Сегодня

Законы должны быть одинаковы всюду

«Нам уже ясно, что Земля на самом деле движется, хотя это нам не кажется, ибо мы ощущаем движение лишь при сравнении с неподвижной точкой. Если бы кто-нибудь не знал, что вода течет, не видел бы берегов и был бы на корабле посреди вод, как мог бы он попять, что корабль движется? На этом же основании, если кто-либо находится на Земле, на Солнце или на какой-нибудь другой планете, ему всегда будет казаться, что он на неподвижном центре и что все остальные вещи движутся».

Так писал в первой половине XV века Николай Кузанский, кардинал католической церкви и крупный ученый. Это, пожалуй, первое в мире четкое изложение принципа относительности движения.

По-латыни «принципиум» — основа, первоначало. Название великой книги Ньютона переводится как «Математические начала натуральной философии», а сама книга написана на латыни, и словом «начала» перелагают на русский слово «Principia». Философский словарь определяет: «В логическом смысле Принцип есть центральное понятие, основание системы, представляющее обобщение и распространение какого-либо положения на все явления той области, из которой данный принцип абстрагирован».

Словом, физики берут конкретный факт, обнаруженный в конкретных опытах, и принимают (пли, если хотите, провозглашают), что данный факт должен иметь место в любых ситуациях, аналогичных тем, где мы с ним уже встречались. Строго говоря, принцип в науке — предположение, поэтому его продолжают проверять.

Мы с вами уже встретились в этой книге с принципом относительности, встретимся с принципом, объявляющим скорость света высшей из возможных скоростей, и другими. Итак, в науке слову «принцип» придается несколько иное значение, чем в обыденной жизни. Зато отношение к принципам и тут и там одинаковое: новые принципы становятся общепринятыми с большим трудом и очень редко; и, как в жизни, их не меняют и от них не отрекаются, разве что в случае полного краха… в жизни— личности или общества, в науке — теории, а то и целой научной дисциплины.

Первым человеком, убедительно обосновавшим принцип относительности, стал Галилео Галилей. Современники ждали от него ответа на коронный вопрос противников Коперника: если Земля движется вокруг Солнца, вращаясь еще притом вокруг собственной оси, то почему это не сказывается, например, на движении падающего с башни камня — ведь «за то время, пока камень находится в воздухе, опускаясь к центру Земли, сама Земля, двигаясь с великой скоростью к востоку и неся на себе основание башни, по необходимости должна была бы оставить камень на таком же расстоянии позади себя, на какое за то же самое время ее уносит кружение…»

Галилей в «Послании к Франческо Инголи», противнику коперниканства, дал подробнейший ответ на этот и подобные вопросы. Вот одна из самых ярких и важных для понимания принципа относительности Галилея страниц: «В большой каюте под палубой какого-нибудь крупного корабля запритесь с кем-либо из ваших друзей; устройте так, чтобы в ней были мухи, бабочки и другие летающие насекомые; возьмите также большой сосуд повыше, из которого вода падала бы по каплям в другой нижний сосуд с узкой шейкой; и пока корабль стоит неподвижно, наблюдайте внимательно, как эти насекомые будут с одинаковой скоростью летать по каюте в любом направлении, вы увидите, как рыбки начнут двигаться безразлично в направлении какой угодно части края сосуда; все капли, падая, будут попадать в сосуд, поставленный снизу… Когда вы хорошо заметите себе все эти явления, дайте движение кораблю и притом с какой угодно скоростью; тогда (если только движение его будет равномерным, а не колеблющимся туда и сюда) вы не заметите ни малейшей разницы во всем, что было описано, и ни по одному из этих явлений, ни по чему-либо, что станет происходить с вами самими, вы не сможете удостовериться, движется ли корабль или стоит неподвижно… Нам никогда не удается узнать по внутренним предметам, что с ним происходит; как же удастся узнать это у Земли, которая всегда находилась для нас в одном и том же состоянии?»

Все это и многое другое Галилей говорил для того, чтобы подвести своих современников к принципу, который на современном научном языке гласит: все законы механики справедливы в системах, которые движутся относительно друг друга прямолинейно и с постоянной скоростью.

Термин «относительность» стал одним из самых популярных и, конечно, благодаря широко известной ныне теории относительности. И все-таки перед тем как сесть за эту главу, автор провел опрос своих знакомых, чтобы выяснить, что, по их мнению, представляет собой принцип относительности. К специалистам-физикам он не обращался, решив, что они знают это «по положению»; не спрашивал он и самых заядлых гуманитариев, поскольку справедливо полагал, что они не знают этого — тоже «по положению». Среди опрошенных оказались инженеры самых разных специальностей, химики, врачи, архитекторы, журналисты, пишущие о науке. Некоторые из ответов отдаленно приближались к истине, некоторые не имели к ней никакого отношения, многие смельчаки сознались, что представления не имеют о том, о чем столько слышали.

Потому и появился в книге этот рассказ о принципе относительности, или, по-иному говоря, о трех принципах относительности: галилеевском, частном принципе относительности Эйнштейна и общем принципе относительности его же.

Обратим внимание: популярная разговорная формула, гласящая, что все в мире относительно, не имеет к данному принципу даже косвенного отношения. Он-то ведь провозглашает общность, а не различие законов для разных систем отсчета — при условии, что все они движутся с постоянной скоростью, как галилеевские корабли.

Все, что происходит в мире, должно при исследовании физиками иметь четко обозначенный адрес. Когда мы надписываем на конверте адрес приятеля, то пользуемся системой отсчета, связанной с планетой Земля. Порою вместо термина «система отсчета» применяют термин «система координат». Иногда говорят, что между системой отсчета и системой координат примерно та же разница, что между городом и его планом, между страной и ее картой, указывая при этом, что как карта может изображать несуществующую страну, так система координат может иметь чисто расчетный смысл. Математики работают, например, с многомерными системами координат, между тем наш реальный мир знает только три пространственных измерения. Система же отсчета всегда берет за основу какие-то реальные тела, так сказать, опорные точки. Впрочем, для этой книги такие подробности не имеют существенного значения.

(Помню, как студентом я присутствовал при закладке раскопа в археологической экспедиции. Раньше, чем первая лопата вонзилась в тугой дерн, зеленую надгробную пелену над домами и улицами древнего города, мы под руководством специалиста колдовали с теодолитами, намечая опорные точки для сетки координат плана будущего раскопа. В эти точки были вбиты аккуратные колышки. А затем каждый участок раскопок привязывался к этим колышкам, обозначался с учетом точного расстояния от них. С этого момента все, что выбрасывали лопаты, все, что осторожно зачищалось кистью и ножом, — все это получало четкую прописку в пространстве: квадрат такой-то, на глубине такой-то.

Археологам хорошо: у них есть колышки и есть, куда их вбивать. В астрономии и ряде областей физики определение точек отсчета — дело чрезвычайно сложное, но здесь не место вдаваться в тонкости этой проблемы.)

Суть принципа относительности Галилея и частного принципа относительности Эйнштейна проста: можно говорить только об относительной скорости, абсолютная скорость в нашем физическом мире — абстракция, более того — абсурд, она нс только не имеет, но и не может иметь реального воплощения. Это понятие лишено смысла, даже сама по себе абстракция абсолютной скорости не нужна физике. Все системы отсчета при равномерном движении равноправны.

Мы измеряем скорость поезда и самолета по телам отсчета, находящимся на Земле. Пассажир поезда ходит по вагону поезда с одной и той же относительной скоростью, стоит ли поезд на станции или делает сто километров в час (строго «по Галилею»!).

Для пассажира поезда системой отсчета становится его вагон. Недаром же нам кажется, что не мы едем мимо телеграфных столбов, а они бегут мимо нас назад. Два поезда, как два галилеевских корабля, верны одним и тем же законам. Так же, как два современных самолета — на средних участках пути, где они уже не ускоряют свой полет и еще не замедляют его. Экипаж, пассажиры, кресла и приборы движутся вместе с самолетом с той же скоростью, что и он, и, естественно, в том же направлении.

Такие системы отсчета, в которых для постороннего наблюдателя все тела, если на них не действуют внешние силы, движутся поступательно по прямой и с постоянной скоростью, называются инерциальными системами. Во всех таких системах, согласно принципу относительности Галилея, остаются неизменными все законы механики, согласно же специальному принципу относительности Эйнштейна — все законы природы. В каждом из самолетов (на средних участках пути!) по одним и тем же законам бьются сердца людей, тикают наручные часы; даже ходики с гирями будут одинаково тикать в обоих самолетах[9].

Но так, согласно специальной теории относительности, дело обстоит тогда, когда самолеты летят с постоянной скоростью (пусть и разной для каждого из них). На первом и последнем участках своего маршрута каждый самолет как система отсчета, строго говоря, временно выпадает из-под действия специального принципа относительности. Он летит с ускорением, положительным в начале пути и отрицательным в конце его, и становится неинерциальной системой отсчета — по отношению, положим, к другим самолетам на средних участках их полета.

Пассажира ускорение прижимает к спинке кресла. Гиря на часах-ходиках, подвешенных к стенке кабины, отклонится в направлении, противоположном направлению полета. Это, естественно, скажется на их ходе.

Ну, а на спутнике Земли, вращающемся вокруг пашей планеты, часы-ходики вообще не будут ходить. Там ведь все тела находятся в невесомости, и гиря вообще не сможет выполнить свою столь привычную нам роль «гравитационного двигателя». Итак, инерциальные системы подобны друг другу по характеру действующих в них законов природы. Системы неинерциальные, движущиеся не с постоянной скоростью, отличаются от инерциальных достаточно резко.

Специальная теория относительности не входит в число предметов, о которых надо писать в этой книге. Нам она важна только как этап рождения общей теории относительности, как ступенька, с которой Эйнштейн шагнул к решению проблемы тяготения. Почти все, что пишут о теории относительности Эйнштейна в популярной литературе, относится целиком или глазным образом к специальной теории. Именно из нее следует «парадокс близнецов», согласно которому тот из них, что отправится в космический полет со скоростью, близкой к скорости света, вернувшись на Землю, окажется моложе, чем ожидавший его на родной планете брат. И поражающая воображение картина роста массы любого тела с приближением его скорости к скорости света (с) — тоже оттуда. И представление о том, что длина такого тела должна сокращаться по мере приближения к с.

Специальная теория относительности была создана в 1905 году, ее объектом стали тела, движущиеся с гигантскими скоростями. Она отнюдь не была теорией гравитации, однако сразу же нанесла тяжелый удар Ньютонову закону всемирного тяготения. Дальнодействие — дальнодействием, действие через посредников — действием через посредников; этот вопрос, как мы уже знаем, для самого Ньютона оставался нерешенным, но сам закон подразумевал, что силы тяготения передаются на любое расстояние мгновенно, их скорость принималась бесконечной. Конечно, между Ньютоном и Эйнштейном нашлось немало ученых, не веривших в саму возможность бесконечных скоростей. Например, еще Лаплас «определил», что скорость передачи силы тяготения должна превышать скорость света по крайней мере в семь миллионов раз, но все же быть конечной. Однако все такие попытки довольно быстро демонстрировали свою бесплодность.

Эйнштейн своей первой теорией обрубил хвост у бесконечности, поставил пределом скоростей — скорость света, равную (приблизительно) тремстам тысячам километров в секунду. Второй принцип специальной теории относительности сегодня формулируется так: любые взаимодействия могут распространяться лишь со скоростями, не превышающими скорость света в пустоте.

Но это уже второй из двух главных ее принципов. Первый же гласит, что все законы природы остаются неизменными во всех инерциальных системах отсчета, в которых тела, не испытывающие действия внешних сил, двигаются поступательно по прямой с постоянной скоростью.

Казалось бы, что особенного в обоих принципах? Разве еще Галилей (и Ньютон) не провозгласил, что тело сохраняет состояние покоя или равномерного движения, пока не будет выведено из этого состояния внешней силой? Разве он не показал, что все законы механики действуют одинаково во всех инерциальных системах отсчета? Что меняется от того, что в определении Галилея слова «законы механики» оказались теперь заменены на «законы природы»? Да, меняется нс так уж много, особенно если учесть, что для Галилея, как и для Ньютона, почти вся физика если и не сводилась к механике, то в идеале должна была к ней свестись. Принцип Эйнштейна есть естественное развитие принципа относительности Галилея.

Но к нему ведь был еще прибавлен принцип предельности скорости света, и от соединения этих двух принципов рухнуло старое привычное мироздание, или, говоря точнее, не рухнуло, а стало одним из нижних этажей нового мироздания.

Вся наука является не чем иным, как усовершенствованием повседневного мышления.

Альберт Эйнштейн

Специальная теория относительности была использована как инструмент для углубленного исследования многих физических явлений. Были предприняты попытки применить ее и к тяготению. Но сам Эйнштейн довольно быстро пришел к выводу, что без коренных изменений теорию тяготения не создашь. Он много размышлял над тем, как развить специальный (точнее сказать— частный; французские ученые иногда применяют здесь еще более, пожалуй, удачный термин — ограниченный) принцип относительности в то, что он называл общим принципом относительности. Вспомним, ранее уже говорилось, что главным для Эйнштейна в его частном принципе относительности было сохранение действия всех законов природы в инерциальных системах отсчета. Теперь он хотел найти способ распространить принцип относительности на все системы отсчета, в том числе и на неинерциальные, способ установить, что все законы природы действуют всюду, при условии введения заранее установленных поправок на характер самих систем отсчета. Ему удалось решить и такую задачу.

Для этого понадобилось положить в основание новой, общей теории относительности, кроме двух главных принципов ее предшественницы, еще и третий принцип — принцип эквивалентности.

Ничто не удается без предвзятой идеи. Надо только настолько обладать благоразумием, чтобы не делать из нее выводов, не подтвержденных опытом. Предвзятые идеи, подвергнутые строгому контролю опыта, представляют собой оживляющее пламя наблюдательных наук.

Луи Пастер

Пусть, для разнообразия, представит нам принцип эквивалентности американский фантаст Реймонд Ф. Джоунс. В его рассказе «Уровень шума» физик растолковывает психологу: «Его (принцип эквивалентности. — Р. П.) выдвинул Эйнштейн в одной из своих первых работ, кажется, в 1907 году. Он утверждал, что сила инерции эквивалентна силе тяжести. То есть в системе, которая движется с ускорением, человек будет испытывать действие силы, ничем не отличающееся от действия силы тяжести. С другой стороны, человек внутри свободно падающего лифта не замечает действия земного притяжения. Если бы он встал на весы, то увидел бы, что ничего не весит. Жидкость не выливалась бы из стакана. Согласно принципу эквивалентности, никакой физический эксперимент не может обнаружить земное притяжение внутри любой системы, свободно движущейся в гравитационном поле».

Физики, выступающие не в ролях героев фантастики, но в качестве авторов статей, формулируют ту же мысль точнее, но сложнее: «Согласно принципу эквивалентности, никакими физическими экспериментами нельзя отличить движение тел под действием гравитации от движения в соответствующим образом подобранной неинерциальной системе отсчета, то есть в системе, движущейся с ускорением относительно инерциальной системы отсчета».

Это — цитата из однотомной энциклопедии «Физика космоса». И дальше энциклопедия разъясняет: «В самом деле, ускорение всех тел в данном гравитационном поле одинаково, ускорение всех тел, свободно движущихся в неинерциальной системе отсчета, также одинаково…»

Вот представьте себе космолет, движущийся где-нибудь в межзвездном пространстве с ускорением, точно равным ускорению земного тяготения, то есть примерно 9,8 метра на секунду в квадрате.

Положим, что космолет имеет форму того пушечного снаряда, в котором Жюль Верн отправлял своих героев на окололунную орбиту, и пассажиры корабля ходят по его «дну». Им никогда не удастся установить только по поведению внутри кабины любых физических тел (в том числе их собственных тел), летит ли корабль, прибавляя в скорости почти по десять метров каждую секунду, или спокойно стоит на космодроме. В корабле приземлившемся проявляет себя гравитационное поле. Корабль, летящий с ускорением земного тяготения, — та самая «соответствующим образом подобранная» неинерциальная система отсчета. Космонавт, направляющийся к звездам, подбросит шарик, а тот поведет себя так же, как шарик, подброшенный пастушком где-нибудь на зеленом лугу. Здесь можно, при желании, повторить опыт, описанный Галилеем, с рыбками, бабочками и прыжками в каюте корабля — и так же, как внутри галилеевского корабля ничто не изменялось при движении сравнительно с состоянием относительного покоя, как и здесь нельзя отличить покой в гравитационном поле от неинерциального (то есть с ускорением) движения…

Ускорение и тяготение проявляют себя одинаково, а общая теория относительности — «всего лишь» теория гравитации.

Экспериментальной основой принципа эквивалентности является равенство тяжелой и инертной масс.

Масса каждого читателя этой книги по принятой системе единиц точнехонько равна весу на поверхности Земли. Впрочем, говоря точнее, — каждая масса. Что значит — каждая? Да ведь у каждого из нас не одна масса, а две (точь-в точь, как у Эйнштейна есть две теории относительности). Впрочем, столь же богат и каждый предмет на Земле и каждое тело Вселенной. Все на свете обладает двумя массами — тяжелой, она же гравитационная, и инертной. Гравитационная масса проявляет себя во взаимодействии тела с другими тяготеющими телами. Попросту на Земле — в том, что яблоки падают, льет дождь, лежать легче, чем стоять, и так далее. Другая — инертная — проявляет себя в механике, когда на тело действует сила, любая сила, и оно получает ускорение. Чем больше инертная масса, тем труднее вывести тело из состояния равновесия, тем меньше ускорение, которое способна ему придать сила определенной величины.

Космонавт в спутнике находится в состоянии невесомости, свою тяжелую массу он не ощущает, но чем тяжелее он был на Земле, тем с большим усилием должен, скажем, оттолкнуться от стенки, чтобы одолеть расстояние в один метр. Потому что ему надо сдвинуть с места собственную инертную массу.

Равенство инертной и тяжелой масс — факт, установленный опытным путем. Когда Ньютон выводил закон всемирного тяготения, в формулы входила, по сути дела, тяжелая масса. Когда он формулировал три закона механики, тут оказалась при деле масса инертная. Но никаких поправок на это обстоятельство не пришлось делать ни самому Ньютону, ни его наследникам, ученым следующих поколений. Потому что две массы, качественно различные, количественно действительно оказываются равны. Впрочем, что значит здесь — равны? Положим, два эталона метра — тот, что хранится в Париже, и тот, что хранится в Москве, должны быть равны по определению. Но это равенство до такого-то знака после запятой. Миллиметров в каждом эталоне, конечно, поровну, и микронов тоже, и тысячных долей микронов тоже, но за миллиардные или триллионные доли микронов поручиться уже нельзя: точность, с которой люди умеют изготовлять куски металла, имеет свои пределы.

Имеет ли такие пределы точность, с которой природа подогнала друг к другу размеры двух масс каждого тела во Вселенной? Это — отнюдь не простой вопрос. Если где-то, хоть в десятом, хоть в пятнадцатом знаке после запятой, между величинами масс найдутся различия, это поколеблет сам принцип эквивалентности, потрясет тем самым общую теорию относительности, поставит под сомнение наши взгляды и на гравитацию и на само устройство мира.

Эйнштейн полагал, что экспериментаторам важнее лишний раз проверить с возрастающей точностью равенство инертной и тяжелой масс, чем снова и снова проверять предсказания теории относительности, касающиеся поведения света в гравитационном поле или изменения орбиты Меркурия. То ведь были следствия теории, а принцип эквивалентности — ее краеугольный камень.

Советские ученые В. Б. Брагинский и А. Б. Мамукин пишут в книге «Измерение малых сил в физических экспериментах»: «Вопрос о принципе эквивалентности или об уровне малости, на котором он нарушается, это, по существу, вопрос о том, является ли гравитационное взаимодействие универсальным. Поэтому можно предвидеть, что в будущем будут осуществляться новые проверки принципа эквивалентности, по-видимому, до тех пор, пока не будет обнаружено на опыте его нарушение».

А началась проверка давно. Исаак Ньютон писал: «Падение всех тяжелых тел на землю с одинаковой высоты… происходит в одинаковое время, как это уже наблюдалось другими; точнейшим же образом это может быть установлено по равенству времен качаний маятников. Я произвел такое испытание для золота, серебра, свинца, стекла, песка, обыкновенной соли, дерева, воды, пшеницы. Я заготовил две одинаковые круглые коробочки; одну из них я заполнил деревом, в другую положил кусочек золота того же веса (насколько смог точно), причем так, чтобы у них соответствовали центры качаний. Коробочки, подвешенные на равных нитях 11 футов длиной, образовали два маятника, совершенно одинаковых по весу, форме и сопротивлению воздуха; будучи помещены рядом, они при равных качаниях шли вместе вперед и назад в продолжение весьма долгого времени. Следовательно, количество вещества (масса) в золоте относилось к количеству вещества в дереве как действие движущей силы на все золото к ее действию на все дерево, т. е. как вес одного к весу другого. То же самое было и для других тел. Для тел одинакового веса разность в количестве вещества (массе) даже меньше одной тысячной доли полной массы могла бы быть с ясностью обнаружена этими опытами».

По сути, да и замыслу, это проверка еще не провозглашенного принципа эквивалентности.

Великолепно поставленный эксперимент! А что точность его равнялась примерно одной тысячной — так ведь опыт был поставлен в XVII веке!

Блестящего результата добился в конце XIX века барон Лоранд Этвеш, чье имя носит теперь Будапештский университет. Он проверил эквивалентность тяжелой и инертной масс с точностью до пяти миллиардных долей, Причем он сравнивал поведение в гравитационном поле таких разных вещей, как платина и дерево, медь и сало, вода и асбест… Шестьдесят с лишним лет эта точность оставалась непревзойденной, пока в Принстоне профессор Р. Дике не поставил в 1961–1964 годах новый эксперимент с алюминием и золотом. Одинаковые массы этих двух веществ были укреплены на коромысле, подвешенном на тонкой проволоке (получился крутильный маятник). Они притягиваются не только к Земле, но и к Солнцу. Если одно из этих тел будет притягиваться к Солнцу сильнее хотя бы на три стомиллиардные доли, коромысло сдвинется, чуть-чуть закрутив проволоку. Чтобы добиться такой точности измерений, прибор поместили в вакуумную камеру, давление в которой составляло всего одну стомиллиардную долю атмосферного давления, а вакуумная камера была установлена в специальной шахте на глубине четырех метров и защищена от воздействия колебаний температуры. Радиоэлектронное устройство могло регистрировать крутильные колебания с точностью до одной стомиллионной доли сантиметра.

