Редактирование генома

«Генетическое лекарство»

Достижения генетики и генной инженерии в области обеспечения человечества пищей несомненны и общепризнаны, как бы ни относились к генетически модифицированным организмам отдельные люди, незнакомые с существом дела. Однако не меньшую важность для здоровья человека, чем предотвращение голода, представляет решение чисто медицинских проблем. Использование редактирования генома в сфере медицины не просто перспективно — от него ожидают совершенно потрясающих вещей. Некоторые экспериментальные и даже клинические исследования уже активно обсуждаются, тестируются и начинают шаг за шагом входить в нашу жизнь.

Давайте посмотрим, как развивались методы редактирования генома в области биомедицины и как разрабатывались те или иные стратегии и подходы к лечению заболеваний человека.

Одной из первых прорывных публикаций в этой области была замечательная статья, опубликованная в журнале Nature Biotechnology в 2014 году. Исследование, выполненное авторами статьи, заключалось в следующем. Ранее с использованием мутагенеза была создана модельная мышь, у которой в определенный ген была введена точечная мутация, приводившая к проявлению такого заболевания человека, как наследственная тирозинемия первого типа. При этой патологии происходит накопление токсических метаболитов, в первую очередь в гепатоцитах — специализированных клетках печени, ответственных за общую дезинтоксикацию организма, что приводит к их гибели и вызывает общее отравление организма. Накопление токсичных продуктов обмена и гибель гепатоцитов могут быть приостановлены лекарственным препаратом, при условии, что пациенты всю жизнь будут следовать очень строгой диете. То же самое было необходимо и модельной мыши с этим заболеванием: отмена лечения приводила к гибели животного.

Ученые задумались, можно ли вылечить эту мышь с помощью метода геномного редактирования, для чего сделали соответствующие генетические конструкции. Они подобрали и синтезировали определенную направляющую РНК, которая должна была связываться с последовательностью ДНК именно в месте мутации, а затем с помощью генной инженерии создали векторную генетическую структуру, которая включала эту направляющую РНК и белок Cas9. Была также синтезирована последовательность длиной в двести нуклеотидов, полностью идентичная последовательности гена «дикого» типа, то есть нормальной копии гена, без мутации. Ученые ввели в хвостовую вену мыши эти «лечебные» генетические последовательности, вместо того чтобы сделать укол лекарством, который она ежедневно получала. По сути, исследователи ввели мышке «генетическое лекарство».

Нужно отметить, что эта работа удачно сочетала в себе грамотный подход к методике проведения эксперимента с правильным выбором модельного организма. Инъекция в хвостовую вену мыши — обычная процедура, так как она хорошо заметна на голом мышином хвосте и ведет напрямую к воротной вене печени, то есть если мы вводим в хвостовую вену какое-то вещество, то оно очень быстро попадает в печень. Таким образом, «генетическое лекарство» — конструкции с направляющей РНК/Cas9 и фрагмент ДНК, необходимый для замещения мутантной последовательности, — попадало прямо в гепатоциты, которым необходимо лечение. Направляющая РНК находила среди миллиарда букв генетического текста мыши необходимое место и комплементарно связывалась с ним, а фермент Cas9 вносил разрыв в структуру ДНК.

Рис. 8. Благодаря системе CRISPR/Cas ученые могут точечно заменять какие-либо участки ДНК, как будто орудуют мини-ножницами


При появлении разрыва клетка тут же пытается заделать эту брешь, а если рядом находится фрагмент с гомологичным текстом (по сути, «кирпичик», по форме идеально сходный с брешью), то он и замещает оригинальный фрагмент ДНК за счет гомологичной рекомбинации. Теперь вместо фрагмента текста с ошибкой вставлен правильный (см. рис. 8).

РЕДАКТИРУЮЩАЯ МЕДИЦИНА

Этот потрясающий эксперимент с геномным редактированием печени мышек недолго оставался чисто научным достижением. Вскоре на основе этого исследования была создана американская коммерческая компания Editas Medicine, то есть редактирующая медицина, или медицина редактирования, которая тут же привлекла более сорока миллионов долларов для развития, когда разместила свои акции на рынке ценных бумаг. Вот так одна публикация, вроде бы простая, но хорошо продуманная, дает мощный толчок и развитию технологии, и быстрой коммерциализации. Надо отметить, что тут еще не идет речи о лечении человека, а только получено доказательство его возможности. Но коммерческие компании, имеющие или купившие право на использование данного открытия, сразу же стараются привлечь средства для движения вперед, так как вполне очевидно, что в будущем этот небольшой научный эксперимент может быть использован и для терапии человека.

Мышкам, которым ввели это «генетическое лекарство», теперь не нужно было принимать специальные препараты и сидеть на диете — они выздоровели! Конечно, не все оказалось просто. Для своих экспериментов исследователи решили использовать три разных направляющих РНК. Все три распознавали генетический текст вблизи мутации, но были сдвинуты относительно друг друга на один-три нуклеотида. Только одна направляющая РНК позволила подопытным животным отказаться от медикаментозного лечения, остальные оказались не настолько эффективны. Для этого варианта направляющей РНК мутация была исправлена в одной из каждых трехсот клеток. Но даже столь небольшой доли исправлений оказалось достаточно, чтобы полностью отменить прием лекарственного препарата. И это на всю жизнь!

