Солнечные, водяные и огневые хронометрические приборы завершили первую фазу развития хронометрии и ее методов. Постепенно выработались более четкие представления о времени и стали изыскиваться более совершенные способы измерения времени. Революционным изобретением, ознаменовавшим совершенно новые этапы развития в этом направлении, было создание первых колесных часов, с появлением которых началась современная эра хронометрии. Наименование «колесные часы», пущенное в ход старыми чешскими часовщиками, было, по-видимому, выведено из немецкого слова «Raderuhr», но оно не полностью отражало сущность этих часов. Тут речь шла о механических часах со спусковым механизмом и осциллятором, которыми эти часы принципиально отличаются от всех прежних часов.
Иронией судьбы является то, что именно крупные открытия и изобретения зачастую не имеют авторов. В этом отношении не являются исключением и механические часы. Самыми старыми, документально не подтвержденными сообщениями о механических часах считают косвенные упоминания о них, идущие еще из X в. Изобретение приписывают римскому папе Сильвестру II (950-1003), который, еще будучи простым монахом Гербертом из Ориллака, имел возможность во время своих учебных поездок не раз знакомиться с принципами построения различных арабских астрономических приборов, и прежде всего водяных часов. Если вспомнить о том, что арабы были весьма передовыми в этом отношении, то можно с основанием предполагать, что часами Герберта были скорее всего водяные часы. Конечно, не исключено, что имеющееся сообщение могло касаться и некоторых особых конструкций солнечных часов, поскольку, по другим источникам, Герберт был автором солнечных часов, изготовление которых было в 996 г. закончено для города Магдебурга. Впрочем, использованный при этом термин «хорология» (horologium) имел тогда широкое значение и относился ко всякого рода приборам для измерения времени. Неправдоподобность приоритета Герберта в изобретении механических часов подтверждается также тем, что ни в одном более позднем источнике нет упоминания о том, что идею Герберта кто-то стал развивать после его смерти.
С другим, намного более поздним, сообщением о механических часах мы встречаемся и в «Божественной комедии» Данте Алигьери (1265-1321).
Современная специальная литература считает колыбелью механических часов страны Западной Европы, откуда, согласно различным источникам, распространялось в конце XIII в. производство железных башенных часов, начиная с английских Вестминстерских часов 1288 г. Следующее сообщение от 1292 г. говорит о часах храма в Кентербери, далее есть сообщения о часах, построенных в 1300 г. во Флоренции, на 14 лет позднее — в Каннах, в 40-х годах XIV в. — в Модене, Падуе, о бельгийских часах — в Брюгге и об английских часах — в Дувре. В 1352 г. были построены монументальные куранты в кафедральном соборе Страсбурга, на 4 года позднее появились башенные часы в Нюрнберге, в 1370 г. появились такие часы в Париже, в 1381 г. появились первые подобные часы в Базеле и, наконец, в 1410 г. появились такие часы в Праге, ставшие основой позднейших пражских курантов.
Самым старым документом о механических часах, содержащим описание и чертеж и опубликованном в 11 различных рукописях (из них по крайней мере одна исходит непосредственно от автора часов), является, по всей видимости, сообщение об «астрарии» — астрономических часах, которые после 16 лет труда над ними закончил в 1364 г. профессор астрономии и медицины Джиованни де Донди для Палаццо дель Капитане в Падуе.
Сохранились, конечно, и сообщения о других часах более ранней эры, но они не вполне обоснованны. По одному из таких сообщений, Генри де Вик из Поррэна изготовил примерно около 1370 г. башенные часы с боем для королевского дворца Карла V. По Другим данным, первые башенные часы с боем изготовил Висконти в 1335 г. для башни костела Беата Вирджинни (ныне Сен-Готард) в Милане.
В наши страны механические часы попали несколько позднее, вероятнее всего, в люксембургскую эпоху, скорее всего, во времена правления Карла IV, когда при его дворе появились около 1376 г. первые упоминания о часовщиках и о строителях курантов. Введение пружинного привода в начале XVI в. существенно расширило возможности использования механических часов. В ходе постепенных совершенствовании благодаря открытиям Галилея, Гюйгенса и других ученых XVII в. этот новый тип часов стал все больше преобладать над прочими часами, которые, несмотря на наличие у них ряда достоинств, не могли долго конкурировать с современными им конструкциями механических часов.
Механические часы развивались в течение сравнительно долгого времени, не менее чем в течение пяти веков, а поэтому, по крайней мере когда речь идет об истории, рассмотрим только важнейшие ступени развития этих часов. Сначала познакомимся с их главными элементами, с их функциями и с некоторыми данными о часовых механизмах и о часовщиках, имена помогут интересующимся определять происхождение и возраст тех или иных часов.
Как уже было сказано, с изобретением механических часов началась новая эра хронометрии. Время начали измерять по новому принципу, который сохранил свое значение в течение ряда столетий. Из него вышли затем системы всех позднейших типов часов, независимо от того, использована ли для привода часов энергия механическая, электрическая или даже ядерная[7].
Любой часовой механизм можно разделить на четыре основные функциональные группы, а именно: приводной и передаточный механизм, спусковой механизм, осциллятор и индикаторная часть. Источник энергии привода у механических часов обычно бывает встроен в сам механизм часов и является его составной частью, например барабаны с гирями или же пружинный механизм с пружиной.
Требуемое количество энергии отмеривается в механических часах специальным устройством, так называемым спусковым механизмом или спуском, являющимся соединительным элементом между механизмом часов и осциллятором. Этот механизм постоянно соединен с передаточным механизмом часов, от которого он получает энергию привода. С осциллятором, который в современных часах имеет форму маятника или баланса, спуск взаимодействует лишь в определенные моменты, выполняя свою основную задачу, весьма важную для обеспечения хода часов, — разделение постоянной энергии привода на отдельные силовые импульсы, поддерживающие колебания осциллятора. Другой задачей спускового механизма является суммирование колебаний осциллятора. Если предположить, что осциллятор колеблется с постоянной частотой, то спуск работает одновременно в качестве устройства, суммирующего постоянные интервалы времени — полупериоды этих колебаний. Постоянство частоты осциллятора является главной предпосылкой точности хода часов. Если эта частота постоянна, то колебания осциллятора изохронны[8].
В дальнейшем изложении вопроса о спусковых механизмах мы часто будем употреблять понятия «полуколебание» и «колебание». Под «полуколебанием» осциллятора мы будем здесь понимать его движение в течение полупериода колебаний из одного положения равновесия в другое, а под «колебанием» — два следующих друг за другом «полуколебания». Продолжительность колебания называется его периодом. Под амплитудой мы будем понимать максимальное угловое отклонение осциллятора от его положения равновесия при колебаниях.
Осциллятор выполняет прежде всего роль генератора изохронных колебаний, но он регулирует и последовательность во времени силовых импульсов спуска, а этим, в свою очередь, регулируется ход всего часового механизма вместе с его индикаторным механизмом[9].
В течение столетий индикаторным механизмом был стрелочный индикатор с циферблатом, который имел классический вид неподвижного циферблата с одной, двумя или несколькими вращающимися стрелками, или же с неподвижной стрелкой и с одним или несколькими вращающимися цилиндрическими шаровидными или плоскими циферблатами.
В последнее время снова стала преобладать цифровая индикация, ставшая известной уже в конце XIX и начале XX в. и способствовавшая тогда усилению сбыта коммерческих часовых приборов.
Спусковой механизм и осциллятор образуют регулятор, который определяет точность хода механических часов. Исследуя механизм старых часов, мы встречаемся с огромным количеством конструктивных вариантов, с сотнями успешных и менее удачных спусковых механизмов и с различными формами осцилляторов — от простых маховиков через остроумно решенные сложные маятники и до современных самокомпенсирующихся балансов.
На первый взгляд представляется, что конструкция спускового механизма зависела от индивидуальных представлений и что между отдельными типами спусков нет общих признаков, по которым их можно было бы подразделить на группы. Однако общие признаки существуют, и по ним можно оценивать принцип и функцию спусковых механизмов с нескольких точек зрения. В целях наглядности мы будем рассматривать только те спусковые механизмы, которые чаще всего использовались в старых механизмах часов и имели наиболее важное значение для развития таких часов.
Объясним работу спускового механизма часов на примере наиболее известного и оправдавшего себя анкерного спуска (рис. 8).
Рис. 8. Спусковой механизм современных механических часов
Главными частями такого спуска является анкер 2 с рабочими изогнутыми штифтами, так называемыми палетами 1, и зубчатое спусковое колесо. Палеты анкера охватывают определенное количество зубьев спускового колеса и поочередно заходят в эти зубья. В положении, показанном на рис. 8, зуб спускового колеса подошел к левой палете и опирается на боковую поверхность, так называемую поверхность покоя. Маятник соединен вилкой с анкером, и здесь он находится в амплитудном положении и начинает опускаться в положение равновесия. Если при этом движении анкер повернется на определенный угол обхвата α, то зуб спускового колеса упрется в наклонную, так называемую импульсную, плоскость палеты, и при дальнейшем движении по этой плоскости он поднимет левое плечо анкера и при этом придаст анкеру и маятнику силовой импульс.
Длина этого импульса выражена углом импульса β. После окончания импульса палета 1 освободит зуб спускового колеса, спусковое колесо скачкообразно повернется, пока соответствующий зуб спускового колеса 2 не натолкнется на поверхность покоя второй палеты 3. Затем маятник легко перейдет на свою точку левого поворота и снова возвратится, пока зуб 2 перейдет с поверхности покоя на наклонную плоскость импульса правой палеты, а анкер получит импульс в обратном направлении. Этот процесс циклически повторяется. Анкерный механизм работает с двусторонним импульсом. Спусковое колесо при каждом полуобороте поворачивается на половину шага зубьев. Короткий скачок спускового колеса, сопровождаемый известным характерным тиканьем часов, правда, связан с некоторой потерей энергии, но он необходим для придания импульса анкеру и осциллятору.
Внимательное наблюдение за поведением спускового колеса приведет нас к первому критерию классификации спусков. У старых спусковых систем мы часто встречаемся с таким явлением, что анкер при завершении полуколебания осциллятора отжимает назад спусковое колесо и вынуждает его совершить небольшое, едва заметное возвратное движение. У современных же спусков спусковое колесо, наоборот, остается в покое. В зависимости от поведения спускового колеса можно, следовательно, распределить спуски на спуски с отходом назад и спуски без отхода.
У обычных маятниковых или балансовых часов, приводимых соответственно гирей или пружиной, величина момента импульса, а с ней и продолжительность полуколебания зависит от момента привода, величина которого под влиянием переменных сопротивлений, изменяющегося момента привода пружины и т.п. может изменяться настолько, что это будет значительно влиять на ход часов. В отношении более точных часов, к которым принадлежат некоторые виды хронометров, этот недостаток был устранен введением дополнительного элемента в виде гири или пружины между спусковым колесом и анкером, придающим осциллятору импульсы одинаковой величины. У спусковых механизмов, у которых нет этого элемента, осциллятор получает переменные импульсы. Оценивая спусковые механизмы с точки зрения постоянства импульсной силы, мы придем к следующему критерию, подразделяющему спусковые механизмы на механизмы с переменной силой и механизмы с постоянной импульсной силой.
Третий, весьма важный аспект касается прочности связи между спусковым механизмом и осциллятором. Что здесь понимается под прочностью связи? Рассматривая соединение маятниковой штанги обычных часов с анкером спускового механизма, мы увидим, что вилка, которая обычно жестко соединена с валом анкера, принуждает маятник к согласованному движению с анкером. Связь между спусковым механизмом и осциллятором здесь поддерживается на протяжении всех колебаний, вследствие чего все нестабильности передачи силы привода полностью переносятся на осциллятор и сильно нарушают равномерность его колебаний. Такие спусковые механизмы называют несвободными, и у таких часов трудно добиться большой точности хода.
Современные же спусковые механизмы, например швейцарский анкерный спуск современных механических наручных часов, наоборот, сконструированы так, что их осцилляторы колеблются большую часть времени независимо и соприкасаются со спусковым механизмом лишь на очень короткий момент, необходимый для передачи им импульса. Такие спусковые механизмы относятся к группе свободных.
Эта последняя категория спусковых механизмов имеет очень важное значение. В прошлом она дала также стимул для возникновения весьма совершенных систем точных часов со свободными маятниками, которые привились в научном измерении времени, в астрономии и в специальных часовых лабораториях. Свободные маятники были завершающей фазой развития механических колесных часов, имевшей наибольший успех в первых трех десятилетиях нашего века. Результаты измерения времени механизмами со свободными маятниками были отличными, и их превзошли только современные электронные системы с кварцевыми осцилляторами.
Практика показала, что одни спусковые механизмы или их модификации лучше подходят для крупных башенных, напольных или настенных часов, а другие — исключительно для малых карманных или наручных часов.
Самым старым спусковым механизмом, который применялся в механических часах с момента их возникновения в течение целых столетий, был шпиндельный спусковой механизм. Автор этого самого старого спускового механизма остался неизвестным. Главными частями этого механизма являются большое спусковое колесо, называемое иногда по его внешнему виду «корончатым колесом», и вал-шпиндель (отсюда и наименование «шпиндельный спуск») с двумя прямыми палетами. Это изобретение приписывают многим авторам, например веронскому Пацифику (умершему в 856 г.), который, судя по не поддающимся проверке источникам, создал первые часы, приводимые гирей без помощи воды, или уже упомянутому раньше Герберту. И хотя возникновение шпиндельного спускового механизма безусловно тесно связано с появлением первых механических часов на переломе XIII и XIV вв., не исключено, что его принцип был разработан еще в эру водяных часов.
В эпоху изобретения шпиндельного спускового механизма еще ничего не было известно ни о маятнике, ни о балансе. В раннем периоде, еще до создания первых маятниковых часов, этот спусковой механизм применялся с осциллятором, который имел форму двухплечего коромысла, так называемого билянца (фолио) с подвижными регулировочными грузами (рис. 9), и всегда жестко насаживался на палетный вал. Необходимое горизонтальное положение этого коромысла предопределяло стереотипное геометрическое расположение остальных частей часов — вертикального палетного вала и спускового колеса с горизонтальным валом внутри механизма. Такой была концепция колесных часов, когда они появились впервые на башнях европейских городов, а затем в жилых домах богатых горожан.
Шпиндельный спусковой механизм с билянцем первоначально имел и ходовой механизм пражских курантов, построенных в 1410 г. часовщиком Микулашом из Кадани. Такое же подобие этот спусковой механизм сохранил до 60-х годов прошлого века, когда ввиду частых неполадок его пришлось реконструировать. Первоначальный регулятор курантов с билянцем был при этом заменен современным дифференциальным стопорным спусковым механизмом Денисона, изготовленным по образцу башенных часов на Вестминстерской башне в Лондоне.