Надо, пожалуй, добавить, что эксперименты по уточнению принципа эквивалентности масс показали еще, что ему подчиняются в высокой степени и массы разных элементарных частиц. Золото состоит из нейтронов на шестьдесят процентов, алюминий же только на пятьдесят. Раз это обстоятельство не сказалось на результатах опыта Дике, значит, нейтроны и протоны обладают одним и тем же ускорением свободного падения с точностью до десяти в минус десятой степени (одной десятимиллиардной доли), а электроны — тем же ускорением, что и эти тяжелые ядерные частицы, с точностью до десяти в минус седьмой степени (одной десятимиллионной).

Новый рекорд, однако, в отличие от предыдущего, продержался недолго. В. Б. Брагинский и В. И. Панов в Московском государственном университете вскоре после опытов Дике сумели поднять точность еще в тридцать раз.

Сотрудники МГУ сохранили схему опыта, заменив золото платиной и укрепив на концах коромысла восемь грузов: четыре из алюминия, четыре из платины. Давление в вакуумной камере сделали еще меньшим, чем в опыте Дике, обеспечили тепловую и магнитную изоляцию установки…

Колебания крутильного маятника должны были записываться на фотопленке, на которую падал отразившийся от установленного на коромысле зеркальца луч лазера.

Сам Дике был поражен столь быстрым улучшением его результатов. А покойный академик АН УССР А. 3. Петров так оценил опыт в МГУ: «Добиться такой точности — это, знаете, удивительно. Вдвойне приятно, когда этого добиваются твои соотечественники. И, кроме того, что самое главное, сразу же напрашивается вывод: если удалось достичь повышения точности в этой области, то, значит, реально ожидать в ближайшее время и повышения точности в других, соседних экспериментах по поиску гравитационных волн!»

Американские физики Уитерборн и Фоэйрбэнк непосредственно измерили ускорение свободного падения электронов и нашли, что оно отличается от ускорения земного тяготения не более чем на десять процентов. Харвей, Дабе и другие провели аналогичные опыты с нейтронами. Здесь различие не могло превышать и одного процента.

Проценты — после миллиардных и триллионных долей? Но ведь одно дело эксперименты с обычными телами, а другое — непосредственно с элементарными частицами, особенно заряженными, чувствительными к случайным электромагнитным полям.

Измерили степень эквивалентности тяжелой и инертных масс для Земли и Луны с точностью до полутора процентов. С планетами, как видим, получен более «прецизионный» результат, чем с электронами.

Ученые перестают проверять физические законы и принципы лишь после того, как опровергнут их. Но пока третий принцип общей теории относительности остается прочно обоснованным фактами.

Великие идеи нужно сразу же разрабатывать, не дожидаясь их добросовестной проверки по явлениям природы.

Альберт Эйнштейн

В сборнике «Физики продолжают шутить» была опубликована юмореска примерно такого содержания: экспериментаторы обнаружили, что скорость света в пустоте постоянна, теоретики принялись глубокомысленно рассуждать, отчего бы она была именно такова? Эйнштейн сказал: так и должно быть, после чего теоретики— одни раньше, другие позже — воскликнули: какая гениальная мысль!

Шутка обыгрывает реальное событие: Эйнштейн объявил факт принципом[10]. И уж наверняка то же самое он сделал и в случае с эквивалентностью инертной и тяжелой масс: обратил факт, который мог рассматриваться как чисто случайное совпадение, в фундаментальный принцип устройства Вселенной.

«Уравнение в правах» поля тяготения и неинерциальной (то есть движущейся не равномерно, а ускоренно) системы отсчета позволило сформулировать те условия, при которых законы физики справедливы для любых систем отсчета. Это положение и называют общим принципом относительности.

Так наука, начав свой путь здесь с утверждения, что законы меняются при переходе от инерциальных систем к неинерциальным, нашла способ решить это реальное противоречие природы и парадоксальным образом пришла к прямо как будто противоположному суждению. Не будем забывать только, что теперь при таком переходе уравнения, выражающие эти законы, по определенным правилам преобразуются.

Опять перед нами тот же «парадокс парадоксов» Бора: если истина действительно глубока, то справедлива и истина ей противоположная. Но как же все это построение может кому-то (пусть даже только самим физикам!) казаться проще старой ньютоновской теории?

Эйнштейн и Инфельд отвечают на этот вопрос так: «Чем проще и фундаментальнее становятся наши допущения, тем сложнее математическое оружие нашего рассуждения; путь от теории к наблюдению становится длиннее, тоньше и сложнее. Хотя это и звучит парадоксально, но мы можем сказать: современная физика проще, чем старая физика, и поэтому она кажется более трудной и запутанной».

Получается, условно говоря, так: физическая часть теории настолько проста, что математическая должна быть очень сложной. На самом деле, конечно, отделить одно от другого тут невозможно, и все-таки сам Эйнштейн дает, как видите, право на такое противопоставление.

Снова перед нами математика выступает в роли естественного языка природы; речь человека, плохо овладевшего чужим языком, поневоле проста; чем лучше знаешь язык, тем больше слов и их форм употребляешь. Но следует ли из этого, что ты отказался от первоначальной простоты ради сложности? Сложность здесь естественна, физическая простота прикрыта этой математической сложностью.

Бернард Шоу, замечательный английский писатель, как-то, обращаясь к ученым, сказал: «Коперник доказал, что Птолемей был неправ. Кеплер доказал, что Коперник был неправ. Галилей доказал, что Аристотель был неправ. Но в этом месте цепь обрывается, потому что наука впервые столкнулась с таким неподдающимся расчету явлением природы, как англичанин. Будучи англичанином, Ньютон постулировал прямолинейную Вселенную… хотя знал, что Вселенная состоит из движущихся тел и что ни одно из этих тел не движется по прямой линии, да и не может двигаться по прямой. Для этого, чтобы объяснить, почему все линии в его прямолинейной Вселенной искривлены, он выдумал специальную силу, которую назвал тяготением».

А правда ведь, оригинально соединил мастер парадокса первый закон механики Ньютона (закон инерции) и закон всемирного тяготения?

Продолжая в том же духе, можно заявить, что и Эйнштейн проявил себя «как англичанин». Вдумаемся вот в эту его фразу: «…и вот мне пришло в голову… тот факт, что ускорение свободного падения не зависит от природы падающего вещества, допускает следующее толкование: в полях тяготения (малой пространственной протяженности) все происходит так, как в пространстве без тяготения».

Уж не выкинул ли Эйнштейн из описываемого им мира тяготение вовсе — вместо того, чтобы объяснить его? Нет, не выкинул. Но стал рассматривать это явление совсем по-новому. Он свел законы, управляющие тяготением, к законам, управляющим пространством-временем. И одно из имен, под которыми известна общая теория относительности — геометродинамика[11]. Вдумаемся в этот длинноватый термин. Его вторая половина — слово «динамика» — было введено Лейбницем как имя науки о движении тел под влиянием сил; слово «геометрия», в данном случае сочетавшееся странным браком со слогом «динамика», объяснять не надо. А расшифровка общего имени новой семьи может дать и такой результат: описание движения тел языком геометрии.

Ч. Мизнер, К. Торн и Дж. Уилер пишут в своей книге «Гравитация»: «Пространство воздействует на материю, „указывая“ ей, как двигаться. Материя, в свою очередь, оказывает обратное воздействие на пространство, „указывая“ ему, как искривляться».

Три американских физика утверждают, в полном согласии с Эйнштейном, что «это влияние геометрии на материю есть то, что мы сегодня подразумеваем под словом тяготение».

Для популярного пояснения этого факта физики приводят похожие, в общем, друг на друга образные примеры, которые можно свести к такой типовой ситуации. Два физика из страны «двумерцев», существ, которым знакомы лишь два измерения, только ширина и длина, оказались на поверхности глобуса. Из двух разных точек на экваторе глобуса каждый из них отправился путешествовать по неведомым землям, избрав дорогой линию, отходящую от экватора под прямым углом и ведущую на север. Естественно (для нас), что путешественники встретились на полюсе, хотя ни один из них не уклонялся от маршрута. Путешественники были физиками: поэтому они нашли способ объяснить свою встречу. Им стало очевидно, что в дороге на них обоих действовала некая сила, заставившая их (против их воли) сблизиться. Физики дали этой силе имя — они назвали ее тяготением.

Выходит, сила, заставляющая планеты двигаться вокруг звезд, имеет ту же природу, что явление, благодаря которому физики-двумерцы встретились на полюсе? Можно условно сказать и так, оговорившись, что одно дело — третье измерение для двумерцев, а другое — сложная структура нашего реального пространства-времени и что пример этот — только аналогия, помогающая проникнуть в суть явления, и т. д.

Реальная геометрия нашей Вселенной оказалась неевклидовой — в евклидовом пространстве, где параллельные линии пересечься не могут, тяготение невозможно. Вспомним, что Бернард Шоу говорил о Ньютоне; он якобы придумал тяготение как способ объяснить, почему в его прямолинейной Вселенной все линии искривлены. У Эйнштейна, наоборот, линии, если хотите, искривляются, чтобы можно было объяснить, что такое тяготение. Даже луч света, этот классический эталон прямизны, вынужден во Вселенной Эйнштейна сходить с прямой дороги, искривлять свой путь. В этом были торжественно уличены лучи звезд, пролетающие вблизи нашего Солнца. Чтобы измерить, отклоняются ли они при этом от Солнца и насколько именно, ученые организовали в 1919 году экспедицию в Западную Африку, в тот ее район, где должно было наблюдаться полное солнечное затмение. Во время затмения сфотографировали звезды, видные на небе вблизи от закрытого Луной солнечного диска. Потом, значительно позже, тот же участок неба опять сфотографировали ночью, когда Солнца не было. Когда фотографии наложили друг на друга, оказалось, что изображенные на них звезды не совпадают. Объяснение было оговорено заранее — гравитационное поле Солнца заставило искривиться звездный луч[12].

Какой был праздник у физиков мира! Участник экспедиции англичанин Эддингтон довольно высокопарно заявил, что Солнце поставило свою подпись под теорией относительности. Тяготение, мощнейшая сила, формирующая наш мир, обернулась его геометрией, «превратилась» в кривизну пространства.

Надо, правда, сказать, что еще русский математик Лобачевский, а после него Риман и Гельмгольц выражали надежду на то, что неизвестные пока законы физики могут явиться причиной осуществления в природе соотношений, исследуемых неевклидовой геометрией[13].

При этом, впрочем, они вряд ли ожидали повсеместности неевклидовой геометрии, той вездесущности ее, которую открыла теория относительности.

Институт приключенческой математики

В 1870 году английский математик Вильям Клиффорд, не имея на то никаких серьезных оснований, провозгласил, что и материя, и ее движение — всего лишь проявление кривизны пространства, кривизны, которая, меняясь во времени, порождает все, что мы воспринимаем как тела. Некоторые исследователи полагают нужным развивать этот подход дальше. Американский физик Дж. Уилер поставил перед собой задачу геометризации всех физических явлений. Отправной пункт его геометродинамики — геометродинамика Эйнштейна. Тут мы подошли к чрезвычайно любопытным в наше время отношениям между физикой и математикой — двумя науками, которые и вообще-то взаимодействуют настолько сильно, что это отражено даже в общности для обеих специальностей научных степеней; нет кандидатов и докторов физических или математических наук, есть — физико-математических.

Очень вероятно, что в относительно быстром триумфе теории относительности весьма важную роль сыграло то обстоятельство, что к началу XX века физики успели найти общий язык, который они все понимали в отличие от современников Ньютона.

Можно бы возразить, что как раз в XVII веке почти все физики писали свои труды на латыни, и даже те, кто предпочитал в таких случаях родной язык древнему, читать по-латыни умели. А в XX веке Эйнштейн писал на немецком, Эддингтон на английском, Пуанкаре на французском, и тем не менее они понимали друг друга лучше, чем понимали Ньютона голландец Гюйгенс, немец Лейбниц или даже соотечественник сэра Исаака Роберт Гук. Потому что общим языком физиков вместо латыни стала математика — благодаря, в частности, тем же Ньютону и Лейбницу и тем, кто были их преемниками не в физике, а в математике. Новорожденные в XVII веке диалекты аналитической геометрии, исчисления бесконечно малых и других областей математики окрепли и слились в один мощный язык, на котором можно было договориться. Новая физика сделала своим лозунгом слова на фронтоне Платоновской академии в Афинах: да не войдет сюда тот, кто не знает математики. Современную физику на каком-то этапе ее создания можно было назвать Вавилонской башней наоборот — по мере ее сооружения строители все лучше понимали друг друга.

В теории тяготения Эйнштейна и в выводах из нее физика и математика сливаются в неразрывное целое не в меньшей степени, чем пространство и время.

…Герои авантюрных романов переживают приключения в пространстве и времени. Физики устраивают приключения для самих пространства и времени. Впрочем, тут им не уступают математики. Однажды я прочитал объявление в газете. Не помню уже, в чем была его суть, зато два слова из него запомнил на всю жизнь. Сейчас вот закрою глаза и увижу напечатанные полужирным шрифтом слова: «Институту прикл. математики требуются…» Конечно, имелась-то в виду прикладная математика, но я сразу по-своему расшифровал сокращение. Потому что математика всегда казалась мне самой приключенческой из наук. Само слово «математика», взятое, как полагается, из древнегреческого языка, переводится на русский язык как «учение». Но точный смысл древнегреческого слова уже и четче, оно образовано от глагола, означающего «учиться через размышление».

Уровень требований к «математической части» физики резко поднялся с развитием обеих наук. Ньютон мог быть математиком, точнее — физиком и математиком сразу. Эйнштейн уже не мог сам полностью создать математический аппарат для теории относительности — эту работу взяли на себя Г. Минковский и некоторые другие математики. И это математик Минковский заявил во время работы с Эйнштейном, что отныне пространство и время — только нереальные тени, в реальном же мире есть лишь неразрывное пространство-время.

Теория гравитации — классический пример соединения физики и геометрии. Причем мало того, что так рассматривает дело сама общая теория относительности. У нее ведь есть теории-конкурентки. Но практически все сколько-нибудь серьезные теории (в книге Мизнера, Торна и Уилера «Гравитация» указывается только одно исключение) тоже исходят из того, что распределение вещества задает геометрию пространства.

Степень проникновения геометрии в физику можно усилить за счет привлечения, в частности, новых разделов геометрии. Вот что пишет известный советский философ А. М. Мостепаненко по поводу идей геометродинамики Дж. Уилера: «Первым шагом к решению поставленной проблемы может послужить следующий вопрос: нельзя ли любые траектории материальных частиц, движущихся не только в гравитационном, но во всевозможных физических полях, рассматривать как геодезические (в данном случае — кратчайшие. — Р. П.) линии некоторой сложной геометрии? В этом случае любое движение объяснялось бы чисто геометрически, без использования представления о силах. Движение частицы всегда происходило бы по инерции и полностью определялось бы характером геометрии… Частица движется по той или иной траектории не потому, что к этому ее вынуждает какая-то сила, а потому, что это ее единственный путь».

Великий Аристотель когда-то говорил, что падение тяжелых тел — это их стремление к центру Вселенной, своему естественному месту. Это была во Вселенной Аристотеля не какая-то особая черта тяжелых тел — каждый элемент мира, каким он виделся великому греку, стремится и движется к своему естественному месту в пространстве (круговые орбиты были, например, «естественным местом» планет). Так не происходит ли ныне возвращение физики — конечно, на новом, неизмеримо более высоком витке спирали — к одной из идей греческой философии? Притом, что особенно поражает, к идее, которую в последние четыреста лет можно было считать только абсолютно абсурдной…

Пока, впрочем, геометризация электромагнитного поля встречается с достаточно большими трудностями, как и любые попытки создать единую теорию поля. Гравитация (та, которую мы реально знаем) обладает одним свойством, чрезвычайно облегчающим теоретические выкладки: тела только притягиваются друг к другу, а не отталкиваются. Гравитационный заряд любого тела — положителен. Для электромагнитного заряда то обстоятельство, что тела, одноименно заряженные, отталкиваются, а тела с разными зарядами притягиваются друг к другу, делает электромагнитное поле не сводимым (пока?) к геометрии некого единого пространства. Уилер кинулся в топологию, стал рассматривать каждую частицу с электромагнитным зарядом как очень сильное местное искривление пространства. Если у Эйнштейна дело ограничивается слабым искривлением пространства в космических масштабах, то Уилер рассматривает пространство, принимающее на небольших участках форму, скажем, «горловин».

Так или иначе, но геометродинамика Уилера — прямое развитие и продолжение общей теории относительности. Она построена на фундаменте теории гравитации. В какой степени верно такое продолжение, насколько прочна новая постройка — это уже другой вопрос.

После работ Эйнштейна область гравитации оказалась местом особенно глубокого прорыва науки в неизвестное; через открытую брешь ученые устремились «в тыл» к своему вечному противнику — незнанию. Так во времена Ньютона теория тяготения уже была местом прорыва «фронта незнания». Но в ту пору ученые других областей науки использовали скорее общие принципы формулирования закона тяготения, подход Ньютона к обобщению известных фактов — важнее всего для других областей физики (и не только физики) был методологический аспект открытия великого закона. Нынче материалы общей теории относительности используются не менее широко, она играет роль не только эталона, но часто и рабочего инструмента. Это — эталонный метр в палате мер и весов, к которому, как к черенку лопаты, каждый может еще приделать штык, чтобы копать глубже.

Маркс говорил Лафаргу, что наука достигает тогда совершенства, когда овладевает математикой. Стоит заметить, что сходную мысль высказал гораздо раньше отважный борец против схоластической науки Роджер Бэкон.

В этом смысле физика начала овладевать математикой еще до Ньютона, при Галилее и Декарте. Но некоторые ученые говорят о второй математической революции в физике — как мы говорим о второй промышленной революции нашего времени в связи с ЭВМ. Геометризация физики стала знаменем нескольких научных школ.

А чтобы стал яснее геометрический подход к физике, прямо вытекающий из общей теории относительности, обратимся к относительно простым примерам, отнюдь не связанным со сверхреволюционными научными идеями.

Сколько сантиметров в секунде?

Вопрос, ставший названием этой главки, отнюдь не попытка пооригинальничать. Он имеет не только вполне определенный физический смысл, но и вполне определенный ответ. В секунде 31010 сантиметров, то есть триста тысяч километров. Совпадение с величиной, характеризующей скорость света, здесь вовсе не случайно. Чтобы сделать если не сам ответ, то хотя бы путь к нему в какой-то степени понятным, придется начать издалека.

Пространство-время, пространство-время… Четырехмерный мир, в котором три координаты — пространственны: длина, ширина, высота, а четвертая координата — время. Как представить себе это наглядно? Уже достаточно тривиальной, но от этого не менее справедливой, стала мысль, что действительно наглядной эйнштейновская картина мира окажется не под влиянием научно-популярных книг, а в пору, когда общая теория относительности придет в начальную школу и займет там такое же место, какое давно заняла таблица умножения. В конце концов специалисты-математики само умножение простых чисел рассматривают как чрезвычайно глубокую и сложную для познания операцию.

Многие вещи, которые мы себе как будто неплохо представляем в пространстве, выглядят в пространстве-времени иначе. Вот простой пример, который приводится в нескольких серьезных книгах о гравитации. И камень, брошенный ребенком, и винтовочная пуля летят по траекториям, представляющим собой (в некотором приближении) дуги окружностей. Радиусы этих окружностей разнятся — в пространстве — во многие сотни раз. В пространстве-времени эти радиусы имеют один и тот же порядок величии. В качестве доказательства физики приводят формулу, которую вряд ли имеет смысл воспроизводить в популярной книге, но сомневаться в которой не следует по той простой причине, что ее верность строго доказана. (Впрочем, что удивляться сходству траектории камня и пули, когда еще Ньютон подчинил одному общему закону падение яблока и движение Луны!)

Мало того. Дж. Уилер в книге «Гравитация, нейтрино и Вселенная» категорически утверждает, что все физические параметры тел и явлений можно передать через… длину. По его словам, гравитация и электромагнетизм оперируют только с длинами и ни с чем иным. Исторически сложившаяся терминология скрывает этот факт, но не уничтожает его. Уилер полагает, что измерять пространство-время в одном направлении в сантиметрах, а в другом — в секундах так же нелепо, как измерять ширину обычного шоссе в одних единицах, а длину — в других. Ведь время, согласно общей теории относительности, не есть понятие, независимое от понятия пространства. И масса, по Дж. Уилеру, тоже длина, только выраженная другим способом. Он тут же излагает метод, которым можно измерить массу Солнца в единицах длины. Мы знаем, говорит он, что масса Солнца отклоняет проходящий вблизи него луч света. Степень отклонения определяется, естественно, массой Солнца и расстоянием от его центра до этого луча. Следовательно, зная степень отклонения луча и расстояние, на котором луч проходит от Солнца, можно вычислить солнечную массу, оперируя только величинами, характеризующими эти отклонения и расстояния. Естественно, при таком способе вычислений результат выражается в единицах длины. Масса Солнца равна всего-навсего 1,5 105 сантиметра.

Достаточно умножить этот результат на квадрат скорости света и разделить на гравитационную постоянную, чтобы вернуться к привычной нам массе Солнца, равной 21033 граммам.

Сходным образом секунды переводятся в сантиметры и наоборот.