Но при всех блестящих успехах генетических технологий, как и при использовании любых других вмешательств в человеческий организм, всегда остается проблема побочных эффектов. А не могут ли они возникнуть и от «генетических лекарств»? Это не исключено. Мы говорили, что направляющая РНК узнает порядка двадцати букв генетического текста, но с особой точностью распознает лишь первые три-пять букв, а чем дальше, тем более снижается точность узнавания. Поскольку у человека три миллиарда букв генетического текста, то какие-то повторения, безусловно, возможны. Например, слово из пяти букв мы найдем в генетическом тексте не один, а очень много раз, поэтому существует вероятность, что выбранная нами направляющая РНК некорректно узнает нужный или ошибочно распознает еще и ненужный текст. Мы сами, когда что-то переписываем, можем нечаянно пропустить букву или написать не ту, в результате чего исказится смысл слова, фразы, всего текста. Так и ошибка направляющей РНК, в принципе, может вызвать нежелательные последствия: где-то в другом месте генома тоже произойдет распознавание, разрезание и какое-то замещение. Это и есть побочные эффекты, которых боятся при использовании технологии геномного редактирования.

Стоит ли нам опасаться чего-нибудь подобного в описанном эксперименте? Предположим, направляющая РНК распознает в клетках печени взрослой мышки (а больше никуда при таком методе терапии она не попадает) некий фрагмент генома и изменит его. В каких-то клетках исправит нужное, а в других распознает нечто иное. Есть такая вероятность, хотя гены занимают в геноме чуть больше процента от трех миллиардов букв, и возможность того, что введенная в организм генетическая конструкция сломает какой-то важный ген, очень невысока. Да и произойдет это в клетках, которые и так «больны». К тому же нет и не может быть лекарств, вообще не имеющих побочных эффектов. С точки зрения сохранения генома человека как вида не следует бояться этих изменений, ведь то, что мы лечим, касается только клеток взрослого организма — соматических. Эти изменения уже не передаются по наследству. Даже если нечаянно внести ошибку и затронуть еще какой-то генетический текст, он в любом случае не будет унаследован нашими потомками, потому что изменения проводятся не в клетках зародышевого пути.

Мы поговорили только об одном варианте «генетического лекарства», в котором используется система геномного редактирования. С тех пор на мышиных моделях было проведено много экспериментов и по использованию геномного редактирования для лечения инфекционных заболеваний (таких, например, как СПИД, вирусный гепатит В, поражения вирусом папилломы человека), заболеваний опорно-двигательного аппарата (миодистрофия Дюшенна), зрения и многих других.

Генетическое редактирование иммунной системы

Работа по геномному редактированию у мышей, о которой мы говорили, была опубликована в 2014 году, но прошло всего года два, и эта технология была впервые испытана на человеке. Но это, опять-таки, касалось только изменения генетического текста в некоторых соматических клетках взрослого организма. Авторы работы, китайские ученые, на этот раз выбрали заболевание из области онкологии. С помощью системы геномного редактирования CRISPR/Cas9 они решили изменить определенный ген в клетках крови больных раком легких таким образом, чтобы лимфоциты могли уничтожать опухолевые клетки. Но для того, чтобы этот небольшой технологический эксперимент состоялся, множество ученых во всем мире работали не один десяток лет, стараясь понять, почему иммунная система человека позволяет появляться опухоли. В итоге оказалось, что опухолевые клетки сами блокируют иммунный ответ. За открытие данного явления и способа преодоления такой блокировки американскому исследователю Джеймсу Эллисону и его японскому коллеге Тасуку Хондзё была вручена Нобелевская премия по медицине в 2018 году. Чем же так примечательно это открытие?

Мы уже обсуждали в главе 4 принцип работы иммунной системы человека. Как вы помните, встреча с ослабленным патогеном или его частью — антигеном — приводит к иммунному ответу и формированию иммунологической памяти. Если патоген проникнет в организм в следующий раз, то эти клетки иммунной системы быстро организуют эффективный отпор, помня ранее встреченный антиген. Так происходит с теми лимфоцитами, которые нашли свою мишень, то есть соответствующий антиген. Однако миллионы других рецепторов — «ключей», не нашедших свою «замочную скважину», — погибают вместе со своими носителями-лимфоцитами, так как в данный момент они оказались ненужными. Однако им на смену генерируется новый пул разнообразных В- или Т-клеток. Каждый Т-лимфоцит, чей рецептор случайно распознал какой-то патоген, получает право на жизнь, активируется и дает клоны.