Билянец (фолио) трудно назвать осциллятором в полном смысле этого слова, поскольку реальный осциллятор должен быть способен к самостоятельным колебаниям и обладать собственной частотой колебания[10]. Маятнику придает эту способность сила тяжести, а балансу — возвращающая сила, возникающая в витках упруго деформирующегося волоска. Коромысло же не обладало этим свойством, а потому оно было, собственно говоря, лишь маховиком, подверженным воздействию случайных сил. Такое изменение позволило изменить прежнюю конструкцию с вертикальным спусковым колесом на более выгодную — с горизонтальным колесом. Это новое решение было повсеместно принято. У старых часов спусковое колесо размещалось на длинном валу над рамой машины, а у новейших часов оно было скрыто внутри между остальными передаточными механизмами.
Коромысловые часы являются типичным примером простого трехколесного механизма с однострелочным индикатором времени. Механизм, использованный для шпиндельного спуска, оправдал себя и для первых часовых механизмов с боем. В задней части часов находился колокольный механизм боя, который запускался в ход каждый час ходовым механизмом. В этом случае колокол сигнализировал истечение каждого следующего часа всегда одним и тем же количеством ударов. Такие часы использовали для измерения времени ночью в неосвещенном пространстве башни. (Колокол обращал внимание сторожа, а тот ощупью на выступах циферблата узнавал положение стрелки, определяя этим, сколько часов он уже находится на своем ночном посту.) Большинство часов, изготовленных до конца XVII в., имело лишь одну стрелку, обходящую циферблат за 12 или 24 ч, в зависимости от того, был ли на часах циферблат немецкий или итальянский (древнечешский).
Шпиндельный спусковой механизм с коротким кольцевым билянцем, жестко насаженным на палетном валу (так называемый «кухшванц»), сохранил свой вид и положение в часовом деле в течение нескольких столетий. Когда же на переломе XVI и XVII вв. Галилей занялся изучением свойств маятника, перед хронометрией открылся путь для революционных изменений. В 1657 г. голландский физик и математик Христиан Гюйгенс изготовил первые маятниковые часы, в которых маятник был использован действительно в качестве осциллятора. Идея Галилея, осуществленная Гюйгенсом, сильно повысила тогдашнюю точность механических часов. Суточная погрешность, колебавшаяся у маятниковых часов в широких пределах — в зависимости от качества часов от 15 до 60 мин, — упала у часов Гюйгенса до 10 с, хотя шпиндельный спуск остался, по существу, таким же, как у часов с билянцем. Шпиндельный спуск не очень подходил для маятниковых часов. Созданный первоначально для билянца, он требовал большую амплитуду — 20° и больше. Несмотря на это, он благодаря своей сравнительной простоте очень быстро распространился и на маятниковые часы, а в некоторых странах он сохранялся вплоть до начала XIX в., т.е. намного позднее, чем были изобретены современные спусковые механизмы. В стремлении приспособить шпиндельный спусковой механизм к условиям, предъявляемым маятником, некоторые часовщики постепенно изменяли взаимный угол между налетами до 40°. Одновременно с этим и наклон зубьев спускового колеса изменялся настолько, что оно все больше теряло свое первоначальное сходство с королевской короной. Эти изменения в геометрии спускового механизма преследовали еще одну цель — ограничить неблагоприятное влияние отхода спускового колеса.
Недостатки, связанные с большой амплитудой маятника при шпиндельном спуске, сознавал уже Гюйгенс, который создал для своих маятниковых часов в 1673 г. пружинную подвеску с двумя направляющими циклоидальными поверхностями. Эти поверхности имели своей задачей изменять во время колебания длину маятника, а с ним и продолжительность колебания. Попытки Гюйгенса получить колебания одной и той же продолжительности с помощью изменения длины маятника были правильны, ибо исходили из математического расчета, но на практике это не привилось[11], поскольку новые анкерные спуски, которые быстро заменили шпиндельный спуск, строились для маятниковых часов, наоборот, в расчете на малые амплитуды.
Несмотря на свою кажущуюся простоту, шпиндельный спусковой механизм обладал еще и другими теневыми сторонами, которые принуждали часовых дел мастеров искать иные формы этого механизма. Нет сомнения, что крупнейшей проблемой здесь было, особенно в отношении крупных железных башенных часовых механизмов, изготовление спускового колеса. Прежние кузнечные методы, которые использовались при изготовлении деталей крупных часов, оставили некоторые характерные признаки в виде соединений, сваренных в огне, клиновидных соединений разъемных деталей, склепанных трубочных трибов и т.п. Такое спусковое колесо изготовлялось из плоской полосы железа, свернутой в горячем виде в круг и сваренной в огне. Другой производственной трудностью было соблюдение вертикального положения палетного вала относительно спускового колеса.
Рис. 10. Двухрычажный спусковой механизм Шевалье де Бетуне
Лучшее решение спускового механизма напрашивалось в виде системы параллельных валов с плоским спусковым колесом, имеющим зубцы на своей торцовой поверхности. Важным шагом было создание группы храповых спусковых механизмов. Самый старый из них — двухрычажный храповой механизм, созданный Шевалье де Бетуном. Такой спусковой механизм, схема которого приведена на рис. 10, изготовлял примерно в 1727 г. для своих часов парижский часовой мастер Антуан Тиоу (1692-1767), автор часто упоминаемого сочинения «Трактат о хронометрии» (Traite d'horlogerie) от 1741 г. На валу правого рычага с винтом для задания взаимного положения палет здесь имеется вилка. Гиря на левом плече другого рычага удерживает внутренние плечи обоих рычагов в постоянном контакте. Двухрычажный спусковой механизм имел много конструктивных вариантов. Некоторые из них были довольно сложны и вносили в механизм нежелательные силы трения.
Другой парижский часовщик — Йоганн Баптист Дютертр (1715-1792) — изготовил аналогичный спусковой механизм с двумя маятниками, качающимися в противоположных направлениях. Каждый из них крепился на валу с одной палетой. Синхронизацию времени зацепления обеих палет на общем для них храповом колесе обеспечивали два зацепляющихся друг с другом зубчатых сегмента, насаженные на палетных валах.
Существенное упрощение спускового механизма дало изобретение «английского крюка» в 1666 г. Робертом Гуком, профессором геометрии и секретарем Королевской академии в Лондоне. Его идею детально разработал примерно на 10 лет позднее английский часовщик Вильям Клемент, работавший в Лондоне в 1670-1696 гг. В его мастерской была создана первая пригодная к использованию форма реверсивного анкерного спуска.
Анкерный спуск позволял введение более тяжелых маятников при меньшем расходе приводной энергии. Однако его главное достоинство заключалось в том, что он очень хорошо подходил к маятнику с малой амплитудой колебаний. В зависимости от числа зубьев спускового колеса, охваченных анкером, можно было по спусковому колесу оценивать продолжительность хода часов за одну заводку. У однодневных часов анкер охватывал обычно 4,5 зуба, а у восьмисуточных — 6,5 зуба и больше. Количество зубьев на анкерном колесе чаще всего было около 36.
Анкерные спуски с навесным анкером были предназначены для более тяжелых башенных маятников и крупных напольных часов с большим охватом анкера. Их длинные плечи давали большие усилия. Типичным примером анкерного спуска на его ранней стадии развития был английский анкерный спуск с отходом, приспособленный для среднего охвата зубьев спускового колеса.
Для дешевых народных часов немецкого происхождения, производившихся в конце XVIII и начале XIX в., большой популярностью пользовался шварцвальдский анкерный спуск с анкером, свернутым из стального листа. Наименование спуска произошло от немецкого слова «шварцвальд» (черный лес), области в Южной Германии, точнее, в южной части Гохшварцвальда, включающей Нойштадт, Вальдау, Урах, Ференбах, Триберг, Симонсвальд, Гютенбарх, Виллинген, Ст. Герген, Эльзах, Вальдкирх и прежде всего Фуртванген. Оттуда в начале XVIII в. начало распространяться производство «шварцвальдок» — деревянных часов с боем, первоначально со шпиндельным спуском и балансом, а затем и с анкерным шварцвальдским спусковым механизмом.
Привод грузом (гирей) был надежным и простым, однако он привязывал часовой механизм к одному месту, а этим сильно ограничивал возможности его более широкого использования. Развитие ремесел и торговли выдвинуло на передний план значение времени и ускорило изыскание новых средств для привода часов и для их превращения из неподвижного прибора в передвижные часы, способные указывать время в любом положении, в покое и в дороге.
Первые переносные механические часы изготовил, по всей вероятности около 1510 г., нюрнбергский слесарь Петр Генлейн (которого называли Геле, умер в 1541 г.), когда он заменил гирю плоской спиральной пружиной. Йоганн Коклеус (1479-1522) в учебнике, изданном в 1512 г. в Нюрнберге, написал о Петре Генлейне и его часах следующее: «Молодой мужчина, Петр Генлейн, конструирует приборы, которые удивляют самых талантливых математиков, так как он из куска железа производит хорологию со многими колесами. Такую хорологию можно носить в любом положении, поскольку она не имеет гири, и даже в кармане пиджака или в мешочке они ходят по 40 часов и бьют». Во Франции первым изготовителем местных портативных часов считали Жака де ля Гарде, работавшего в 1551-1565 гг. в Блуа. Самые старые его пружинные часы, изготовленные в 1561 г., хранятся теперь в Лувре. Успешные опыты с созданием комнатных, приводимых пружиной, часов имеют, однако, немного более давнее происхождение. Самыми старыми пружинными часами в истории мирового часового производства являются, по-видимому, бронзовые полуметровые настольные часы с готической двухбашенной кафедральной архитектурой и сложным механизмом боя, изготовленные около 1430 г. для бургундского герцога Филиппа Доброго. В настоящее время эти часы относятся к самым ценным экспонатам музея в Нюрнберге.
Пружинный привод часов, принцип которого был заимствован от механизмов движущихся фигур-автоматов XIII в., открыл путь к миниатюризации часов, которые до сих пор строились сперва в виде настольных, а затем в виде подвесных дорожных часов, а с середины XVI в. — и в виде малых карманных часов. Яйцеобразная поверхность их футляра украшалась художественными гравюрами и была гордостью южногерманских часовщиков. Эти часы вошли в историю хронометрии под названием «нюрнбергские яйца».
Эти переносные часы имели шпиндельный механизм с большим двуплечим билянцем. У некоторых немецких часов XVI в. маховик имел не круглую, а ложкообразную форму. Для управления ходом этих примитивных регуляторов тогдашние часовщики использовали упругие упоры из щетины. Изменением расстояния между упорами меняли размах колебания маховика, а этим и его частоту. Чешский часовщик Якуб Цех, работавший в Праге в первой половине XVI в., изготовлял цилиндрические настольные часы с круглым балансом.
Как и в маятниковых часах, шпиндельный спуск и здесь не способствовал получению большой точности. Если у маятниковых часов изохронность колебании была обусловлена малыми амплитудами маятника, то у балансового осциллятора дело обстояло наоборот. Это понял впервые лишь в XVII в. автор первых маятниковых часов Гюйгенс, который одновременно занимался и проблемами регуляторов портативных часов. Стремясь увеличить амплитуду балансов, он вложил сначала между спуском и балансом зубчатую передачу, но колебания баланса были медленными и, кроме того, они передавали на баланс все погрешности и изменения ведущей силы часовой пружины. Вторая идея, с которой выступил Гюйгенс около 1674 г., была более удачной и даже успешной и до сих пор используется в практике часового производства. К прежнему маховику он присоединил спиральную пружину-волосок, которая действовала при отклонении баланса от нейтрального положения. Таким образом возник первый действительно балансовый осциллятор со свойствами, подобными свойствам маятника, но с той разницей, что для маятника требовалась малая, а для баланса, наоборот, большая амплитуда[12]. Гюйгенс не был единственным, который в то время занимался изучением балансовых осцилляторов. Наряду с Робертом Гуком хороших успехов достиг в этом отношении и француз д'Готефей, экспериментировавший с прямыми пружинами.
После введения волоска балансовый шпинделевый спусковой механизм претерпел с течением времени ряд изменений. Например, наклон зубьев на пусковом колесе установился в 30°, первоначально острый угол, образуемый обеими налетами, увеличился до 100°. Типичным признаком карманных часов со шпиндельным спусковым механизмом, известным под народным названием «шпинделевок» (от немецкого «шпиндельхеммунг» — шпиндельный спуск), был сравнительно небольшой баланс, расположенный под отдельным мостиком над нижним основанием механизма (рис. 11).
Рис. 11. Карманные часы со шпиндельным спусковым механизмом (Англия, XVII-XVIII вв.)
Переход от спусков с отходом к спускам без отхода сопровождался рядом экспериментов, направленных на уменьшение неблагоприятных влияний сил, действующих нерегулярно между спусковым механизмом и осциллятором. Переходной конструкцией между этими видами спусков были такие виды этих механизмов, которые имели частично возвратный (реверсивный), а частично спокойный характер или у которых реверсивное движение спускового колеса сводилось к минимуму. Некоторые из этих смешанных спусковых механизмов относятся к таким спускам, при которых осциллятор получал импульс только в одном направлении, причем еще и непосредственно от спускового колеса.
Важный период в истории часовых регуляторов был начат в 1715 г. Томасом Томпионом, учеником знаменитого английского часовщика Джорджа Грагама, построившим первые механизмы спуска без отхода. Первый вариант спуска Грагама (рис. 12а) получил более совершенный вид с характерной формой спускового колеса, изображенного на рис. 12б.
Рис. 12. Спусковые механизмы без отхода: а — первоначальный Грагама; б — усовершенствованный Грагама
Однако в обоих случаях плечи анкера имели различные длины. С внедрением равноплечих анкеров с длинными плечами, охватывающими от 10,5 до 12,5 зуба, и с усовершенствованием формы короткоплечих анкеров был завершен основной этап развития этого, весьма важного вида спуска. Спуск Грагама стал благодаря своему конструктивному совершенству и надежности одним из главных спусковых механизмов, предназначенных для средних и крупных часов повышенной точности. Рабочие поверхности палет его анкера были разделены на поверхность покоя и импульса. Поверхность покоя образует часть окружности, описанной из центра анкера. Подъем анкера, а с ним и амплитуда маятника колеблются у коротких маятников в пределах между 2°30′ и 4°, а у длинных — лишь несколько больше 1°. Спусковое колесо имеет, как правило, 30 зубьев с подрезанными боковыми сторонами, чтобы сохранялся точечный контакт между поверхностями и спусковым колесом. В последующей практике лучше всего привился спуск Грагама, измененный немецким часовщиком Ф. Леонгардом, который заменил импульсные поверхности, представлявшие собой первоначально неразделенную часть плеч анкера, вложенными поддающимися регулированию стальными налетами, закрепленными винтами. Стальные палеты уступили с течением времени в отношении более дорогих и точных часов свое место рубиновым налетам, а позднее — палетам из синтетического корунда. Б.Л. Вуллияма (1780-1854), швейцарец, живший в Лондоне, видоизменил анкер спускового механизма Грагама так, чтобы на нем можно было изменять в небольшом размере охват зубьев.