Наверное, школьникам будущего все эти взаимопревращения граммов, сантиметров и секунд будут казаться не более удивительными, чем нам взаимопереход, скажем, тепловой и механической энергии. Все мы проходили в школе, что джоуль — единица энергии и работы в Международной системе единиц — равен не только работе силы один ньютон при перемещении ею тела на расстояние один метр, но и 0,2388 калорий, а в калориях измеряется, как известно, количество теплоты.

Всякий великий человек

Канадский исследователь Ганс Селье, биолог и медик, делит ученых на «открывателей проблем» и «решателей проблем». Аристотель, Ньютон и Эйнштейн соединяли в себе качества, присущие тем и другим.

Всякий великий человек является единственным в своем роде. В историческом шествии ученых у каждого из них своя определенная задача и свое определенное место.

Джеймс Максвелл

Двадцатипятилетний Альберт Эйнштейн в 1905 году опубликовал четыре работы. Одна из них заключала в себе специальную теорию относительности. Другая была посвящена фотоэффекту, касалась законов излучения света. Третья дала возможность определить величину атомов. Четвертая объясняла броуновское движение.

Любой из четырех статей было достаточно, чтобы обессмертить имя автора. А Нобелевскую премию он получил отнюдь не за самую значительную из них.

Но если работы 1905 года при всем их значении и при всем их новаторстве были посвящены темам, связанным с главными в то время направлениями научного поиска, если здесь у Эйнштейна были близкие предшественники, то самый важный плод его научной мысли — общая теория относительности, она же — теория гравитации, создавалась тогда, когда проблема тяготения отнюдь не была модна в научном мире. Что греха таить! Сами физики пишут о том, что каждое время знает свои модные темы исследований. Так вот, после двухсотпятидесятилетних попыток найти «причину тяготения» поиски ее почти вышли из моды.

Научные моды, конечно, не случайны. Ищут там, где больше шансов найти. Правда, иногда потерянную вещь пытаются отыскать под фонарем, поскольку там светло. Тот, кто ищет в темноте, ощупью, многим рискует — хотя бы тем, что может зря потерять годы и десятилетия. Сам Эйнштейн, возможно, узнал в дальнейшем горечь такой потери — так во всяком случае может показаться со стороны. Большую часть своей жизни он отдал работе над единой теорией поля. И после триумфов специальной и общей теории относительности встречал весьма скептическое отношение ученых — тех самых ученых, которые преклонялись перед творцом геометродинамики и восхищались его качествами ученого и человека. В последнее время, однако, интерес к этим работам Эйнштейна резко возрос. Но только в последнее время.

…Когда-нибудь на земле будет поставлен памятник Неизвестному исследователю. Ведь только о сотнях из ученых мы можем прочесть, только десятки имен запомнить на всю жизнь.

А современная наука держится не только на плечах титанов. Да и титанов в истории слишком много для ограниченной памяти отдельного человека.

Тем больше оказываются ценимы великие люди, сделавшие столько, что не запомнить их нельзя. Они становятся не просто легендарными, их имена превращаются в символы. Аристотелю, Ньютону и Эйнштейну приписывают изречения, принадлежащие фигурам менее заметным, афоризмы, авторы которых забыты, даже анекдотические происшествия, случившиеся с другими. (Вольтер, кажется, сказал, что анекдоты — колоски на поле истории, которые остаются, когда урожай уже собран.)

От этого великаны не становятся более великими — куда уж больше, — но это, видимо, нужно человечеству хотя бы для того, чтобы сохранить в своей памяти такие афоризмы, изречения и анекдоты.

Уважение к памяти гигантов не должно заставить нас забыть о тех, кто работал для них, рядом с ними, после них. Будем помнить: каждый из запомнившихся всему человечеству ученых олицетворяет собой всех, кто жил для науки в одну с ним эпоху.

Мы знаем по воспоминаниям множество личных привычек, деталей быта, характерных для Эйнштейна, но его имя для нас наиболее полно представляет новую физику, как имя Ньютона — физику его эпохи. Может быть, случайность, что это случилось с именем Эйнштейна, а не Бора или Резерфорда. Вечный ли интерес человечества к проблемам пространства и времени сыграл свою роль, обаяние ли поразительной верности себе, однако случайность, не будем забывать, есть проявление необходимости.

Проверка в бою

Эту главу надо бы, наверное, начать с похвальных слов эксперименту. На чем, как не на эксперименте (и наблюдениях), держится здание физической теории. Эксперимент подтверждает гипотезы и опровергает их, поддерживает юные теории и с грохотом разрушает обжитые дворцы старых. Он — свидетель, он — судья, он — прокурор в том судебном процессе, который ведет природа против науки. И он же — адвокат, защитник, только адвокат щепетильно беспристрастный, которому словно бы все равно, что будет с подзащитной теорией.

Ученые говорят еще, что хорошо поставленный принципиальный эксперимент всегда глубже, чем он был задуман, всегда решает больше проблем, чем рассчитывал сам экспериментатор, и почти всегда ставит новые проблемы, часто более важные, чем те, что он разрешил.

У эксперимента есть одно важное достоинство — в принципе его всегда можно повторить. У эксперимента есть один важный недостаток — его очень трудно не только поставить первый раз, но и повторить. Тут с расчетами теоретика куда легче. Чтобы проверить, не вкралась ли в них ошибка (теоретическая же!), нужны бумага, карандаш… и другой теоретик[14]. А «другому» экспериментатору нужно оборудование…

Поэтому плохо поставленный эксперимент, давший неверный результат, гораздо вреднее и опаснее, чем неудачная теория или гипотеза. Гипотеза ведь не выдает свои утверждения за факты, эксперимент же, по определению, источник именно фактов.

Наверное, поэтому за теоретиками чаще признают право на ошибку. Опровержение гипотезы не подрывает катастрофически репутацию ее автора, хотя, конечно, и не украшает ее. Тем более, что, случается, теоретик делает вполне правомерные допущения, но мир-то устроен иначе, чем он думает. А вот опровержение эксперимента обходится куда дороже. Оно, впрочем, и понятно. По некоторым подсчетам, из ста новых гипотез в физике неверны девяносто девять. Можно уверенно сказать, что из сотни физических экспериментов по крайней мере девяносто правильно поставлены и верно истолкованы.

Теоретики — поэты физики. Даже знаменитыми они становятся (если становятся) как поэты — совсем молодыми. Экспериментатор созревает медленнее, ему надо научить не только голову — думать, но и руки — работать. Поэзия физики освещает путь прозе и идет впереди нее — так в истории литературы каждой страны поэзия предшествует прозе. Конечно, и эта аналогия, как всякое сравнение, хромает. Многие поэты постепенно частично или целиком переходили к прозе, но случаи, когда теоретик становится экспериментатором, по меньшей мере редки. Чаще случается, что экспериментатор начинает выступать и с теоретическими работами.

Много лет висел над теорией относительности опыт итальянского физика Майораны. Он свидетельствовал, что тяготение можно экранировать, что два тела, если их разделить третьим, слабее притягиваются друг к другу, а этого не следовало из теории тяготения. Только когда опыт повторили и он не дал прежнего эффекта, смогли перевести дух. Правда, с другой стороны, физики порою утверждают, что самые ценные эксперименты. — те, результаты которых не соответствуют ожидаемым. Французский физик Жолио-Кюри как-то заметил; чем дальше эксперимент от теории, тем ближе он к Нобелевской премии.

Отношения между теорией и экспериментом сложны и многообразны, хотя на первый взгляд все кристально ясно: на результатах экспериментов теорию строят, по результатам экспериментов ее проверяют. А эксперимент ставят на основе тех или иных теоретических положений. Надо ведь знать, что именно требуется проверить!

Экспериментаторы и теоретики подтрунивают друг над другом, но, в общем, понимают, что они — это левая и правая руки науки, и спор может идти только о том, кому зваться ее правой рукой. Да и то, наверное, придется признать, что у науки обе руки — правые. Только экспериментатор бывает прав, так сказать, абсолютно, теоретик же всегда — лишь относительно. Есть такой шутливый афоризм: теоретик верит себе, а другие ему не верят, экспериментатор себе не верит, а другие ему верят.

Может быть, и сегодня есть в физике области, где можно чего-то добиться относительно простыми средствами, но, увы, к гравитации это не относится. Силы тяготения слабее электромагнитных на тридцать шесть, тридцать восемь, сорок и даже сорок три порядка — в зависимости от того, взаимодействие между какими частицами тут брать за эталон. Слон, имеющий массу пять тонн, больше микроба с массой в пять миллионных долей грамма всего-то в триллион раз. Остается еще минимум двадцать четыре порядка. Одна песчинка против целой Сахары, капля воды — против океана — даже так не вы глядит в земных условиях разница между гравитационными силами и электромагнитными. Не тому надо удив литься, что до сих пор немало предсказанных теорией гравитационных эффектов не открыто, а тому, сколько их все-таки открыто.

Прямо противоположные причины, как ни странно вывели науку о гравитации на передний план в теории и эксперименте. В теории — мощь гравитации, управляю щей движением небесных тел. В эксперименте — слабость гравитации, заставившая так изощрить соответствующую экспериментальную технику, что сейчас ее опыт перенимают ядерщики, которых бог тоже не обидел сложностями.

Как нигде, тонка в области гравитации грань между экспериментатором и теоретиком. Каждый опыт над; разрабатывать с такой максимальной тонкостью, что при этом случается делать открытия в теории.

Если уже применяемый геологами гравиметр достаточно совершенен, чтобы на его показания не влиял притяжение тела гравиметриста, то техника гравитационного эксперимента требует стократной защиты от любых посторонних помех. Вот одна поучительна история.

Группа физиков проверяла, как скажется во время солнечного затмения то обстоятельство, что в поле тяготения между Солнцем и Землею оказалась Луна. Бы, сделан очень тонкий и чувствительный прибор, который показал: притяжение к Солнцу уменьшилось.

Луна отошла в сторону, Солнце снова сияло, физики смотрели друг на друга, не зная, радоваться или paсстраиваться. С одной стороны, могла рассыпаться теория, с которой они были согласны, с другой стороны тем важнее результат для науки. Эксперимент подтверждающий— лишь подкрепление, эксперимент опровергающий — открытие.

А в конце концов оказалось, что прибор приходит в движение и тогда, когда Солнце… закрыто облаками. Это уже было невероятно: как облако, закрыв Солнце, могло воздействовать на аппаратуру?

Оказалось, могло. Понижение температуры воздуха, вызванное сначала солнечным затмением, потом облаком, прикрывшим Солнце, чуть-чуть охладило стену дома, у которой стоял прибор, произошли ничтожнейшие изменения в его равновесии — и результат оказался налицо. Хорошо еще, что день был облачным. Иначе итоги эксперимента были бы опубликованы, а потом репутация экспериментаторов пострадала бы. Но до этого пострадала бы наука.

Общая теория относительности при своем появлении объяснила движение перигелия Меркурия, а спустя три года была подписана Солнцем. Но затем дело с новыми ее экспериментальными проверками застопорилось. Слишком незначительно по величине было большинство предсказываемых ею эффектов, чтобы их можно было проверить при тогдашней измерительной технике.

Вот как пишут об этом Мизнер, Торн и Уилер: «В первые полвека своего существования общая теория относительности была раем для теоретиков и адом для экспериментаторов. Нельзя было представить себе теорию более прекрасную, но в то же время с таким трудом поддающуюся проверке. Но ситуация изменилась. За последние несколько лет общая теория относительности превратилась в одну из наиболее оживленных и плодотворных областей экспериментальной физики. Спустя полвека развитие техники наконец-то достигло уровня эйнштейновского гения — не только в области астрономии, но и в лабораторных экспериментах». Закапчивается это рассуждение фразой: «Теперь она (общая теория относительности. — Р. П.) рай для всех…»

Любопытно отметить, что большая доля проверок закона всемирного тяготения Ньютона тоже пришлась на время, отделенное от публикации закона примерно полувеком.

Еще десять — пятнадцать лег назад пересчитать все пункты, по которым теория гравитации Эйнштейна была проверена, удалось бы по пальцам одной руки. Теперь соответствующих экспериментов проведено и планируется столько, что рассказать в этой книге удается далеко не о всех из них.

Ну, во-первых, проверка принципа эквивалентности тяжелой и инертных масс идет в актив общей теории относительности.

В ее пользу высказывается и сумма выводов, полученных в некоторых областях физики элементарных частиц.

Наблюдения Эддингтона за поведением звездного луча вблизи Солнца были повторены многократно. Но очень долго при этом результаты наблюдений (степень искривления луча) довольно сильно отклонялись в сторону от предсказания Эйнштейна. Правда, то в одну сторону, то в другую, но разброс был слишком велик, чтобы не огорчать и не беспокоить привыкших к точности астрономов.

Совсем недавно удалось решить эту проблему, только уже не с волнами света, а с сантиметровыми радиоволнами от ярких небесных радиоисточников. Точность совпадения наблюдений с предсказанием достигла двух процентов. И ни в одном из многих измерений не удалось обнаружить каких-либо «противопоказаний» против общей теории относительности.

Новые подтверждения предсказанным теорией относительности фактам были неожиданно (неожиданно ли?) обнаружены в старых звездных каталогах — списках звезд с указанием их характеристик и особенностей.

Лет десять назад советские ученые Л. Я. Арифов и Р. К. Кадыев нашли еще целых сто тридцать пять «звездных автографов», выданных Эйнштейну.


Чтобы стала понятна самая суть дела, придется коснуться метода определения расстояний до звезд. Один из двух главных способов (а до конца XIX века и единственный) заключается в измерении расстояния, на которое звезда смещается на нашем небе за полгода в зависимости от того, в какой точке своей орбиты находится Земля. Астрономы строят прямоугольный треугольник, его гипотенуза — расстояние от Солнца до звезды, а малый катет — большая полуось эллипса земной орбиты. Малый угол (при звезде) в том треугольнике называют годичным звездным параллаксом. Вычисление его размера по законам тригонометрии и позволяет затем определить расстояние до звезды. Годичный параллакс в одну секунду соответствует здесь одному парсеку, причем чем меньше параллакс, тем дальше от нас звезда. К слову сказать, для самой близкой к Земле звезды, которую так и зовут Ближайшая Центавра, параллакс равен семидесяти шести сотым секунды.

Теперь (уже почти столетие) годичный параллакс и, соответственно, расстояние до звезды умеют определять еще и на основании изучения ее спектра, так называемым астрофизическим методом.

Арифов и Кадыев впервые обратили внимание на то, что при этих двух методах должны (должны!) получаться несколько разные результаты. Ведь луч звезды, согласно общей теории относительности, искривляется в поле тяготения Солнца. Значит, мы видим звезду не совсем на том месте, где она находится на самом деле, значит, ее параллакс первым, тригонометрическим, методом мы определяем не совсем правильно.

Между тем при астрофизическом методе определения параллакса на его величине эффекты, связанные с геометродинамикой Эйнштейна, не сказываются, результат получается более точным. Разницу между астрофизическим и тригонометрическим параллаксами можно определить расчетом.

Ученые так и сделали — и средняя разница составила четыре тысячных доли секунды.

А затем они взяли звездный каталог на две тысячи двести восемьдесят девять звезд с указанием для каждой из них того и другого параллакса и выбрали из этих звезд сто тридцать пять, для которых тот и другой годичные параллаксы были определены с одной и той же степенью точности.

Ну и вот, все астрофизические параллаксы оказались больше, чем соответствующие тем же звездам тригонометрические, больше как раз на те предварительно вычисленные четыре тысячные секунды.

Так звездный каталог оказался сборником звездных подписей под теорией гравитации Эйнштейна.

В теории Ньютона свет движется с бесконечной скоростью, и на его частоту никак поле тяготения не действует. Согласно же общей теории относительности частота света и вообще электромагнитных волн должна в гравитационном поле изменяться. Причем если свет идет по направлению к центру тяготения, частота повышается, если от центра тяготения — понижается. Этот факт был проверен многократно, начиная с 1960 года.

В первых экспериментах фотоны, частицы света, заставляли «подниматься» на высоту двадцать два с половиной метра против земной силы тяжести в трубке, заполненной гелием и помещенной в шахту. При этом предсказания Эйнштейна были подтверждены с точностью до одного процента. Не так давно был поставлен эксперимент, в котором электромагнитные волны шли в гравитационном поле Земли от источника излучения до его приемника десять тысяч километров. Естественно, опыт ставился с участием космической ракеты. Результаты совпадали с предсказанием с точностью до четырех сотых процента.

Факты, полученные нами, должны быть верными; для гипотез, если они плодотворны, это необязательно, а будучи полностью подтвержденной, теория лишается оплодотворяющей силы. Она вызывает к жизни опыты, дающие новые факты, только до тех пор, пока мы сомневаемся в ее справедливости.

Ганс Селье

Подтвердили общую теорию относительности опыты по радиолокации планет и космических кораблей с Земли. Радиолуч, отраженный от спутника, находящегося на орбите Марса, запаздывает с приходом на Землю на двести миллионных долей секунды, если по дороге ему приходится пролетать вблизи Солнца. Задержка в экспериментах с точностью до двух процентов соответствует предсказаниям общей теории относительности.

Как видите, обо всех уже выполненных экспериментах приходится монотонно повторять: соответствует… отвечает… с точностью до стольких-то процентов (стольких-то миллиардных долей). Это хорошо, поскольку подтверждает, что работающие в гравитации физики руководствуются на сегодня правильной теорией; это плохо, поскольку сказано же: самое лучшее для науки, когда точно поставленный эксперимент противоречит хорошо обоснованной теории.

А дальше… Мало того, что физики собираются повторять и повторять уже получившиеся опыты со все большей точностью. Они придумывают новые.

В этой книге уже не раз теория Эйнштейна сопоставлялась с теорией Максвелла. Причины тому носят не только исторический и философский характер, но и имеют глубокий физический смысл. У электромагнитного и гравитационного полей немало общих закономерностей. В том лишь беда, что снова и снова гравитационщики упираются лбом в слабость гравитационного воздействия.

Как все просто в электромагнетизме: возьмите две катушки, в которых протекает электрический ток, сблизьте их — и они будут притягиваться или отталкиваться в зависимости от взаимного направления токов. И для того, чтобы обнаружить такое притяжение или отталкивание, не обязательны даже приборы — «взаимодействие» катушек ощутят и оцепят руки, которые их держат.

Точно так же, если вращать два расположенных рядом шара в одну сторону, их гравитационное взаимодействие должно, по общей теории относительности, усилиться; если в разные стороны — ослабеть. Но усилиться или ослабеть на такую ничтожную величину, что большим сюрпризом для физиков было уже появление проекта опыта по ее обнаружению. Проект опубликован в 1977 году в американском журнале «Физикэл Ревью», его авторы — советский физик Брагинский и американцы Торн и Кейве. В этой же статье они рассматривают возможность повторения «на гравитационном материале» некоторых других классических для электромагнетизма опытов. И рассматривают, в общем, оптимистически. Тут нужны и высокий вакуум в камерах, и температура, близкая к абсолютному нулю.

Ах, как жалеют порою экспериментаторы, что живут в такой горячей Вселенной, на такой теплой Земле. Тепло — это ведь беспорядочные движения и колебания молекул, атомов, элементарных частиц. Эти-то беспорядочные движения и надо погасить, чтобы четко выделить единственно интересующие физиков в каждом данном опыте явления.

В области гравитации, как нигде, экспериментальная работа почти не отделима от наблюдательной.

Электромагнитное поле сравнительно большой мощности можно создать в лаборатории, лабораторных же концентраторов гравитации, увы, нет нигде, кроме фантастических рассказов. Нет пока способа создать мощное поле тяготения иначе, как объединив массу атомов в теле астрономического масштаба. Но где же у нас на Земле лаборатория, способная вместить такое тело?

Физика здесь должна становиться астрофизикой, переходить от измерения ничтожных долей сантиметра к парсекам и световым годам. Лаборатория расширяется порою до размеров Вселенной. Расстояния же до самых массивных и плотных тел Метагалактики пока слишком велики даже для астрофизики. Квазары, предполагаемые массы которых в миллиарды и триллионы раз больше солнечной, и слишком далеки и слишком мало известны. Поэтому самым надежным и дающим самую большую долю информации о тяготении прибором остается Солнце, несмотря на то, что масса кажется исследователям гравитации слишком небольшом, а тяготение слишком незначительным. Эффекты, следующие из общей теории относительности, проявляются здесь довольно слабо.

Чтобы они могли быть замечены для движения Земли, перемещающейся по своей орбите, следует измерить радиусы ее эллиптической орбиты с точностью до десяти в минус восьмой степени их длины. Увы, пока что точность ниже на два порядка: радиусы орбиты Земли известны нам лишь с точностью до одной миллионной. По мере того, как будут пролагаться космические маршруты к планетам, радиусы орбит последних будут уточняться, но пока…

Стоит знать к тому же, что движение планеты только теоретически представляет собой свободное ее падение «в чистом виде». Пустого пространства во Вселенной нет, а межзвездный газ оказывает сопротивление движущимся в нем телам. Нельзя сбрасывать со счетов и солнечный ветер — летящие от светила частицы, и световое давление, открытое в конце XIX века русским ученым П. Н. Лебедевым, оно тоже влияет на движение космических тел, в том числе и искусственных спутников. А есть еще микрометеориты…

Все это влияет на точность экспериментов по проверке общей теории относительности.

Впрочем, искусственный спутник планеты и Солнца можно попробовать защитить от негравитационных воздействий (от гравитационных — не отгородишься, но здесь это и не нужно, потому что ученых интересуют именно они).

Для этого новая искусственная планета (она же пробная масса) должна быть защищена оболочкой. Оболочка защищает находящееся внутри тело от переменных магнитных полей. В оболочке-корпусе заключен газ, который может выбрасываться через небольшие газовые сопла, направленные в разные стороны. Световое давление и сопротивление газа приходятся на оболочку: они изменяют ее движение; расстояние между самой планеткой (телом) и оболочкой меняется, но благодаря бесконтактным датчикам тут же автоматически включаются сопла с нужной стороны, возвращая оболочку в прежнее положение по отношению к надежно охраняемому телу самой планетки. Движение корпуса все время подстраивается к движению пробной массы, а та идет по траектории, определяемой только силой тяготения. Эта система получила название газового щита. Ее идею самостоятельно и независимо друг от друга высказали несколько ученых.