Считается, что одну из главных ролей в противоопухолевом ответе играют Т-лимфоциты, которые, непосредственно распознавая опухолевую клетку и связываясь с ней, должны ее уничтожить. Почему же так происходит не всегда и опухолевые клетки избегают надзора со стороны иммунной системы? Увы, антигены есть у всех клеток, они имеются не только на патогенах, но и на любой клетке нашего собственного организма. И конечно же, сгенерированный иммунной системой случайный набор вариантов Т-лимфоцитов с их, как говорят, «репертуаром» клеточных рецепторов будет распознавать и собственные клетки. А вот это как раз нам совсем не нужно! Ведь если лимфоцит распознает собственные клетки, это приведет к возникновению аутоиммунитета — явления, охватывающего большой класс тяжелых болезней, называемых аутоиммунными заболеваниями, когда иммунная система организма уничтожает его собственные здоровые клетки и ткани.

И природой мудро придумано, как избежать возникновения аутоиммунного ответа. Для этого на поверхности Т-клетки имеется «нобелевский лауреат» — особый рецептор под названием PD1 (programmed [cell] death, или программируемая [клеточная] смерть). В названии заложена его функция. Если Т-лимфоцит может случайно распознать клетку нашей собственной ткани, то ничего страшного не произойдет, для блокирования этого имеется ответная часть для «нобелевского лауреата» PD1 — так называемый PD1-лиганд. Если при взаимодействии PD1-лиганд связывается с PD1-рецептором, то Т-лимфоцит получает сигнал на программируемую смерть. Таким образом осуществляется обратная связь с иммунной системой, которая случайным образом сгенерировала вариант распознавания своей ткани, своего антигена.

Так и должно происходить в норме, но мы знаем, что порой аутоиммунитет все-таки развивается. Далеко не все системы совершенны, и возможен сбой: например, если Т-лимфоцит по каким-то причинам не распознает на поверхности клетки PD1-лиганд, возникает аутоиммунное заболевание.

К сожалению, бывают случаи, когда нормальная клетка организма ошибается и становится трансформированной клеткой. В результате у нее появляются шансы сформировать опухоль.

Считается, что для того, чтобы клетка стала трансформированной, в ней должны произойти от трех до семи генетических изменений, приводящих к тому, чтобы она стала активно делиться, перестала реагировать на внешние сигналы, стала эгоистичной и бессмертной. Таким образом, опухолевая клетка претерпевает долгую эволюцию, прежде чем сформировать опухолевую ткань.

Но ведь когда-то она была нормальной клеткой организма, и многие черты нормальной клетки у нее остались. В частности, на поверхности большинства опухолевых клеток остался PD1-лиганд. И вот представьте себе: к трансформированной клетке подходит Т-лимфоцит и распознает опухолевый антиген. Как бы хорошо было, чтобы наш лимфоцит немедленно активировался, начал делиться и убивать все опухолевые клетки, в которых этот антиген сидит. Увы, этого не происходит, ведь на каждой из опухолевых клеток находится PD1-лиганд. Он связывается с PD1-рецептором на поверхности Т-клетки и говорит этому лимфоциту: «Не тронь, погибни!»

И вот тут мы подошли к ответу на вопрос, за что была дана Нобелевская премия: за открытие иммунологических «тормозов» в виде молекул PD1 и CTLA4 и возможность использования этого явления для терапии рака. Оказалось, что можно сделать генно-инженерным путем рекомбинантное антитело, которое будет связываться с PD1-рецептором и предотвращать его взаимодействие с PD1-лиганд ом клетки. Это примерно то же самое, как если бы мы на Т-лимфоцит надели чехол — мы его изолировали. Теперь Т-клетка связывается с опухолевым антигеном, но не получает сигнала погибнуть, поскольку PD1-рецепторы изолированы, а получает сигнал на размножение и начинает убивать опухолевые клетки в организме. Эти противоопухолевые средства, направленные на так называемые контрольные точки иммунитета, появились в последние шесть-семь лет и оказались эффективными в лечении ряда онкологических заболеваний, существенно изменив качество жизни многих пациентов.

На этом примере видно, с одной стороны, как непросто устроено все в природе, а с другой — какие возможности дает человеку детальное знание функционирования очень специализированных клеток организма — Т-лимфоцитов крови. Мы уже говорили, что кровь — весьма удобная ткань, с которой медицина уже давно и успешно работает. Можно даже выделить из крови персональные Т-лимфоциты, чем и решили воспользоваться китайские ученые.

Они взяли у пациентов, страдающих раком легких, Т-клетки — это довольно простая процедура под названием лимфоцитоферез, когда кровь просто прокачивается через специальный аппарат, в котором клетки крови разделяются, и можно безопасно выделить тот или иной тип лимфоцитов. Затем с помощью технологии геномного редактирования CR1SPR/Cas9 инактивировали у них PD1-рецепторы и ввели лимфоциты обратно. Теперь уже не требовалось вводить какие-то антитела пациентам, потому что у них часть Т-лимфоцитов фактически не имела PD1-рецепторов. Такой генетически отредактированный Т-лимфоцит распознавать опухолевый антиген сможет, а сигнала на самоуничтожение через PD1-рецептор не получит, и эти Т-клетки будут атаковать опухоль.