В 20-х годах прошлого века появился часовой механизм Грагама с анкером, расположенным в перевернутом положении под спусковым колесом. С таким анкерным спуском можно встретиться и у некоторых часов, изготовленных, например, пражским часовщиком Йозефом Божеком (1782-1835).
Йозеф Таддеус Виннерль (1799-1866) решил способ соединения анкера с маятником оригинальным образом. Анкер и стержень маятника у его спускового механизма образовывали одну деталь, подвешенную на пружинной петле. На этой идее были построены часы Берту и некоторых других часовщиков.
Французский часовщик Амант, деятельность которого в Париже с 1730 до 1749 г. документально подтверждена, изготовил в 1741 г. новый вид анкерного спуска — штифтовой, у которого спусковое колесо имело вместо обычных зубьев штифтики, закрепленные на боковой стороне венца (рис. 13).
Рис. 13. Штифтовой спусковой механизм Аманта
Штифтовые спусковые механизмы были особенно пригодны для больших башенных часов, поскольку позволяли использовать большие приводные усилия, запас которых для башенных часов необходим, чтобы часы могли работать в различных, иногда довольно тяжелых атмосферных условиях.
У старых настольных часов мы часто встречаемся с другим типом штифтового спускового механизма. Это спуск Ахилла Брокота (1817-1878), в котором использованы продольно обточенные штифты в качестве палет, всаженных перпендикулярно в плечи анкера. Хотя такой анкерный спуск относят к спускам без отхода, это не вполне оправданно, поскольку спусковое колесо здесь совершает незначительное, но все же слегка заметное обратное движение. Штифтовой анкерный спуск Брокота, несмотря на свою небольшую точность, привился благодаря его надежности. Этот спусковой механизм можно встретить во многих настольных и настенных часах. В лучшем исполнении этот спусковой механизм имел рубиновые палеты. Циферблат часто был оформлен так, чтобы спусковой механизм был виден.
Часы для физических и астрономических измерении времени должны были быть сконструированы так, чтобы их индикатор имел секундную стрелку, которая бы одним скачком отмеряла целые секундные интервалы. Этому требованию очень хорошо удовлетворял анкерный спуск Грагама с 30-зубым спусковым колесом и секундным маятником длиной 984 мм — эта длина соответствует в нашей географической зоне полуколебанию в 1 с. Поэтому секундная стрелка была здесь установлена непосредственно на удлиненном валу спускового колеса. У часов с полусекундным маятником длиной 248 мм спусковое колесо должно было бы иметь 60 зубьев. Это привело бы к слишком большому увеличению размера спускового механизма, и техническое решение его было бы весьма сложным.
Поэтому некоторые часовщики пошли по пути создания односторонне действующих спусковых механизмов, для которых достаточно спускового колеса с обычными 30 зубьями.
Спусковые механизмы без отхода привились также и в малых часах. С течением времени возник ряд их вариантов, многие из которых были созданы на основе спусковых механизмов с отходом. Фламенвилль, часовщик, живший в Париже в конце 20-х годов XVIII в., использовал с этой целью основу шпиндельного спускового механизма, заменив у него палеты валиками с плоскими срезами. Швейцарский математик Николае Фатио (Фатио де Дуиллье, 1664-1733) нашел в 1700 г. способ обрабатывать и сверлить рубин. Пьер и Жакоб Деборфе, с которыми он объединился, изготовили спусковой механизм без отхода с двойным спусковым колесом, в нем они заменили палеты на анкере рубиновым штифтом, насаженным на вал баланса. Косо сошлифованная поверхность штифта выполняла роль импульсных поверхностей для обоих спусковых колес. Английский часовщик Генри Сюлли (1680-1728) изменил в 1721 г. этот спусковой механизм так, что использовалось единственное спусковое колесо с двумя маленькими штифтами, снабженными опять-таки импульсными лысками.
Подобными спусковыми механизмами занимался примерно в 1736 г. Эндерлен, а в 1742 г. — Пьер Леруа, Журден и другие. И. Самуэль, изготовляя спусковой механизм своей конструкции, исходил из конструкции Сюлли. Однако все его спусковые механизмы не имели тогда большого успеха. Лишь через 100 лет, примерно около 1830 г., к ним снова возвратился Поль Гарнье, эксперименты которого с этими спусками оказались намного более успешными.
Спусковые механизмы без отхода изготовлял также француз Клодиус Соньер (1816-1896). Один из них, одноколесный, относится к односторонне действующим спускам, другой придает импульс балансу при обоих полуколебаниях.
Некоторые спусковые механизмы без отхода отличались большими энергетическими потерями, вызывавшимися чрезмерным трением.
Многим коллекционерам старых часов известен штриховой спуск, в изобретении которого участвовали французы Лепот и Бомарше. Свое наименование этот спуск получил по плечику на валу баланса, напоминающему своим закруглением известный разделительный знак. Штриховой спуск пользовался большой популярностью главным образом в первой половине XVIII в., но в производственном отношении он был слишком сложным. Он отличался сравнительно большими пассивными сопротивлениями, которые не удавалось понижать смазкой, поскольку масло не удерживалось на рабочих поверхностях. Иногда вариант этого спуска называют двуштриховым спуском.
Одним из самых распространенных спусковых механизмов без отхода для малых часов был цилиндровый спусковой механизм, который изготовляли во второй половине XIX в. и еще в начале нашего века для дешевых карманных и для первых наручных часов. Этот спусковой механизм в его первоначальном виде изобрел Томпион, но в 1725 г. его существенно улучшил Грагам. Возникновение цилиндрового часового механизма, схема которого, видоизмененная Тиоу в 1741 г., приведена на рис. 14, можно объяснить стремлением увеличить амплитуду баланса путем уменьшения охвата анкера на зубьях спускового колеса. Цилиндровый спусковой механизм как раз и является предельным случаем, когда анкер охватывает лишь один зуб спускового колеса.
Рис. 14. Цилиндровый спусковой механизм Тиоу
В разработке ни одного другого спускового механизма не участвовало столько знаменитых часовщиков, как в дальнейшей разработке цилиндрового спускового механизма. Наряду с Тиоу и Лепотом в этой разработке участвовали Берту, Жан, Жоден и другие. Особо большую роль в этом деле сыграл Абрагам Луи Бреге (1745-1823), французский часовщик родом из Швейцарии, который у некоторых часов заменил металлическую среднюю часть цилиндра отшлифованным рубином. Рубин был более прочным и уменьшал трение, бывшее недостатком этого спуска. Спусковое колесо имело при этой конструкции, как правило, 15 зубьев, а у малых механизмов — лишь 13 зубьев. Недостатком было сравнительно большее трение валика о зубья спускового колеса, что вызывало большую неточность хода, а ее не удавалось устранить. Однако интерес к цилиндровому спуску был таким большим, что Берту после изменения конструкции этого спуска использовал его даже и для морского хронометра (присоединением зубчатого сегмента и триба на валу баланса он удлинил продолжительность их колебаний до половины секунды).
Другим излюбленным видом спусков без отхода малых часов был дуплексный спуск, который изобретен около 1725 г., причем это изобретение приписывается английским часовщикам Дуплейсу, известному Роберту Гуку и французскому часовщику Пьеру Леруа. Однако, по всей вероятности, этот спуск был построен французским часовщиком Йоганном Баптистом Дютертром, работавшим в Париже в 1715-1742 гг. Спуск получил свое наименование потому, что первоначально он имел двойное спусковое колесо. Позднее это колесо было заменено на одинарное, но с двумя раздельными системами зубьев. В этом виде после усовершенствования его Пьером Леруа он изображен на рис. 15. Свойства дуплексного спуска соответствовали анкерным системам с той разницей, что этот спуск работал с односторонним импульсом. В лучшем исполнении импульсная палета была рубиновой, так же как и валик с вырезом для выпуска зубьев спускового колеса.
Рис. 15. Дуплексный спусковой одноколесный механизм
Карманные часы с дуплексным спуском часто имели спрессованные из листового металла спусковые колеса с двумя рядами зубьев в различных плоскостях. Они типичны для так называемых долларовых часов, которые в конце прошлого века стали изготовлять некоторые часовые фирмы в США, и прежде всего фирма «Уотербюри Уотч Компани».
Дуплексный спуск относился к спускам с односторонним импульсом. Его баланс получал импульс при каждом втором колебании. Поскольку продолжительность колебания была обычно 0,25 с, то секундная стрелка скакала через каждую половину секунды. Была и модификация этого спуска, при котором секундная стрелка двигается через целую секунду. Принцип этого спуска простой. Удвоением захватных зубьев добились того, что баланс получал импульс лишь при каждом четвертом полуколебании.
В заключение укажем еще одну форму дуплексного спуска, который в отличие от описанных выше работал с двусторонним импульсом. У этого двухколесного спуска импульсные лыски переносят импульс от зубьев спускового колеса на окружности диска. Зубья звездообразного колеса здесь выполняют роль захватных зубьев.
Многие европейские часовщики второй половины XVIII в. предпочитали применять различные системы свободных спусков, отличных от анкерных. При этом они стремились ограничить время передачи импульса осциллятору до минимума. Под влиянием этих стремлений возникли две весьма многочисленные группы свободных спусков. Спуски первой группы, предназначенные для маятниковых часов, способствовали развитию точных методов измерения времени, а другую группу образуют балансовые спуски, о чем будет говориться далее. Из различия в характере маятникового и балансового осцилляторов ясно видно, что в обеих этих группах часов спусковые механизмы должны были строиться на различных конструктивных решениях.
Рис. 16. Свободный стопорный спусковой механизм Берту
Принцип свободного стопорного спускового механизма для маятниковых осцилляторов весьма стар. Теоретически этот принцип разработал еще Галилей, но осуществлен он был намного позднее. Своим слабым влиянием на точность хода часов он привлек внимание передовых часовых мастеров того времени. Одной из попыток использования этого принципа был спусковой механизм Берту, приведенный на рис. 16. Как и другие стопорные спусковые механизмы, он работал с односторонним импульсом, получаемым при каждом полуколебании. Захват и отпуск спускового колеса осуществляли консоль 1 с грузом и листовая пружина 2, закрепленная на маятнике. Импульс сообщали зубья спускового колеса через импульсную площадку маятника 3. Известно решение и в виде двухколесного спускового механизма Юргенса. У этого спуска зубья большого колеса являются захватными, а зубья внутреннего колеса — импульсными.
Из большого количества спусковых механизмов, основанных на аналогичном принципе, укажем еще на спусковой механизм английского часовщика Томаса Рейда (1750 — 1834) от 1804 г. Он отличался от предшествующих спусковых механизмов помимо прочего тем, что маятник получал импульс при колебаниях в обоих направлениях. Спусковое колесо спуска Рейда имеет две системы зубьев. Очень тонкие боковые зубья в виде шпеньков — зубья импульсные, которые сообщают импульсы анкеру через длинные плечи, заканчивающиеся импульсными площадками. Торцовые остроконечные зубья являются захватывающими. Функциональные схемы этого спускового механизма кажутся простыми, но в действительности трудно настроить обе системы рычагов так, чтобы обеспечить правильную работу спускового механизма.
Дальнейшее стремление к освобождению осциллятора от всех внешних влияний (кроме импульсов, необходимых для сохранения постоянства амплитуды колебаний) привело к созданию свободных спусковых механизмов, сконструированных так, чтобы их осцилляторы могли свободно колебаться в течение большей части периода колебания.
Одной из главных частей таких свободных спусковых механизмов был стопорный механизм, который при отходе осциллятора останавливал спусковое колесо. Первый свободный стопорный спуск для малых часов построил в 1748 г. Пьер Леруа (1717-1785), а в 1766 г. он установил его в морском хронометре.
В начале XVIII в. начал работать над развитием хронометрового спускового механизма английский часовщик Джон Гаррисон (1693-1776). Толчок этому дало английское правительство, которое в 1714 г. объявило премию в 10000 фунтов тому, кто изобретет достаточно точный способ определения географической долготы (с точностью в 1°) при плавании из Англии в Индию. Вознаграждение могло быть повышено до 15000 фунтов в случае снижения погрешности до 40′ и, наконец, до 20 000 фунтов при снижении погрешности до 30′. Напомним, что угол в 1° соответствует 4 мин времени. Главный приз попытался получить именно Гаррисон, бывший столяр из Йоркшира, который работал над решением этой проблемы примерно 40 лет своей жизни. После ряда экспериментов он осуществил в 1764 г. решающее испытание на судне «Тартар», плававшем из Портсмута на Ямайку. Его хронометр №4 допустил за 150 дней плавания ошибку только в 54 с и выполнил поставленное условие для получения главной премии. Однако после долгих проволочек Гаррисон смог получить лишь половину обещанной суммы, поскольку адмиралтейство обусловило выплату остальной части денег достижением одинаковой точности другими такими же хронометрами при других рейсах.
Первые опыты Леруа со свободным хронометровым спусковым механизмом были продолжены также Берту.
Завершению развития хронометрового свободного спускового механизма способствовали во второй половине XVIII в. двое известных английских часовщиков — Джон Арнольд (1744-1799) и Томас Ирншау (1749-1814). В конструкциях свободных стопорных хронометрических спусковых механизмов они создали два основных направления. Первое из них осуществлено прежде всего применительно к морским хронометрам: оно имело неподвижный стопор в виде длинной поверхности на одном конце защемленной пружины, возвращавшейся в первоначальное положение силой собственной упругой деформации. Другое направление отдавало преимущество стопору, возвращаемому спиральной пружиной.
Хотя существует еще целый ряд других хронометровых спусковых механизмов, мы упомянем лишь о двух наиболее важных с исторической точки зрения. Первый из них изготовил Ирншау, а второй, с двойным спусковым колесом, — дело рук известного датского часовщика Урбана Юргенсена (1777-1830), который особо отличался изготовлением хронометров и астрономических часов. Двухколесный хронометрический спусковой механизм Юргенсена отличался большой величиной импульса. Однако, несмотря на хорошие результаты этого изобретения, оно в конечном итоге уступило на практике место более простым одноколесным спусковым механизмам.
