сохраняет свой потенциал, как пружина или мяч, вплоть до вторичного применения, когда преимущества данных раскроются с новой силой. В эпоху больших данных у нас, наконец, есть все необходимое (мышление, изобретательность и инструменты), чтобы высвободить их скрытую ценность.
В конечном счете ценность данных заключается в том, что можно получить от их всестороннего использования. Эти, по-видимому бесконечные, возможности служат альтернативами, но не с точки зрения финансовых инструментов, а с точки зрения практических вариантов выбора. Стоимость данных определяется суммой таких вариантов — так сказать, «альтернативной ценностью» данных. Раньше, задействовав данные по основному назначению, мы, как правило, считали, что они свою миссию уже выполнили и теперь их можно окончательно удалить. Ведь, казалось бы, основная ценность получена. В эпоху больших данных все иначе: данные, как волшебный алмазный рудник, обеспечивают отдачу еще долго после того, как их номинальная ценность уже извлечена. Есть четыре мощных способа раскрыть альтернативную ценность данных: основное повторное использование, слияние наборов данных, поиск данных «2 в 1» и учет «амортизации» ценности данных.
Повторное использование данных
Классический пример инновационного повторного использования данных — условия поиска. На первый взгляд, информация становится бесполезной, как только ее первоначальное назначение достигнуто. Мгновенное взаимодействие между пользователем и поисковой системой приводит к подготовке списка сайтов и объявлений, тем самым выполняя определенную функцию, уникальную на тот конкретный момент. Но и старые запросы могут быть чрезвычайно полезными. Такие компании, как Hitwise, которая принадлежит брокеру данных Experian и занимается измерением веб-трафика, дают клиентам возможность проводить интеллектуальный анализ поискового трафика, чтобы выявить предпочтения потребителей. Маркетологи могут использовать Hitwise, чтобы узнать, какой цвет будет в моде этой весной — розовый или снова черный. Компания Google предоставляет пользователям открытый доступ к своей версии аналитики условий поиска. В сотрудничестве с BBVA, вторым по величине банком Испании, Google запустила службу бизнес-прогнозирования, чтобы анализировать сектор туризма и продавать в режиме реального времени экономические показатели, основанные на данных поиска. Банк Англии работает с поисковыми запросами, связанными с объектами недвижимости, чтобы уточнить тенденции роста или падения цен на жилье.
Компании, которые недооценили важность повторного использования данных, усвоили урок на собственном горьком опыте. В начале своей деятельности Amazon заключила сделку с компанией AOL по запуску технологии, лежащей в основе интернет-магазина AOL. Для большинства людей это выглядело как обычная сделка внешнего подряда. «Но что на самом деле интересовало Amazon, так это данные о том, что пользователи ищут и покупают, поскольку это позволило бы повысить эффективность рекомендательной системы компании», — поясняет Андреас Вайгенд, бывший руководитель исследовательских работ в Amazon.[99] Бедняжка AOL так этого и не поняла. Она видела преимущества только с точки зрения первичного использования — продаж, в то время как в Amazon смекнули, что можно извлечь выгоду из вторичного использования данных.
Или возьмем первые шаги Google в области распознавания речи. В 2007 году был запущен голосовой телефонный справочник GOOG-411, который функционировал вплоть до 2010 года. Поисковый гигант не имел своей технологии распознавания речи, поэтому пришлось ее лицензировать. Компания заключила договор с лидером в этой области — компанией Nuance, которая была рада обзавестись таким ценным клиентом. Но Nuance плохо разбиралась в том, что касалось больших данных: в договоре не уточнялось, кто является держателем записей голосового перевода, поэтому Google сохраняла их для себя. Эти данные были необходимы для совершенствования технологии, но также годились для создания новой службы распознавания речи с нуля. На тот момент Nuance воспринимала себя как организацию, которая занимается лицензированием программного обеспечения, а не обработкой данных. Осознав свою ошибку, компания начала заключать сделки с мобильными операторами и производителями мобильных телефонов для внедрения своей службы распознавания речи, что позволило и Nuance собирать данные.[100]
Ценность повторного использования данных — хорошая новость для организаций, которые собирают или имеют в своем распоряжении большие наборы данных, но пока с ними почти не работают (например, обычные компании, которые в основном функционируют вне интернета). Может оказаться, что они сидят на неиспользуемых информационных гейзерах. Некоторые компании, собрав данные и единожды их задействовав (а может, и не сделав этого вовсе), хранили данные лишь из-за низкой стоимости хранения. Ученые прозвали компьютеры с такой старой информацией «гробницами данных». Технологические и веб-компании стоят первыми в очереди по освоению наплыва данных, поскольку собирают огромное количество информации, просто находясь в интернете, и опережают конкурентов в отрасли по ее анализу. При этом все компании остаются в выигрыше. Консультанты McKinsey & Company приводят в пример логистическую компанию (ее название они оставили анонимным). Компания обратила внимание на то, что в процессе доставки товаров она накапливала огромные ряды информации о поставках в глобальном масштабе. Учуяв возможности, она создала специальный отдел по продаже объединенных данных в форме деловых и экономических прогнозов — иными словами, офлайновую версию прошлого бизнеса Google, построенного на поисковых запросах.[101]
Некоторые компании благодаря своему положению в цепочке создания ценности информации накапливают огромное количество данных, даже если не имеют в этом существенной необходимости или не практикуют их повторное использование. Так, например, операторы мобильной связи собирают информацию о местоположении своих абонентов, чтобы маршрутизировать их вызовы. Эти компании видят лишь узкое техническое назначение таких данных. Но их ценность значительно повышается при повторном использовании компаниями, которые распространяют персонализированную рекламу на основе местоположения. Иногда ценность формируют не отдельные точки данных, а их совокупность. Это дает возможность компаниям, таким как AirSage и Sense Networks, продавать информацию о том, где люди собираются по пятничным вечерам или насколько медленно ползут машины в пробках. Такая информация может служить для определения стоимости недвижимости или расценок для рекламных щитов.