Это очень хороший пример, когда подвергается редактированию, а в данной работе — инактивируется определенный ген взрослого организма, находящийся в нужных клетках, в нашем случае в Т-лимфоцитах. Это необходимо потому, что экспрессия (то есть нормальное проявление гена) в данной ситуации мешает борьбе организма с опухолью. Однако надо понимать, что только часть Т-клеток станет обладать противоопухолевым действием, остальные по-прежнему будут нести на себе этот рецептор.

К сожалению, эффективность этой терапии пока оказалась не очень высокой. Всего в клинических испытаниях принимало участие около тридцати пациентов, и по результатам, опубликованным в 2018 году, положительный ответ на лечение наблюдался только у тридцати процентов. Но ведь мы еще только в начале пути! Ответ на противоопухолевую терапию даже у тридцати процентов больных — это уже хорошо. Конечно, процедуру надо усовершенствовать, повысить эффективность и сохранить безопасность. Возможно, имеет смысл выбрать другое заболевание, где эффект от блокирования «иммунологических контрольных точек» более значителен. При оценке успеха надо еще учитывать, что клинические испытания разрешено применять только на больных третьей и более поздних стадий прогрессирования рака: считается, что на более ранних стадиях риск может превышать ожидаемую пользу. Пациенты, на которых проводилось обсуждаемое нами исследование, были в очень тяжелом состоянии, и ожидать какого-то чуда и большей эффективности, чем эти полученные тридцать процентов, наверное, не стоило.

Перспективные мишени генной терапии

Несмотря на то что мы очень точно нацеливаемся на тот или иной ген, то есть на очень короткую и определенную последовательность генетического текста, все наши манипуляции с генами подпадают под термин генная терапия, потому что мы в лечебных целях либо инактивируем, либо восстанавливаем гены. Примером генной терапии является описанная выше технология, когда китайские ученые ввели в Т-лимфоциты определенную генетическую конструкцию, чтобы инактивировать ген PD1 и повысить эффективность противоопухолевой борьбы.

Генная терапия может осуществляться двумя разными способами. Один из них — ex vivo (вне организма), когда клетки извлекают из организма, проводят манипуляцию с их генами и снова возвращают в организм, как в указанной работе китайских ученых. Другой подход — in vivo (в организме) — мы рассматривали, обсуждая эксперимент с мышкой, которой в хвостовую вену вводили «генетическое лекарство» — специальную генетическую конструкцию, приводившую к излечению.

Сегодня для проведения генной терапии имеется очень большое количество перспективных мишеней. Например, в портфеле швейцарской биотехнологической компании CRISPR Therapeutics, одним из учредителей которой является Эмманюэль Шарпантье, лауреат Нобелевской премии за создание системы CRISPR/Cas9, предусмотрено использование технологий геномного редактирования для лечения десятка заболеваний.

В первую очередь в планах CRISPR Therapeutics — болезни крови и иммунные заболевания, к которым относятся бета-талассемия, мелкоклеточная анемия и тяжелый комбинированный иммунодефицит. Поскольку речь идет о клетках иммунной системы — лимфоцитах, это уже хорошо отработанная процедура, как мы разобрали на примере работы китайских ученых, и она может быть применена очень эффективно.

В США уже идут клинические испытания первой и второй фазы генной терапии бета-талассемии и мелкоклеточной анемии, и я думаю, что скоро мы узнаем о том, насколько успешными они оказались.

Другая мишень компании — терапия онкогематологических заболеваний, то есть онкология, связанная с кровью. Сегодня для лечения B-клеточных лимфом все шире используется генно-терапевтический подход, который называется CAR-Т, или химерный антигенный Т-клеточный рецептор (Chimeric Antigen Receptor 7). Мы уже немного говорили о Т-клетках и о том, что по разным причинам опухоль ускользает от поражения Т-лимфоцитами. Но знания в области молекулярных механизмов иммунного ответа становятся все глубже, и теперь с помощью генной инженерии можно собрать химерный Т-клеточный рецептор. Почему он химерный? Потому что мы уже имеем возможность генно-инженерным путем собрать конструкцию, которая будет содержать фрагмент антитела, распознающего опухолевый антиген В-клеточной лимфомы, добавить к фрагменту этого антитела фрагмент Т-клеточного рецептора, проходящего через клеточную мембрану, а к внутриклеточной части Т-клеточного рецептора добавить еще целый ряд фрагментов от других рецепторов, необходимых для эффективного устранения опухолевой клетки. Собранную таким образом генетическую конструкцию вводят в Т-клетки, а потом уже эти клетки вводятся пациенту. И возникает противоопухолевый ответ. Это, конечно, не очень простая и достаточно дорогая технология, поскольку манипуляция с клетками пациента выполняется вне его организма. Но альтернативной терапии для этих людей нет, поэтому приходится прибегать и к такому подходу.

Я еще раз хочу напомнить, что во всех случаях генетического редактирования, о которых мы до сих пор говорили, генные исправления делались в соматических клетках, и все эти исправления не будут наследоваться.