Созданию малого, надежного и притом доступного широким слоям общества хронометрического спускового механизма способствовало изобретение, в его первоначальном виде сделанное около 1760 г. учеником Грагама Томасом Мюджем (1715-1794). Анкерный спусковой механизм полностью отличался от хронометрового спускового механизма; он был основан на принципе спокойных маятниковых спусковых механизмов без отхода с той разницей, что баланс двигался свободно и независимо от спуска в течение значительной части времени своего колебания. Свободный анкерный спуск прошел сложный путь развития. Первоначальную идею Мюджа воспринял в 1825 г. Джордж Огюст Лешо (1800-1884) из Женевы. Он изменил форму палет на анкере и превратил первоначальный спуск покоя в свободный. Спуск Мюджа, видоизмененный Лешо, известен теперь под названием «английский свободный анкерный спуск» (рис. 17).
Рис. 17. Свободный анкерный спусковой механизм
Рис. 18. Швейцарский анкерный спусковой механизм
Новым элементом в геометрии этого спуска было введение угла притяжки (рис. 18).
Задача заключалась в том, чтобы давлением спускового колеса прижимало анкерную вилку при свободном движении осциллятора всегда попеременно к одному из упоров 1 или 2. Наличие угла притяжки должно было надежно закреплять анкер в его крайних положениях, но, несмотря на это, анкерная вилка еще была снабжена копьем 3, расположенным между рожками вилки, а баланс — предохранительным роликом 4 над направляющей 5 с импульсным камнем, надетым на вал баланса 6. Ось спускового колеса, анкера и баланса у этого спуска расположены, как правило, на одной прямой; угловое отклонение анкера обычно составляет 10°, амплитуда баланса ±220°. Угол между входом и выходом импульсного цилиндра из сцепления с анкерной вилкой, приведенный к оси баланса, обычно составляет 40°.
Английский свободный анкерный спуск страдал некоторыми недостатками, например сравнительно большим скачком спускового колеса, что сопровождалось большой потерей энергии. Поэтому позднее перешли к более совершенному швейцарскому анкерному спуску со скошенными зубьями на спусковом колесе 7. Новый профиль зубьев спускового колеса изменил характер импульса так, что часть импульса стала передаваться со спускового колеса по палетам анкера. Это изменение дало возможность использовать определенную часть зуба для импульса, что существенно улучшило энергетический баланс спуска.
Следовательно, у этого спуска возникает импульс сначала на передней грани зуба спускового колеса, а затем на задней грани палеты анкера. Анкерная вилка современного, теперь повсеместно признаваемого спускового механизма имеет в большинстве случаев несимметричную форму. Это нужно для того, чтобы поверхности захвата обеих палет были одинаково удалены от оси вилки и чтобы, моменты притяжки были одинаковыми в обоих крайних положениях. Выполнение этого условия выгодно даже в том случае, если это идет за счет различия в величине импульсов при колебаниях в разных направлениях. Теперь синтетический рубин заменил прежние стальные палеты и импульсный штифт. Рубиновые палеты в анкере и импульсный камень всажены в вырезах и приклеены шеллаком. Спусковой механизм с рубиновыми камнями имеет значительно более низкие пассивные сопротивления и лишь незначительный износ рабочих поверхностей.
Рис. 19. Штифтовой спусковой механизм Роскопфа
Самым простым свободным анкерным спуском, часто применяемым в карманных часах, настольных будильниках и дешевых настенных балансовых и наручных часах, является штифтовой спусковой механизм. Самый старый вид такого механизма — это спусковой механизм Роскопфа (рис. 19), названный так по его автору, швейцарцу Георгу Фредерику Роскопфу (1813-1889), который в шестидесятых годах прошлого века применил этот спуск в дешевых карманных часах. Этот спуск сохранился до настоящего времени благодаря простоте изготовления и небольшой себестоимости.
Рассматривая более детально формы анкерных спусковых механизмов балансовых часов производства различных часовщиков, мы увидим некоторые конструктивные особенности, которые, правда, несколько изменяют геометрическую конфигурацию спуска, но не изменяют его работу. На некоторых старых часах можно видеть на футляре надпись «Ancre ligne droit». Это известный тип английского или швейцарского спускового механизма с осями баланса, анкера и спускового колеса, находящимися на одной прямой, иногда анкер имеет иную форму, обозначаемую «ancre de côté» — боковой анкерный спуск.
Различия имеются и в длине вилки анкера, и в конструкции палет. Если камневые палеты всажены в плечи анкера так, чтобы они были видимы по всей длине, эти палеты называют «levees visibles». Наоборот, камни, всаженные в вырезы, имеющиеся в плечах анкера, так, что спуск зачастую производит на первый взгляд впечатление, что его анкер имеет металлические палеты, называют «levees convertes».
До сих пор мы в отношении свободных балансовых анкерных механизмов рассматривали лишь стопорные и анкерные системы. Совершенно логично, что некоторые часовщики изыскивали такие механизмы, у которых независимо колеблющийся осциллятор приводился в движение таким спусковым механизмом, который объединял бы элементы обеих этих или еще и других систем.
К таким часовщикам относился француз Роберт Робин (1742-1800), изготовлявший часы со спусковыми механизмами, имевшими элементы анкерных и стопорных спусковых механизмов.
Экспериментами с комбинированием элементов различных спусковых механизмов занимался и А. Л. Бреге, который для одного из своих хронометров, изготовленных около 1795 г., использовал специальный и довольно сложный комбинированный спусковой механизм.
Введение свободных спусковых механизмов значительно ускорило качественное развитие механических часов. Уменьшение влияния спускового механизма на осциллятор бесспорно улучшило его характеристику с точки зрения изохронности колебаний, однако это не вполне устранило влияние некоторых нестабильностей в величине импульсов. Поэтому надо было изыскивать другие способы устранения этого недостатка, нарушающего точность измерения времени. Более подходящим оказался способ, который, хотя и основывался на обычных особенностях свободного спускового механизма, но избавлял от непостоянства импульсов и обеспечивал импульсы одинаковой величины. Из этой идеи родилась идея нового вида спускового механизма — спуска с постоянной импульсной силой, развиваемой гирей или пружиной.
Первый такой спусковой механизм построил около 1740 г. Гаррисон. Часы с его спусковым механизмом находились в течение 140 лет в непрерывной эксплуатации, и суточная погрешность их хода 3-4 с была для тогдашнего времени рекордной. Спусковые механизмы, у которых источником постоянной импульсной силы был вес гири (груза), получили в Англии название гравитационных. Однако под понятием гири в этом случае можно представить себе рычажный механизм, собственный вес которого был той импульсной силой, которая передавалась непосредственно на осциллятор. Один из первых гравитационных спусковых механизмов построил около 1760 г. английский часовщик Александр Каннинг (1730-1814), а другой — Т. Мюдж.
Намного более сложный спусковой механизм с постоянной импульсной силой построил в 1826 г. Поль Гарнье, а также Шарпентье в середине прошлого века. Для нас этот механизм интересен тем, что он относится к односторонне действующим спускам. Импульс передается через рычаг с противовесом на вертикальном плече на импульсный штифт анкера. Величина постоянной импульсной силы задается грузом на плече.
История развития спусковых механизмов с неизменной силой импульса для магнитных часов связана с возникновением одних из самых больших башенных часов высотой 26 м, установленных на башне Вестминстерского дворца в Лондоне. Первоначально эти башенные часы должен был построить королевский часовщик Бенджемен Льюис Вуллиями (1780-1854), но затем эта задача была поручена Эдуарду Джону Денту (1790-1853), известному конструктору башенных часов и морских хронометров, который привлек к этой работе Эдмунда Бекетта-Денисона, позднее ставшего бароном Гримторпом (1816-1905), известного знатока теории часовых механизмов. После пятилетней опытной работы эти часы были помещены на башню, а в мае 1859 г. введены в эксплуатацию. На два месяца позднее был включен и механизм боя с большим часовым колоколом, названным Биг Бен в честь сэра Бенджемена Холла. Схема регулятора этих часов приведена на рис. 20.
Рис. 20. Гравитационный спусковой механизм Денисона
Уже с первого взгляда бросаются в глаза два мощных импульсных плеча с защелками для захвата зубьев трехконечного звездообразного спускового колеса. Три импульсных штифта на его боковой стороне подымали перед импульсом попеременно импульсные плечи в исходные положения. В таком виде спусковой механизм не дал вначале ожидавшихся от него результатов. Поэтому Денисон запроектировал новый механизм, сначала с четырехплечим спусковым колесом, а затем — самый совершенный вариант с двойным трехплечим спусковым колесом. Для достижения большей равномерности вращения спускового колеса служила большая лопастная ветрянка. Осциллятором вестминстерских часов является двухсекундный маятник весом 317 кг и длиной почти 4 м, подвешенный на стальной плоской пружине шириной 8 см, длиной 13 см и толщиной 4 мм. Вестминстерские часы служили без существенных перебоев вплоть до 1976 г., когда дефект на их ведущем механизме вызвал падение более чем полутонного груза, который влетел в часы и сильно их повредил. Несмотря на катастрофическое состояние этих часов после указанной аварии, этот выдающийся памятник часового искусства был быстро отремонтирован и снова пущен в ход.
С преимуществами спускового механизма Денисона быстро ознакомились все европейские часовщики. Когда в начале 60-х годов прошлого века обсуждался вопрос о ремонте пражских курантов, то передовые члены комиссии провели свое предложение о генеральной реконструкции всего механизма. Ранее с трудом поддерживаемый в порядке ходовой механизм с коромыслом и шпиндельным спуском был заменен по проекту Ромуальда Божека (1814-1899) новым управляющим механизмом со спуском Денисона, изготовленным в карлинском Даньковце.
Другую группу спусковых механизмов с постоянной импульсной силой образуют те механизмы, у которых импульсная сила возникает благодаря упругой деформации пружины. Это так называемые пружинные спуски с нормальной импульсной силой. Некоторые часовщики сначала предпочитали применять гравитационные спуски, у которых легче удавалось настраивать импульсную силу, но позднее опыт показал, что результаты, достигнутые с пружинными спусковыми механизмами, были отнюдь не хуже. Простой пружинный спуск с постоянной импульсной силой был создан английским часовщиком Джеймсом Фергюсоном Коле (1799-1880), а значительно более сложный — лондонским часовщиком В.А. Гранджером. Последний спуск работал с двусторонним импульсом, придаваемым маятнику горизонтальной плоской пружиной, заделанной в вал анкера. Его спусковое колесо и анкер не имеют площадок покоя. Состояние покоя обеспечивает трехплечее звездообразное колесо, управляемое зубчатой передачей от спускового колеса. Косые площадки на палетах являются импульсными поверхностями, с которых импульс передается через анкер на импульсную пружину, изменяющую его в импульс с постоянной величиной.
Рис. 21. Пружинные спусковые механизмы с постоянной импульсной силой: а — Штрассера; б — Рифлера
Другие два пружинных спусковых механизма, один из которых, показанный на рис. 21а, сконструирован Штрассером (род. в 1853 г.) из Гласхютте, а второй (рис. 21б) построен мюнхенским часовщиком Рифлером (род. в 1847 г.), дали исключительные результаты при точном измерении времени для астрономических нужд. Спуск Рифлера на рубеже XIX и XX вв. считался самым подходящим для лабораторных измерении времени. Как видно из изображения спускового механизма Штрассера, импульсная сила возникает при отклонении анкера в двух импульсных пружинах, закрепленных в подвесной скобе маятника. Спусковой механизм Рифлера работает, по существу, на аналогичном принципе. В отличие от спускового механизма Штрассера, у которого маятник подвешен на специальных пружинах в неподвижной подвеске, у спуска Рифлера подвесные пружины одновременно являются импульсными пружинами. И анкер имеет здесь вместо сложенных палет рубиновые штифты с плоскими шлифами и сборное двойное спусковое колесо. Зубья первого колеса 1 образуют плоскость покоя для анкера, а второе колесо 2 имеет наклонные (скошенные) импульсные зубья.
Все описанные до сих пор спусковые механизмы с постоянной импульсной силой имели независимо от рода регулятора и степени его совершенства один общий для них признак: спусковые механизмы у них постоянно соединены с часовым механизмом. При каждом скачке спускового колеса весь механизм приводится на короткий момент в движение, чтобы при захвате спускового колеса он (механизм) снова останавливался. Для небольших портативных часов с непрерывной индикацией времени этот способ обязателен, однако для больших башенных часов непрерывное движение всего часового механизма с тяжелыми стрелками предъявляет большие требования к приводу. Равномерный ход нарушают также порывы ветра, которые передаются со стрелок на весь механизм, и часто изменяющиеся атмосферные условия.
Совершенно исключительная идея пришла в голову мюнхенскому часовщику Йоганну Маннгардту (1798-1878), который построил специальный механизм, исключительно интересный во многих отношениях. Тут речь идет о спуске с периодическим импульсом, подаваемым маятнику один раз в 30 или даже в 60 с. Осциллятор в часах Маннгардта между двумя очередными импульсами качается совершенно независимо от часового механизма, который все это время остается в покое.
Башенные часы с несколько измененным спусковым механизмом Маннгардта стали строить и в Чехии во второй половине прошлого века. Их изготовляли как пражская мастерская Людвига Гайнца, так и мастерская часовщика Вацлава Кречмера, который в 90-х годах построил несколько башенных механизмов с этими спусками. Его часовые механизмы отличались массивной конструкцией; два из них сохранились в часовых коллекциях Национального технического музея в Праге.
Гравитационные спусковые механизмы с постоянной импульсной силой не подходили для портативных балансирных часов, а поэтому производители пружинных хронометров стали изучать возможность применения пружинных спусковых механизмов с постоянным импульсом. Первые такие часы построил Томас Мюдж в 1790 г., стремясь превзойти точность морских хронометров Гаррисона. Спусковые механизмы строил для своих хронометров Антуан Бреге (1850-1882) — один из потомков А.Л. Бреге.
Рис. 22. Спусковые механизмы с постоянной импульсной силой Антуана Бреге
Один из его спусковых механизмов с постоянной импульсной силой приведен на рис. 22. Между спусковым колесом 1 с восемью боковыми штифтами и валом баланса 2 здесь вложен еще один элемент 3 — импульсное колесо с тремя зубьями и спиральной пружиной. В положении, показанном на рисунке, зуб 4 импульсного колеса опирается на стопор 5 пружины 6. При этом спусковой механизм находится в состоянии покоя. Палец 7 баланса отклонит пружину 6, которая освободит импульсное колесо, его зуб 8 даст импульс пальцу 9, а затем штифт 10 приподнимет ползунок 11 анкера 12. Его зуб 13 освободит спусковое колесо. При скачке спускового колеса его зуб, который раньше придерживался ползунком 11 анкера, натолкнется на зуб 14 импульсного колеса, которое силой спиральной пружины 15 начнет жать в направлении стрелки. При ударе импульсное колесо возвратится в свое первоначальное положение, а спиральная пружина возвратит анкер 12 в положение, обусловливаемое упором 16.