Даже самая банальная информация может иметь особое значение, если направить ее в правильное русло. Вернемся к операторам мобильной связи: у них есть записи о том, где и когда телефоны подключались к базовым станциям, включая данные об уровне сигнала. Операторы уже давно используют эти сведения для тонкой настройки производительности своих сетей, решая, где добавить или обновить инфраструктуру. Но данные имеют и много других потенциальных применений. С их помощью производители телефонов могут узнать, например, что влияет на уровень сигнала, чтобы улучшить качество приема сигнала на своих устройствах. Мобильные операторы сталкиваются с большим количеством юридических ограничений, которые, как правило, запрещают повторное использование данных или обмен ими ввиду конфиденциальности — изобретения эпохи малых данных. Во времена больших данных такие ограничения уже неактуальны.
Искусственно созданные данные
Иногда скрытую ценность можно раскрыть, только объединив один набор данных с другим, возможно, совершенно непохожим. По-новому комбинируя данные, можно добиться инновационных открытий, что подтверждает научное исследование, опубликованное в 2011 году. В нем шла речь о том, что мобильные телефоны повышают вероятность развития раковых заболеваний. Учитывая, что в мире насчитывается шесть миллиардов мобильных телефонов — практически по одному на каждого человека, — это очень важный вопрос. Множество исследователей искали подобную связь, но успеху препятствовали слишком маленькая выборка, недостаточная длительность изыскания или анализ только собственных данных, что чревато ошибкой. Тем не менее команда ученых из Датского онкологического общества разработала интересный подход, основанный на ранее собранных данных.[102]
Датская база данных всех абонентов мобильной связи ведет начало с момента появления мобильных телефонов в 1985 году. Исследование охватило тех, кто пользовался мобильным телефоном с 1990 по 2007 год, за исключением корпоративных и других абонентов, чьи социально-экономические данные были недоступны. Получалось 358 403 человека. В Дании также существовал реестр всех онкологических больных, в котором числилось 10 729 человек, страдающих опухолями центральной нервной системы в обозначенный период. Объединив два набора данных, исследователи рассчитывали найти корреляции. Продемонстрируют ли владельцы мобильных телефонов более высокую заболеваемость раком, чем те, у кого их нет? И правда ли, что абоненты, которые дольше пользуются мобильным телефоном, более подвержены раковым заболеваниям?
Несмотря на масштабы исследования, информация не была ни беспорядочной, ни неточной: оба набора данных составлялись с учетом строгих стандартов качества для медицинских и коммерческих целей. Информация собиралась в условиях, исключающих отклонения, несколькими годами ранее и по причинам, которые не имели ничего общего с целью этого исследования. Самое главное, что оно проводилось не на основе выборки, а близко к условию «N = всё»: учитывались почти каждый случай рака и почти каждый пользователь мобильного телефона (что в целом составило 3,8 миллиона человеко-лет владения мобильными телефонами). Благодаря тому что исследование охватывало почти все случаи, ученые могли контролировать подгруппы, например курящих.
В результате не было обнаружено, что увеличение риска развития рака связано с использованием мобильного телефона. Поэтому эти выводы вряд ли произвели фурор в средствах массовой информации, когда данные были опубликованы в британском медицинском журнале BMJ в октябре 2011 года. А вот если бы такая связь всплыла, о ней бы писали в первых полосах газет по всему миру, тем самым ознаменовав триумф методологии «искусственно созданных данных».
При анализе больших данных совокупность важнее отдельных частей, а при перекомпоновке совокупностей нескольких наборов данных получается еще более удачная совокупность. Современные интернет-пользователи знакомы с основными «мэшапами» — службами, которые по-новому объединяют несколько источников данных. Сайт недвижимости Zillow.com накладывает информацию о недвижимости и ценах на карту окрестностей в США, а также обрабатывает наборы данных о последних деловых операциях в районе и характеристиках объектов недвижимости, чтобы спрогнозировать стоимость конкретных домов в определенном районе.