Вирусы на службе генетиков

В главе 3 мы уже говорили об использовании вирусов в качестве векторов для переноса в клетку «правильного» гена, как, например, в случае генной терапии одного из видов наследственной дистрофии сетчатки глаз — амавроза Лебера. Эта технология использует аденоассоциированный вирус для доставки прямо в глаз здоровой копии мутировавшего гена RPE65, и на ее основе в 2018 году появился препарат Люкстурна, позволяющий частично вернуть таким больным зрение.

К сожалению, тяжелые болезни зрения бывают вызваны мутациями в достаточно широком спектре генов. В результате люди либо рождаются незрячими, либо постепенно теряют зрение — в пятнадцать, двадцать, тридцать лет, и это еще более трагическая ситуация, влекущая за собой тяжелую психологическую травму. Не было никаких способов хотя бы остановить прогрессирование этой патологии, и только генная терапия дает какие-то шансы впоследствии изменить ситуацию.

Сегодня ученые уже научились создавать вирусные векторы для генной терапии, используя в них и аденовирусы, и аденоассоциированные вирусы, и даже вирус иммунодефицита человека (ВИЧ), что звучит достаточно страшно — а вдруг он действительно приведет к развитию иммунодефицита! Но нет, на самом деле уже с 1970-х годов ученые умеют работать с генами в пробирке.

В чем заключается работа с вирусами? Главное, в чем состоит для нас ценность вируса, — это его свойство копировать свою генетическую информацию внутри клетки за счет ее ферментов репликации. Если мы уберем из состава генома вируса те фрагменты генетического текста, которые отвечают, скажем, за его размножение, то вирус сохранится, но размножаться не сможет. А можно изъять из генома вируса те фрагменты генетического текста, которые у него отвечают за синтез белков капсида (оболочки вируса), генно-инженерным путем встроить их в клетку, и клетка будет сама производить эти белки, в то время как вирусная молекула эту способность потеряет. Таким образом удается существенно уменьшить генетическую информацию самого вируса, поскольку часть его функций теперь передана клетке вне организма. А с уменьшением содержания генетической информации вирус становится более безопасным, неинфекционным.

Благодаря этой генно-инженерной манипуляции можно сделать все вирусы достаточно безопасными, а кроме того, за счет передачи некоторых функций вируса специализированным клеткам освободить в его геноме место для полезной генетической информации. И получается тот самый вектор, в который дальше можно с помощью методов генной инженерии и гомологичной рекомбинации вставить нужный ген, в специализированных клетках собрать уже новые вирусные частицы — нашу синтетическую химерную нуклеиновую последовательность, запаковать ее в вирусные белки и уже этим вирусом инфицировать человека. Напомню, что он лишен возможности реплицироваться и собираться, так как у него нет генов для синтеза этих белков — они остались в тех специализированных клетках, с которыми производились манипуляции в лаборатории для производства нашего векторного вируса. Он может совершить инфицирование только один раз — перенести нужный нам генетический материал в клетку и на этом закончить свое существование.

Когда без редактора не обойтись

Но, увы, использование рассмотренного выше метода для генной терапии ограничено размерами вируса. Мы не можем вместить в него больше генетической информации, чем позволяет его природный максимальный размер, называемый емкостью вируса. Но даже существенное замещение вирусного генома на необходимый для переноса генетический текст не всегда удовлетворяет потребностям исследователей. Сегодня мы можем вставить внутрь вирусных векторов, в зависимости от используемого вируса, где-то от трех до семи тысяч букв генетического текста. А, например, при генной терапии макулодистрофии сетчатки, которая возникает из-за мутации в гене СЕР290, размер гена раза в три больше, чем может себе позволить, скажем, аденоассоциированный вирус. Поэтому для пациентов с таким диагнозом стандартный подход генной терапии с помощью вирусов неприменим.

Кажется, положение безвыходное. Но почему бы не попытаться исправить дефектный ген прямо в клетках глаза, не прибегая к доставке нового гена, а с помощью системы геномного редактирования CRISPR/Cas9?

Ученые умеют доставлять в клетку целую страницу генетического текста, а вот уже пять—десять страниц не могут, и приходится переходить на новый уровень редакторской работы: не просто заменять параграф, зная, что там что-то произошло, а внимательно читать десятки страниц и менять отдельные буквы. Это как раз и позволяет делать система геномного редактирования CRISPR/Cas9. И вот уже компания Editas Medicine, которой принадлежит одно из первых достижений ге-номного редактирования — восстановление функции печени у мышей, в 2019 году получила разрешение FDA на проведение клинических исследований по исправлению гена СЕР290 с помощью CRISPR/Cas9 прямо в глазу у пациента. Понятно, что исправление гена в соматических клетках человеческого глаза никак не затрагивает клетки зародышевого пути, и эта мутация продолжит передаваться по наследству. Но благодаря даже еще не конечному, а лишь начальному, но положительному решению регулятора (FDA) по поводу планов компании, она сразу получила от инвесторов двадцать пять миллионов долларов. То есть становится возможным появление перспективного лекарственного препарата.