Из привода с грузом выработался первоначальный принцип колесных часов. Кроме бесспорной простоты и надежности, этот принцип обладал еще и преимуществом, которого долго не было у прежнего пружинного привода, а именно неизменностью (постоянством) приводной силы. Вес тел, зависящий от местного ускорения силы тяжести, несколько изменяется с географической широтой, но в отношении часов с грузом это не является помехой. Дело в том, что «непортативность» обрекала их стоять на одном месте. При изучении свойств и работы спускового механизма мы встретились с неблагоприятным последствием скачка спускового механизма в виде бесцельно затраченной потенциальной энергии груза. Чтобы нагляднее представить силовые отношения в передаточном механизме часов, будем исходить из схемы простых бамперных часов (рис. 23). Из этой схемы видно, что первоначальная сила тяжести Q, передаваемая зубчатыми механизмами, падает по направлению к спуску, что сопровождается, с другой стороны, ростом числа оборотов приводимых валов. Если зубья спускового колеса опираются на палеты силой Р1, то при указанных передачах на ведущем колесе будет действовать сила Р3, в 28 раз большая. Отсюда видно, какое большое количество энергии необходимо иметь в приводном механизме часов, чтобы обеспечить их ход.
Рис. 23. Схема передачи силы в механических часах
Другим неприятным фактором является понижение груза при каждом скачке спускового колеса, сопровождаемое потерей его потенциальной энергии. Это особенно чувствительно проявлялось у больших башенных часов, где масса груза составляла 100 кг и больше. Поднимание таких тяжелых грузов являлось физически тяжелым делом, и, кроме того, большие силы, которые возникают при этом в зубьях передачи, вызывают их быстрый износ.
Кроме своей простоты, грузовой привод имел перед пружинным приводом то большое преимущество, что в первом можно было сравнительно легко накапливать большое количество энергии. Сам приводной механизм образовывался ведущим валом с канатным барабаном или цепным колесом (рис. 24), храповиком и свободно вращающимся ведущим колесом с защелкой, предотвращающей возвратное движение. У самых старых часов цепные барабаны первоначально были деревянными, гладкими. На них наматывались пеньковые канаты с каменными, а позднее — металлическими грузами. Для более поздних часов XIX в. применялись металлические цепи. В таких случаях часы имели металлические канатные барабаны с пазами для витков каната. Меньшие настенные часы имели груз, подвешенный на струнах из овечьих кишок, а дешевые часы XIX и XX вв. имели грузы на металлических звеньевых цепочках. Цепные звездочки были, правда, намного уже, чем канатные барабаны, но передача силы на них была несовершенной ввиду непрерывно изменяющегося трения между зубьями звездочки и звеньями цепи при ее неудачной отмотке. Для удлинения хода часов между двумя заводками приходилось размещать часы на большой высоте, в самых высоких этажах зданий, в башнях или же применять системы роликов. Правда, одного ролика было недостаточно для увеличения продолжительности хода вдвое, но для развития нужной приводной силы был необходим груз удвоенной массы.
Рис. 24. Привод грузом: а — струнный (1 — ведущее колесо, 2 — защелка, 3 — храповое колесо, 4 — струнный цилиндр); б — цепной (1 — ведущее колесо, 2 — храповое колесо, 3 — защелка, 4 — пружина защелки, 5 — цепное колесо-звездочка)
Хорошие маятниковые часы, приводимые грузом, имели точный ход. Их суточная погрешность колебалась в пределах нескольких секунд или даже десятых долей секунды. Для точного измерения времени необходимо было, чтобы ход часов был абсолютно равномерным. Приводная сила должна была быть постоянной, не изменяться даже в течение тех коротких моментов, когда часы заводились. Поэтому у старых астрономических регуляторов мы встречаемся со специальным дополнительным механизмом, в задачу которого входило обеспечение постоянства приводной силы во время заводки часов.
Стремление к приоритету побуждало некоторых часовщиков создавать интересные конструкции привода, некоторые до сих пор привлекают внимание коллекционеров старых часов. Одной из таких конструкции являются пилообразные часы, в которых часовой механизм вместе с футляром, заполненным свинцом, является грузом. Приводную силу здесь передает длинная зубчатая рейка через триб и передаточный механизм на спусковой механизм часов. Известны так называемые цилиндровые часы, также приводимые собственным весом. Против момента силы тяжести, приводящей цилиндрическую втулку часов в движение по наклонной поверхности, действует силовой момент массивного сегмента внутри часов. Эти часы называли также гравитационными, и мы возвратимся к ним в главе, посвященной необычным типам часов.
Пружинный привод, который стали применять в часовом ремесле в XV и XVI вв., открыл путь к всестороннему использованию механических часов. Этот вид привода до сих пор преобладает у массовых часов, но в последнее время он постепенно вытесняется иными источниками энергии в электрических и электронных часах.
Пружинный привод механизма возник вне области часового дела. Уже в средние века кузнецы и слесари изготовляли подвижные фигурки. Пожалуй, самым старым примером их может быть железный петух, установленный на первых башенных часах в 1354 г. в Страсбурге. Возрождение принесло повышенный интерес к полуавтоматическим приборам и, конечно, побудило тогдашних часовщиков заняться идеей использования стальной пружины для привода часового механизма. В некоторых литературных источниках говорится о том, что первые пружинные часы появились примерно около 1430 г. К этому времени относятся сообщения о часах, изготовленных Пьерром Ломбартом из Монза и Еганом Паулином из Брюгге для герцога Филиппа III Доброго, о которых мы уже упоминали.
Пружины часов XVI в. нельзя ни в какой степени сравнивать с современными пружинами, изготовляемыми из катаной стали с содержанием углерода чуть более 1%, и с пружинами из специальных сплавов с добавками кобальта, хрома, никеля и т.п. Высокие нагрузки материала сопровождаются у каждой пружины стойкими деформациями, которые влияют на точность хода часов. В отличие от грузов (гирь) здесь приводная сила пружины изменяется также с изменением числа ее витков. Приводная сила после резкого начального падения через несколько часов хода начинает понижаться медленнее и более равномерно, за исключением короткого периода перед тем, как часы останавливаются из-за того, что приводная сила снова начинает быстро понижаться. Эта характеристика относится главным образом к пружинам, изготовляемым в настоящее время. У старых часов кривая приводной силы была еще менее равномерной, поскольку качество и обработка стали были тогда значительно хуже. И, кроме того, сравнительно грубая поверхность пружины, всаженной в неподвижный держатель пружины (барабан), вызывала большое трение и понижала эффективность пружины. Поэтому простейшие старые пружинные часы и не могли обходиться без вспомогательного механизма для выравнивания приводной силы.
Рис. 25. Компенсатор силы заводной пружины «улитка»: 1 — барабан пружины, 2 — завиток, 3 — струна (цепочка), 4 — пружина завитка, 5 — рычаг завитка, 6 — палец завитка
Самым распространенным компенсатором приводной силы пружины была так называемая «улитка» (рис. 25), размещаемая между барабаном пружины и часовым механизмом. Сила привода барабана пружины переносилась на улитку струной из овечьих кишок или тонкой плоской металлической цепочкой, состоящей из многих склепанных звеньев. При заведенной пружине струна обматывала все витки завитка и при разматывании наматывалась на гладкий барабан держателя пружины. Радиус отматывания на улитке постепенно увеличивался по мере уменьшающейся силы пружины, так что конечная приводная сила оставалась примерно одинаковой. Изготовление цепочек к улиткам относилось к самым тонким профессиональным операциям у часовщиков и зачастую поручалось только женщинам. Одна такая цепочка имела от 500 до 800 звеньев. Однако в целом между струнным и цепочечным стабилизаторами не было существенного различия. Вначале струнные стабилизаторы старого типа имели закругленные пазы на завитке, а у цепочечных компенсаторов профиль паза был граненым. Изобретение улитки приписывалось многим часовщикам, в том числе, явно несправедливо, и Якубу Цеху, по всей вероятности, первому чешскому производителю портативных пружинных часов. Однако эта идея безусловно более стара, мы с ней встречаемся, например, у нюрнбергского часовщика Петра Генлейна. По форме улитки можно также приближенно определить возраст тех или иных часов. Ранние конструкции XVI и XVII вв. имели стройные высокие улитки, а по мере уменьшения толщины часового механизма в целом становилась более плоской и улитка и возрастал угол вершины ее конуса. Формы улиток зависели также от качества тогдашних пружин. Пружины дешевых часов XVIII в. не отличались высоким качеством, их приводная сила подвергалась значительным изменениям, и для компенсации этой силы требовалась плоская улитка с большим сужением.
Стабилизаторы силы привода в виде улитки можно найти в старых часах французского, английского и немецкого происхождения. Вероятно, несколько старше другой стабилизатор в виде особого кулачка, который встречается иногда у некоторых немецких карманных и настольных часов. Для компенсации приводной силы здесь достаточна сравнительно малая сила плоской пружины, прижимающей тормозной палец к окружности плоского кулачка, насаженного на вал барабана пружины (здесь тормозной момент действует против приводного момента пружины). Форма кулачка подбиралась так, чтобы равнодействующая приводная сила была постоянной. По сравнению с улиткой кулачок занимал меньше места, а поэтому его применяли прежде всего для карманных часов. Однако в целом он не слишком привился и был вытеснен улиткой и для плоских часов, где она удерживалась примерно до конца XVIII и начала XIX в., когда заканчивавшаяся эра «шпиндлевок» сменялась новыми типами часов с современными спусковыми механизмами. У этих часов с анкерными спусковыми механизмами стабилизаторы силы привода быстро отпадали, они сохранились лишь у морских хронометров.
Однако на работу самой совершенной пружины постоянно влияют некоторые факторы, например потери от трения между витками, которые теперь понижаются путем полирования поверхности пружины и смазкой. Ослабление приводной силы, вызываемое усталостью материала, существенно уменьшали тем, что делали пружины из нержавеющей стали или из особых сплавов. Однако, несмотря на это, каждая пружина в ходе своего разматывания изменяет свою приводную силу. Для устранения этого недостатка применяли несколько способов.
Самый старый способ исходил из стремления исключить в работе пружины ее начальную и конечную фазу, поскольку приводная сила пружины резко падает именно при полной заводке и при окончании завода. Для карманных часов использовали в целях ограничения рабочего диапазона пружины кулачковый механизм. На практике встречались различные кулачковые механизмы, самым известным из которых является мальтийский механизм, далее идут кольцевидные кулачковые механизмы, или же пальцевые. Кулачковые механизмы должны были ограничить натяжение и разматывание пружины до нескольких оборотов вала держателя пружины (как правило, до четырех). Как и улитка, кулачковый механизм сохранился до сих пор лишь в конструкции морских хронометров. При дозаводке цепочка наматывается на последние суженные витки компенсатора до того момента, когда боковая сторона цепочки нажимает на кулачок кулачкового механизма и ставит его на пути пальца на завитке. Кулачковый механизм одновременно сохраняет от разрыва не только саму пружину, но и филигранную цепочку или струну.
У малых карманных часов роль кулачкового механизма позднее взяла на себя реверсивная защелка, которая обеспечивает малое обратное движение пружины и связанное с этим ослабление ее натяжения. Кулачковый механизм и реверсивная защелка защищали пружину от перетяжки. Реверсивная защелка, правда, исключает перетяжку пружины и использование быстро уменьшающейся приводной силы при полностью заведенной пружине, но не мешает тому, чтобы пружина дошла до конца и вызывала замедление хода в последние часы. Этому можно воспрепятствовать только ежедневной регулярной заводкой пружины в одно и то же время, чтобы пружина могла развиваться лишь в оптимальный период своей приводной силы.
Изменчивость приводной силы можно также ограничивать удлинением пружины и увеличением запаса ее энергии. Однако удлинение пружины идет за счет ее толщины. Для тонких пружин требуются также специальные сплавы, лучше выдерживающие нагрузку и усталость. Приводная сила современных пружин несравненно выше, чем у пружин старых часов. Исключительно благоприятные особенности современных пружинных сталей с высоким пределом упругости и особой технологией производства привели к созданию так называемых S-пружин (названных так по их форме в развернутом состоянии), — которые имеют повышенный срок службы и более равномерную приводную силу.
Однострелочные пружинные часы XVI и XVII вв. первоначально заводились ключиком спереди через отверстие в циферблате, а позднее заводной четырехгранник вала пружинного барабана был выведен на заднюю сторону. В отдельных случаях, например у некоторых часов Бреге, четырехгранник находится в оси вала часовой стрелки.
Примерно около 1800 г. некоторые часовщики пытались создать часы с бесключевым заводом. Один из первых вариантов таких часов имел заводной механизм в шейке подвесного кольца карманных или подвесочных часов. Пружина заводилась несколькими нажиманиями и вытягиванием кольца.
Рис. 26. Корончатая заводка: а — зазодка, б — перевод стрелок
1 — коронка, 2 — муфтовое колесо, 3 — триб муфты, 4 — заводной вал, 5 — заводное колесо, 6 — храповое колесо, 7 — барабан пружины, 8 — установочный рычаг, 9 — муфтовый рычаг, 10 — колесо для управления стрелками, 11 — сменное колесо
Механизм завода с корончатой передачей, которую используют и теперь, запатентовал в 1820 г. англичанин Т. Прест. Его идею усовершенствовал в 1842 г. до нынешнего вида Адриен Филипп (рис. 26). Несколько позднее производством таких механизмов завода начала заниматься известная швейцарская фирма «Патек Филипп и компания». В английской часовой промышленности, консервативно придерживающейся стабилизатора приводной силы типа улитки, для которого такой механизм завода не подходил, не могли использовать этот способ.
Лишь в последние десятилетия XIX в. и в начале нашего века большинство английских часовых фирм тоже перешли на корончатый механизм завода с коронной передачей и передвижным рычажным механизмом для передвижения стрелок, управляемым небольшой кнопкой на боковой стороне футляра часов. Однако система Патека была самой простой: стрелки перемещались и пружина заводилась одной заводной головкой, которая перемещалась на две позиции. У старых часов стрелки передвигались вручную ключом, насаживаемым на четырехгранник минутного колеса или же рукой (у «роскопфок»). Вращение стрелок независимо от всего остального механизма часов было возможно благодаря наличию специально для этого приспособленной муфты.