Так появилось представление о «спутниках, свободных от сноса». Они смогут с гораздо большей точностью, чем удается сейчас, определить задержку электромагнитных импульсов гравитационным полем Солнца.

А если запустить свободный от сноса спутник низко над поверхностью Земли, он расскажет нам очень много нового о распределении масс в теле планеты. Само сопротивление, оказываемое верхней атмосферой внешнему корпусу спутника, даст возможность более точно, чем сейчас, определить плотность атмосферы на отдельных участках орбиты.

В 1972 году американские ученые запустили первый спутник, защищенный от сноса. Он был назван «Трайяд-1». Пробная масса внутри корпуса была сделана из сплава платины и золота. Разумеется, не потому, что это классические драгоценные металлы, а потому, что их сплав практически не поддавался действию магнитного поля. Изменение скорости, то есть ускорение спутника под воздействием негравитационных сил, не могло быть больше, чем одна стомиллионная доля сантиметра на секунду в квадрате.

Это далеко не предел, но ученые уже имели возможность предсказать с точностью до ста метров положение спутника на его орбите на две недели вперед. Поведение обычных спутников предсказуемо в гораздо меньшей степени — снос составляет сотни метров в одни сутки.

В ближайшем будущем появятся новые спутники, способные сопротивляться всем воздействиям космоса, кроме гравитационных. Им предстоит решить столько проблем, касающихся Земли, Солнца и теории гравитации. И многого другого.

А теперь еще один экскурс в будущее.

«…Здесь существовало лишь Солнце и еще раз Солнце.

Солнце было горизонтом и всеми странами света. Оно сжигало минуты и секунды, песочные часы и будильники: в нем сгорало время и вечность».

Это из рассказа Рэя Бредбери «Золотые яблоки Солнца».

Его герои летят на космическом корабле, рискуя жизнью, за веществом, из которого состоит Дневная звезда. Бредбери не указывает времени действия. Между тем… в восьмидесятые годы нашего столетия к Солнцу должен уйти автоматический космический корабль, чтобы максимально приблизиться к светилу, на расстояние всего в четыре солнечных радиуса, а потом покинуть поле его тяготения и вернуться на Землю. Его, как и бредбериевский корабль, будет интересовать солнечная, а точнее околосолнечная, плазма, но главной целью «солнечного зонда» будут исследования в области гравитации.

Об этом проекте рассказал на Всесоюзной гравитационной конференции в Минске в 1976 году ее гость, итальянский профессор Бертотти, участник работ над «солнечным зондом», запуск которого запланирован Европейским космическим агентством, объединяющим научные центры ряда стран. Рассчитали, что всего удобнее послать корабль сначала в район планеты Юпитер; мощное гравитационное поле планеты-гиганта изменит движение корабля так, что он в конечном счете попадет на заранее намеченное место. Поскольку Юпитер во много раз дальше от Солнца, чем Земля, то нельзя не поразиться тонкостям, связанным с расчетами космических орбит.

«Солнечному зонду» придется с одного бока нести щит — тугоплавкий вольфрамовый экран-отражатель. Иначе жар Солнца испепелит автомат. Почти по Бредбери: «…Это увлекательно, это здорово: прилететь, и стремглав обратно! В сущности, все дело в гордости и тщеславии людей-козявок, которые дерзают дернуть льва за хвост и ускользнуть от его зубов». Почти по Бредбери, только вот без людей.

Все трудности запуска и оборудования должны быть с лихвой оправданы результатами. «Солнечный зонд» выяснит структуру гравитационного поля Солнца, даст точнейшие сведения не только о форме Солнца, но и о его «содержании» — человечество получит о внутреннем строении своей звезды сведения, которые пока никаким другим способом получить нельзя. Он займется и проверкой гравитационных теорий, в том числе общей теории относительности. В столь мощном гравитационном поле такие ее предсказания, как смещение частоты света в поле тяготения, и другие, можно проверить с немыслимой на Земле степенью точности. Наконец, тут станет возможным проверить, изменяется ли со временем— как утверждает гипотеза английского физика П. Дирака — гравитационная постоянная.

Солнечная система стала самым популярным полигоном для испытания общей теории относительности, но все-таки только одним из многих полигонов.

Соединение теории гравитации с астрофизикой было неизбежно, и оно состоялось уже довольно давно.

Если мала масса Земли, маловата масса Солнца, орбиты планет вокруг него не очень удачно расположены для наблюдений, то, как справедливо заметил Р. Дике: «К счастью, наша Вселенная содержит такое множество объектов и эти объекты так разнообразны по своим размерам, что находчивый экспериментатор может рассчитывать найти в ней уже готовые и действующие приборы, дающие фундаментальную информацию о природе тяготения».

Здесь, как видим, наблюдение приравнивается к эксперименту, а уверенность ученого в том, что Вселенная не оставит его без необходимой информации, поистине великолепна. Но, думается, даже этот оптимист никак не мог рассчитывать на прибор, который сравнительно недавно космос любезно предложил ученым.

В 1974 году природа поднесла астрофизике, космологии и общей теории относительности подарок неслыханной ценности. В сугубо научной работе В. Б. Брагинского и В. Н. Руденко об этом говорится именно так — как о приятнейшем сюрпризе: «Природа дарит нам релятивистскую лабораторию с готовым инструментом для ее исследования».

Ну, а как иначе назвать открытие двойной звезды, в которой, правда, один из двойников не виден ни в оптическом, ни в радиодиапазоне, зато другой представляет собой пульсар, посылающий радиоволны строго определенной длины? Открыт радиомаяк в космосе! Отделяют его от Земли пять тысяч парсеков — более шестнадцати тысяч световых лет. Масса его приблизительно равна солнечной, а размеры, как полагается нейтронной звезде, чрезвычайно малы — радиус пульсара примерно десять километров. Обычными методами, применяемыми при исследовании двойных звезд, было определено время полного оборота пульсара на его орбите — оно оказалось равно примерно семи с половиной часам. Значит, звезда-спутник расположена очень близко к радиомаяку, и их гравитационное взаимодействие огромно.

Каким было первое фактическое доказательство верности общей теории относительности? Им было смещение перигелия Меркурия. Точка наибольшего удаления спутника от звезды называется периастром. Смещение периастра пульсара, вычисленное теоретически, составило три угловых градуса в год — это вместо сорока трех угловых секунд в столетие у Меркурия! Наблюдения дали такую величину: 3,6±1,6 градуса. Совпадение блестящее.

Давно уже бьются ученые над тем, как проверить предсказание Эйнштейна, касающееся вращения оси гироскопа, находящегося в гравитационном поле вращающегося тела. Разрабатываются проекты запуска специальных спутников Земли, ведь Земля тоже вращающееся тело. Но этот эффект так тонок, что пока нельзя считать пригодным для его обнаружения ни один из предложенных конкретных проектов.

А в космической «релятивисткой лаборатории» роль гироскопа выполняет сам пульсар, роль вращающегося центра тяготения — его невидимый спутник. Тут тоже есть свои сложности, нужно провести очень точные и долгие наблюдения, сделать очень трудные расчеты, но все это куда дешевле, чем запускать специальный спутник-гироскоп.

Многое еще обещает дать естественный радиомаяк в двойной звезде для теории гравитации. Но и современная теория гравитации может многое подсказать астрофизикам, изучающим эту систему.

Общая теория относительности здесь «выступает не как гипотеза, нуждающаяся в проверке, а как критический тест астрофизической модели пульсара» (В. Б. Брагинский, В. Н. Руденко).

Уже по наблюдаемому смещению периастра можно сказать, что звезда-спутник невелика по размерам и, значит, тоже представляет собой весьма плотное космическое тело Будь этот спутник нормальных звездных размеров, смещение периастра было бы в пятьдесят раз больше.

Общая теория относительности после многих точных измерений позволит определить и массу второй звезды, и наклонение орбиты, и некоторые другие характеристики системы. А это, в свою очередь, позволит наблюдать новые эффекты, следующие из теории.

Радиомаяк такого типа — пока единственный в своем роде, и использовать представляемые им возможности надо на все сто процентов!

О некоторых других планируемых гравитационных экспериментах и наблюдениях мы поговорим в третьей части книги. А сейчас покинем земные лаборатории, где, подтверждая общую теорию относительности, измеряют триллионные доли миллиметра, оставим маленькую Солнечную систему и даже уникальный радиомаяк, чтобы вместе с общей теорией относительности выйти на действительно широкие просторы Вселенной.

Ведь предсказания свои теория делает отнюдь не только для того, чтобы их проверяли.

Во вселенной

Во Вселенной, как и во времена Ньютона, главной силой остается гравитация.

Теория относительности ввела представление о кривизне пространства-времени, но постоянна ли эта кривизна в реальной Вселенной? Сам Эйнштейн поначалу пришел к выводу, что Вселенная стационарна, ее составные части — галактики и скопления галактик — в среднем остаются на своих местах, радиус кривизны пространства-времени постоянен. Он увидел мир успокоенным и упорядоченным. Может быть, тут сыграло свою роль руководившее Эйнштейном всю его жизнь представление о стройной гармонии мироздания. Для того, чтобы уравнения рисовали мир именно таким, ученому пришлось ввести в них так называемую космологическую постоянную. Не будем входить в сложные математические подробности такой операции, тем более, что впоследствии Эйнштейн называл эту свою «добавку» самой большой ошибкой своей жизни. (Впрочем, часть физиков сегодня не соглашается с «отречением» Эйнштейна и продолжают использовать его «старовведение».)

Так или иначе, первые годы Эйнштейн был вполне удовлетворен Вселенной, вышедшей из-под его пера.

Но тут слово взял петроградский ученый Александр Александрович Фридман…

Он умер в тридцать семь лет — роковой возраст для великих поэтов. Но сколько было сделано и сколько прожито в этот короткий срок! Математик, метеоролог, доброволец русской армии в первую мировую войну, военный летчик, организатор аэронавигационной службы на всем протяжении русского фронта, директор завода измерительных приборов, профессор Пермского университета, организатор математического бюро Петроградской Главной физической обсерватории… Перечислены далеко не все дела, которыми он успешно занимался.

А в 1922 году, за три года до смерти, он опубликовал небольшую работу «К вопросу о кривизне пространства».

Название спокойное, академическое. Между тем статья доказывала не больше и не меньше как то, что кривизна пространства меняется и Вселенная расширяется. Он выяснил это, по-новому решая уравнения общей теории относительности.

Достаточно известна история о том, как Эйнштейн прочел работу Фридмана, не согласился с нею, послал возражение в журнал, потом получил письмо Фридмана, убедившее его в ошибочности собственных возражений. И признал, что Вселенная может оказаться не только стационарной, но и динамической, меняющейся.

Это был чисто теоретический спор по математическим проблемам. Но именно тут теория гравитации Эйнштейна проявила себя, что довольно скоро выяснилось, как учение, способное делать предсказания гигантского масштаба. Эта теория, еще и не подтвержденная тогда «как следует», оправдала то доверие к ней физиков, о котором говорил Г. Бонди. Потому что через шесть лет после появления статьи Фридмана астроном Эдвин Хаббл обнаружил факт «разбегания» галактик. Следовательно, Вселенная расширялась — по Фридману[15].

Хаббл и астрономы, его последователи, на основе своих наблюдений по скорости разбегания галактик определили возраст Вселенной примерно в два миллиарда лет. Они опирались как будто на факты. А теоретики, развивавшие общую теорию относительности, настаивали на удлинении временной шкалы по меньшей мере в пять раз.

В истории науки экспериментаторы и наблюдатели в среднем чаще оказываются правы, чем теоретики. Но в данном случае, как, впрочем, пока во всех случаях, связанных с теорией относительности, математическая физика вышла победительницей в споре с наблюдательной астрофизикой. В пятидесятые годы астрономия подтвердила ее правоту. Так называемое первичное, или реликтовое («ископаемое»), космическое излучение — память о «первовзрыве» нашей Метагалактики — было обнаружено в 1965 году чисто случайно, при испытаниях наземной системы связи со спутниками. Был обнаружен радиошумовой фон, не менявшийся, куда бы ни направляли антенну. Во всем сначала обвинили аппаратуру, се разбирали, проверяли каждую деталь, пока не убедились, что от проверок и отладок радиошум не исчезает. Ровный поток радиоизлучения, соответствующий температуре в три градуса выше абсолютного нуля, падал на радиотелескоп на Земле, пронизывал Вселенную.

Очень обидно, что открыт он был случайно, потому что за семнадцать лет до этого существование такого излучения было, по существу, предсказано на основе общей теории относительности.

…Нет, наверное, другого раздела физики, который был бы так проверен, изучен и опять проверен опытами, как теория относительности.

Герман Бонди

Нейтронные звезды были предсказаны в 1934 году, а соответствующие предсказанию небесные тела обнаружили только в 1968 году — это были знаменитые ныне пульсары.

В 1939 году на основе геометродинамики Эйнштейна была предсказана возможность существования так называемых черных дыр.

Датский ученый Меллер написал книгу о теории относительности, которая вышла двумя изданиями — в 1952 и 1971 годах. В предисловии ко второму изданию Меллер отмечает, что в момент, когда книга его вышла впервые, теория относительности считалась в общем законченной. Научные события 1955–1970 годов показали ее возможности и в объяснении астрофизических явлений, и в новом бурном развитии.

Итак, Вселенная «искривилась» и начала расширяться, ее объекты стали несравненно многообразнее, но гравитация осталась, как и во времена Ньютона, силой, которой держится мир. Именно ее теория вызвала преображение картины мироздания в XX веке.

Но «по-прежнему» гравитация собирает космический газ в звезды, звезды — в галактики, галактики — в их скопления. Нельзя при этом, конечно, забывать чрезвычайно интересных данных о взрывных процессах во Вселенной, полученных Бюраканской школой астрономов во главе с В. А. Амбарцумяном. Иногда Вселенную, объекты которой конденсируются из рассеянного в космосе вещества, противопоставляют Вселенной, в которой космические тела образуются при взрывах так называемого протозвездного вещества — по Бюраканской концепции. Но сейчас многие физики полагают, что в реальной Вселенной идут оба этих процесса, в полном согласии с положением Бора относительно глубоких истин.

Большую роль в развитии космологических аспектов общей теории относительности сыграл приход в нее в конце пятидесятых годов советского академика Я. Б. Зельдовича. Он во многом увязал с теорией гравитации ядерные реакции в звездах, само понятие релятивистской астрофизики появилось в шестидесятых годах в науке в результате работ его школы.

Общая теория относительности широко развила данное Ньютоном представление о гравитационной энергии. Энергия гравитации есть всюду, где есть масса. Сосредоточена ли она в чудовищно грандиозных телах звезд или распылена частицами межзвездного газа по тому, что еще недавно считалось пустым космическим пространством. Эта энергия может быть превращена в тепло н свет — при процессах сжатия, конденсации вещества.

Гравитационная энергия во Вселенной имеет огромный количественный перевес над всеми остальными формами энергии. Потоки света, излучаемые бесчисленными звездами Вселенной, жар самих этих звезд, космические лучи, пронизывающие мир, — все эго вместе составляет лишь небольшую долю той энергии, которой тяготение обеспечивает наш мир.

Мало того. Именно тяготение — исток, из которого в конечном счете берут основу своей мощи все остальные энергетические ресурсы Вселенной. Гравитационное сжатие больших тел космоса превращает освобождающуюся энергию тяготения в свет, тепло и энергию вращательного движения.

Известный американский физик Фримен Дайсон пишет: «Законы термодинамики утверждают, что любое количество энергии обладает характерным качеством, связанным с ним, — энтропией. Энтропия измеряет степень беспорядка, хаотичности, связанной с энергией. Энергия всегда будет превращаться из одной формы в другую так, чтобы энтропия возрастала. Воспользовавшись этим обстоятельством, мы можем расположить разные формы энергии „по порядку значимости“, где высшее место займет форма, которой присуща минимальная энтропия или минимальный хаос… Направление потока превращений энергии во Вселенной задается, главным образом, свойствами гравитации: прежде всего тем, что она преобладает в космосе количественно, а кроме того, тем, что гравитация является высшей формой энергии. Высшей — ибо она обладает нулевой энтропией».

Низшая форма энергии в этом смысле — тепло, теплота. В теплоту могут превращаться все виды энергии — от гравитационной до химической.

Но тогда встает вопрос: почему Вселенная еще существует? Ведь перед нами энергетический поток, который течет в одну сторону. Океан гравитационной энергии изливается могучими реками, непрерывно переходит в свет и тепло. И остается все тем же неиссякаемым океаном. Почему? Мало того, по Дайсону, закон всемирного тяготения отпускает нашей Галактике всего сто миллионов лет существования, причем не с сегодняшнего дня, а так сказать, с того момента, как она приняла тот вид, который имеет последние несколько миллиардов лет. Расчет прост. В одном кубометре нашей Галактики, если учесть и звезды, и планеты (правда, пока достоверно известна лишь одна планетная система — Солнечная), и межзвездный газ, в среднем находится миллион атомов. Сто миллионов лет — время, которое должно было бы запять свободное падение всего этого вещества к общему гравитационному центру Галактики. Но закон всемирного тяготения при грандиозных масштабах своего действия все-таки не один управляет развитием Вселенной.

Мы обязаны сменой дня и ночи вращению Земли. Но точно так же вращаются все небесные тела. Когда Солнечная система возникала из сгустившегося межзвездного газа, именно вращение облака, из которого образовались и светило, и его планеты, помешало всему этому облаку собраться под воздействием сил тяготения в единый центр.

Наконец, термоядерные процессы, идущие в недрах звезд, не дают им сжиматься слишком сильно, противостоя силе тяготения, стремящейся стянуть массу звезды к ее центру.

Словом, гравитация, которую мы только что осыпали комплиментами (самая могучая… высшая форма энергии… и тому подобное) оборачивается злобным демоном вселенской истории, угрожающим разрушить нашу Галактику. А вращательное движение и термоядерные реакции выступают как защитники Галактики (и Метагалактики— в ней, правда, вещество в миллион раз разреженней, и сроки жизни соответственно в тысячу раз — по закону Ньютона — дольше) от этого злого гения Вселенной. Но ведь и вращательное движение звезд и звездных систем тесно связано, как подчеркивал Дайсон, с гравитационной энергией. Мало того. Сами термоядерные реакции возможны только при высоких температурах, а в разогреве масс протозвезд играло весьма значительную роль гравитационное сжатие.

Гравитация ведет себя как копье Геракла: рапы, которые наносило его острие, можно было вылечить прикосновением древка.

Во внутризвездных масштабах, как и в галактических, тяготение играет важнейшую роль. Жизнь звезды — борьба, как и жизнь галактики, как и жизнь человека. Три главные силы встречаются здесь в чудовищном противоборстве: гравитация, ядерные реакции и центробежная сила. Ярче всего это видно на примере событий, которые называют гравитационным коллапсом.

Встреча у черной дыры

Коллапс — термин, первоначально гораздо более популярный в медицине, чем в космологии. Сосудистый коллапс может привести к гибели человека. Гравитационный коллапс может привести звезду если не к гибели, то к перерождению. Он может произойти не со всякой звездой, а только с такой, масса которой превышает солнечную процентов по меньшей мере на двадцать. И может произойти, а может и не произойти. Это, как пишут физики, один из возможных путей завершения эволюции звезд. Возможных, но не обязательных.

Чем станет звезда после гравитационного коллапса? Может быть, нейтронной звездой, а может быть, даже черной дырой.

Термоядерные реакции, по наиболее признанной сегодня теории, дают звезде энергию, которую она тратит на излучение[16]. Но термоядерные реакции ведут к образованию все более тяжелых ядер элементов из ядер легких, пока, наконец, дело не дойдет до появления в центральной области звезды огромного количества ядер группы железа. Ядра железа и его химических сородичей относительно весьма прочны. Нуклоны в них связаны друг с другом так крепко, что синтез на этой «железной» основе более тяжелых ядер не только не ведет к выделению энергии, но, наоборот, требует се затрат.

Центр звезды, ее топка, перестает работать, затухает. Однако потери звездою энергии не только не падают, но растут. А между тем внутри каждой звезды на всем протяжении ее развития борются силы гравитационного притяжения и силы отталкивания частиц, притиснутых друг к другу чудовищным давлением и «желающих» чувствовать себя попросторнее в каждой ее точке. Наступает, наконец, момент, когда гравитационные силы решительно берут верх над силами отталкивания. Разумеется, это означает, говоря философски, что рассматриваемое природное явление должно после некоторых изменений прийти в повое состояние равновесия. Да, конечно, такое состояние возникает. Но какой ценой! Бывшая топка звезды, ее сердцевина, оказывается сжатой действием неуравновешиваемых сил тяготения. Их нажима не выдерживают и прочнейшие связи между нуклонами в ядре железа и его родственников. Ядро разваливается, или, лучше сказать, разламывается. На это разламывание тоже уходит энергия, потому топка становится теперь топкой наоборот: берет энергию, а не отдает ее, в недрах звезды идет вывернутая наизнанку реакция синтеза ядер. Впрочем, температура топки все же не падает, ведь звезда сжимается, а гравитационная энергия, как мы знаем, способна переходить в тепло не хуже любой другой..

Если бы температура в центре звезды поднималась быстро, разогретое вещество набралось бы силы, чтобы побороться с тяготением, чтобы остановить сжатие. Но большая часть тепла расходуется все на ту же «обратную термоядерную реакцию».

Сжатие продолжается, пока не превращается в сжатие взрывное, когда вещество центральной области звезды устремляется к центру ее со скоростью, достигающей на определенных этапах многих километров в секунду. Естественно, что на место уже обрушившихся более близких к центру слоев рушатся слои, более близкие к поверхности. Катастрофа развивается!