Не унаследовать бы изменения!

Главной целью генной терапии, естественно, является благо человека, его избавление от тяжелых заболеваний, которые другим путем не лечатся. Однако в этой книге я уже неоднократно подчеркивал, что все исследования, о которых мы говорили, были направлены на клетки взрослого организма, которые не принадлежат к клеткам зародышевого пути, а значит, все внесенные в процессе терапии генетические изменения не будут наследоваться. Почему же люди проявляют такую боязливость в отношении вмешательства в стандартный биологический процесс? Разве человечество не вмешивается постоянно в биологические процессы окружающей среды, выводя новые виды растений и животных за счет скрещиваний и модификаций?

Тем не менее факт остается фактом: человек о себе заботится больше, чем об окружающей природе. Например, когда в 1978 году родилась Лиза Браун — первый в мире ребенок, зачатый «в пробирке», это почему-то вызвало бурю негодования, и не только среди людей религиозных, но и в научном сообществе. Как посмели вмешаться? А вдруг что-то у этого человека пойдет не так? И еще неизвестно, что его ждет в будущем!

Действительно, опасность существует, когда мы повторяем некоторые естественные процессы в искусственных условиях. Наверное, также негативно воспринималось когда-то появление ребенка с помощью кесарева сечения, — это тоже вмешательство в нормальную биологию, но оно спасало жизни. А новая технология экстракорпорального оплодотворения дарила жизни, причем никаких отклонений ни у мамы Лизы Браун, ни у нее самой, ни у других десяти миллионов детей, «зачатых в пробирке», пока не наблюдается.

Почему я уделяю особое внимание технологии экстракорпорального оплодотворения? Потому что именно она дает возможность вмешательства в клетки зародышевого пути человека. Ведь на первом этапе своего развития человек представляет собой одну клетку! Потом эта клетка делится — их становится две, затем четыре и т. д. На ранних этапах все они одинаковы, неотличимы друг от друга, и только на стадии примерно ста клеток в эмбрионе начинается первая специализация, то есть появляются клетки, которые потом создадут нервную, кровеносную, пищеварительную, эндокринную, сердечно-сосудистую системы, а часть клеток станет гоноцитами и из них смогут образовываться сперматозоиды или яйцеклетки.

Если изменить генетическую информацию на самых ранних стадиях развития эмбриона, генетические изменения попадут и в клетки зародышевого пути. По достижении половой зрелости организма эти клетки полового пути естественным путем передадут введенные в них генетические изменения потомству.

Казалось бы, это так здорово! Давайте всех заранее откорректируем, чтобы никто не болел, и пусть болезни вообще устранятся из рода человеческого. Что тут скажешь? Несомненно, когда речь идет об известных моногенных неизлечимых заболеваниях, такой подход имеет право на существование. Но у людей, как правило, появляются и другие, порой опасные желания по изменению генотипа человека. В любом случае они мешают появлению естественного биоразнообразия, а значит, препятствуют развитию. Конечно, геномное редактирование, в том числе с помощью системы CR1SPR/Cas9, позволяет при необходимости заменить единственную букву генетического текста. Но даже эта, самая совершенная на сегодняшний день система все равно, увы, несовершенна. Она тоже может ошибаться. Как часто? Вроде бы нечасто, с вероятностью 10-6. Но если у нас 109 букв генетического текста в одной клетке, то даже при точности редактирования 10-6 все равно около одной тысячи букв могут быть повреждены. Эти внемишенные (off-target) изменения можно как-то предсказать и потом просмотреть соответствующие фрагменты генетического текста, чтобы выяснить, действительно ли там происходит повреждение (скажу по собственному опыту: в основном нет, не происходит). И все-таки вероятность внесения каких-то нежелательных изменений, пусть низкая, но существует. Поэтому возникает естествен-ный вопрос: допустимы ли подобные вмешательства в принципе?

В 2013 году появились первые публикации о применении системы СRISPR/Cas9 для геномного редактирования, а уже в 2014 году китайскими учеными была опубликована совершенно фантастическая работа, выполненная на приматах — мартышках. Приматы гораздо ближе к человеку, чем мыши: человек ведь тоже из отряда приматов. Китайские ученые решили на уровне одноклеточного эмбриона мартышки, то есть на только что оплодотворенной яйцеклетке, провести множественное редактирование генома — исправить генетический текст не в одном месте, а в пяти различных местах, чтобы добиться определенных признаков у потомства.

Зачем это делалось? У исследователей была благая цель. Мартышки хоть и близки к человеку, но в плане иммунной системы отличаются, и использовать обезьян, чтобы проверять на них те или иные биомедицинские технологии, связанные с иммунной системой человека, не удается. Китайские исследователи решили с помощью геномного редактирования сделать так, чтобы эти мартышки могли впоследствии быть использованы в качестве реципиентов тканей и органов человека для трансплантации.