Рис. 27. Автоматический заводной механизм: 1 — рабочее колесо, 2 — преобразователь, 3 — понижающая передача. 4 — ограничитель натяжения при заводке коронкой, 7 — пружина, 8 — барабан пружины, 9 — коронка
Механизм для автоподзавода часов, схема которого приведена на рис. 27, относится теперь к основному оснащению современных наручных часов. Его главные составные части: ротор, заводимый в обе стороны, в виде сегмента, отлитого из тяжелого металла, преобразователь вращения для изменения двухстороннего вращения ротора в однонаправленное движение заводки и передаточный механизм, увеличивающий малую силу заводки сегмента. Автоподзавод не являлся новинкой, его изобрел еще в XVIII в. швейцарец Перрелет, позднее усовершенствовал Бреге, а в 1780 г. на нее получил в Лондоне патент Рекордон. В период 1780-1800 гг. Бреге изготовил ряд карманных часов с автоподзаводом, у которых заводной элемент был не вращающимся сегментом, а имел сбалансированные рычаги. Швейцарский патент на автоматический заводной механизм получил в 1924 г. англичанин Джон Гарвуд, изготовивший одним из первых так называемые автоматические наручные часы. Главное значение этого решения заключается в сохранении сравнительно постоянной приводной силы пружины, если часы носят регулярно, а это обеспечивает повышенную точность их хода. Однако и то, что отпала ручная заводка, является большим удобством, которым нельзя пренебречь.
Зубчатые передачи механических часов всегда имели двойную задачу — подавать энергию осциллятору и подсчитывать его колебания. Сохранилось много конструктивных вариантов — от простой трехколесной системы с валами в одной плоскости (у балансирных часов) и обычным расположением и системы с центральной секундной стрелкой до сложных механизмов, указывающих дату и другие календарные и астрономические данные.
Рис. 28. Главная передача часов: а — с минутным колесом (1 — ведущее колесо, 2 — барабан пружины, 3 — минутное колесо, 4 — минутный триб, 5 — промежуточный триб, 6 — промежуточное колесо, 7 — секундный триб, 8 — секундное колесо, 9 — спусковой триб, 10 — спусковое колесо); б — без минутного колеса (1 — барабан пружины, 2 — ведущее колесо, 3 — сменное колесо, 4 — второе промежуточное колесо, 5 — второй промежуточный триб, 6 — первый промежуточный триб, 8 — триб спускового колеса)
На рис. 28а приведены два основных типа часовых зубчатых передач. Первый из них проще, и с ним мы встречаемся у дешевых часов с шварцвальдским, или штифтовым, спусковым механизмом. Для привода стрелочного механизма здесь служит специальное колесо на пружинном барабане. Несколько сложнее второй механизм (рис. 28б) с минутным колесом, от которого в этом случае выводится движение часовой стрелки. Еще более сложен механизм часов с центральной секундной стрелкой. Уже при беглом осмотре этих механизмов можно видеть, на какой срок хода с одной заводкой часов рассчитывал производитель этих часов. (На механизмах, приведенных на рис. 28, видно, что это механизмы с односуточным ходом.) Чтобы часы при одинаковой длине пружины шли дольше, необходимо увеличить общее передаточное отношение и поместить между ведущим колесом вала барабана пружины и трибом на валу минутного колеса еще одно или два дополнительных колеса с трибами.
Часовые зубчатые колеса сильно отличаются от эвольвентных зубчатых передач, используемых в машиностроении общего назначения, так как в часовом деле привилась циклоидная зубчатая передача. Производство зубчатых деталей относилось в ранний период часового производства к самым трудным ручным работам. После прорезания зазоров на окружности колеса оставляли ровные боковые стороны зубьев и слегка закругляли их головки. За небольшим исключением речь шла о производстве колес с торцовыми зубьями.
У крупных башенных часов обод с зубьями склепывался или наваривался на лучевидные плечи ступицы. Малые колесики с несколькими зубьями (как правило, меньше 15) — трибы — вырабатывались несколькими способами. Для средних и крупных часов это были главным образом трубчатые трибы, а трибы малых часов имели циклоидальную зубчатую передачу. Доводов в пользу циклоидальной зубчатой передачи было несколько. Вспомним, что у часовых передач всегда чередуется зацепление пары колес и триба. Поскольку трибы обычно имеют очень малое количество зубьев, то при зацеплении с большим зубчатым колесом с эвольвентными зубьями возникают большие колебания приводной силы. У циклоидальной зубчатой передачи условия передачи силы более благоприятны тогда, когда тщательно поддерживаются предписанные расстояния между осями зубчатых колес. Для дальнейшего улучшения зацепления полезна коррекция зубьев понижением их головок и упрощением их профильных кривых, что позволяет приблизиться к идеальному состоянию, при котором пара зубчатых колес переносит одинаково большую силу в начале и в конце своего зацепления. Следующим достоинством циклоидального зубчатого зацепления является большая простота изготовления его.
У башенных часов и у первых напольных, настенных и переносных часов зубчатые колеса были железными. Позднее стали использовать более выгодные качества бронзовых колес. Трибы всегда были стальными, причем в местах наибольшей нагрузки их закаливали. Поверхности зубьев, особенно у трибов, всегда полировали, чтобы понижать потери от трения. Наряду с трубчатыми трибами, у лучших малогабаритных часов делали фрезерованные трибы (зачастую из прутковых полуфабрикатов). Для больших колес трибы склепывали, а для меньших часов склепанный комплект обычно лишь насаживался на рифленую поверхность вала. Поскольку трибы всегда относились к самым напрягаемым деталям часов, то можно по степени их износа определить время, до которого данные часы были в ходу, и степень их эксплуатационной надежности.
Несущий элемент часового механизма — каркас — встречается в двух основных видах: колончатом и консольном. Цилиндровый каркас с поперечными горизонтальными плитами типичен для железных настенных часов XVII и XVIII вв. Деревянные «шварцвальдки» или английские люцерновые часы относятся к тому же периоду. Коромысловые часы имели простой каркас консольной формы, состоящий из деревянных балок или из плоского кованого железа. У астрономических маятниковых часов, у настольных часов, у некоторых настенных и малых портативных часов каркас имел две несущие плиты — платины, соединенные несколькими короткими, иногда резными, а позднее — гладкими обточенными колонками. У карманных и у большинства наручных часов платины имели круглую форму. Нижняя (задняя) платина часто бывала декорирована гравюрами и резными орнаментами.
Размер платин был руководящим для определения величины карманных, а позднее — и наручных часов. В часовом производстве издавна установился обычай указывать размер часов во французских (парижских) линиях. Одна линия, которая обозначалась тремя черточками, соответствовала 2,256 мм. У часов с круглыми платинами обычно указывался диаметр в линиях, например, десятилинейные часы имели платину диаметром 10 × 2,256 мм = 22,56 мм. И у наручных часов с прямоугольной платиной указывалась длина и ширина платин, например: 6''' × 4''' = 13,536 мм × 9,024 мм, т.е. 13,5 × 9 мм.
Все разъемные соединения сначала бывали клиновидными. В конце эпохи Возрождения появились первые ручные резаные и пиленые винты с четырехгранными гайками. В ту пору стали в часовом деле применять наряду с железом хорошо поддающиеся обработке латунь и бронзу, особенно подходящие для резьбовых и гравировальных работ. Производство более точных винтов началось лишь во второй половине XVI в., когда француз Бессон в 1569 г. предложил первый проект механического устройства для производства винтов. Много лет позднее, в 1741 г., часовщик Хиндли из Йорка использовал идею Бессона на практике. В Англии первый патент на нарезание винтов получили в 1860 г. Джоб и Уилльям Уайты. Однако клиновидные соединения остались в часовом промысле и впредь весьма популярными, так что и после усовершенствования метода нарезки витков все еще и теперь такие соединения служат, например, для закрепления волосков в колодке на мостике баланса.
У настольных и карманных часов колончатый каркас не привился. Здесь преобладала двухплатинная рама с тремя, четырьмя и большим количеством распорок, соединяющих обе круглые или квадратные, а у настольных ренессансных и барочных будильников — еще и многоугольные платины. Некоторые часовщики эпохи Возрождения во Франции и в Швейцарии строили часы с ярусной рамой, имеющие ходовой механизм в верхней части и механизм боя и будильника в нижней.
По мере развития механических часов уменьшалась толщина механизма между его платинами. Механизм малых настольных будильников в стиле барокко первоначально имел толщину около 60 мм, а толщина карманных часов того времени значительно превышала 30 мм. В XVIII в. эти размеры еще более существенно уменьшились. Сократились длины валов и уменьшилась ширина пружин, что одновременно сопровождалось существенным повышением их нагрузок. Высшей точки это направление достигло в первой половине XIX в., когда в моду вошли очень плоские часы. Тогда швейцарские часовщики Дахерон, Вухен и братья Юноды из Женевы, а также Роберт Теурер со своими сыновьями из Ля Шо-де-Фондс, братья Ботте и другие стали экспортировать малые карманные и подвесочные часы филигранной работы с толщиной механизма от 1,7 до 1,9 мм. Корпуса этих часов бывали декорированы прекрасными гравированными орнаментами с эмалью.
Объяснялось это тем, что Швейцария наряду с Францией, Германией и Голландией относилась к странам с развитой техникой обработки эмали. Художественная эмаль стала применяться и в эстетическом оформлении часовых корпусов. Зрелость тогдашнего гравировального искусства доказывается украшением плат, мостов, крышек корпусов и особенно мостов баланса, прикрывающего у так называемых «шпиндлевок» старого происхождения основную часть нижнего основания. Первоначально этот мостик имел форму буквы S, а позднее ему стали придавать форму овала с большой крепежной пятой клиновидной формы. Примерно в середине XVIII в. овал уступил свое место круглому мостику. Обе эти формы заменил позднее сравнительно стройный мостик с узкой пятой, открывающей венец баланса с его перекладиной.
Хорошо помогает в определении возраста часов также форма распорных колонок между основаниями. У самых старых карманных и настольных часов эти распорки имели форму простых гладких колонок круглого сечения. Около 1650 г. появились колонки с тюльпановым орнаментом, а в конце этого же века стал преобладающим египетский орнамент. К сравнительно широкому диапазону времени относятся вазообразные колонки квадратного сечения. Помимо часов, отличающихся орнаментальным украшением корпуса и механизма, некоторые часовщики (особенно в Англии) производили часы, бросающиеся в глаза своей простотой и несложным внешним видом. Эти часы называли пуританскими.
Развитие плоского часового механизма началось задолго до его расцвета в XIX в. Почти до конца XVIII в. в карманных часах баланс располагали преимущественно вне механизма над нижним основанием. Эта компоновка была также одной из причин несколько большей толщины механизма. Английские часовщики сохраняли «луковичный» внешний вид часов еще в ту пору, когда Франция начала отказываться от классического типа с двумя полными круговыми платинами и ввела новый тип с нижней платиной сегментной формы. Баланс у этих часов нового типа оставил свое прежнее место над нижним основанием и переместился в пространство часовых передаточных механизмов между основаниями. В 1770 г. Антуан Лепине ввел новый тип часов, у которых он заменил нижнее основание отдельными мостами для каждой оси. Идея Лепине получила неожиданный отклик у французских часовщиков и повлияла на дальнейшее развитие карманных, а позднее и наручных часов в Европе и заморских странах.
Точность хода часов зависит от многих факторов, причем не в последнюю очередь — от величины пассивных сопротивлений в передаточном механизме и от их изменений. Одним из источников этих сопротивлений является трение в опорах. Со времени изобретения первых механических часов часовое ремесло использовало исключительно опоры скольжения, причем эксперименты с миниатюрными шариковыми подшипниками, появившимися лишь в последнее время, были единичными[13]. Поскольку качество рабочих поверхностей сильно влияет на величину фрикционных сил в подшипниках скольжения, то стальные цапфы осей стали полировать до высокой чистоты поверхности. В часовом производстве используют преимущественно двустороннюю посадку валов. Консольное крепление барабанов пружин относится уже к прошлому, а если такая посадка осей еще встречается, то во всех случаях речь идет о вспомогательных незагруженных передаточных механизмах стрелочной передачи и т.п.
Опоры первых часов были примитивными, цапфы осей вращались непосредственно в раме. У башенных и железных настенных часов вкладывались в отверстия латунные втулки, чтобы они улучшали скользящие свойства опор и уменьшали износ цапф. У большинства часов, изготовленных во второй половине XVIII в., встречаются углубления вокруг отверстий опор, так называемые масляные чашечки.
У некоторых башенных часов чехословацкого происхождения конца XVIII в. и первой половины XIX в. иногда встречается совершенно необычная форма опор скольжения с квадратными отверстиями для цапф. Эту неудачную форму применяли в свое время и некоторые чешские часовщики, к которым относится и строитель башенных часов Франтишек Зуммерэкер.
Подшипники скольжения были усовершенствованы тогда, когда Николае Фатио (1664-1753) в начале XVIII в. открыл способ производства камневых подшипников. Благодаря ему Англия вплоть до 1790 г. была единственной страной, в которой имелось право производить сверленые камневые опоры. Новое изобретение дало возможность улучшить работу баланса, цапфы которого должны иметь как можно меньший диаметр, чтобы ограничить трение. Камневые опоры изготовляли из натуральных драгоценных камней, мягкого граната и агата, а накладные камни у баланса бывали иногда алмазными.
Рис. 29. Амортизатор ударов — система «Инкаблок»
Цилиндрическая форма цапфы баланса стала преобладать как более выгодная, цапфа редко ломалась, в то время как у малых часов с другими формами цапф, например коническими, цапфы ломались чаще всего. Для наг ручных часов, подвергавшихся сотрясениям и ударам, требовалось понизить опасность такого повреждения до минимума. Часовщики боролись с этим, применяя различные амортизаторы ударов, задачей которых было обеспечение надежной посадки вала баланса. На рис. 29 показана работа наиболее часто применяемой теперь конструкции камневых опор часового баланса с амортизатором системы «Инкаблок». Амортизатор позволяет валу баланса вместе с подшипниковым камнем совершать небольшое боковое смещение в направлении удара, при котором утолщенная часть оси баланса упирается, после чего баланс снова возвращается в свое первоначальное положение.
В производстве опор теперь уже не используются натуральные камни; камни изготовляют из синтетического корунда с помощью сложных технологических процессов, а в последнее время — и с помощью лазерной техники. Наручные часы среднего качества имеют 15 камней: два камня палетных, один камень импульсный на импульсном ролике баланса, два сквозных камня с отверстиями для оси баланса и углублением в форме маслины для масла, а также два опорных камня-подпятника для оси баланса. Анкер, спусковое секундное и промежуточное колесо также имеют по два сквозных камня с цилиндрическим отверстием. Все эти камни также имеют масляные чашечки. Дорогие и более точные часы имеют по 17, 21 и больше камней. Прекрасные швейцарские хронометры 80-х годов прошлого века имели до 32 камней.