Нашему Солнцу взрывной коллапс не угрожает, Слишком для этого мала масса светила. Вот если бы оно было больше хотя бы в один и два десятых раза… Впрочем, в Галактике множество звезд, больших, чем Солнце. Гравитация в конце концов приведет их к сжатию, и они превратятся в нейтронные звезды.

Но и нейтронная звезда еще не дает нам предела плотности, возможного для вещества. Если гравитационный коллапс не остановился, она схлопывается — при определенных условиях — еще примерно на треть своего диаметра. И вот тут-то из нее получается черная дыра. Космическое тело исчезает с небосклона, потому что тяготение вблизи его поверхности достигает такой фантастической величины, что даже и свет оказывается «прикован» и не может уйти в пространство. То же относится и к любым другим формам вещества. Все, что достигает этого района, заглатывается черной дырой безвозвратно. Она становится грандиозной гравитационной ловушкой. Даже гравитационным гробом, как назвал ее академик Я. Зельдович. И не только для вещества. Само пространство-время приобретает здесь новые свойства.

Немецкий астроном Карл Шварцшильд в первые же месяцы после появления теории относительности нашел на основе ее уравнений, что если достаточно плотная звезда сожмется до определенных размеров, до своего так называемого гравитационного радиуса (в каждом случае зависящего от ее массы), то никакие сигналы с этой звезды уже не смогут выйти наружу. Слишком сильно будет искривлено окружающее ее пространство-время.

Черные дыры долю оставались, однако, да периферии космологии и астрофизики. Но с шестидесятых годов положение изменилось. Число посвященных им работ растет чуть ли не с той же быстротой, с какой они сами — в теории — схлопываются.

Какой реально должна быть черкая дыра, первыми показали советские физики А. Г. Дорошкевич, Я. Б. Зельдович и И. Д. Новиков в 1965 году.

Вращающаяся черная дыра становится центром вихря, засасывающего по воронкообразным орбитам частицы и газ. Она имеет четко очерченный горизонт, через который вещество и свет могут проходить только в одну сторону — внутрь, но не наружу[17]; окружность ее экватора должна быть равна девятнадцати километрам, помноженным на число масс Солнца, которым соответствует масса черной дыры. «Типичная» черная дыра имеет в «охвате» от шестидесяти до тысячи километров, и масса ее может содержать от трех до пятидесяти солнечных масс.

Кроме «типичных» черных дыр, могут существовать еще и дыры сверхгигантские. Ими, возможно, становятся центры галактик, в ядрах которых в прошлом происходили мощные взрывы. Если такая дыра есть и в центре нашей Галактики, то ее масса должна быть в сто миллионов раз больше массы нашего Солнца.

Наконец, теория учитывает возможность существования в нашем мире и минидыр массой всего лишь в несколько сот масс самой большой египетской пирамиды— пирамиды Хеопса. По космическим масштабам это и вправду минимасса, и вся она сосредоточена в объеме, который в нормальных условиях занимает одна (одна!) элементарная частица. Такие минидыры должны в соответствии с законами квантовой механики понемногу «испаряться». Один из «фокусов» квантовой механики состоит в том, что в определенных условиях элементарные частицы способны делать «скачки» сквозь как будто непреодолимые для них энергетические барьеры. Здесь не место вдаваться в подробности, заменим их аналогией. Сколько бы раз автомобиль ни подъезжал к глухой каменной степе, преодолеть ее он не в состоянии: он может либо остановиться перед ней, либо разбиться вдребезги. А вот подчиняйся он законам квантовой механики, в одном случае из очень многих автомобиль очутился бы «вдруг» позади стены, не повредив ее. Вот так какая-то часть вещества черной дыры все-таки выскакивает за ту самую ее поверхность, где даже свет вынужден останавливаться и обрывать свою дорогу вовне. Чем больше дыра, тем меньшая доля ее частиц прорывается наружу, но «испарение», предсказанное С. Хоукингом, идет и с поверхности больших черных дыр. Маленькие же дыры испаряются относительно быстро, и завершается этот процесс «таяния» бурно — взрывом. По астрофизическим масштабам взрывом крошечным — всего-то в области пространства величиной с протон освобождается столько же энергии, что и при взрыве одного миллиона мегатонных водородных бомб.

Именно из-за наклонности к взрыву при уменьшении массы минимальная масса черных дыр сегодня — десять в пятнадцатой степени граммов. Минидыры наших дней (если они есть) — реликты, ископаемые, оставшиеся от первых секунд рождения Метагалактики А вот сверхмассивные дыры — памятники тех более близких к нам миллиардолетий, когда складывались уже галактики.

Между прочим, на черную дыру можно и наткнуться. Конечно, встреча с таким космическим телом, даже миниатюрным, обернулась бы для Земли катастрофой. Но, возможно, такие катастрофы, к счастью, не очень значительных масштабов, уже случались в земной истории. Одна из сотен гипотез, связанных со знаменитым Тунгусским метеоритом, объявляет его минидырой. Впрочем, гипотезу эту отнюдь нельзя назвать общепризнанной.

В отличие от случая с нейтронными звездами черные дыры пока не отождествлены достаточно точно ни с какими конкретными объектами Вселенной, хотя их существование уже подозревают в нескольких пунктах. Строго говоря, они только предсказаны — предсказаны на основе уравнений общей теории относительности. Пока что все ее предсказания, которые можно было проверить, оказывались верными. Но мы-то знаем ведь, что теория должна проверяться, пока не будет опровергнута. Станет ли проблема черной дыры новым триумфом теории?

…Построение гипотез гораздо меньше зависит от логического мышления, чем думает большинство людей. Ни одна гипотеза не может быть создана путем только логического рассуждения, потому что она… основывается на недостаточном количестве данных; в противном случае это уже не гипотеза, а констатация факта. Гипотеза же тем изобретательней, чем больше она вынуждена опираться на воображение ввиду отсутствия фактов. Само собой разумеется, что оценка результатов может производиться только разумом.

Ганс Селье

Изложенное выглядит интересно, неожиданно, парадоксально. Однако кого удивишь парадоксами в современной физике? Парадокс — то, что противоречит общепринятому взгляду на вещи. Ну, а когда, строго говоря, «общепринятый» взгляд по каждому поводу принят далеко не всеми?.. Сказал же Р. Фейнман, что каждый физик знает шесть-семь теорий, объясняющих одни и те же известные факты.

С одной стороны, гравитационный коллапс представляется нормальным явлением в жизни каждой достаточно массивной звезды. Теоретические расчеты убедили большинство физиков в том, что переход пережившей коллапс звезды в черную дыру в ряде случаев неизбежен. Надо, однако, отметить, что ряд исследователей (у нас в стране — доктор физико-математических наук М. Е. Герценштейн и некоторые другие ученые, за рубежам — Р. Джилмен, Е. Г. Геррисон, В. Израэл) доказывает, что гравитационный коллапс на его последней стадии обратим, звезда, сжавшись до размеров сферы Шварцшильда, не застывает в этом положении, а снова расширяется, чтобы опять сжаться. Гравитационный коллапс, по Герценштейну и Джилмену, оборачивается не безвозвратной «смертью» звезды с обращением ее в гравитационный гроб, а пульсирующими ее биениями, На месте черной дыры в этой гипотезе возникает пульсар. С другой стороны, есть много оснований ожидать, что где-то впереди наша Метагалактика в целом должна пережить гравитационный коллапс, Положим, что в Метагалактике срабатывают те же задержки (противодействие гравитации некоторых других сил) коллапса, что и в галактике. Однако и тут и там это именно задержки — процесс не остановится, а только станет (становится) медленнее. А в масштабах Вселенной миллиарды и даже десятки миллиардов лет отнюдь не выглядят бесконечностью.

А вот еще одна система аргументов в пользу неизбежности перехода Метагалактики от расширения к сжатию. Рассказ о ней стоит начать с литературного примера, точнее — антипримера.

У советского геолога Обручева есть научно-фантастический роман «Плутония». Его герои сквозь отверстие вблизи полюса проникают внутрь нашей планеты, где, оказывается, находится обширное пустое пространство, освещаемое, собственным «внутриземным солнцем».

Рассмотрим эту ситуацию с гравитационной точки зрения.

Существуй на самом деле такая внутриземная полость, имейся на самом деле путь в нее — вблизи ли полюса или у экватора, — путешествие туда все равно было бы невозможно, как и жизнь в этой полости. Дело в том, что по одному из следствий закона всемирного тяготения Ньютона в пустой полости внутри сферической массивной оболочки гравитационная сила отсутствует, Попав в огромную полость внутри Земли, путешественники всплыли бы в воздух, как космонавты в спутнике, вышедшем на орбиту. Только в спутнике невесомость связана с тем, что он представляет собой свободно падающее тело, а в Плутонии притяжение со стороны ближайшей части земной оболочки уравновешивается притяжением остальных ее частей, в которых ведь вещества намного больше. Впрочем, дело обстояло бы даже хуже. В такой ситуации для путешественников сыграло бы роковую роль тяготение самого Плутона — светила подземной страны. В условиях равновесия сил притяжения со стороны Земли (Земли как «оболочки») Плутон должен был притянуть к себе отважных исследователей.

Поскольку аналогичных Плутонии полостей нет не только в нашей планете, но, насколько мы можем судить, ни в одной из планет Солнечной системы, ни даже ни в одном из массивных тел большою космоса, на данный вывод из теории тяготения Ньютона можно, казалось бы, не обращать внимания. Ан нет! Эффект, который Обручеву пришлось «забыть», играет огромную роль во Вселенной, и знание его открыло ученым глаза на многое в строении нашего мира. Потому что это правило (действующее во всю свою силу и в общей теории относительности) справедливо не только внутри сферической оболочки, но всюду, где силы тяготения, действующие, так сказать, с разных сторон, взаимно компенсируются и тем самым исчезают для соответствующим образом расположенного тела.

Известный уже нам американский физик Р. Дике пишет: «Во Вселенной нет таких огромных сферических полостей, но мы можем их себе представить, мысленно „вычерпав“ все галактики из большого (но не слишком большого) сферического объема, а затем вернув в получившуюся при этом полость…»

Каков, однако, мысленный эксперимент! Не говоря уже о том, что ученый свободно оперирует целыми галактиками — великолепна сама оговорка, что объем (вмещающий группы галактик!) не должен быть «слишком большим».

Эта мысленная операция показывает, что можно «затем» рассматривать гравитационное взаимодействие «возвращенных на место» галактик только как притяжение их друг к другу, считая, что все остальное вещество Вселенной на них не действует.

Тогда каждая галактика, расположенная в этой сфере, притягивается к центру сферы, как если бы именно в ней было сосредоточено все вещество этой области (примерно так же, как герои «Плутонии» притягивались бы к внутреннему Плутону).

Как известно, Метагалактика расширяется, галактики разбегаются, причем расширяется Метагалактика равномерно. Так же равномерно будет расширяться и эта часть Вселенной, наша «сфера с галактиками», причем гравитация сдерживает их разлет, все уменьшая его скорость. Раньше или позже (сроки здесь должны в конечном счете определяться средней плотностью материн в сфере) скорость разлета будет полностью погашена, движение галактик от центра сферы прекратится. Начнется их обратное движение — к центру…

Мысленно выделенная сфера служит здесь моделью Метагалактики. При определенном, сравнительно малом значении средней плотности материи в Метагалактике расширение ее должно оказываться бесконечным; однако большинство физиков, работающих в данной области, полагают, что реальная плотность материи в нашем мире больше этой величины и на смену расширению неизбежно придет сжатие — гравитационный коллапс нашей системы мира.

Научные истины всегда парадоксальны, если судить на основании повседневного опыта, который улавливает лишь обманчивую видимость вещей.

Карл Маркс

Сама же черная дыра нередко рассматривается как модель Метагалактики в момент, предшествовавший тому «первовзрыву», что состоялся, по мнению современных космологов, десять — двадцать или еще больше миллиардов лет назад. Мы, правда, мало знаем пока о черных дырах, вплоть до того, что не уверены до конца в их реальности. И совсем уж мало известно нам о состоянии Метагалактики до того, как она начала расширяться.

Но не случайно же в лабораториях взрывников моделями динамитных и иных зарядов стали раздувающиеся резиновые шарики! Внешняя, и не только внешняя, разница между моделью и тем, что моделируется, бывает очень велика. Порою так велика, что поневоле вспоминается древняя китайская притча о поисках лучшего коня в мире. Императорский эксперт по лошадям был уже слишком стар и рекомендовал поручить эти поиски своему младшему товарищу. Тот, объездив страну, сообщил, где именно находится лучшая лошадь империи. Его спросили, как она выглядит. Ответ был: это гнедая кобыла. За лошадью поехали и обнаружили в указанном месте вороного жеребца. Император предъявил претензии старику-эксперту. А тот пришел в восхищение — его протеже, оказывается, умеет не обращать внимание на случайное и поверхностное, а видит суть. И действительно, вороной жеребец был лучшим конем в поднебесной…

Дж. Уилер в своей работе «За границей времени» объявил, что парадокс коллапса — величайший кризис в физике за все времена. Физик в этой своей работе становится поэтом, воспевающим не столько даже науку, сколько противостоящую ей поразительную Вселенную.

«Вселенная, — пишет Уилер, — начинает свое существование из сверхплотного и сверхгорячего состояния, расширяется до максимальных размеров, а затем вновь сжимается и коллапсирует: никогда не делалось предсказания, внушающего такой же благоговейный страх, как это. Оно нелепо и абсурдно. Эйнштейн и сам не мог поверить в свой вывод. И только наблюдения Хаббла заставили его и научную общественность отказаться от концепции Вселенной, которая, не меняясь, существует бесконечно долго».

Мало того, что Вселенная схлопывается, как отдельная звезда, становящаяся черной дырой, из уравнений еще и следует, что плотность массы-энергии растет неограниченно, материя должна собраться в одной точке…

Неужели же физика предрекает «конец» Вселенной, как когда-то обнаружила ее «начало»?

Нет, «физика продолжается дальше, хотя бы по той простой причине, что физика по определению — это то, что существует вечно, несмотря ни на какие призрачные изменения во внешних проявлениях реальности».

Слово «физика» в данном случае, судя по всему, равнозначно слову «материя».

Сравнительно недавно физики открыли процесс расширения Метагалактики из сверхплотного «первояйца». Их спрашивали, что было до него? А они вспоминали, как один из святых ответил на вопрос: «Чем занимался бог до создания мира?» Святой вышел из положения: бог, дескать, создавал ад для тех, кто задает такие вопросы. Остроумно. Но не убедительно. И во всяком случае ответ такого сорта — признание беспомощности физики. О, конечно, для науки — достоинство, когда она умеет оценить пределы своего знания. Но расширение его пределов — долг науки.

Вспоминается история с другим коллапсом — электрическим, с другой ситуацией, в которой физикам на некоторое время стало казаться странным, как мир вообще может существовать, почему самое обычное вещество сохраняет свое состояние. Этот кризис начался в 1911 году, когда интерес общества к физике был гораздо менее развит, поэтому катастрофа, угрожавшая веществу, прошла бесследно для большей части человечества, тем более, что вскоре разразилась первая мировая война. Между тем кризис был весьма серьезным. Эрнест Резерфорд обнаружил экспериментально, что вещество состоит из отдельных положительных и отрицательных зарядов. Сегодня мы в школьном учебнике читаем, что в каждом атоме есть положительно заряженное ядро и отрицательно заряженные электроны, и не пугаемся, хотя знаем, что противоположные заряды притягиваются. Квантовая механика объяснила, почему электроны не падают на ядро. Но в 1911 году квантовой механики еще не было. По всем известным тогда законам отрицательные частицы должны были сблизиться и соединиться с положительными. Электрический коллапс выглядел неизбежным — и не происходил. Из решения парадокса электрического коллапса (вернее, парадокса его отсутствия) родилась модель атома Нильса Бора и в конечном счете квантовая механика в целом.

Что дает физике парадокс гравитационного коллапса? Чем значительнее парадокс, тем к большим результатам должно привести его разрешение. На повестке дня — не только судьба вещества, но и судьба самой Вселенной.

Что, кажется, страшнее, чем смерть, для человека, звезды, Вселенной? Но за «смертью» Вселенной неизбежно должно следовать новое ее рождение, процесс, в котором снова неизбежно будут порождены звезды, планеты, жизнь, разум.

Смотрите: гравитационный коллапс звезды, заканчивающийся ее превращением в черную дыру, ведет к поразительному обеднению звезды. Она теряет на этом пути большинство своих отличительных признаков. Получилась черная дыра из вещества или антивещества, из звезды или из облака излучения, из большой звезды или из относительно небольшой поначалу, но захватившей достаточное количество фотонов, — понять по черной дыре ее прошлое, определить ее происхождение невозможно. Но у черной дыры все-таки останется масса, электромагнитный заряд, момент количества движения. Три характеристики из многих и живых звезд… Однако коллапсирующая Вселенная должна потерять и заряд, и массу, и момент движения — точнее, они потеряют в ней свой физический смысл. И все же… И все же начинается новый цикл, сжатие сменяется расширением.

«…Единственная разумная картина следующая: Вселенная в период коллапса либо преобразуется, либо превращается, либо переходит, либо воссоздается вероятным образом от одного цикла своей истории к другому», — пишет Уилер, поясняя, что, по его мнению, Вселенная скорее всего не столько преобразуется, сколько воссоздается. Элементарные частицы — реликт, ископаемое, оставленное нам в наследство последним гравитационным коллапсом. Если все электроны во Вселенной, сегодня или десять миллиардов лет назад, все, где бы они ни находились, одинаковы, то из этого можно сделать вывод, что при каждом очередном коллапсе Вселенной, в каждом цикле ее развития должны среди других частиц рождаться электроны, идентичные сегодняшним. То же относится, по Уилеру, ко всем остальным частицам. Сильное предположение? (В физике это словосочетание имеет свой четкий «внутриведомственный» смысл. Предположение находят тем более сильным, чем меньше доводов в его пользу.) Да, конечно, сильное. Но ведь Уилер и употребляет тут выражения типа «по-видимому», «наиболее разумно»…

Он обращает внимание на так называемые большие числа в физике, явно взаимосвязанные между собой, хотя понимаем мы эту связь пока не очень хорошо. Вот эти числа.

Во Вселенной 1080 частиц.

Радиус Вселенной в момент максимального ее расширения (1028 сантиметров) так относится к среднему «размеру» элементарной частицы (10-12 сантиметра)[18], как электрические силы к гравитационным силам. Это составит 1040.

Отношение «размера» элементарной частицы к так называемой планковской длине, предполагаемому кванту пространства, составляет 1020. Во Вселенной отношение числа фотонов, частиц света, к числу барионов, тяжелых ее частиц, составляет 1010.

Выстроим эти числа в один ряд: 1080, 1040, 1020, 1010. Слишком все стройно для случайного распределения. Перед нами типичная логическая задача, внешне похожая на те, что так часто печатает журнал «Наука и жизнь». Требуется найти решение.

Числа огромны, и эту огромность, возможно, нельзя объяснить, полагает Уилер. Если все константы, все постоянные Вселенной, включая гравитационную постоянную, постоянную Планка, размеры заряда электрона, воспроизводятся в каждом новом цикле, то физика должна принимать эти константы как некие исходные данные, заложенные при начале очередного цикла и задающиеся заново каждый раз.

Что такое хаос? Это порядок, который уничтожили при сотворении мира.

Станислав Ежи Лец

Американский физик Б. Картер попробовал посмотреть, что получилось бы, если бы константы были хоть немного другими. Достаточно сделать одну из них всего на один процент больше, чтобы все звезды стали красными, на один процент меньше, — чтобы все они стали голубыми, В этом новом мире не найдется места для маленькой желтой звезды, которую мы зовем Солнцем. А ведь жизнь, которую мы знаем, нуждается в свете и тепле, идущих именно от такой звезды.

Вот и выходит, что нашей планете, а вместе с ней и всему живому, в том числе и нам, людям, крепко повезло с «местом во Вселенной». Впрочем, «повезло» — это не более чем метафора…

Во всех попытках решить проблему дальней истории мира принимает свое участие черпая дыра — «лабораторная модель» Вселенной.

И все-таки, как мы видели, иногда ставится под сомнение сама реальность черной дыры. Да, ставится. Может она исчезнуть из астрофизики? Да, конечно. История науки знает не так мало поистине замечательных идей, сослуживших человечеству и познанию хорошую службу и все-таки ушедших с арены науки, поскольку за ними не оказалось объективной реальности. Чтобы далеко не ходить, возьмем теплород — некое вещество, наделявшееся когда-то теплотворной способностью. Но затем этот таинственный флюид оказался выброшенным за ненадобностью, но до этого ученые успели, пользуясь представлением о нем, вывести основные формулы термодинамики, формулы, не отвергнутые и сегодня. Можно долю перечислять случаи, когда на основе явно неверных, как позже выяснилось, данных бывали сделаны верные выводы.

Есть старый анекдот про человека, остановившего поднятой рукой машину, но не решающегося открыть дверцу, поскольку это не такси. Он спрашивает у шофера: «А где шашечки?» И слышит в ответ: «Вам шашечки или ехать?»

Пока черные дыры «работают» в науке, они нужны.

Все расчеты, предсказания, идеи, касающиеся черных дыр, имеют смысл только в том случае, если дыры эти представляют собой не только чрезвычайно интересную математическую модель, по и реальные участки реального пространства космоса. Л это в конечном счете могут узнать не теоретики, а астрономы-наблюдатели.

Наука всегда оказывается неправа. Она никогда не решает вопроса, не поставив при этом десятка новых.

Бернард Шоу

Первоначально казалось очевидным, что положение черной дыры в пространстве может выдать только ее тяготение. В нашем небе астрономы видят множество двойных звезд. На самом деле таких звезд может быть еще больше, только из пары звезд одна, положим, продолжает жить и светиться, а другая умерла и стала черной дырой. Но «труп» звезды в детективе научном тоже нельзя «спрятать»: его масса осталась прежней, его тяготение должно сказываться на движении живой звезды, это движение и выдаст черную дыру пристрастным наблюдателям.