Это очень важно, потому что сегодня ученые уже умеют выращивать «зачатки» искусственных органов (органоиды) человека для всевозможных исследований. Но прежде чем пересаживать искусственно выращенные органы, надо проверить, как они будут встраиваться в организм, взаимодействовать с другими его тканями, как туда проникнут кровеносные сосуды, как эти ткани будут иннервироваться[10]. Мы не сможем поместить в мышь выращенный печеночный органоид человека, пусть и маленький, величиной с наперсток, из-за физической и физиологической несовместимости.

Для всех таких экспериментов требуются соответствующие модельные системы, и задачей китайских исследователей в данном случае было выведение такой линии животных, которые впоследствии могли быть использованы для изучения особенностей организма человека. А для этого надо, чтобы они были иммунологически совместимы с человеком. Причем вносить изменения надо было на уровне одной клетки, чтобы они попали в зародышевый путь, и уже после этого животное-основатель (founder), в котором обнаружатся необходимые свойства, естественным путем могло передать их своим потомкам, которых впоследствии можно было бы использовать в научных целях.

Для своего эксперимента исследователи использовали сто девяносто восемь яйцеклеток (ооцитов), извлеченных из мартышек. Для этого потребовалось около сорока самок. После искусственного оплодотворения было получено сто восемьдесят шесть зигот, из которых восемьдесят три ученые подсадили тридцати суррогатным самкам. Всего развилось девять беременностей и родилось девятнадцать мутантов-мартышек. Процедура получилась длительная и очень дорогая. Но зато дальнейшие расходы сводятся к минимуму, потому что один мутантный самец с заданными свойствами менее чем за год способен естественным образом обеспечить появление двух-трех десятков потомков с необходимым генотипом. Таким образом, китайским ученым с помощью технологии геномного редактирования CRISPR/ Cas9 удалось получить линию мартышек с заданными генетическими свойствами — совместимостью с клетками и тканями человека.

Девятнадцать мутантных отпрысков были тщательно исследованы учеными. У мартышек были обнаружены только те генетические изменения, которых они добивались, а в других местах никаких изменений не оказалось, что указывает на высокую точность редактирования.

Это генетическое редактирование, проведенное на уровне яйцеклетки, было первой работой, которая показала, что если данный процесс вообще можно проводить на приматах, то технология полностью готова для проведения генетического редактирования генома человека, причем такого, при котором внесенные изменения станут наследуемыми.

Следующего шага долго ждать не пришлось. Уже в 2015 году вышла новая работа китайских ученых, в которой они сообщили о результатах проведенного генетического редактирования на эмбрионах человека. В опубликованной статье было сказано, что большинство эмбрионов после их геномного редактирования оказались нежизнеспособными, а с остальными эксперимент был прерван на стадии четырнадцатого дня развития эмбриона, причем большинство из них погибло даже раньше. Тем не менее этот эксперимент вызвал бурный взрыв эмоций со стороны научных сообществ, в первую очередь американского. Ученые из США возмущались громче всех, доказывая, что это неэтично, что человечество к таким экспериментам еще не готово, надо проверить получше, изучить более тщательно, провести дополнительные исследования.

Наверное, это отчасти правильно. Чем больше мы проведем исследований, прежде чем применить что-то непосредственно на человеке, тем лучше, все-таки человек — не обезьяна. Но все равно когда-то придется переходить на человека и применять разработанные на животных технологии. А неудовольствие американских ученых этим первым экспериментом, скорее всего, было вызвано тем, что «кто-то» опередил США.

В декабре 2015 года в США состоялся 1-й Международный саммит по редактированию генома человека. Организаторами являлись США, Великобритания и Китай, присутствовали ученые из разных стран. В отличие от Асиломарской конференции 1975 года, российских представителей там не было. На саммите 2015 года участники конференции договорились, что на настоящий момент клиническое использование отредактированных эмбрионов человека является безответственным.

Такое решение не было первым. Еще в конце 2014 года Организация Объединенных Наций выпустила декларацию, к которой присоединился ряд стран, в том числе и Россия, о том, что нельзя использовать геномное редактирование для клеток человека, которые могут попасть в зародышевый путь. Но в китайской работе 2015 года по редактированию эмбрионов человека генетическая информация уже могла бы сохраниться, если бы эмбрионы не погибли или их развитие не было специально остановлено. Саммит 2015 года был созван, чтобы, так сказать, сверить часы. По его результатам было принято решение, что эмбрионы человека редактировать не стоит...

Однако в 2017 году вышла работа американских ученых именно по генетическому редактированию эмбриона человека, выполненная под руководством одного из ведущих ученых-эмбриологов мира Шухрата Миталипова, в свое время получившего образование в СССР.

За этим ученым признано несколько больших технологических прорывов. В частности, он был первым в мире человеком, который совершил терапевтическое клонирование приматов. Он же впервые в мире в 2012 году клонировал эмбрион человека. Это было не репродуктивное клонирование с целью рождения нового человека, а терапевтическое клонирование для получения эмбриональных стволовых клеток, полностью идентичных донору генетического материала.