Опорные камни запрессовываются непосредственно в углубления, имеющиеся в основании. Раньше их всаживали в граненые малые металлические круглые втулки — бушоны, которые, в свою очередь, запрессовывали или привинчивали к основаниям (такой способ иногда называют ливерпульским способом крепления опорных камней).
Опорные камни в часах бывали не раз предметом торговых спекуляций. Многие коллекционеры карманных часов могут убедиться, что данные о количестве опорных камней, указанные изготовителем этих часов, зачастую неправильны. Не один часовой завод обманывал своих заказчиков тем, что монтировал опорные камни лишь на видных местах в нижнем основании, надеясь на то, что покупатель не заметит этого подвоха. Весьма часто мы встречаемся с этим явлением у часов американского происхождения, изготовленных в конце прошлого и начале нашего века.
Обработка опорных камней всегда считалась очень сложным делом, а потому часы с камневыми опорами ценились очень высоко[14]. И чешское часовое производство, которое раньше судьба не баловала, сохранялось в этом отношении на одном уровне с европейским часовым производством благодаря отдельным лицам. В этом имел большую заслугу прежде всего чешский часовщик и конструктор астрономических часов Йозеф Коссек (1780-1858), о котором в отчете от 1829 г. говорится, что он «был первым в Чехии, кто обеспечил для своих часов большое превосходство тем, что он использовал для них опоры из самых твердых камней, которые он обрабатывал на сверлильном и полировальном станках, к тому же сконструированных им самим».
Период колебании часового осциллятора обусловлен прежде всего его размерами. Если продолжительность колебания маятника не зависит от его веса, то для баланса продолжительность колебания в существенной степени зависит от материала, причем не только баланса, но и волоска.
Величина полупериода (продолжительность полуколебания) маятника определяется его длиной по формуле:
где T — полупериод (продолжительность полуколебания) маятника;
lr — приведенная длина маятника;
g — ускорение силы тяжести.
Расчетом можно установить, что приведенная длина секундного маятника для нашей географической широты равна 99,4 см, а полусекундного — 24,9 см.
Период полуколебания баланса обусловлен его размерами и вращающим моментом волоска. Для точного регулирования хода служит так называемый градусник, регулировочная стрелка которого закреплена подвижно на мосту баланса. Ее хвостовик с замком, охватывающим волосок на его последнем внешнем витке вблизи колодки, при повороте стрелки изменяет рабочую длину, а с ней и вращающий момент волоска. В большинстве случаев смещение регулировочной стрелки на одно деление шкалы изменяет суточный ход часов примерно на 2 мин. У старых пружинных часов с балансовым осциллятором без волоска ход регулировался только изменением силы приводной пружины. Для этого на крышке барабана пружины был специальный храповик с защелкой. У часов с балансом фолио его амплитуда задавалась щетинными упорами, закрепленными на неподвижной и регулируемой консолях. Карманные часы XVIII в. со шпиндельным спуском имели специфический так называемый регулятор Томпиона, который, как и градусник с регулировочной стрелкой, изменял рабочую длину волоска.
Количество полуколебаний баланса различается в зависимости от типа часов, их величины и исполнения. Нижний предел этого количества начинается с трех полуколебаний в секунду у больших часов, например у будильников. Морские хронометры с четырьмя полуколебаниями в секунду также относятся к группе часов с низкой частотой осциллятора. Продолжительность колебания карманных часов около 1/5 с, а наручных — колеблется в пределах от 1/5 до 1/6 с[15].
Венцы балансов некоторых карманных и наручных часов имеют на окружности маленькие регулировочные винтики. Изменением их положения на венце выравнивается ход часов, прежде всего различия в частоте при горизонтальном и вертикальном положении баланса, вызываемые изменением трения цапф.
О некоторых причинах различной длительности полуколебаний мы уже упоминали при описании спусковых механизмов. Наряду с колебаниями ведущей силы, чувствительными прежде всего у точных часов, и различными побочными явлениями, вызываемыми изменениями смазочных свойств стареющего масла и т.п., на ход часов влияет и изменение температуры и давления воздуха. При изменении температуры вещества изменяют свой объем, причем изменяются их механические свойства, что особенно важно для подвесных пружин маятника и волосков. О том, что в часовом деле нельзя пренебрегать тепловым расширением, свидетельствует то обстоятельство, что однопроцентное изменение в длине маятника изменяет суточный ход часов на целые 432 с.
Сравнительно хорошие результаты давали в этом отношении маятники из высохшей еловой древесины, температурная погрешность которых колебалась в пределах 1/5 с в день на 1°C. Для астрономических измерений такая степень точности, само собой разумеется, недостаточна, поэтому пришли к идее создания компенсационных элементов. Принцип всех температурных компенсаторов маятников заключался в сохранении постоянства расстояния между центром тяжести и точкой подвески маятника. В 1720 г. эту проблему вполне успешно решил Грагам с помощью ртути, заполняющей частично пространство линзы маятника. Температурная погрешность его маятника упала до 0,001 с/сутки на 1°C.
Большой интерес у часовщиков вызвали биметаллические решетчатые маятники, составленные из двух систем стальных и латунных стержней. Одна система была жестко соединена с подвеской маятника, а другая — с его линзой. При выборе размеров необходимо было учитывать различные коэффициенты температурного расширения обоих металлов так, чтобы и при большом изменении температур длина маятника от точки подвеса до центра линзы оставалась неизменной. Интересно решенные решетчатые маятники создали Гаррисон, Юргенсен, Берту, Леруа, Депарсье, Троугтон и многие другие (некоторые их конструкции показаны на рис. 30).
Рис. 30. Маятник с биметаллической компенсацией температурной погрешности
Первым чешским часовщиком, производившим температурно-компенсированные маятники собственной конструкции, был опять-таки Йозеф Коссек, которым были созданы некоторые весьма интересные конструкции ртутных и биметаллических компенсаторов. И известная пражская мастерская Вилленбахера и Ржебичека, основанная в первой половине прошлого века, конструировала собственные типы биметаллических маятников.
Шарль Эдуард Гильом (1861-1938) исследовал свойства ферроникелевых сплавов и нашел сплав с содержанием 36% никеля, известный под названием «инвар» (от французского слова invariable), не только стойкий к коррозии, но и обладающий самым малым коэффициентом температурного расширения. В 1897 г. Тюри использовал инвар Шарля Эдуарда Гильома для создания маятников, а через три года стал монтировать инварные маятники у своих часов для астрономических измерений времени мюнхенец Рифлер. С того времени происходят и первые кварцевые маятники венского конструктора точных часов Карла Сатори, стабильность длины которых была еще на 60% больше, чем у инварных.
Точность маятниковых часов на астрономических обсерваториях зависела также от влияний восходящих потоков воздуха и при изменениях барометрического давления. Возникающая при этом барометрическая погрешность устранялась либо тем, что часовой механизм помещали в пространстве с частичным вакуумом (это одновременно ограничило влияние воздействия указанных сил), либо с помощью анероидного компенсатора — манометрической коробки с компенсаторным грузом, закрепленным на маятнике.
Балансовый осциллятор более чувствителен к воздействиям температуры, чем маятник.
Барометрическая погрешность баланса достигает около 0,2 с в сутки при изменении давления воздуха примерно на 0,01 Па. Изменение температуры на 1°C у обычных часов с латунным балансом и бронзовым волоском вызывает суточное изменение хода часов по меньшей мере на 10 с.
Неблагоприятные влияния изменений температуры на ход балансовых осцилляторов учитывали уже старые часовщики, которые изыскивали способ борьбы с этим влиянием.
Рис. 31. Изменение формы баланса с биметаллическим ободом: а — при повышенной температуре, б — при средней температуре, в — при пониженной температуре
Биметаллическая система, широко применяемая для маятников, нашла большое применение и для балансов, главным образом в виде биметаллических балансов с ободом, изготовленным из сварных стальных и латунных лент (рис. 31). У часов с обычным, некомпенсированным по температурам балансом увеличивался при повышении температуры момент инерции баланса, и часы тогда начинали отставать. Однако у биметаллического баланса под влиянием различной степени расширения стали и латуни обод прогибается в месте шва свободными концами вовнутрь, диаметр баланса уменьшается, ход часов ускоряется, в силу чего температурная погрешность компенсируется. При понижении температуры происходит противоположный процесс. Такой баланс мог удовлетворительно исправлять температурную погрешность всего осциллятора, а потому присоединенный к нему волосок не компенсировался. Известны различные виды компенсационных балансов для морских хронометров — биметаллический баланс Ирншау, построенный им в 1790 г., и баланс Шарля Эдуарда Гильома, изготовленный из латуни и ферроникеля и др.
В 1775 г. Берту открыл так называемую вторичную ошибку, оставшуюся у компенсационных балансов и проявляющуюся в суточном изменении хода часов в пределах от 2 до 5 с. Причиной этого был нелинейный характер расширения материалов баланса с изменением температуры. Берту установил, что биметаллический компенсационный баланс может точно устранить влияние температурного расширения лишь при двух определенных температурах, тогда как в диапазоне между ними возникает именно эта вторичная погрешность.
Закаленные стальные волоски, впервые изготовленные Жаном Целанисом Лутцом в 1847 г., которые раньше использовались для биметаллических балансов, страдали рядом недостатков. Они корродировали, и на них влиял земной магнетизм. Достоинствами же их были сравнительно малое внутреннее трение и малый расход энергии на упругую деформацию.
Шарль Огюст Пейлар (1840-1895) изобрел в 1877 г. в качестве побочного продукта при производстве платины неокисляющийся немагнитный сплав палладия с температурой плавления 1550°C. В то же время англичане производили эксперименты с волосками из стекла и золота. Изобретение Пейлара имело бесспорно большое значение для внедрения новых материалов в часовое производство, но это изобретение затмили дальнейшие изобретения Гильома, касающиеся ферроникелевых сплавов. Целью экспериментов Гильома было создание биметаллического баланса без вторичной погрешности. Ферроникелевый сплав, подходящий для такого баланса, содержал 42% никеля. В 1897 г. Поль Перре изготовил из этого сплава волосок, который имел намного меньшие изменения упругости в зависимости от температуры, чем сталь. После многих лет дальнейших экспериментов был создан, наконец, в 1913 г. опять-таки благодаря Шарлю Эдуарду Гильому новый температурно-стабильный материал элинвар (название произошло от сокращенных слов elasticite invariable) с содержанием хрома от 10 до 12%. Этот ферроникелевый сплав хотя и имел постоянный модуль упругости, но слишком сильно снижал амплитуду колебаний баланса и был очень чувствителен к магнитному полю. Другими его недостатками были мягкость и легкая деформируемость.
Несмотря на это, все же такая передача функций температурной компенсации с баланса на волосок привилась, так что в нынешнем часовом производстве применение компенсационных волосков — обычное дело. Исключением являются хронометры, где до сих пор сохранился биметаллический баланс с цилиндрическим стальным волоском. Нынешние наручные часы имеют компенсационные волоски из специальных ферроникелевых сплавов, известных под торговыми названиями «ниварокс», «изовал» и т.п., и гладкий монометаллический баланс, которые не участвуют в компенсации температурных влияний.
В историческом обзоре развития многих сплавов следует упомянуть эксперименты М.Р. Штрауманна из Вальденбурга, который использовал для баланса температурную анизотропию (различную степень растяжимости материала в разных направлениях) цинковых сплавов, достигаемую их надлежащей обработкой. Этими новыми материалами удалось еще более понизить температурную погрешность часов.
Балансовый осциллятор является весьма сложным устройством. Наряду с температурой и барометрическим давлением на стабильность его полуколебаний воздействует еще ряд других факторов, среди которых есть и неизохронная погрешность, возникающая при непостоянстве амплитуды баланса. Укажем для полноты изложения хотя бы на главные источники неизохронной погрешности, вызываемой нестабильностью амплитуды. Наряду с переменным импульсом спускового механизма это бывают колебания упругости волоска, влияние формы его крепления на концах, изменение зазора в замке регулировочной стрелки, градусника, изменение положения центра тяжести волоска и др.
Исследуя детальнее форму плоских волосков, мы должны обратить внимание в некоторых случаях на особую форму их концевой кривой. Волосок с особой формой закругления носит наименование волоска с кривой Бреге по имени самого создателя. Это, по существу, обычный плоский волосок, последний внешний виток которого несколько приподнят над остальными витками и сформирован в особую кривую, компенсирующую вредное переменное влияние крепления волоска в колодке и на мостике баланса.
Точная регулировка хода переносных часов и при хороших регуляторах с компенсационными элементами является весьма трудным делом, поскольку при изменении положения баланс, осциллятор и часовой механизм непрерывно подвергаются изменяющимся влияниям, например влиянию силы тяжести баланса и волоска или различного трения цапф в опорах при горизонтальном и вертикальном положениях механизма. Чтобы устранить неправильности хода, вызываемые положениями механизма, Бреге создал специальное устройство «турбиллион». Принцип его работы состоял в размещении спуска с осциллятором в особой клетке, которая постоянно вращалась вокруг вала секундного колеса со скоростью одного оборота в минуту. Этим способом Бреге исключил влияние силы тяжести баланса и волоска при изменении положения часов. Производство турбиллионов достигло высокого уровня в Швейцарии. Известны турбиллионы Фредерика-Луи Фавре-Булле (1770-1849), Эрнеста Гвинарда (1879) и, наконец, одного из главных позднейших производителей этих приборов Альберта Пеллатона-Фавре (1832-1914) и его сына Джеймса.
В 1894 г. Бэйн Бонниксен из Ковентри изобрел другой вариант турбиллиона — карусель, которая отличалась от турбиллиона Бреге главным образом скоростью вращения клети. Первоначально клеть со спуском в каруселях Бонниксена вращалась вокруг вала секундного колеса один раз в 52,5 мин, но у новейших типов время оборота сократилось до 39 мин.
Идея соединить сигнальное устройство с часами по меньшей мере так же стара, как идея механических часов. Механизм боя самого старого типа запускали в ход поворотным часовым циферблатом с отверстиями, предусмотренными для часовых делений. Штифт, вложенный в одно из отверстий, приподымал в заданный момент спусковой рычаг, который приводил в действие механизм боя. Механизм боя со шпинделем, налетами и корончатым колесом настолько сильно напоминает спусковой механизм первых механических часов, что можно полагать, что спусковой механизм возник, например, из прежнего сигнального устройства водяных или других средневековых часов.
Новейшая компоновка будильников — это уже небольшой часовой циферблат, расположенный посередине главного часового циферблата. Во время работы часов он, правда, вращался вместе с часовой стрелкой, но независимо от этого можно было устанавливать час сигнала путем поворота циферблата в направлении часовых стрелок так, чтобы удлиненный задний конец часовой стрелки был направлен на соответствующий час, указанный на циферблате. Наряду с обычным металлическим колокольчиком часовщики придумывали различные типы будильников с музыкальными механизмами и инструментами или даже такими устройствами, которые вместо звонка производили выстрел и т.д.