Английский ученый Р. Пенроуз, однако, обратил внимание на то, что предполагаемые космические объекты находят, как правило, не по тем признакам, на которые поначалу полагаются наблюдатели.

«Вполне возможно, — говорит он, — что черные дыры также будут обнаружены через некоторый побочный эффект, о котором мы сейчас даже не подозреваем. Сегодня в астрономии имеются в изобилии различные непонятные явления, которые могут иметь отношение к черным дырам. Известен феноменальный энергетический выход квазаров и радиогалактик, взрывы в центрах обычных галактик, аномальные красные смещения в спектрах некоторых квазаров и галактик, расхождения в определении массы галактик». Впрочем, последнее предложение приведенной цитаты иллюстрирует скорее важность и сложность проблемы черных дыр, чем способы их найти.

Но поиски идут и весьма активно.

Советские физики Я. Б. Зельдович и О. X. Гусейнов обратились к каталогам так называемых спектрально двойных звезд. Двойные звезды чрезвычайно распространены в космосе. Но довольно часто из двух звезд увидеть в телескоп можно только одну, иногда потому, что вторая звезда совсем не излучает света или излучает его очень мало, иногда потому, что более яркая звезда «забивает» своего спутника, хоть он и светится вполне «нормально». Но на спектре света этой первичной звезды сказывается ее обращение вокруг спутника: когда звезда движется по своей орбите в направлении к Земле, линии спектра смещаются к голубому краю, когда от Земли — к красному. Тут действует знаменитый эффект Доплера. Он проявляется тем сильнее, чем массивнее звезда-спутник. Зельдович и Гусейнов среди нескольких сот спектрально двойных звезд выделили пять, в которых спутник по меньшей мере втрое превосходит по массе Солнце. Черная дыра может, конечно, обладать и меньшей массой, но в таком случае сразу исключается, что выделенные спутники — белые карлики или нейтронные звезды.

Американские физики К. Торн и В. Тримбл продолжили эту работу, в их списке оказалось уже восемь кандидатов на звание черной дыры. Увы, все время можно было найти для наблюдаемого эффекта какое-то другое объяснение, кроме черной дыры. К. Торн назвал ученых, подыскивающих такие альтернативные решения, в том числе своего соавтора В. Тримбл, адвокатами дьявола. Надо сказать, что из-за нашего нехорошего отношения к дьяволу, даже несуществующему, слова «адвокат дьявола» сейчас воспринимаются как не слишком лестная характеристика. Между тем происхождение этого термина весьма почтенное и связано с одним из установлений католической церкви. Когда какого-то из ее «героев» решали посмертно объявить святым, по этому поводу устраивался… судебный процесс. На нем шло серьезнейшее разбирательство обстоятельств жизни и деятельности кандидата в святые. При этом одному из самых почтенных богословов поручалось находить все возможные детали, говорящие против «святости» претендента. Этот-то богослов и получал официальное наименование «адвоката дьявола». В нашем случае в роли претендента в «святые», то есть на конкретное место в космосе, выступает черная дыра. Окончательный ответ на вопрос о ее «святости» должны дать наблюдения.

Большие надежды научный мир возлагал на первый рентгеновский телескоп, который был установлен на борту американского спутника «Ухуру», запущенного в 1970 году. Ведь межзведный газ или газ, стянутый черной дырой со звезды-спутника, должен излучать в рентгеновском диапазоне. А спутник тут был нужен постольку, поскольку земная атмосфера надежно защищает нас от вредных рентгеновских лучей. Что защищает нас — хорошо, что наши приборы — плохо.

К весне 1972 года рентгеновский телескоп довольно многое сообщил нам о ста двадцати пяти рентгеновских источниках. В их числе не оказалось ни одного кандидата в «святые». Зато в этом списке шесть рентгеновских источников принадлежат двойным системам звезд, причем таким, которые раньше не считались двойными. К сожалению, два из шести источников выпадали из числа претендентов по некоторым особенностям излучения. Зато четыре до сих пор остаются под сильным подозрением, причем один — Лебедь X–I — считается почти «изобличенным». Масса его, как показали исследования, не меньше восьми масс Солнца. А ведь именно масса — критерий выбора между тремя объектами с такими мощными полями тяготения, в которых падающий газ порождает сильное рентгеновское излучение. Белый карлик не может превосходить Солнце более чем в один и четыре десятых раза. Нейтронная звезда — более чем в три раза. И только черная дыра не имеет ограничений по массе «сверху».

А не так давно журнал «Знание — сила» опубликовал небольшую статью В. Шикана «Увидеть „черную дыру“»? В заглавии стоит знак вопроса. Однако аппаратура для того, чтобы именно увидеть саму черную дыру, создается. Кандидат физико-математических наук В. Шварцман, работающий в Специальной астрофизической обсерватории АН СССР, расположенной на Северном Кавказе, у станицы Зеленчукской, разрабатывает установку, которая должна увидеть то, что как будто уже по определению увидеть нельзя.

Сигналы, естественно, должны быть получены не от самой черной дыры, а от вещества, на нее падающего. Межзвездный газ при таком падении разгоняется постепенно почти до скорости света и разогревается до триллиона градусов. При этом образуются мощнейшие магнитные поля. Движущиеся в них с околосветовыми скоростями электроны излучают энергию в основном в виде света. Часть фотонов успеет уйти — не из самой гравитационной ловушки, конечно, а из ее ближайших окрестностей.

Плотность межзвездного газа — один атом на кубический сантиметр пространства. Вблизи черной звезды она должна увеличиваться, но все равно только очень слабый ореол окружает самое загадочное тело космоса. Считают, что его можно будет увидеть как слабый источник света. А отличить черную дыру от обычной звезды можно постольку, поскольку ее «светимость должна меняться с огромной быстротой — сотни тысяч раз в секунду и к тому же в чисто случайном порядке». Ведь реальный источник света — падающий межзвездный газ, частицы которого достигли околосветовых скоростей. В нем происходит чрезвычайно бурные и неустойчивые процессы. Светимость обычных звезд колеблется гораздо медленнее.

Решение задачи сводится к тому, чтобы не только заметить, но и исследовать источник света с очень быстрыми резкими колебаниями. «Внешне, — пишет В. Шикан, — все выглядит довольно обычно. К небольшому телескопу — рефлектору с зеркалом диаметром 60 сантиметров прикреплен фотометр, регистрирующий изменения яркости звездного объекта. Преобразовав кванты излучения в электронные импульсы, он передает эту информацию по кабелю в устройство, которое измеряет промежутки времени между отдельными квантами и выражает результат словами из двоичных букв. Далее запись вводится в электронно-вычислительную машину… Если его (объекта наблюдения) яркость менялась сравнительно медленно, значит, в объективе находилась обычная звезда. Если же частота колебаний измерялась нано- или микросекундами, это может означать, что мы увидели не что иное, как… „черную дыру“».

Может означать… Что ж, будем ждать результатов. Стоит сказать еще, что в Москве астрономы Р. Сюняев и Н. Шакура предлагают отличать черную дыру от других небесных тел по небольшим вспышкам интенсивности рентгеновского излучения в газе, падающем на черную дыру от ее звезды-спутника. Такие вспышки, как показывают расчеты, должны состоять каждая из чрезвычайно коротких импульсов с интервалами между ними порядка миллисекунд.

Надо добавить, что, по мнению ученых, сторонников существования черных дыр, наша Вселенная должна буквально кишеть такими объектами. Скажем, американский профессор Пиблс полагает, что значительная часть вещества в Галактике давным-давно перешла в звезды, способные сжаться и стать черными дырами. Только наша Галактика может содержать около миллиарда черных дыр — цифра, которую даже в масштабах Вселенной не сочтешь незначительной.

…А может быть, черные дыры сумеет показать нам только гравитационная астрономия, когда она наконец возникнет? При образовании черной дыры может испускаться мощный поток гравитационных волн, то же происходит при падении на черную дыру сгустка вещества, при встрече двух черных дыр (когда они сливаются в новую черную дыру).

Так или иначе, не в первый раз человек собирается узнать то, что в принципе, как казалось поначалу, нельзя узнать.

Если черные дыры есть — они будут обнаружены. Если нет… Что же, неожиданный результат наблюдений или опыта имеет для физики неизмеримо большее значение, чем тот, которого ждут.

Единство физики, единство материи

Эйнштейн в свое время был очень разочарован, когда его десятилетние труды по разработке того, что он называл общим принципом относительности, дали «всего-навсего» теорию гравитации. Он ждал от своей работы много большего.

Это здорово, когда человек так требователен к себе, что собственное достижение столь грандиозного масштаба кажется ему не таким уж крупным. С другой стороны, именно это разочарование, именно желание попять мир в еще более высокой степени заставило ученого погрузиться с головой в разработку единой теории поля. Сегодня такой теории нет, во всяком случае признанной.

Но зато сама общая теория относительности, оставаясь учением о гравитации, стала чем-то гораздо более широким. И не потому даже, что ее развитие Эйнштейном и после Эйнштейна привело к интереснейшим результатам, имеющим значение для других областей физики. А потому еще, что эти другие области отнюдь не стояли на месте. Они развивались параллельно теории относительности, а уж «научное-то пространство» никогда, даже во времена самого Евклида, не было «евклидовым». В науке параллельные линии развития имеют свойство пересекаться, даже когда речь идет о разных науках, а тут ведь перед нами разные линии движения вперед внутри одной физики.

Было бы, наверное, любопытно, хоть шутки ради, и вправду подойти к физике с этой точки зрения — как к искривленному пространству, вычислить «радиус кривизны», благодаря которой различные направления встречаются, обогащая друг друга, как встречались два «плоскостных» физика, двигавшихся по глобусу из разных точек экватора по разным меридианам. И тут тоже уместно назвать сблизившую их силу тяготением. Причина такого тяготения в данном случае понятна. В ее основе лежит единство мира. Одну и ту же материю, одно и то же пространство исследуют, если отвлечься от масштабов, все физики, чем бы конкретно они ни занимались. Математика, как отметил еще Галилей, это язык природы. И если вся она говорит на одном и том же языке (в отличие от человечества, между прочим), то ведь так ее куда легче понять.

Законы электромагнетизма открывали, беря за образец закон всемирного тяготения Ньютона. Кулон перенес закон «обратных квадратов» на взаимодействие электрических зарядов и оказался прав. Постепенно возникла стройная теория электромагнитного взаимодействия, вершиной и завершением которой стали знаменитые уравнения Максвелла. Эта теория появилась намного раньше новой теории гравитации, немалую роль тут сыграла огромная — сравнительно с гравитационным взаимодействием — величина электромагнитных сил.

Кроме того, электромагнитные силы не имеют того универсального характера, что силы гравитации. Теории тяготения предстояло быть несравненно более широкой.

И чем дальше углубляются физики разных областей в изучение своих объектов, тем очевиднее становится, что у них много общего и кроме языка.

Не раз и не два уже случалось, что достижения ученых-теоретиков, занимающихся плазмой, светом, радиоволнами и даже жидкостями, оказывались использованными в развитии представлений о том, что происходит в поле тяготения. И наоборот, гравитационный теоретический аппарат, созданный Эйнштейном, его товарищами по работе и продолжателями, оказался весьма полезен в других районах и точках физики. «Гравитационщики», имеющие дело с самой слабой и одновременно самой могучей силой Вселенной, создали не только изощренные методы расчетов и мысленных экспериментов для космологии и астрономии, но и самую, пожалуй' точную сегодня технику земного эксперимента.

Однако все конкретные примеры выглядят до некоторой степени частными на фоне общей встречи двух самых мощных достижений физики XX века — теории гравитации и квантовой механики.

Физики-экспериментаторы и теоретики ждут чрезвычайно многого от мало-помалу создающейся, хотя далеко еще не сформировавшейся квантовой теории гравитации. Уже в самом ее названии отражен синтез обеих ведущих областей физики.

Теория гравитации имеет дело с огромными массами и расстояниями, измеряемыми световыми годами; квантовая механика заведомо занимается эффектами, возникающими на самом нижнем этаже материи — в микромире. У них, однако, нашлись и точки пересечения, которые в принципе можно было предвидеть еще двадцать лет назад, и, что еще важнее, общие сферы деятельности.

Мы много говорили об эволюции звезд. При этом не могли не обратить внимания на следующий факт: чем больше масса звезды, чем сильнее ее тяготение, тем очевиднее ее неустойчивость как системы. Но эта неустойчивость, подчеркивает видный советский физик доктор физико-математических наук Я. А. Смородинский, предсказывается на основе теории элементарных частиц, формул квантовой механики.

Открытие пульсаров с такой точки зрения было подтверждением того, что формулы квантовой механики применимы и к звездам. О свойствах гигантских тел мы узнаем на основе изучения тел сверхмалых.

В физике элементарных частиц выделяют две фундаментальные постоянные — скорость света и постоянную Планка. Постоянную Планка иначе называют квантом действия. Она характеризует наименьшие возможные порции, на которые может уменьшаться или увеличиваться любая энергия и равна примерно 6,62610-27 эрга на секунду. Скорость света отличается от всех прочих скоростей тем, что она — одна-единственная — одинакова для всех наблюдателей во всех возможных системах отсчета. Квант действия тоже один для любых физических систем. Как полагают ученые, если бы удалось найти для физики элементарных частиц еще одну — третью — столь же фундаментальную постоянную, то из этих трех величин можно было построить все остальные величины этого раздела физики. Так, через три точки можно провести одну и только одну окружность. Две точки, как и две фундаментальные постоянные, оставляют слишком большую свободу выбора.

В общей теории относительности положение сходное: тоже есть две универсальные постоянные — одна из них та же скорость света, другая — гравитационная константа. Опять-таки одной «точки опоры» не хватает. Обеим теориям недостает того, что можно назвать масштабной единицей: для массы, либо для расстояния, либо для времени. Найдись «естественный» масштаб для любой из этих трех величин, он мог бы быть использован, после преобразований, и для двух других.

Не раз физики пытались вводить масштабные единицы в свою теорию. Еще в 1938 году знаменитый немецкий физик Вернер Гейзенберг, один из отцов квантовой механики, предложил считать квантом пространства, наименьшей возможной длиной, размер электрона десять в минус тринадцатой степени сантиметра! Предложение выглядело естественным. Мы ведь не знаем, например, заряда, меньшего, чем заряд электрона, да и частицы не должны обладать способностью умещаться на отрезке, меньшем, чем электрон. Но затем выяснилось, что в микромире возможны и меньшие длины. (Сейчас на ускорителях удается исследовать строение нуклонов — частиц атомного ядра — до длин примерно в десять в минус пятнадцатой степени сантиметра. И это далеко нс предел.) Между тем естественных, данных нам природой тел, чьи размеры могли бы стать эталонными, не удается встретить и при таком углублении в элементарную частицу.

Аналогично этому пытались найти среди космических тел такое, массу которого можно было бы принять за эталон, — тоже не получилось.

Итак, ни общая теория относительности, ни квантовая механика по отдельности не смогли найти эталона длины, массы или времени. А вместе они, похоже, такой универсальный размер дают.

Его назвали длиной Планка, равна она десяти в минус тридцать третьей степени сантиметра; меньшие, чем длина Планка, отрезки, как полагают многие ученые, невозможны.

Перед нами — квант пространства. Казалось бы, величина из микромира, где гравитация слишком мала, чтобы себя проявлять. Тем не менее в формулу, по которой вычислили этот квант пространства, входят и гравитационная постоянная, и постоянная Планка, и скорость света.

Тут, видимо, пришло время напомнить, что на поразительное единство и взаимосвязанность законов природы, действующих в разных ее областях, обращали внимание многие мыслители. Максвелла поражало сходство уравнений, описывающих электромагнитные колебания и колебания обыкновенного маятника.

Владимир Ильич Ленин видел проявление единства природы в том, что дифференциальные уравнения, относящиеся к различным областям явлений, поразительно аналогичны.

То обстоятельство, что крайности сходятся, что звезды исследуют порой, образно говоря, в камере Вильсона, а на электроны наводят телескоп, что, исследуя атомное ядро, мы можем кое-что узнать не только о частицах, которые там есть, но и о тех, которых там нет, — все это имеет, безусловно, глубокий философский смысл. Картина мира — мозаика, в которую каждый раздел науки дал свои кусочки смальты. Но свойства любого кусочка зависят от свойств остальных и в чем-то, в свою очередь, определяют их свойства.

Гравитационная постоянная

Она появилась на свет из-под пера Исаака Ньютона, как Афина-Паллада в древнем мифе из головы Зевса. Мало было великому Ньютону понять, что тяготение прямо пропорционально массе тел и обратно пропорционально квадрату расстояния между ними. Надо было еще ввести коэффициент пропорциональности, Этот коэффициент и стал в дальнейшем именоваться гравитационной постоянной, заняв почетнейшее — первое уже по старшинству — место среди физических постоянных, или констант.

Менялись только латинские буквы, обозначающие этот коэффициент. Одно время его представляла в формулах строчная f, теперь чаще всего эту роль берет на себя заглавное G. Над самой гравитационной постоянной не властна среда, разделяющая массы, она не зависит от химических и любых иных свойств этих масс. Холодные планеты и самые горячие из звезд не в силах изменить коэффициент в формуле Исаака Ньютона. Он остается тем же в уравнениях и для двух протонов и для двойной звезды. Это воистину постоянная. Большинство, пожалуй, даже огромное большинство ученых полагают, что над гравитационной константой не властно даже время.

Поль Дирак, автор множества смелых идей, человек, предсказавший, в частности, существование позитрона — «положительного электрона», поставил под сомнение неизменность гравитационной постоянной во времени. Если он прав, то получается, что хотя в истории Вселенной тяготение всегда определялось, как и сегодня, массой тяготеющих тел и расстоянием между ними, сила тяготения изменялась. Точнее, уменьшалась.

Размеры такого уменьшения были предположительно определены: на три стомиллиардные доли за триста шестьдесят пять дней.

Неисчислимы проистекающие из такого взгляда последствия для наших представлений об эволюции всего нашего мира и, в частности, маленькой планеты Земля.

Физик Иордан сделал из гипотезы Дирака о постоянном ослаблении гравитационной постоянной определенный вывод, что в результате этого процесса Земля должна расширяться, как шарик, который надувают воздухом.

Между тем некоторые геологи совершенно независимо от физиков пришли к тому же выводу о расширении Земли на протяжении всей ее истории. (А другие, напротив, категорически отстаивают неизменность размеров планеты или даже говорят об ее сжатии; есть и предположение, что Земля то расширяется, то сжимается — пульсирует.)

Уменьшение гравитационной постоянной «по Дираку» за год примерно на три стомиллиардные доли ее теперешней величины должно иметь в числе своих следствий удаление Луны от Земли каждый год примерно на два сантиметра с соответствующими изменениями ее орбиты. Обработка данных лунных затмений за девятнадцать лет как будто подтвердила сам факт удаления Луны, но связан ли он именно с уменьшением гравитационной постоянной? С нашей соседкой и спутницей у ученых вообще относительно много хлопот, и такой эффект может объясняться, конечно, и иначе.

По расчетам одного американского физика получается, что если бы гравитационная постоянная по мере углубления в прошлое росла, то всего один миллиард лет назад температура на поверхности нашей планеты должна была превышать сто градусов по Цельсию. Чем больше притяжение, тем больше должно было быть давление в центре Солнца. Выше давление — выше температура ядерных реакций — ярче Солнце — жарче на Земле. Ясно, что при такой температуре жизнь невозможна. Между тем у нас есть веские доказательства того, что миллиард лет назад жизнь на Земле процветала.

Но не будем торопиться. Тем более, что в своем широком космическом, даже космологическом варианте, в виде самой гипотезы Дирака, это предположение все-таки не теряет своей популярности.

…Величайшая катастрофа для физики — если бы мы могли разрешить все главные нерешенные проблемы, но я не опасаюсь, что это может произойти в сколько-нибудь обозримом будущем.

Фримен Дайсон

Ученые снова обращают внимание на сходство между характеризующими Метагалактику величинами. Время при космологических расчетах можно исчислить в так называемых атомных единицах. За атомную единицу принимается время, за которое свет проходит расстояние, равное «классическому радиусу электрона».

Атомная единица времени равна примерно десяти в минус двадцать третьей степени секунды — одной стосекстилльонной доле секунды. Наша Метагалактика существует на протяжении примерно десяти в сороковой степени таких единиц.

Итак, перед нами десятка в сороковой степени. Отношение электромагнитных сил в атоме к гравитационным, если усреднить данные по электронам и нуклонам (об этом говорилось во введении к книге), составляет примерно десять в сороковой степени. По мнению ряда специалистов, эти величины слишком близки друг к другу, чтобы сходство могло оказаться случайным. Ослабление притяжения — прямое следствие возраста нашего мира. Старость — не радость…

Но ведь изменение гравитационной постоянной должно было сказываться не только на размерах Земли, ион на ее орбите вокруг Солнца, как и на орбитах всех других планет.

А что должно было происходить, скажем, с двойными звездами в прошлом, когда взаимное притяжение в этих системах было намного больше, чем сегодня?

Сама эволюция звезд, как достоверно известно, зависит от их массы; примем можно сказать, что не столько от массы, сколько от произведения массы на гравитационную константу. Представление о вековом уменьшении гравитационной постоянной должно бы заставить астрономов-теоретиков пересмотреть такое количество устоявшихся теорий, что это вызвало бы, пожалуй, настоящий кризис их науки. Даже нынешние взгляды на историю и ход синтеза элементов во Вселенной подлежали бы пересмотру. Как и то, что мы считаем известным относительно множества деталей, касающихся, например, эволюции планетных атмосфер.

Вот простой пример. Сейчас, пожалуй, даже школьники младших классов знают, что такое вторая космическая скорость — наименьшая скорость, которую надо придать телу, находящемуся у поверхности космического тела, чтобы оно без воздействия каких-либо дополнительных сил покинуло это космическое тело навсегда. Для Земли вторая космическая скорость — одиннадцать и две десятых километра в секунду, для Луны — всего два и четыре десятых километра в секунду, для Юпитеpa — шестьдесят один, для белых карликов — четыре тысячи километров в секунду. И это еще не предел. На поверхности нейтронных звезд она равна уже половине скорости света! Вот как трудно вырваться из их объятий. Что уж говорить о черных дырах, где и скорости света для этого мало.