Полученный результат полезен, поскольку наглядное представление данных делает их более понятными. Но это довольно упрощенный пример. В конце концов, не так уж трудно додуматься взять информацию относительно местоположения и наложить ее на карту. С большими данными мы можем пойти гораздо дальше. И датское исследование рака показывает, какие перспективы перед нами открываются.
Расширяемые данные
Повторное использование данных нетрудно обеспечить, если продумать их расширяемость с самого начала. Это получается не всегда (ведь мысль о том, что можно выжать из данных, иногда приходит намного позже, чем они были собраны), однако способствовать многократному потреблению одного и того же набора данных можно разными способами. Некоторые розничные торговцы устанавливают в магазинах камеры наблюдения таким образом, чтобы не только обнаруживать магазинных воров, но и отслеживать передвижение клиентов по магазину и места, где они останавливаются, чтобы присмотреться. Такая информация полезна для разработки лучшей выкладки товаров в магазине, а также для оценки эффективности маркетинговых кампаний. Ранее камеры видеонаблюдения служили только для обеспечения безопасности и рассматривались не более чем статья расходов. Теперь они рассматриваются как инвестиции, которые могут увеличить доход.
Как ни странно, одной из компаний, которые достигли наибольшего успеха в сборе данных с учетом расширяемости, является Google. Ее автомобили Street View, вызывающие неоднозначную реакцию общества, разъезжают по улицам, не только делая снимки домов и дорог, но и собирая данные GPS, проверяя картографическую информацию и даже попутно захватывая названия Wi-Fi-сетей (а также, вероятно, на незаконных основаниях, контент, доступный в открытых беспроводных сетях). За одну поездку автомобиль Google Street View накапливает множество потоков дискретных данных. Расширяемость обеспечивается тем, что Google применяет данные и для первичного использования, и для целого ряда вторичных. Например, данные GPS не только улучшили картографическую службу компании Google, но и были незаменимы для работы ее самоуправляемых автомобилей.[103]
Дополнительные расходы на сбор нескольких потоков данных или намного большего числа точек данных в каждом потоке, как правило, невелики, поэтому имеет смысл собирать как можно больше данных, а также делать их расширяемыми, изначально рассматривая потенциальные виды вторичного использования. Благодаря этому увеличивается альтернативная ценность информации. Суть в том, чтобы искать наборы «2 в 1», когда один и тот же набор данных, собранных определенным образом, можно применять в различных целях. Так эти сведения приобретают двойное назначение.
Обесценение данных
Поскольку стоимость хранения цифровых данных резко упала, компании получили сильный экономический стимул сохранять их для повторного использования в тех же или аналогичных целях. Однако полезность данных небезгранична.
Компании Netflix и Amazon умело используют информацию о покупках клиентов, чтобы рекомендовать новые продукты. При этом у компаний возникает соблазн многократно использовать эти записи в течение многих лет. В такой ситуации можно было бы утверждать, что в рамках соблюдения обязательных нормативов (например, закона о неприкосновенности частной жизни) компаниям следует хранить цифровые записи всегда или по крайней мере пока это экономически целесообразно. Однако все не так просто.
Информация с течением времени теряет часть своей первичной пользы. В таких условиях дальнейшее использование старых данных может не только не добавить ценности, но и фактически нивелировать пользу более новых данных. Положим, вы купили книгу на сайте Amazon лет десять назад. Вряд ли она все еще отражает ваши интересы. Если Amazon будет отталкиваться от нее, рекомендуя вам другие книги, вы вряд ли их купите, а может, вообще перестанете обращать внимание на последующие рекомендации сайта. Поскольку рекомендации основываются на всех собранных данных, наличие устаревших данных сводит на нет всю пользу новых (все еще ценных).
Таким образом, у Amazon есть огромный стимул использовать данные ровно до тех пор, пока это продуктивно. Компания должна постоянно сортировать свою базу данных, удаляя информацию, которая уже утратила свою ценность. А как узнать, что данные стали бесполезными? Ориентироваться исключительно на время не всегда эффективно. Поэтому Amazon и другие компании разработали сложные модели, которые позволяют отделить полезные данные от бесполезных. Если клиент просматривает или покупает книгу, которая была рекомендована на основе его предыдущей покупки, интернет-магазин берет на заметку, что старые покупки по-прежнему отражают текущие предпочтения клиента. Это позволяет оценить полезность старых данных и, следовательно, смоделировать более конкретную «степень обесценения».
Не все данные обесцениваются. Некоторые компании имеют веские причины хранить данные как можно дольше, даже если регулирующие органы или общество предпочли бы их удалить или сделать анонимными в кратчайший срок. Вот почему Google давно сопротивляется призывам удалить полные IP-адреса старых поисковых запросов (вместо этого спустя 18 месяцев удаляются только четыре последние цифры, чтобы сделать поисковый запрос анонимным). Компания оставляет за собой возможность сравнивать данные (например, поисковые запросы для предпраздничного шопинга) в годовом исчислении. Кроме того, сведения о местоположении пользователей, выполняющих поиск, помогают повысить релевантность результатов. Если большинство жителей Нью-Йорка набирают Turkey (англ. «Турция», «индейка») и открывают сайты, связанные со страной, а не птицей, алгоритм будет ранжировать эти страницы выше и для остальных нью-йоркцев. Даже если ценность данных для первичного использования снижается, их альтернативная ценность может оставаться высокой.