Целью исследования 2017 года было внесение исправлений в некую патогенную мутацию. Сначала коллектив Миталипова пытался идти по пути своих китайских коллег и производить геномное редактирование на уровне зиготы, когда яйцеклетка уже оплодотворена сперматозоидом и там присутствуют два генома — отцовский и материнский. Но оказалось, что при последующих делениях получается целый набор различных вариантов клеток, отличающихся своим геномом. Бывает, например, так, что все клетки в многоклеточном эмбрионе оказываются несущими нужные исправления. Возможен и совершенно другой вариант: получаются эмбрионы, в которых вообще нет никаких генетических исправлений. Но самое плохое — когда образуется смешанный вариант (он называется мозаик), в котором присутствуют различные геномы; это значит, что в получившемся многоклеточном эмбрионе часть клеток несет генетические исправления, а другая часть — не несет.

Последний вариант хуже всех, потому что впоследствии эти клетки продолжают деление и с определенного момента начинают специализироваться: какие-то идут в клетки зародышевого пути, другие начинают формировать сердце, образуют закладки мозга, крови, пищеварительного тракта и других органов тела. А вот в какую ткань попадет клетка с каким геномом — совершенно непредсказуемо. И получится, что уже во взрослом организме клетки с исходной мутацией будут, скажем, наблюдаться в коже, но отсутствовать в крови. Или, к примеру, в сердце они могут и присутствовать, и отсутствовать. Это значит, что совершенно четкой картины мы не получим и не сможем сказать, каков вклад мутации, исправили мы ее или нет. Группа Шухрата Миталипова поставила перед собой задачу преодолеть эту проблему — сделать так, чтобы все эмбрионы на стадии сотни клеток были однородными, не мозаичными. Для этого генетический редактор вводился в ооцит на разных стадиях оплодотворения. Оказалось, чтобы получить единообразный эмбрион, лучше делать генетическое редактирование еще на стадии яйцеклетки — до того, как произошло оплодотворение отцовским геномом. Вероятно, здесь работают какие-то определенные механизмы, приводящие к более эффективному геномному редактированию.

В своих работах на приматах китайские исследователи проблем мозаичности не наблюдали. Почему такая разница в результатах китайских и американских ученых? В первую очередь надо понимать, что каждый исследователь использует свои условия, которые хоть немного, но отличаются (как минимум, это собственные глаза и руки). Немножко различаются и используемые реактивы, поскольку они выпускаются разными фирмами, изготовлены в разные годы, по-разному хранились (это «немножко» может на самом деле оказывать большое влияние). Исследования некоторых групп, проведенные позже, не совсем подтвердили точку зрения Миталипова и его коллег относительно того, что лучше редактировать геном яйцеклетки до оплодотворения. Ничего драматичного нет в том, что по каким-то неустранимым причинам результаты оказываются не полностью воспроизводимыми. К тому же надо иметь в виду, что работа очень сложна, поскольку ведется на живых системах, которые исключительно гибки, и действие многих внешних факторов нам трудно заранее предсказать.

Итак, можно сказать, что, несмотря на принятые самими учеными ограничения, работы с эмбрионами человека активно продолжались и усложнялись, хотя и были исключительно экспериментами в пробирке, in vitro. В США, Англии и еще нескольких странах Европы действовал категорический запрет на геномное редактирование эмбрионов человека с их последующей имплантацией.

Наиболее грамотную политику в плане всех новых технологий, в том числе геномного редактирования, проводил Китай: эти работы не были полностью запрещены, но для них были установлены некие внутренние правила. И хотя они подлежали определенным согласованиям и разрешениям, запреты были минимальны, поэтому исследования развивались стремительно. Глядя на успехи применения технологии геномного редактирования в Китае, американские регуляторы в 2017 году несколько снизили строгость своего запрета на редактирование эмбриона человека. Они уже допускали, что с большой вероятностью исследования по редактированию наследственных заболеваний на уровне эмбриона человека могут быть совершены в будущем при серьезной патологии у людей.

Причина этого послабления простая: наука не стоит на месте, и этот вопрос все равно придется решать. Делать пока ничего нельзя, но запрещать себе даже думать о генетическом редактировании на уровне эмбриона для лечения наследственных заболеваний уже непростительно. Таким образом, американский регулятор FDA сделал первый шаг, позволив ученым «думать». А в середине 2018 года уже британский регулятор выпустил очередную брошюру, в которой отмечалось, что редактирование эмбриона при наследственном заболевании может быть приемлемо при некоторых обстоятельствах. Это была гораздо более приближенная к жизни формулировка, чем в США, поскольку не содержала расплывчатых указаний на вероятные действия в неопределенном будущем. Великобритания допускала, что в обозримые сроки этот вопрос каким-то образом точно будет решен.

В сентябре 2018 года Министерство здравоохранения Японии выпустило правила, допускающие выдачу разрешений на генетическое редактирование эмбриона человека для клиники.

Таким образом, запрет на эти действия постепенно начал ослабевать.

Загрузка...