Однако на планетах некоторые молекулы и атомы газов, составляющих атмосферу, в своем беспорядочном тепловом движении достигают второй космической скорости — в применении к ним ее называют еще скоростью ускользания.

В нижних, относительно плотных слоях атмосфер такие молекулы-рекордсменки сталкиваются с другими молекулами, и эти столкновения то и дело меняют и скорость и направление их движения. «Завистливые соседки» не дают своим разогнавшимся товаркам вырваться из пут притяжения. Но в верхних разреженных слоях атмосферы дело обстоит иначе. Скоростные молекулы некому остановить, и они навсегда ускользают в космическое пространство, пополняя мировые запасы межзвездного газа.

При этом поскольку, во-первых, в верхних частях атмосфер относительно велика доля легких газов и поскольку, во-вторых, легкие молекулы чаще достигают второй космической скорости, то в первую очередь из атмосфер исчезают легкие газы — водород и гелий.

В земной атмосфере есть и водород, и гелий, но только потому, что их запасы постоянно пополняются (водородом из молекул воды, распавшихся под воздействием ультрафиолетового и рентгеновского излучения Солнца). Ведь время полного исчезновения из нашей атмосферы всего входящего в данный момент в ее состав водорода составляет всего несколько лет.

Другое дело — гигант Юпитер, его водороду куда труднее разогнаться до юпитерианской скорости ускользания, она ведь в пять с лишним раз больше земной. На Юпитере много и водорода и гелия.

А вот Луна, где сила тяжести в шесть раз, а скорость ускользания почти в пять раз меньше земной, давно потеряла свою атмосферу целиком. Меркурий и Марс имеют силу притяжения примерно втрое меньшую, чем Земля, и их атмосфера чрезвычайно разрежена.

На основе этих фактов можно представить себе, насколько иначе должна выглядеть история планет, если в прошлом гравитационная постоянная была много больше.

В формулу, по которой определяется скорость ускользания, входит корень квадратный из удвоенного произведения гравитационной постоянной на массу планеты, деленный на радиус планеты. Значит, скорость ускользания тем больше, чем больше эта постоянная и чем меньше радиус. Однако радиус-то планеты, в свою очередь, тем меньше, чем больше постоянная G. Значит, в прошлом атмосферным молекулам (по Дираку!) было гораздо труднее покидать относительно малые планеты. Выходит, Дирак своей гипотезой льет воду на мельницу предложений о существовании, по крайней мере в далеком прошлом, цивилизаций на Марсе и даже Луне.

Однако факты, которыми располагают астрофизики (именно факты, оставим сейчас в стороне выводимые из этих фактов теории), не требуют такой коренной ломки. Астрофизики в своем большинстве не чувствуют потребности в столь крутой ломке созданной ими картины мира. То же относится к большинству геологов.

Но есть ученые, верные идее Дирака. И тут нам остается только вспомнить грустные слова английского астрофизика Ф. Хойла: «Тому, кто не работает активно в какой-либо области науки, трудно себе представить, как много можно сказать в пользу любой из множества противоречащих друг другу теорий».

Так или иначе, сейчас земная экспериментальная техника вышла к рубежу, на котором гипотеза Дирака может быть проверена и, значит, должна быть проверена.

Это — одна из задач, которые будут разрешаться с помощью аппаратуры на спутниках, свободных от сноса, и «солнечном зонде».

На старой Земле и рядом

Эта глава объединяет четыре небольшие темы, посвященные роли гравитации для нашей планеты, для живых существ на ней вообще и человека в частности. Она отнюдь не претендует на исчерпание этих тем. Речь идет только о том, чтобы на примерах показать важность тяготения, его вездесущность не только в качестве, так сказать, свидетеля и фона для всего, что происходит на нашей планете, но и одного из важнейших героев весьма многих событий. Автор устоял перед соблазном дать длинный ряд рассуждений типа «гравитация и история», «гравитация и география», «гравитация и…» — в качестве второго слова в таком сочетании можно использовать названия большинства наук и научных дисциплин. Возьмем, скажем, баллистику, столь важную для военного дела. Траектория снаряда определяется не только скоростью его вылета из ствола орудия, но и земным тяготением. А архитектура? А кораблестроение и авиастроение?

Можно сочинить специальную книгу о тяготении как враге человечества, больше того, рассмотреть историю человечества под углом его борьбы с гравитацией. Одна ее глава может называться «Сопромат», потому что именно сила тяжести в первую очередь испытывает на прочность почти все материалы, которыми пользуется человечество.

Можно написать книгу о тяготении как нашем друге и помощнике. Ведь если оно забирает, по некоторым подсчетам, четверть вырабатываемой нашей цивилизацией энергии, то вся эта энергия, кроме разве что атомной, обязана своим появлением, как тоже говорилось, в конечном счете гравитации.

И так далее, и тому подобное.

Фигура леди Земли

Давным-давно, издеваясь над педантами, от их лица изрекли: не Шекспир важен, а комментарии к нему. Между тем комментарии к Шекспиру тоже важны. Такая, казалось бы, вневременная и при чтении в XX веке безобидная и даже легкомысленная комедия «Сон в летнюю ночь» до отказа набита намеками, в том числе весьма злыми, на конкретных современников автора, как его друзей и знакомых, так и просто знаменитостей. Зрители шекспировского театра «Глобус», наверное, встречали дружным хохотом напоминания о недавних скандалах и аплодисментами — реплики, по сути, обращенные не к тем, кто играл на сцене, а к тем, кто сидел в зале или присутствовал в это время на приеме в королевском дворце.

И Свифтовы «Путешествия Гулливера» тоже можно читать без комментариев. Но стоит ли? Возьмем, к примеру, борьбу тупоконечников и остроконечников в Лилипутии, развернувшуюся вокруг проблемы, с какого конца надо разбивать яйцо. При некотором умственном напряжении и без примечаний можно догадаться, что великий сатирик обращает свое жало против религиозных войн. Но Свифт отличался умением поражать сразу несколько целей. И современники, безусловно, видели в партиях тупоконечников и остроконечников еще и намек на шедшую в то время борьбу двух научных партий, каждая из которых по-своему определяла фигуру нашей планеты.

Какова форма Земли? Это сегодня мы знаем, что она сплющена у полюсов (а значит, победили тупоконечники, возглавляемые самим Исааком Ньютоном). Но вот итальянский астроном и математик Джованни-Доменико Кассини, ставший во Франции Жаном Домеником и директором Парижской обсерватории (а также основателем династии французских астрономов), считал, что Земля сплющена у экватора и удлинена по направлению к полюсам. Так полагал и его сын Жак Кассини.

Проблема фигуры Земли стала полем научного сражения между двумя мощными научными школами, для каждой из них это был лишь сугубо частный вопрос, деталь в картине мира, рисуемой обеими школами по-своему. По «теории вихрей» великого французского философа Декарта Земле надлежало быть вытянутой. Спор был чисто научным, но длился так долго, что приобретал для обеих сторон политический и даже — увы! — национальный оттенок. Франция, постепенно уступавшая Англии место ведущей державы Западной Европы, жаждала реванша хотя бы на поле научной битвы.

Чтобы решить вопрос, надо было «просто» измерить Землю. Или, говоря точнее, измерить хотя бы кусочки дуг меридиана на разных широтах и посмотреть, как соотносятся расстояния, приходящиеся на один градус. Собственно говоря, измерять эти расстояния во Франции начали еще до того, как мир узнал о ньютоновском законе всемирного тяготения. В 1679–1680 годах эту работу начал астроном Пикар, к 1715 году ее закончил Жак Кассини. Измерения дали результат, говоривший в пользу «остроконечников», — не потому ли, что измерения были организованы последователями Кассини? Нет, здесь даже мысли не может быть о намеренной фальсификации вычислений, но история науки знает немало случаев, когда ученые получали именно те результаты, которые им хотелось получить.

Первый из династии Кассини (его потомки вплоть до правнука наследовали пост директора Парижской обсерватории в течение ста двадцати четырех лет, пока этот пост не был ликвидирован) вошел в историю науки как составитель подробной карты Луны, открыватель четырех спутников Сатурна и многого другого. Немало сделал и его сын. Оба были настоящими учеными. А за «тупоконечниками» стоял не только Исаак Ньютон, который учел действие на форму Земли центробежной силы, растягивающей планету у экватора и сплющивающей у полюсов, но и его великий оппонент по некоторым другим вопросам Гюйгенс. При этом Ньютон принял для удобства расчета, что Земля однородна и состоит из жидкости, свободно перетекающей внутри ее фигуры под действием сил тяготения и центробежной. Если правы были «остроконечники», то градусы меридиана тем длиннее, чем они ближе к экватору и дальше от полюса. Так и получилось у Кассини, но длину обоих градусов измеряли под Парижем, где разница между ними, кто бы ни был прав, не могла быть достаточно велика для точных измерений. Споры приняли такой размах (только в 1733 году и только во Франции вышли из печати шесть работ по проблеме фигуры Земли), что Парижская академия при поддержке морского министра отправила в 1735 году экспедицию в Перу, на экватор, а несколько позже — другую, в Лапландию, поближе к полюсу.

Восемь лет в Кордильерах французские ученые измеряли дугу длиной в три градуса восемь минут. В Лапландии условия были немногим легче. Экспедиция получила в свое распоряжение военные отряды, которые прорубали просеки в лесах, обеспечивая возможность измерений. Сами измерения совершали с помощью сосновых жердей с выверенной длиной в десять метров. К большому удивлению членов северной экспедиции, длина градуса оказалась на целых два километра больше, чем полагалось «по Кассини». Запоздавшее сообщение из Перу стало только подтверждением результатов, полученных при сравнении данных из Лапландии со старыми измерениями дуги градуса под Амьеном. Чем ближе к полюсу, тем длиннее становился градус.

Руководитель лапландской экспедиции Мопертюи писал: «Вернувшись, мы столкнулись со значительными раздорами: Париж, жители которого не могут остаться безразличными ни к какому вопросу, разделился на два лагеря: одни приняли нашу сторону; другие же считали, что для чести нации невозможно, чтобы у Земли осталась иностранная фигура, которую придумали один англичанин и один голландец».

Вольтер в письмах именовал Мопертюи «тем, кто сплющил Землю и всех Кассини».

Какое отношение имеет борьба «тупо»- и «остроконечников» к теме книги?

Да дело в том, что, по определению Н. П. и А. Н. Грушинских, авторов книги «В мире сил тяготения», теория фигур планет (и Земли в том числе) опирается на те же постулаты, имеет те же принципы и законы, что небесная механика, изучающая движение тел в поле всемирного тяготения. Обеим им равно положили начало работы Галилео Галилея и открытие Ньютоном закона всемирного тяготения.

Но две науки, родившиеся из одного корня, развивались дальше каждая своими путями, которые, впрочем, часто пересекались, порою сливаясь; науки-сестры обогащали друг друга. И если небесная механика обрела практический смысл относительно недавно, когда в ее проблематику полноправно вошло движение искусственных спутников Земли, то физическая геодезия, она же геодезическая гравиметрия, стала работать на практику еще во второй половине XIX века…

Впрочем, надо сразу сделать оговорку, что слово «практика» здесь в обоих случаях понимается исключительно в узком смысле. Давно сказано, что нет ничего практичнее хорошей теории. И потому небесная механика оплодотворяла своим воздействием многие науки еще триста лет назад.

И если спор «тупоконечников» и «остроконечников» был решен чисто геометрически, то, как пишут Н. П. и А. Н. Грушинские, сама постановка его возникла из гравиметрических понятий — из теории тяготения Ньютона и понятия силы тяжести как равнодействующей двух сил — притяжения и центробежной.

Недаром именно один из «измерителей дуг» — Алексис-Клод Клеро, ставший в восемнадцать лет академиком, вывел теорему зависимости силы тяжести в определенной точке от положения этой точки на земном эллипсоиде. Иными словами, теорема Клеро довольно точно позволяет определить зависимость силы тяжести от широты. И если тут приходится говорить не «точно», а только «довольно точно», так в этом виноват не Клеро, а сама планета Земля. Она ведь состоит не из однородной жидкости, как условно принял Ньютон, и не из слоев, каждый из которых хотя бы внутри однороден, как предположил Клеро.

Долгая и богатая идеями и открытиями история того, как уточняли фигуру Земли, останется за пределами книги. Хотя в этой истории огромную роль сыграли все новые и новые измерения силы тяготения. Из шара Земля стала эллипсоидом и потом получила имя единственной в своем роде геометрической фигуры — геоида. Геоид — значит «подобный Земле». С какой же точностью надо было провести исследования, чтобы полученные результаты нельзя было даже подогнать к чему-то, кроме нашей планеты… И все это — первоначально — делалось без какой-либо надежды на чисто практическую отдачу. Должно было пройти почти двести лет с начала спора между «тупоконечниками» и «остроконечниками», чтобы появились гравиметрические методы геологической разведки. Естественно, там, где под поверхностью Земли скрыты запасы тяжелых металлов, сила тяжести больше, чем обычно; там, где есть пустоты, заполненные нефтью или газом, она меньше, чем по соседству.

Сейчас для измерения фигуры Земли и силы тяжести в ее точках используют уже не сосновые жерди десятиметровой длины, а приборы, установленные на спутниках. Сжатие Земли, например, удалось после запуска спутников определить в сотню раз точнее, чем прежними способами. Каждый спутник сам по себе — это прибор для измерения поля земного притяжения, ведь его траекторию прежде всего определяет именно это поле. Но по-прежнему в чести и совсем простые на вид приборы для определения силы тяжести, приборы самого земного характера, о которых речь пойдет в следующей главе.

Не только общие очертания фигуры Земли определяются силой тяготения и центробежной силой. Советский ученый Б. Л. Личков рассматривает такое грандиозное явление, как горообразование, в качестве части процесса переформирования фигуры Земли при изменениях скорости ее вращения. С увеличением или уменьшением скорости вращения планеты изменяется ведь и степень ее сжатия.

Главное проявление гравитации в современной «внешней» жизни нашей планеты в том, что она удерживается Солнцем на своей орбите. Следующее, пусть не по значению, а по очевидности, — то, что мы тащим с собой вокруг Солнца собственную спутницу — Луну.

Но и Луна в свою очередь влияет на процессы, происходящие на Земле, чему доказательство — приливы и отливы. Мировой рекорд по максимальной высоте прилива более тринадцати с половиной метров делят два залива у побережья Канады. В Англии в заливе Северн высота прилива достигает тринадцати метров десяти сантиметров, во Франции в бухте Мон-Сен-Мишель— двенадцати метров шестидесяти сантиметров. Однако приливы и отливы бывают не только в океанах и морях; Луна и Солнце вызывают приливы и в земной коре. В районе экватора максимальные колебания земной поверхности по этой причине достигают примерно полуметра, а на широте Москвы до сорока сантиметров. К счастью, приливные волны в земной коре — очень длинные и очень медленные; в отличие от океанских приливов, их можно обнаружить только с помощью специальных приборов.

Однако сейчас ряд специалистов пытается связать с гравитационным воздействием Солнца и Луны… землетрясения или по крайней мере значительную их часть.

Еще в прошлом веке было замечено и подтверждено проверкой и новыми наблюдениями, что землетрясения чаще всего происходят в моменты новолуний и полнолуний, причем тогда, когда сама Луна находится вблизи перигея, то есть той точки своей орбиты, которая наиболее близка к Земле. Считать это случайностью трудно.

Сейчас многие сейсмологи отводят приливным волнам в земной коре двойную роль, обе стороны которой в равной степени неприятны для нас, землян. Во-первых, приливные волны играют роль провокаторов, они расшатывают равновесное состояние масс, слагающих земную кору, способствуют возникновению смещений этих масс и тектонических разрывов. Энергетический вклад приливных волн в эти процессы относительно очень мал, однако и «капля дробит камень не силой, но частым падением», как знали еще древние римляне. Во-вторых, когда равновесие окажется нарушенным и на большом участке планеты возникает возможность землетрясения, «та же самая» приливная волна выступает в роли спички, поджигающей здание, последней соломинки, ломающей спину верблюда.

Нет, испытывать чужое притяжение, как и притягивать самому, — вещь и для космических тел хоть и необходимая, но не безопасная.

Прослеживается связь фаз Луны и ее относительной близости к Земле с извержениями вулканов. Есть гипотеза, по которой энергия приливов в твердой оболочке Земли частично идет на подъем магмы из глубинных ее очагов к жерлам вулканов, да и вообще ближе к поверхности Земли. Не исключено, что часть энергии таких волн тратится на расплавление и превращение в магму некоторых количеств твердого вещества в земной коре.

Беспокойная соседка — эта Луна! Правда, гравитационное влияние Земли на Луну относительно больше, пропорционально перевесу пашей планеты в массе. «Мы» своим тяготением развернули Луну, поворотили ее к Земле одной стороной, вызвали серьезные изменения в фигуре своей спутницы, земные приливы в твердом веществе Луны сильнее, чем соответствующие лунные приливы на Земле… Не нам жаловаться.

Сейчас ряд ученых разрабатывает гипотезы, связанные с влиянием на Землю центров тяготения, куда более отдаленных, чем Солнце. Ставится такой вопрос: случайно ли самый высокий материк нашей планеты, Антарктида, находится в районе южного полюса? Ведь сейчас наша планета обращена именно Южным своим полушарием в сторону центра Галактики. Нет ли здесь проявления некой закономерности?..

Слава маятнику

Слабость и даже, можно сказать, беспомощность самой могучей из сил нашей Вселенной легко доказываются опытом, который каждый из нас, не задумываясь особенно над выводами, успел проделать еще в раннем детстве. Крошечный магнит, извлеченный из электродвигателя игрушечного автомобильчика, поднимает целую цепочку канцелярских скрепок, небольшой гвоздь, пол-дюжины бритвенных лезвий. Поднимает — значит, одерживает победу над притяжением целой огромной планеты! Вот ведь как!

Тем поразительнее, что мы научились различать чрезвычайно мелкие колебания этой самой слабой и самой могучей силы. Причем с помощью удивительно простых приборов. Первым из них по праву должен быть назван маятник. Что на самом деле проще его?

Но нужны были гений и наблюдательность девятнадцатилетнего Галилея, чтобы заметить, что люстра в Пизанском соборе по мере уменьшения размаха своих колебаний вовсе не тратит на каждое из них все меньше и меньше времени. Именно с этого наблюдения началась не только история маятника как точного прибора, но история подлинно научного исследования гравитации. Должно было пройти еще семь лет, прежде чем Галилей проделал свои знаменитые опыты по сбрасыванию разных предметов с Пизанской башни. И с самого начала видел он глубокую связь между законами, управляющими падением тел, и законом, управляющим качаниями маятника.

Маятник стал прибором, с помощью которого установили ускорение свободного падения. Именно маятник относительно точно — куда точнее, чем геометрические измерения меридианных дуг, — показал, насколько именно Земля сплюснута у полюсов (кстати, в Лапландии экспедиция Мопертюи немало поработала и с маятниками). Свойства маятника так тесно связаны с силой тяжести, с земным тяготением, что известный немецкий физик Макс Лауэ как-то заметил: «Маятниковые часы — это не просто ящик, который вы покупаете в магазине; маятниковые часы — это тот ящик, который вы купили в магазине вместе с самой Землей. Если вы хотите передать маятниковые часы от одного наблюдателя к другому, вы должны выдать каждому из них по Земле; конечно, это довольно накладное мероприятие».

Период колебания маятника зависит от его длины и силы тяжести. И — в принципе — только от них. Выходит, зная длину маятника (а ее можно измерить, хотя тут возникают сложности, которых здесь не стоит касаться) и период колебаний (тоже поддающийся измерению), можно определить силу тяжести в любой данной точке. При этом очень важно, что вместо того, чтобы ловить доли секунды в поисках точного промежутка времени, отданного на одно колебание, можно определить, скажем, время, за которое маятник делает тысячу, десять, сто тысяч колебаний, и разделить это время на их число — так сразу многократно повышается точность наших знаний.

Вот такие маятники и стали главными приборами на первых гравиметрических станциях, покрывших нашу планету довольно густой сетью уже с конца XIX века.

Впрочем, наиболее точно и бесспорно ускорение земного тяготения определяется самым прямым образом: наблюдением за тем, как падает пробное тело в вакууме.

Определить при помощи маятника абсолютную силу тяжести чрезвычайно трудно, ведь тут многое зависит от точного измерения его длины. Поэтому в наше время маятники предпочитают использовать для выяснения разницы между силой тяжести в двух точках. В этих двух точках один и тот же маятник будет иметь разный период колебаний, и такая разница будет зависеть от различий в силе тяжести. Надо было только выбрать на Земле место, где силу тяжести следовало принять за эталон. Поскольку впервые абсолютное значение силы тяжести на Земле было установлено в городе Потсдаме (ныне — в ГДР) в 1898–1904 годах, то именно Потсдам стал опорным пунктом для мировой гравиметрической системы.

Нынешние наземные гравиметрические измерения, по сути, относительны, они показывают прирост или падение силы тяжести в какой-то точке Земли сравнительно с исходным пунктом. (Надо оговориться: поскольку Земля вращается, то на каждое тело на ее поверхности действует, кроме силы земного притяжения, еще и центробежная сила; сила тяжести есть равнодействующая этих двух сил.)

В наших наручных часах место гири и маятника ходиков заняла пружина. В истории гравиметрии лет пятьдесят назад наступил момент, когда маятник в качестве универсального и единственного прибора для определения силы тяжести оказался потеснен гравиметром с пружиной. На конце пружины подвешен груз — вот суть прибора. Груз растягивает пружину, а уж на сколько именно — зависит от силы тяжести в данном месте. Пружина, конечно, нужна идеальная, длина ее и способность растягиваться должны как можно меньше зависеть от внешних условий, ведь измерять тут приходится миллионные доли длины пружины. Впрочем, само слово «пружина» носит здесь чрезвычайно обобщающий характер. В этом качестве используют и настоящие металлические и кварцевые пружины и упругие нити и даже сжатый газ.