Понятие альтернативной ценности наводит на мысль, что организациям следует собирать как можно больше данных в пределах своих возможностей для их хранения, а также передавать эти сведения третьим лицам при условии, что они сохраняют за собой так называемые «сквозные» права (термин, заимствованный из патентного лицензирования). Если повторное использование данных дает определенный коммерческий результат, первоначальный владелец этих данных может получить свою долю. Разумеется, что организации, собирающие данные и владеющие ими, не могут вообразить все возможные способы их повторного применения.
Повторное использование данных иногда производится в скрытой форме. Интернет-компании записывают данные обо всех действиях пользователей на своем сайте, а затем обрабатывают каждое отдельно взятое взаимодействие как «сигнал» обратной связи для персонализации сайта, улучшения обслуживания или создания нового цифрового продукта. Интересной иллюстрацией служит рассказ о двух средствах проверки правописания.
В течение двадцати лет корпорация Microsoft разрабатывала надежное средство проверки правописания для своей программы Word. Его работа заключалась в том, чтобы сравнивать часто обновляемый словарь правильно написанных терминов с потоком символов, вводимых пользователем. Известные слова сверялись со словарем, а похожие варианты, не зафиксированные в нем, система расценивала как опечатки и предлагала исправить. Из-за усилий, затрачиваемых на формирование и обновление каждого словаря, средство проверки правописания в Microsoft Word было рассчитано только на наиболее распространенные языки. Создание и поддержка системы обошлись компании в миллионы долларов.
Посмотрим, что сделала Google. Эта компания имеет, пожалуй, наиболее полное из современных средств проверки правописания практически для всех языков мира. Система постоянно совершенствуется и непрерывно добавляет новые слова — это результат ненамеренной деятельности людей, ежедневно использующих поисковую систему. Сделали опечатку в слове iPad? Не страшно, система и так поймет. Ввели Obamacare? Запрос принят! Это важнее, чем может показаться. Золотое правило поисковиков звучит так: 10% запросов вводятся с ошибкой. (Поскольку средство проверки правописания Google постоянно совершенствуется, люди не обращают особого внимания на правильный ввод поисковых запросов, ведь Google в любом случае прекрасно справится с их обработкой.)
Компания Google получила свое средство проверки правописания практически «даром». Оно основано на опечатках, которые вводятся в окне поиска среди трех миллиардов запросов, обрабатываемых ежедневно. Продуманная обратная связь указывает системе, что пользователь на самом деле имел в виду. Пользователи могут непосредственно «сообщить» поисковой системе Google ответ на вопрос, отображаемый в верхней части страницы результатов (например: «Вы имели в виду эпидемиология?»), выбрав новый поиск с правильным термином. Или же веб-страница, на которую переходит пользователь, неявно сигнализирует о правильном написании, так как она, вероятно, сильнее коррелирует с правильно написанным словом, чем неправильным.
Система проверки правописания Google демонстрирует, что «плохие», «неправильные» или «дефектные» данные могут быть очень полезными. Интересно, что компания Google не первая загорелась этой идеей проверки правописания. Примерно в 2000 году Yahoo увидела возможность создания средства проверки правописания по опечаткам в запросах пользователей. Но идея не была реализована. Данные старых поисковых запросов рассматривались по большей части как балласт. Популярные когда-то поисковые системы Infoseek и Alta Vista в свое время тоже располагали наиболее полной базой данных слов с ошибками, но недооценили ее значимость. Их системы в ходе процесса, невидимого пользователям, рассматривали опечатки как «связанные термины» и выполняли поиск. Но эти системы были основаны на словарях (которые явно указывали системе, что правильно), а не на живом, динамичном взаимодействии с пользователем.
Только Google удалось разглядеть в отрывочных данных о взаимодействии пользователей поистине золотой песок, который можно было собрать и превратить в драгоценный слиток. Как считает один из ведущих инженеров Google, их средство проверки правописания работает на порядок лучше, чем средство Microsoft (хотя при некотором давлении инженер признал, что не проводил надлежащего исследования). Он высмеял идею «бесплатной» разработки. «Сырье (опечатки), возможно, и дается даром, но у Google на разработку системы ушло наверняка намного больше средств, чем у Microsoft», — сказал он, широко улыбаясь.
Разные подходы двух компаний чрезвычайно показательны. Корпорация Microsoft видела ценность средства проверки правописания только в одном — обработке текстов. Google, напротив, ясно понимала его значение. Используя опечатки, она не только разработала передовое в мире средство проверки правописания, чтобы улучшить поиск, но и применила его ко многим другим службам, таким как «автозаполнение» в поисковой системе, Gmail, Google Диск и даже собственная система машинного перевода.