С самой старой формой механизма боя мы уже встречались при описании механических часов. Это было простое устройство, которое объявляло каждый час ударом молоточка по звонку. Механизм боя приводился в ход штифтом на часовом колесе, который приподымал спусковой рычаг.
Более совершенный механизм боя, отбивающий часы соответствующим количеством ударов, был сконструирован позже и в течение нескольких столетий имел два различных вида. Более старый вариант — со стопорным колесом. На окружности этого колеса имеется 11 зазоров, расположенных на пропорционально нарастающих расстояниях, определяемых количеством ударов бьющего молотка. Пуск механизма осуществлял первоначально опять-таки штифт на часовом колесе. Согласование работы механизма боя и механизма хода было весьма кропотливым делом. Если часы спешили, то не оставалось ничего иного, как останавливать их на необходимое время, а если они опаздывали, требовалось, наоборот, задерживать механизм боя и дать пройти требуемому интервалу задержки.
Наконец, в середине XVI в. появилась у часов фрикционная муфта, которая позволяла перемещать стрелку независимо от хода часового механизма. Дальнейшим усовершенствованием было создание 12-зубой звездочки на валу часовой стрелки. Каждый час один из зубьев этой звездочки приподымал выпускной рычаг механизма боя и приводил его в действие, а затем штифты на ведущем колесе раскачивали молоточек боя. Чтобы при этом механизм боя не ускорялся, его движение тормозилось маленькой двухкрыльчатой или четырехкрыльчатой ветрянкой. Когда в XVII в. завели минутную стрелку, то спусковой штифт переместили с часового колеса на минутное. Вскоре после изобретения механизма для отбивания часов и получасов появились на башнях часы, отбивающие четвертьчасовые периоды. Если для отбивания получасов достаточно было иметь один механизм боя, то для отбивания, каждой четверти часа требовалось уже иметь два соединенных друг с другом механизма. Спусковое устройство ходового механизма приводил в действие механизм, отбивающий четверти часа, который после отбивания четверти часа запускал механизм часового боя. Самыми старыми башенными часами, которые стали отбивать четверти часа, считали башенные часы, установленные в 1389 г. в Руане. Механизм боя некоторых больших часов на башнях XV и XVI вв. был оснащен движущимися фигурами, например двумя фигурами, вооруженными молотками. В иностранной литературе эти фигуры называют jacka и jacquecmarts. С подобными элементами мы иногда встречаемся и у настенных часов с боем.
Механизм боя со стопорным колесом страдал рядом недостатков, в том числе и тем, что стопорное колесо не позволяло повторять один и тот же сигнал времени. Несмотря на это, механизм сохранился вплоть до XVIII в. главным образом в дешевых часах, а в исключительных случаях и позднее, когда в часовом производстве стали уже применять другой, более современный и более универсальный тип механизма боя, применяемый еще и в настоящее время.
Такой механизм боя с так называемым зубчатым сегментом изобрел в 1676 г. Эдвард Барлоу (1636-1716). Бесспорным достоинством этого изобретения была возможность почти неограниченно повторять отбиваемый сигнал, не нарушая при этом очередность отбивания других часов. Новый механизм боя быстро распространился прежде всего в английском часовом производстве.
Механизм боя в виде зубчатого сегмента имеет, помимо автоматического спуска, управляемого ходовым механизмом, еще повторный ручной спуск, которым можно ввести механизм боя в действие независимо от ходового механизма. Кажущаяся на первый взгляд сложность механизма боя, отбивающего четверти часа, все же вовсе не относила его к самым сложным. Хорошие часовые мастерские изготовляли в XVIII в. системы боя, отбивающие сигналы каждые 5 мин или даже каждую минуту.
Йозеф Книбб является автором специальной системы боя, отличающейся экономией энергии. У часов с длительным ходом на одну заводку механизм боя отбивает много ударов — до 5 тысяч ударов в месяц. Столько энергии трудно было бы вместить в одну пружину или одну гирю, поэтому Книбб создал новую систему, основанную на трех основных цифровых символах римского календаря — 1, V, X. Он разделил свой механизм боя на две части с звонками, по-разному настроенными. Высший тон соответствовал знаку единицы, глубокий тон — знаку V, а два последующих глубоких тона — знаку X. По этой системе достаточно было для того, чтобы отбить 12 часов, не 12 ударов, а только четыре, т.е. два с глубокими тонами и два с высокими тонами.
Двухголосные механизмы боя, отбивающие четверти часа, появились уже у некоторых напольных часов в конце XVII в. Позднее отбивание часового сигнала распадалось на пять, семь и больше звонков или гонгов, настроенных на разных шкалах. Известная мелодия Генделя из «Мессии», которую уже в течение десятка лет отбивает Биг Бен на башне Вестминстерского дворца в Лондоне, была первоначально предназначена для четырех колоколов костела св. Марии в Кембридже. Эта мелодия ожидала расцвета своей популярности более 60 лет, истекших до 1794 г., когда Кротч и Джовет завершили свой часовой механизм для Кембриджа.
На Европейском континенте двухголосные механизмы боя называют petit sonnerie, а в Англии они известны как английская система боя. Если они при каждой четверти часа отбивают и весь данный час, а после нажатия повторной кнопки отбивают и отдельные минуты четвертьчасового интервала, то они относятся к группе grande sonnerie. Эти часы пользовались в Центральной Европе большой популярностью, особенно среди австрийских часовщиков XVIII и XIX вв. Однако французские часовщики тоже имеют большие заслуги в техническом совершенствовании этих часов.
Со временем возникло много различных систем боя. Некоторые из них, например голландские, отмечающие одновременно данные о прошлом или о последующем часе, были весьма сложны. Конструктивные элементы механизма боя тоже изменялись. Колокольчики, которые слишком увеличивали толщину часов, особенно карманных, уступили свое место спиральным пружинам боя Бреге, а у больших часов — струнным, стержневым или же арфовым гонгам.
Понятие сложности является в отношении часовых приборов относительным понятием. Средневековому часовщику казалась сложной простая трехколесная система балансовых часов, а для среднего часовщика XVII в. было трудно изготовить хорошие точные часы с боем, которые, например, в 1687 г. изобрел и построил английский часовщик Даниэль Кваре. Однако достаточно было пройти лишь нескольким десятилетиям, и изобретения Кваре стали использовать многие швейцарские часовщики. Из их мастерских стали выходить сотни карманных часов с механизмом боя, заводимым тонкой цепочкой при каждом нажатии на шейку подвесного кольца футляра.
В Швейцарии и Франции стали изготовлять много часов с подвижными фигурами на циферблате и с музыкальными механизмами. На циферблатах этих часов оживали библейские и пасторальные сцены или более прозаические сцены из повседневного труда людей.
В XIX в. пользовались очень большой популярностью карманные часы с музыкальным боем, изготовлявшиеся женевскими часовщиками. Их механизмы имели плоский металлический диск с двусторонними штифтами и лучеобразно расположенными стальными язычками. Наряду с этими появились несколько позднее другие типы музыкального механизма с цилиндром и штифтами, который использовали первоначально лишь для больших стоячих и настенных часов. Большие часы позволили, само собой разумеется, применение разных видов музыкальных механизмов, которые не удавалось использовать для карманных часов. Это были, например, часы с металлическими или стеклянными колокольчиками, с плоскими гонгами или дудочками, которые и теперь очень ценят коллекционеры. В Чехословакии прославился производством игральных механизмов и играющих часов пражский завод Вилленбахера и Ржебичека, основанный в 1829 г. (его изделия были известны во Франции, Германии, Польше и России), или же пражская мастерская Славика и Прейсзлера.
В конструктивном и производственном отношении были весьма сложны хронометрические приборы, оснащенные сложным календарным механизмом. Устройство для непрерывного отображения данных с автоматической перестановкой данных в конце месяца, так называемый годовой календарь, иногда дополнялось еще вечным календарем, регистрирующим одновременно и високосные годы. Весьма совершенные карманные часы этого рода с циферблатами лунных фаз производил французский часовщик Ахилл Брокот (1817-1878). Правда, первые часы с указанием лунных фаз появились еще в XVI в., но чаще всего мы встречаем во многих разных видах лишь экземпляры, относящиеся к началу XVIII в. Зодиаковые циферблаты известны по курантам XIV и XV вв. Некоторые астрономические приборы оснащены специальным кулачковым устройством, изменяющим длину маятника в течение хода часов. Включением и выключением кулачкового механизма удавалось измерять на часах среднее или подлинное солнечное время. Форма кулачка, непрерывно изменяющая длину маятника, была выведена из координат, вытекающих из уравнения времени. Это уравнение времени указывает временные разницы между кульминационными пунктами подлинного и среднего солнца. По этому уравнению можно четырежды в год — около 15 апреля, 14 июня, 1 сентября и 25 декабря — согласовывать условное среднее солнце с подлинным Солнцем, причем уравнение времени в эти дни равно нулю. Во все остальные дни среднее солнце отклоняется от подлинного либо к востоку, либо к западу. Максимальная разница между обоими временами колеблется от нуля до максимума, достигающего около 16 мин.
Рис. 32. Циферблат астрономических напольных часов (Австрия, XVIII век)
На некоторых часах имеются, кроме указанных циферблатов, еще и другие второстепенные циферблаты для измерения сидерического, мирового времени, времени захода и восхода Солнца, шкала взаимного положения планет в Солнечной системе и т.п. (рис. 32). Другие часы имеют встроенные термометры, манометры, психометры или компасы. Своими конструктивными особенностями обладают и часы с двусторонними циферблатами со сходными или различными шкалами времени. (Одни такие часы с золотыми и платиновыми циферблатами, изготовленные в начале XVIII в. А.И. Бреге, были проданы в Лондоне в 1965 г. за 27500 фунтов стерлингов.)
Рис. 33. Схема секундомерного механизма: 1 — спусковой рычаг, 2 — храповое колесо, 3 — защелка, 4 — установочная пружина, 5 — реверсивный рычат, 6 — вал минутного колеса, 7 — вал секундного колеса, 8 — баланс, 9 — ось коронки.
Особое положение в часовом деле занимают секундомеры и хронографы. Первые из них — это, собственно говоря, часы с центрально расположенным секундным валом и стрелкой, которую можно в любой момент вместе со всем механизмом остановить и возвратить в первоначальное нулевое положение. Секундомеры не имеют часового циферблата, естественного для обычных часов. Поэтому они начинают работать при пуске секундной стрелки, а при ее остановке останавливают работу всего часового механизма. Разгон и остановка производится специальным рычагом 1 (рис. 33), взаимодействующим с балансом. Этот рычаг имеет такую форму, что при освобождении баланса он придает одновременно ему малый импульс разгона. Рычагом 1 управляет колесо 2 с несколькими пальцами и с 15-зубым или 18-зубым храповиком. При нажатии коронки защелка 3 храповика подается на один зуб и пружина 4 одновременно фиксирует положение храповика. Пальцы колеса 2 перемещают раздвоенный рычаг 5, вращающий секундную стрелку или же вторую стрелку для суммирования измеряемых интервалов (до нулевого положения). При первом нажиме на головку секундомера рычаг 5 поднимается, освобождает стрелку, а затем рычаг 1 пускает в ход баланс. При втором нажиме этим рычагом баланс останавливается, при третьем нажиме вильчатый рычаг 5 возвращает стрелку в нулевое положение. Если секундомер устроен так, что храповик управляет лишь спусковым рычагом, а так называемым обнуляющим рычагом управляет специальная кнопка, то можно на таких секундомерах подсчитывать замеренные друг за другом интервалы времени. При нажатии на головку секундомер запускается в работу, а при следующем нажатии механизм останавливается. Если требуется сбросить показания, обнулить данные, то нажимают вторую кнопку. Если надо продолжать измерение времени, то следующим нажимом кнопки приводят механизм секундомера снова в ход. Особой модификацией секундомера является система Виннерля aiquille rattrapante с главной и вспомогательной секундной стрелкой. Вспомогательную стрелку можно в любое время остановить, снять ее показания, а после ее освобождения специальный механизм снова поставит ее в одинаковое положение с основной стрелкой.
Описанный принцип относится и к современным секундомерам и к хронометрам. Сначала их механизм был проще. Роль секундомера могли играть любые часы, механизм которых можно было в любой момент быстро остановить. Самый легкий способ остановки часов состоял в заблокировании баланса. Успешно и быстро остановить баланс можно было лишь тогда, когда его диаметр был достаточно большим, чтобы для резкого торможения не требовалась большая сила и чтобы точность измерения была максимальной.
В отличие от секундомеров хронограф представляет собой хронометрический прибор с основным двухстрелочным часовым циферблатом и центральной секундной стрелкой, указывающей время на специальной шкале с малыми делениями. Часовой механизм хронографа можно нажатием кнопки соединить со специальным пусковым и обнуляющим механизмом, подобным механизмам секундомера с секундной стрелкой. Автором первого такого хронографа был швейцарец Жан Мойзе Пузаит (1743-1793), который в 1776 г. построил часы с центральной секундной стрелкой, скачущей через целые секунды. Эту стрелку можно было останавливать и снова пускать в ход независимо от хода часов. Изобретение Пузаита усовершенствовали опять-таки швейцарцы Николе и Капт, дополнившие в 1862 г. первоначальную конструкцию устройством, которое возвращало секундную стрелку снова в нулевое положение. Развитие хронографа достигло своего расцвета в 80-х годах прошлого века. Тогда швейцарские часовые фирмы стали поставлять на рынок такие красивые и совершенные изделия, которые приведены, например, на рис. 34.
Рис. 34. Карманный хронограф (Швейцария, XIX век)
Наименование «хронограф», перенятое из терминологии часовщиков, не вполне правильно с точки зрения существа дела. В действительности такой прибор относится к так называемым хромоскопам, поскольку истинный хронограф является прибором с графической записью показаний времени. Чтобы различить обе группы этих приборов, назовем действительный хронограф регистрирующим хронографом. Одним из самых старых приборов этого рода был регистрирующий хронограф англичанина Уайтсхорста из Дерби, построенный в 1750 г. Его принцип заключался в том, что вместе с часовой стрелкой вращался диск со штифтами, проходящими под ударником, который при пуске отбивал соответствующее показание времени на бумаге. Фактически цифровой хронограф современного типа изобрел лишь в 1885 г. Банди из США. Его цифровая регистрирующая система была усовершенствована через три года Дейем из Абердиена. Первые опыты с печатающими хронографами безусловно привели к созданию табельных часов, приоритет в изобретении которых (1894 г.) приписывается американцу Куперу.