Для описания цифрового следа, который пользователи оставляют на сайте, был придуман специальный термин — «выбросы данных». Под ним подразумевается побочный продукт взаимодействия пользователей в интернете: где и что они нажимают, как долго смотрят на страницу, где проводят курсором мыши, что печатают и т. д. Многие компании разрабатывают собственные системы, для того чтобы собирать выбросы данных и перерабатывать их для улучшения существующей службы или разработки новой. В этом отношении, как ни странно, лидирует Google. Она применяет принцип рекурсивного «обучения на основе данных» во многих своих службах. Каждое действие пользователя считается «сигналом», который Google анализирует и передает обратно в систему.
Google четко знает, сколько раз пользователи искали тот или иной термин, а также другие связанные с ним термины или же переходили по ссылке, после чего (не найдя ничего ценного) возвращались на страницу поиска, чтобы начать заново. Компания знает, по каким ссылкам переходил пользователь (будь то восьмая ссылка на первой странице или первая ссылка на восьмой странице) и отказался ли он от поиска в целом. Возможно, Google и не была первой, у кого возникла такая идея, зато она реализовала ее с необычайной эффективностью.
Такая информация очень ценна. Если множество пользователей выбирают результат поиска в нижней части страницы результатов, система предположит, что он более актуален, и алгоритм ранжирования Google автоматически поместит его выше на страницах последующих поисков (то же самое относится к рекламным объявлениям). «Нам нравится учиться у больших, “шумных” наборов данных», — делится один из сотрудников Google.[104]
Выбросы данных — это механизм, лежащий в основе многих компьютеризированных служб, таких как распознавание голоса, спам-фильтры, переводчики и других. Когда пользователь указывает в программе распознавания голоса, что она неправильно поняла произнесенное слово, он, по сути, «тренирует» систему, совершенствуя ее.
Многие компании начинают подобным образом проектировать собственные системы сбора и использования информации. В начале деятельности компании Facebook ее специалисты по обработке данных изучили широкую базу выбросов данных и обнаружили, что пользователь чаще всего предпринимает то или иное действие (публикует материал, нажимает значок и пр.) по примеру своих друзей. Компания сразу модернизировала свою систему так, чтобы почти все действия пользователя становились известными его друзьям, и это вызвало новую волну активности на сайте.
Идея распространилась далеко за пределы интернет-сектора — в каждую компанию, у которой есть возможность собирать данные обратной связи с пользователем. Устройства для чтения электронных книг записывают большие объемы данных о литературных предпочтениях и привычках людей, которые ими пользуются: как быстро они читают страницу или раздел, пролистывают ли некоторые страницы, едва прочитав, или, может, вовсе не дочитывают книгу. Книги фиксируют, если читатели подчеркивают отрывки или делают заметки на полях. Возможность собирать такого рода информацию превращает чтение, которое долгое время считалось сугубо индивидуальным, в коллективную деятельность. Объединенные выбросы данных расскажут издателям и авторам то, что им ни за что не удалось бы узнать с помощью количественных измерений: предпочтения людей и свойственные им модели чтения. Это коммерчески ценная информация: компании — производители электронных книг могут продавать ее издателям для улучшения содержания и структуры книг. Компания Barnes & Noble проанализировала данные со своих устройств для чтения электронных книг Nook, в результате чего выяснила, что люди, как правило, забрасывали чтение длинных книг научного содержания на полпути. Это открытие вдохновило компанию на создание Nook Snaps — коротких тематических выпусков, посвященных актуальным вопросам, таким как здоровье и текущие события.[105]
Программы дистанционного обучения, такие как Udacity, Coursera и edX, отслеживают взаимодействия студентов в интернете, чтобы определить наиболее удачные педагогические подходы. «Вместимость» аудитории порой превышает десятки тысяч студентов, что обеспечивает чрезвычайно большой объем данных. Теперь профессора могут увидеть, что многие студенты повторно просмотрели тот или иной отрывок лекции, и предположить, что определенный момент в ней был непонятен. Профессор Стэнфордского университета Эндрю Нг, преподавая курс машинного обучения в рамках программы Coursera, отметил, что около 2000 студентов неправильно поняли вопрос в домашнем задании, но выдали совершенно одинаковые ответы. Очевидно, они все делали одну и ту же ошибку. Но какую?
Проведя небольшое исследование, Эндрю понял, что студенты изменили порядок алгебраических уравнений в алгоритме. Впредь, если другие студенты сделают ту же ошибку, система не просто сообщит им, что что-то не так, но и посоветует проверить вычисления. Система также работает с большими данными, анализируя каждое сообщение на форуме, прочитанное студентами, и правильность выполненного ими домашнего задания. Это позволяет спрогнозировать вероятность того, что студент, прочитавший то или иное сообщение, правильно решит задание, а значит, определить какие сообщения наиболее полезны. Все это невозможно было узнать прежде. И эти знания могут навсегда изменить подход к преподаванию.
Выбросы данных могут дать компаниям огромные конкурентные преимущества, а также стать мощным рыночным барьером для конкурентов. Возьмем новую компанию, которая разработала интернет-магазин, социальную сеть или поисковую систему, намного лучшую, чем современные лидеры в этих областях — Amazon, Google или Facebook. Новой компании будет трудно конкурировать не только из-за отсутствия эффекта масштаба, сетевой выгоды или бренда, а еще и потому, что эффективность лидирующих компаний во многом связана с выбросами данных, собранными при взаимодействии с клиентами и включенными обратно в службу. Сможет ли новый сайт дистанционного обучения предложить ноу-хау, способное посоревноваться в эффективности с теми, кто уже собрал гигантское количество данных, чтобы определить наиболее успешные подходы?
Считается, что сайты вроде Google и Amazon были первопроходцами в области больших данных, но это не так. Первоначальными сборщиками информации в массовом масштабе были государственные органы, и они по-прежнему дадут фору любой частной компании в том, что касается огромного объема управляемых данных. В отличие от держателей данных в частном секторе, государственные органы, как правило, обязывают людей предоставить информацию, а не убеждают или предлагают что-то взамен. Поэтому они и дальше будут собирать и накапливать огромные объемы данных.
Уроки больших данных применимы как к общественным, так и к коммерческим структурам; ценность данных правительственных структур по большому счету скрыта и может быть извлечена только путем инновационного анализа. Несмотря на преимущественное положение в этом отношении, государственные органы, как правило, не умеют эффективно ими распоряжаться. В последнее время стала популярной мысль о том, что лучший способ извлечь ценность из правительственных данных — предоставить эту задачу частному сектору и обществу в целом. И эта идея небезосновательна. Когда государство собирает данные, оно делает это от имени своих граждан и, следовательно, должно предоставить доступ к ним обществу, за исключением ограниченного числа случаев, связанных, например, с возможностью нанести вред национальной безопасности или правам на частную жизнь других людей.
Эта идея привела к несчетному количеству проектов «открытых государственных данных» по всему миру. Утверждая, что государственные органы являются лишь хранителями собираемой информации, а частный сектор и общество найдут ей инновационное применение, сторонники открытых данных призывают официальные органы открыто публиковать данные в общественных и коммерческих целях — разумеется, в стандартизированной форме, пригодной для машинного считывания и обработки, иначе эту информацию можно будет назвать общедоступной только номинально.
Идея открытых государственных данных получила развитие, когда Барак Обама в свой первый полный рабочий день 21 января 2008 года издал президентский указ, обязывающий руководителей федеральных агентств выпускать как можно больше данных. «Перед лицом сомнений открытость имеет приоритетное значение», — наставлял Обама.[106] Это блестящее заявление, особенно в сравнении с мнением его предшественника, который поручил агентствам делать прямо противоположное. По указу Обамы был создан сайт data.gov — хранилище общедоступной информации от федерального правительства. Сайт стремительно вырос с 47 наборов данных в 2009 году до почти 450 000, получаемых из 172 агентств, к своему трехлетию в июле 2012 года.
Значительный прогресс достигнут даже в сдержанной Великобритании, где большая часть государственной информации защищена авторским правом, принадлежащим короне, а получение лицензии на ее применение (например, почтовых индексов для интернет-компаний на карте) — трудоемкий и дорогостоящий процесс. Правительство Великобритании издало указы для поощрения открытости информации и поддержки в создании Института открытых данных (одним из руководителей которого стал Тим Бернерс-Ли, изобретатель всемирной паутины WWW), чтобы содействовать новейшим способам использования открытых данных и высвободить их из цепких рук государства.
Европейский союз объявил инициативы относительно открытых данных, которые вскоре могут приобрести континентальный масштаб. Некоторые страны других континентов, такие как Австралия, Бразилия и Чили, уже выпустили и реализовали стратегии открытых данных. Помимо национального уровня растет число городов и муниципалитетов по всему миру, которые также приняли открытые данные. Не отстают от них и международные организации, включая Всемирный банк, который открыл сотни наборов данных экономических и социальных показателей, доступ к которым ранее был ограничен.
Тем временем вокруг данных сформировались сообщества веб-разработчиков и передовых «умов», стремящихся выяснить способы получения максимальной отдачи от данных, например Sunlight Foundation в США и Open Knowledge Foundation в Великобритании.
Одним из первых примеров возможностей использования открытых данных является американский сайт FlyOnTime.us. Он позволяет в интерактивном режиме узнавать, среди прочего, вероятность того, что ненастная погода приведет к задержке рейсов в конкретном аэропорту. Сайт объединяет информацию о рейсах и о погоде из официальных источников данных, которые находятся в свободном доступе в интернете. Его разработали сторонники открытых данных, чтобы наглядно показать полезность информации, которую накопило федеральное правительство. Кроме того что данные общедоступны, исходный код сайта тоже открыт, так что другие могут учиться на его примере, а также использовать его повторно.
FlyOnTime.us дает возможность данным «говорить», и они нередко сообщают неожиданные факты. Например, на сайте можно увидеть, что на рейсах из Бостона в нью-йоркский аэропорт Ла Гуардиа задержки из-за тумана длятся вдвое дольше, чем из-за снега. Большинство людей, слоняющихся в зале вылета, вряд ли бы об этом догадались, ведь снег кажется более весомой причиной задержки. Это одно из тех открытий, которые становятся возможными благодаря большим данным. В данном случае понадобилось обработать статистические данные о задержках рейса из Транспортного бюро США, текущую информацию о ситуации в аэропорту из Федерального управления гражданской авиации США, предыдущие отчеты о погоде из Национального управления океанических и атмосферных исследований, а также информацию о погодных условиях в режиме реального времени из Национальной метеорологической службы. FlyOnTime.us показывает, что не обязательно собирать или контролировать информационные потоки, чтобы получать данные и применять их с пользой, как это делают поисковые системы и крупные розничные торговцы.
Измерить ценность данных — как общедоступных, так и закрытых в корпоративных хранилищах — непростая задача. Рассмотрим события пятницы 18 мая 2012 года. В тот день 28-летний основатель Facebook Марк Цукерберг из главного офиса компании в городе Менло-Парк, Калифорния, дал символический звонок к открытию биржи NASDAQ. Отныне крупнейшая в мире социальная сеть, которая могла похвастать тем, что в ней зарегистрирован каждый десятый человек на планете, стала публичной компанией. Пакет акций тут же вырос на 11%, как в большинстве технологических компаний в их первый торговый день. Ожидалось практически чистое удвоение стоимости. Но в тот день произошло нечто странное: акции Facebook начали падать. Оказалось, произошел технический сбой в компьютерах NASDAQ, который временно приостановил торговлю. Но надвигалась более масштабная проблема. Почувствовав неприятности, биржевые андеррайтеры во главе с Morgan Stanley вынуждены были искусственно поддерживать котировки не ниже цены выпуска.
Накануне вечером банки Facebook оценили компанию в 38 долларов за акцию, что в общей сумме составляло 104 миллиарда долларов (для сравнения: это примерно рыночная стоимость компаний Boeing, General Motors и Dell Computers вместе взятых). Сколько на самом деле стоит Facebook? По результатам аудита финансовой отчетности за 2011 год, по которой инвесторы оценивали компанию, активы Facebook составили 6,6 миллиарда долларов. В их стоимость вошли аппаратные средства, патенты и другое материальное имущество. Что касается балансовой стоимости огромных запасов размещаемой информации, которая хранилась в корпоративном хранилище Facebook, она равнялась нулю. Точнее, вообще не была включена. И это притом что, по сути, главным ресурсом компании являются данные.[107]
Ситуация становилась все более странной. Дуг Лэйни, вице-президент по исследованиям в компании Gartner, которая занимается изучением рынка, еще до первичного размещения акций (IPO) подсчитал, что в период между 2009 и 2011 годами компания Facebook собрала 2,1 триллиона единиц «монетизируемого контента», включая пометки «Нравится», опубликованные материалы, комментарии и пр. При сопоставлении этих данных с оценкой IPO компании получалось, что каждый элемент, рассматриваемый как отдельная точка данных, стоил около четырех центов. Взглянув на эти результаты под другим углом, можно сделать вывод, что каждый пользователь Facebook (как источник собираемой информации) оценивался в 100 долларов.
Как объяснить огромное расхождение между стоимостью Facebook по стандартам бухгалтерского учета (6,6 миллиарда долларов) и тем, во сколько компанию первоначально оценил рынок (104 миллиарда долларов)? Внятного объяснения, пожалуй, нет. Скорее, существует всеобъемлющее соглашение, что нынешний метод определения корпоративной стоимости — исходя из «балансовой стоимости» компании (по сути, стоимости ее материальных активов) — уже не отражает реальной стоимости компании. Разрыв между «балансовой» и «рыночной» стоимостью (которую компания получила бы на фондовом рынке, будь она скуплена целиком) неуклонно рос на протяжении десятилетий.[108] В 2000 году Сенат США даже провел слушания по вопросам модернизации текущей модели финансовой отчетности, созданной в 1930-х годах, когда информационного бизнеса и не было как такового. Эта проблема затрагивает не только балансовый отчет компании — неспособность правильно оценивать стоимость компании может привести к бизнес-рискам и нестабильности рынка.[109]
Разница между балансовой и рыночной стоимостью компании учитывается как «нематериальные активы». Она выросла примерно с 40% стоимости публичных компаний в США в середине 1980-х годов до 75% их стоимости в 2002-м.[110] Это внушительное расхождение. К таким нематериальным активам относятся бренд, талант и стратегия — все, что нематериально и не вписывается в формальную финансово-бухгалтерскую систему. Но все чаще к нематериальным активам относят и данные, которые хранятся и используются в компании.
В целом это означает, что в настоящее время нет эффективного способа оценки данных. В день открытия продажи акций компании Facebook разрыв между ее формальными финансовыми активами и неучтенными нематериальными составил около 100 миллиардов долларов — почти в 20 раз. Немыслимо! Подобные разрывы должны быть (и будут) устранены, как только компании найдут способы отражать стоимость своих активов данных в балансовых отчетах.
Микроскопические шаги в этом направлении делаются. Руководитель высшего звена одного из крупнейших американских операторов беспроводной связи признался, что его компания осознала огромную ценность своих данных и озадачилась вопросом, следует ли рассматривать их как часть активов компании с точки зрения учета и отчетности по документам установленной формы. Как только юристы компании услышали об этой инициативе, они тут же ее остановили. По их утверждению, учет данных в бухгалтерской книге мог повлечь за собой юридическую ответственность за них, что было не такой уж удачной идеей.[111]
Тем временем инвесторы тоже начали обращать внимание на альтернативную ценность данных. Цены на акции компаний, которые располагали данными или с легкостью их собирали, стали расти, в то время как могло наблюдаться падение рыночной цены других, менее удачливых позиций. Для этого совсем не обязательно, чтобы данные официально отображались в балансовых отчетах. Эти нематериальные активы найдут свое отражение в оценках рынков и инвесторов, хоть и не без труда, о чем свидетельствуют колебания цены на акции Facebook в первые несколько месяцев. По мере решения вопросов ответственности и трудностей с бухгалтерским учетом ценность данных почти наверняка станет отображаться в корпоративных балансах в виде нового класса активов.
Как будут оцениваться данные? Рассчитать их стоимость нельзя, просто сложив то, что было получено от первичного использования. Если большая часть ценности данных скрыта и будет получена при неизвестном дальнейшем вторичном использовании, придется поразмыслить, как подступиться к их оценке. Подобные трудности возникали с ценообразованием опционов, до того как в 1970-х годах было выведено уравнение Блэка—Шоулза,[112] а также при оценке патентов в условиях, когда аукционы, биржи, частные продажи, лицензирование и множество судебных разбирательств медленно формируют рынок знаний. В любом случае установление цены на альтернативную ценность данных, безусловно, открывает широкие возможности для финансового сектора.
Начать можно с изучения стратегий, которые держатели данных применяют для извлечения ценности. Наиболее очевидная из них — возможность лицензировать данные третьим лицам. В эпоху больших данных акционеры, возможно, предпочтут соглашение, по которому будет выплачиваться процент от стоимости извлекаемых данных, а не фиксированная плата. Так издатели выплачивают авторам и исполнителям роялти — процент от продаж книг, музыки или фильмов. Этот подход также напоминает сделки с объектами права интеллектуальной собственности в области биотехнологий, согласно которым лицензиары могут потребовать роялти с любых последующих изобретений, основанных на их технологии. Таким образом, каждая из сторон имеет основания для максимального повышения ценности, получаемой от повторного использования информации.
Однако поскольку лицензиату не всегда удается извлечь полную альтернативную ценность данных, держатели данных могут отказаться предоставить к ним исключительный доступ. И тогда, пожалуй, «распущенность данных» грозит стать нормой. Таким образом держатели данных смогут подстраховаться.
Появился ряд рынков, желающих поэкспериментировать с различными способами ценообразования данных. Исландская компания DataMarket, основанная в 2008 году, обеспечивает свободный доступ к наборам данных других организаций, таких как Организация Объединенных Наций, Всемирный банк и Евростат, и получает доход на перепродаже данных от коммерческих поставщиков (например, компаний, занимающихся маркетинговыми исследованиями). Стартап InfoChimps, расположенный в Остине (Техас), выступает в роли информационного посредника, то есть площадки, где третьи лица могут делиться своей информацией, платно или бесплатно. Компания дает возможность любому держателю данных продать свои накопленные базы данных, равно как платформа eBay дает возможность людям продавать ненужные им вещи.
Корпорация Microsoft вышла на этот рынок со своим продуктом Windows Azure DataMarket, который призван сосредоточить внимание на высококачественных данных и контролирует размещаемые предложения, подобно тому как компания Apple контролирует предложения в App Store. Microsoft видит ситуацию следующим образом: специалист по маркетингу, работая над таблицами Excel, может совместить табличные внутрикорпоративные данные с прогнозируемыми данными о росте ВВП, полученными из службы экономического консультирования. Он просто выбирает данные для покупки — и они мгновенно загружаются в соответствующие столбцы на экране.
Никто до сих пор не может сказать, чем обернутся модели оценивания стоимости. Но точно известно, что экономика начинает формироваться вокруг данных. При этом множество новых игроков получат ряд преимуществ, а у старых, вероятно, вдруг откроется новое дыхание.
Суть стоимости данных заключается в их неограниченном повторном использовании — альтернативной ценности. Сбор информации имеет решающее, но не исчерпывающее значение, поскольку существенная часть ценности находится в применении, а не хранении как таковом. В следующей главе мы поговорим о способах потребления данных на практике и компаниях по обработке больших данных, которые только-только выходят на рынок.