Сейчас появились гравиметры, в которых используются магнитная подвеска, сверхпроводимость и другое оружие из современного арсенала физики.

Идея применения в приборе газа, как и сама идея гравиметра такого типа, принадлежит Ломоносову.

Подводит гравиметр только то, что как ни точно выверен этот прибор, а нагруженная пружина имеет свойство растягиваться.

Гравиметры, как и нынешние маятниковые приборы, измеряют относительную силу тяжести. Но при этом гравиметр в конце очередной серии измерений приходится возвращать в исходный пункт (создана целая сеть таких пунктов), по которому он выверен, и смотреть, не изменились ли показания прибора, а если изменились, то как.

Очень напоминают маятник по характеру колебаний и крутильные весы (их часто так и называют крутильным маятником), те самые, на которых взвесили и саму Землю. Роль первого весовщика, как мы знаем, сыграл Генри Кэвендиш.

Крутильные весы отличаются прямо-таки фантастической чувствительностью. Н. П. и А. Н. Грушинские отмечают: «Замечательным является тот факт, что Кэвендиш при низких технических возможностях 18 века получил результат, лишь на 1 % отличающийся от современного».

Крутильные весы Кэвендиша стали прародителем приборов, измеряющих уже не само гравитационное поле Земли в разных точках нашей планеты, а именно изменение поля при переходе от одной точки к другой. Называют такие приборы вариометрами. Первый вариометр создал венгерский физик Этвеш (тот самый, что первым с высокой точностью измерил на крутильных весах эквивалентность тяжелой и инертной масс).

Перед нами опять-таки коромысло с двумя грузами на концах, причем если на один груз действует не совсем та сила, что на другой, оно повернется вокруг оси подвеса. Насколько повернется — уже можно измерить. Хороший вариометр реагирует даже на наблюдателя, стоящего около него, то есть регистрирует неоднородность поля, возникшую от присутствия человека. Если снова вспомнить о слабости гравитации, о том, как невелика сила тяготения, создаваемая массой в шестьдесят — сто килограммов, остается только поразиться такому результату. А между тем речь ведь идет просто о «хорошем вариометре», а не о неком уникальном и сверхточном.

Этвеш же первым и применил вариометр для того, что можно назвать геологической разведкой. Впрочем, он не искал полезные ископаемые, а пытался исследовать геологические структуры.

Сегодня гравиметрическую разведку геологи используют вместе с другими физическими методами поиска. Уголь и нефть, железная, хромовая, медная руды выдают себя точным гравиметрам и вариометрам. Глубину льда в Антарктиде и Гренландии определяли гравиметрическим методом — ведь легкий лед лежит на гораздо более плотных материковых породах.

Н. П. и А. Н. Грушинские обращают особое внимание на то, что гравиметрия идет впереди других видов геологической разведки на море, как и на суше. Правда, уточнение результатов приходится часто проводить другими методами, но ведь нельзя же требовать, чтобы тот, кто идет впереди, сам же и расширял проложенную им тропу.

Наконец, в роли гравиметра выступают искусственные спутники Земли. На их траектории отражается распределение масс в теле Земли. До сих пор спутники давали в основном сведения широкого характера, с их помощью уточняли фигуру Земли, находили занимающие относительно большие территории аномалии силы тяжести. Той особой «конкретности», какую дают наземные гравиметры, спутники обеспечить не могли. На их движении сказывается слишком много привходящих обстоятельств. Но сейчас, когда уже летали первые спутники, защищенные от таких искажений, когда готовятся к запуску десятки новых свободных от сноса спутников, положение коренным образом меняется. Издали и в мелких деталях гравитационного поля Земли можно будет разобраться лучше, чем вблизи.

А что же маятник? Он еще послужит. И, строго говоря, искусственный спутник Земли — тоже ведь в определенном смысле маятник. Равномерное круговое движение спутника и колебания маятника описываются одними и теми же уравнениями. Логическое сближение маятника и спутника — отнюдь не просто сравнение, аналогия. Сходство здесь весьма глубокое: и космический гравиметр, и. маятниковый наземный гравиметр работают по одному принципу.

На весах жизни

Все живое делят обычно на два грандиозных разряда, отделяя растения от животных. Но можно предложить еще один способ деления — по тому, чувствует ли живое существо свою массу. И тогда весь мир сразу окажется разорван на тех, кто растет и живет в воде, и тех, кому принадлежит суша. К промежуточной группе можно отнести, пожалуй, амфибий, тюленей, некоторых насекомых и морских черепах, водяных змей, крокодилов, выдр… Перечислять долго, но принцип выбора понятен. Пингвина, скажем, тоже стоит причислить к этой категории, потому что он добывает пищу под водой. А вот большинство птиц — создания с «постоянным весом». Это, говоря языком техники, аппараты тяжелее воздуха.

Все, что живет на суше, постоянно ощущает свою массу. Водные животные тут оказываются в несравненно более выгодном положении. Вон кит. Позвоночное, теплокровное животное. Самое огромное живое существо, которое когда-либо обитало на нашей планете. И никто не удивляется, что хотя кит млекопитающее, но гигантом стал в море. Самый крупный из современных сухопутных животных, слон, уступает ему по массе в десяток-другой раз.

Удельный вес человека почти равен удельному весу воды. Готовя человека к полетам в космос, ученые имитируют состояние невесомости, погружая подопытного (в акваланге) в бак с водой, в котором заранее растворено ровно столько солей, сколько нужно, чтобы ее удельный вес точно совпал с удельным весом человеческого тела Конечно, это не победа над гравитацией в точном смысле слова… Однако массы своей человек в воде, как и кит в воде, не ощущает. Кит — представитель водной жизни, человек — сухопутной. Киту — легче.

На сравнении жителей суши и жителей моря довольно легко увидеть некоторые весьма весомые преимущества водной среды. Прежде всего энергетические. На суше приходится бороться с собственной массой. В воде за тебя работает закон Архимеда. Недаром до сих пор при всех достижениях автомобилистов и железнодорожников, не говоря уже об авиации, самыми дешевыми остаются водные перевозки грузов. И паровой двигатель был поставлен сначала на корабль, а уже потом на повозку, поскольку тут требовалось потратить меньше энергии на единицу расстояния. И все из-за закона Архимеда, а закон Архимеда, как известно, действует постольку, поскольку на воду действует земное притяжение.

До глубокой мысли надо подняться.

Станислав Ежи Лец

Жизнь на Земле, как полагают биологи (во всяком случае огромное их большинство), возникла в океане и лишь потом перебралась и на сушу, сумев приспособиться к новым условиям, среди которых немаловажное значение имел вес. Но снова и снова виды живых существ, сформировавшиеся на суше, возвращались в воду. Однако за это приходится расплачиваться. Оказавшийся на отмели во время отлива кит не всегда может дождаться прилива. Он буквально оказывается полураздавленным собственной массой. Его мышцы еле-еле способны раздвинуть ребра, освобождая место расширяющимся при каждом вдохе легким. Не только мышцы, скелет, кровь, все жизненно важные системы китообразных приспособились за время долгой эволюции в водной среде к практическому отсутствию веса.

Экспедиция знаменитого исследователя морских глубин Кусто как-то наткнулась на застрявшего на мели китенка. Его понадобилось для лечения и перевозки поднять на борт. Но «поднять кита из воды — дело мудреное. Даже новорожденный китенок может сломаться от собственного веса без равномерной опоры». Пришлось сделать что-то вроде гамака и подвести под туловище животного. Именно исследование существ, живущих в воде, стало ключом к пониманию роли земного притяжения для жизни. Судя по всему, выходящим на сушу морским животным пришлось когда-то перестроить свой организм для «борьбы» с собственной массой не в меньшей, даже в гораздо большей степени, чем для перехода на новую, легочную форму дыхания. Последнее коснулось прежде всего перестройки дыхательного аппарата и до некоторой степени механизма кровообращения, первое — всего организма. Профессор П. А. Коржуев пишет в книге «Эволюция, гравитация, невесомость»: «Эволюция наземных животных представляет в основном эволюцию приспособлений, направленных на преодоление сил гравитации».

И эту мысль профессора Коржуева отнюдь нельзя назвать тривиальной, хотя может показаться, что данный факт очевиден. Как ни странно, сравнительно немногие мыслители обращали внимание на эту сторону эволюции.

Константин Эдуардович Циолковский специально рассмотрел еще в 1882 году проблему соотношения размеров обитаемой планеты и размеров ее обитателей. Он писал: «Будь иная сила тяжести на нашей планете, и размер наиболее совершенных людей, как, впрочем, и всех других существ, изменился бы».

Англичанин Крукс в 1897 году констатировал, что форма животных определена силой земного тяготения, исключения относятся только к водным животным. Стоит, впрочем, добавить, что если не о заданности размеров живых существ тяготением, то о верхнем пределе, который поставила тяжесть этим размерам, очень убедительно говорил еще Галилей: «…природа не может произвести деревьев несоразмерной величины, так как ветви их, отягощенные собственным чрезвычайным весом, в конце концом сломались бы. Равным образом невозможно представить себе костяка человека, лошади или другого существа слишком большой величины, который бы держался и соответствовал своему назначению, достигнуть чрезвычайной величины животные могли бы только в том случае, если бы вещество их костей было значительно прочнее и крепче, нежели обычные, или же если бы кости их изменились, соразмерно увеличившись в толщину, отчего животные по строению н виду производили бы впечатление чрезвычайной толщины. Это, возможно, уже было подмечено тем проницательнейшим поэтом, который, описывая великана, говорит: нельзя было сказать, насколько он был высок, так все в нем было непомерно толсто».

А дальше Галилей объясняет огромные размеры кита вполне научно даже с современной точки зрения (хоть и называет его, увы, рыбой).

В 1960 году в нашей стране была издана книга биолога В. Я. Бровара «Сила тяжести и морфология животных».

Ее главная идея: «…всякое живее существо взаимодействует с силовым полем. С момента возникновения и на всем протяжении своего онтогенетического[19] развития, связанного с изменением внешней формы и положения частей внутри целого, организм находится под влиянием тяготения».

Сейчас широко разрабатывает проблемы влияния гравитации на конкретные органы и системы организма профессор П. А. Коржуев. Новый подход позволяет, по мнению ученого, понять наконец ряд фактов эволюции — фактов, которые до сих пор не получали убедительного объяснения. Чтобы осмыслить их, полагает Коржуев, прежде всего надо анализировать работу костно-мышечной системы, «так как скелет и мускулатура — наиболее эффективные механизмы преодоления сил гравитации». Мускулатуру для преодоления этих сил нужно обеспечить достаточным количеством энергии, и организму пришлось совершенствовать ее выработку в процессе эволюции.

Производство энергии в организме тесно связано с кровоснабжением органов — ведь именно кровь доставляет в ткани необходимый им кислород. У рыб кровь образуется прежде всего в селезенке и почках. Уже у амфибий появился новый кровотворный орган — костный мозг, причем, собственно, в качестве кровотворного органа выступает скелет в целом, трубчатые кости вместе с заключенным в них костным мозгом.

Эволюция отказалась от усиления кровотворной деятельности старых органов, изготовляющих кровь, — почек и селезенки. «Биологически целесообразно было перемещение очагов кроветворения в те структуры, которые воспринимают всю мощь воздействия сил гравитации в наземных условиях. Такой структурой является скелет. Весь скелет или его отделы… воспринимая нагрузку, автоматически могут регулировать деятельность очагов синтеза гемоглобина».

Профессор Коржуев сравнил отношение массы скелета к массе тела у разных животных и массовое соотношение между собой различных частей самих скелетов у разных же животных. Результат оказался чрезвычайно любопытен. Самый легкий скелет, естественно, у рыб. Самый тяжелый (в среднем) у птиц и млекопитающих, хотя отдельные виды этих классов «сумели» сильно облегчить себя — до рыбьего уровня. Однако это относится, вопреки общепринятым представлениям, отнюдь не к летунам. Среди птиц своеобразный рекорд понижения массы скелета поставила малоподвижная пекинская утка, существо домашнее. У нее скелет по массе составляет только десять процентов массы тела. У ее дикой родственницы кряквы доля скелета в массе тела поднимается уже до одиннадцати и двух десятых процента. А у крачки обыкновенной — почти до восемнадцати процентов.

Скелет малоподвижной морской свинки дает пять с половиной процентов массы тела (абсолютный нижний рекорд в таблице Коржуева), зато у летучих мышей доля скелета поднимается до семнадцати, девятнадцати и двадцати двух процентов общей массы.

Мы привыкли считать, что скелет птиц облегчается благодаря утоньшению стенок трубчатых костей и другим способам, изобретенным природой. С одной стороны, это верно, но облегчение, как видим, не абсолютно. Чтобы летать, нужен мощный скелет.

Мы знаем, какие отличные прыгуны лягушки. Так вот, у травяной лягушки задние конечности дают почти половину массы скелета, шестьдесят четыре процента всей мускулатуры связано у травяной лягушки с задними конечностями — вот что делает ее такой подвижной.

У хорошо летающих птиц на кости крыльев приходится почти половина массы скелета. А у летучих мышей даже более половины общей массы скелета.

«Таким образом, осуществление полета у птиц и млекопитающих потребовало такой же глубочайшей перестройки организма, как и у бесхвостых амфибий, впервые сделавших попытку преодолеть силы гравитации. Примерно половина веса скелета и три четверти веса всей мускулатуры — вот какая цена заплачена за возможность преодолеть силы гравитации на миг и на более длительное парение в воздухе. Нужна была в буквальном смысле слова переплавка организма, фундаментальное перераспределение всех его ресурсов для решения только одной задачи — вырваться из оков земного тяготения».

Если же сравнить отношение массы сердца к массе тела у рыб, амфибий, рептилий и млекопитающих, то картина выглядит в целом еще более впечатляющей. В среднем масса сердца у рыб составляет едва лишь тысячную долю массы тела, у бесхвостых амфибий (лягушек, жаб) — вчетверо большую, у птиц — от одной трехсотой массы тела у фазана до почти тридцатой доли массы тела у колибри; у млекопитающих — от одной триста семидесятой доли массы тела у домашнего кролика и до одной семидесятой — у летучей мыши. Чем больше энергетические затраты, тем более крупное требуется сердце. А энергетические траты уходят прежде всего на борьбу с гравитацией.

При переходе млекопитающих к водному образу жизни идет обратный процесс. Снижается масса скелета, который теперь испытывает меньшую нагрузку. У дельфина, например, она составляет лишь пять-семь процентов массы тела.

Приспособление к гравитации, по Коржуеву, сыграло свою роль и в изменении состава крови наземных живых существ, и во многом другом.

Человек прошел по пути биологической борьбы с гравитацией еще дальше, чем большинство млекопитающих. Мы твердо стоим на двух ногах, обходимся двумя точками опоры. Но это означает, что в нашем теле произошло резкое перераспределение напряжений, связанных с тяжестью — по сравнению с четвероногими животными. Это сказалось на форме костей ног, принявших двойную тяжесть, на костях рук, освобожденных от обязанности служить опорой. Таз женщины, который теперь должен служить опорой плоду, изменил свою старую форму, применяясь к новой функции. Разумеется, все это происходило на протяжении очень длительного времени и, вероятно, происходит и по сию пору. Видно, прав врач и писатель В. Вересаев: «…органы человека и их размещение до сих пор еще не приспособились к вертикальному положению человека. Нужно себе ясно представить, как резко при таком положении должны были измениться направления и сила давления на различные органы, и тогда легко будет понять, что приспособиться к своему новому положению органам вовсе не так легко». Немалое число болезней связывают медики с такой «недоприспособленностью».

Многое в обмене веществ, пищеварении, дыхании, кровообращении обеспечивается у нас специальными физиологическими механизмами. Но в ряде случаев организм «просто» использует даровую силу земного тяготения. Кровь на некоторых участках артерий и вен идет, так сказать, самотеком… Живое существо экономит свою энергию, обходится без лишних морфологических и физиологических механизмов. Это хорошо. Но человек вышел в космос. И тут-то перед ним, сверх прочего, во всей своей важности встала проблема того, до какой степени он приспособлен к земному гравитационному полю. Встала потому, что человечество начало — пусть пока в лице немногочисленных своих представителей — выходить из-под влияния этого поля.

Без тяжести

Слова «антигравитация», «антигравитационный» долгое время казались выходцами из фантастики.

А между тем биологи уверенно говорят и об антигравитационных мышцах и даже об антигравитационной функции организма. Мы буквально на каждом шагу только тем и занимаемся, что преодолеваем земное тяготение. Кровь в наших жилах притягивается Землей, и понятно, что есть в организмах человека и животных специальные механизмы, обеспечивающие, чтобы кровь более или менее равномерно распределялась по нашему телу.

Есть знаменитая древняя формула: лучше сидеть, чем стоять, лучше лежать, чем сидеть. Физиологический смысл этого изречения может быть отнесен при желании к снабжению организма кровью. Ведь когда лежащий человек встает или стоящий ложится, он коренным образом изменяет положение своего тела в поле земного тяготения. Как все мы знаем из школьных учебников, в легких человека находятся особые пузырьки — альвеолы, через их стенки кислород воздуха проникает в кровь. Легкие тут — базы снабжения кислородом, артерии — дороги, кровь — транспорт для кислорода. Так вот, в верхние отделы легких крови поступает меньше, чем в нижние, причем к примерно одной десятой всех альвеол стоящего человека кровь за кислородом вообще не является. И это связано только с тем, что в распределении крови по легким важную роль играет гравитация. Доказать эту связь, между прочим, оказалось очень легко. Достаточно было в эксперименте на несколько минут перевернуть добровольца-испытуемого вниз головой, чтобы его верхние и нижние отделы легких поменялись местами не только буквально, но и по степени обеспечения их кровью.

У лежащего на спине человека легкие заполняются кровью более равномерно. Здесь явно налицо некая недоработка со стороны организма — работаем-то мы стоя или сидя, но не лежа. Значит, как раз лежачему человеку нужно меньше энергии, для выработки которой требуется кислород, между тем в положении лежа, выходит, дыхание эффективнее. Что же, организм нашел пути для выправления такой ситуации. Жизненная емкость легких у сидящего человека больше, чем у лежащего, и еще больше она у стоящего. Уровень обмена энергии у человека при стоянии на десять — восемнадцать процентов больше, чем когда он лежит на спине.

Г. С. Белкания, автор одной из статей в журнале «Космическая биология и авиакосмическая медицина», отмечает, что изменения дыхания при перемене положения в пространстве направлены на «компенсацию первичных механических эффектов гравитации и обеспечение повышенных энергетических потребностей».

В общем, конечно, нельзя сказать, чтобы такие результаты, полученные в точных экспериментах, были совсем уж неожиданными. Ученые понимали, что организм человека должен находить пути приспособления к действию своей постоянной спутницы — силы тяжести. Опыты такого рода продолжаются. И пишут о них журналы, освещающие самую передовую линию нашей науки, рассказывающие о исследованиях, связанных с прорывом человечества в космос. Дело в том, что взаимоотношения организма человека с полем земного тяготения оказались гораздо более сложными и многообразными, чем это представлялось еще недавно. И ключ к выяснению этих взаимоотношений был дан той самой невесомостью, которая поставила перед космической медициной столько серьезных проблем.

Недавно писатель — популяризатор науки и публицист Ярослав Голованов опубликовал в «Новом мире» великолепную статью «Архитектор в мире, где яблоки не падают». Он рассматривает в ней перспективы строительства и архитектуры и новые принципы оборудования жилища в условиях невесомости.

Можно жить на «потолке» с теми же удобствами, что и на полу, несравненно шире использовать площадь «боковых стен» комнат. Отпадает необходимость в сиденьях. Шар, идеальная геометрическая фигура, оказывается куда удобнее, чем привычные землянам параллелепипеды. А сколько возможностей сулит архитектору невозможная, неслыханная на Земле свобода от силы тяжести! И все же сам Голованов делает неизбежную оговорку о том, что весь новый мир «эфирных поселений» в невесомости станет реальностью, только если будет доказана безопасность невесомости для человека.

С одной стороны, эксперименты на животных (особенно популярны сейчас у ученых в роли «космонавтов» уже не собаки, как прежде, а крысы) отчетливо показывают, что хотя организм изменяет в невесомости процессы обмена веществ, кровообращения и т. д., эти изменения обратимы. На Земле все возвращается к норме и довольно быстро. Опыт советских и американских космонавтов говорит о том же.

Но, с другой стороны, пока продолжительность космических полетов, в которых участвовали люди, составляет немногим более трех месяцев. Каков реальный срок безвредного пребывания в невесомости — мы еще нс знаем. По мнению же многих специалистов, такой реальный предельный срок должен существовать, до него не так уж далеко, и считаться с этим необходимо.

Есть опасности, которые хоть и остаются опасностями, но с сегодняшней точки зрения преодолимы относительно легко. Тренировки, тренировки и еще раз тренировки. Мышцы, во всяком случае большинство их, можно так поддерживать в работоспособном и здоровом состоянии. Хуже обстоит дело с костями скелета. Ноги несут обычно на себе тяжесть всего тела. Как вернуть им в этом отношении хотя бы ощущение нагрузки?

Стоит отметить, что обнаружена масса общих черт в том, как организм отвечает на невесомость и на неподвижность при длительном постельном режиме. У здорового человека после долгого постоянного пребывания в постели становятся менее плотными кости, что легко заметить на рентгенограмме. То же отмечалось у космонавтов после многосуточных полетов.

А доброволец, который провел в постели девять месяцев, в среднем терял каждый месяц полпроцента элемента кальция, содержащегося в его костях. Дорогая цена за изменение положения тела в пространстве и неподвижность! Хорошо еще, что когда такой доброволец возвращается к нормальному образу жизни с естественными физическими нагрузками, его здоровье восстанавливается. Восстанавливается и содержание кальция. Но в невесомости далеко не все нормальные физиологические процессы можно восстановить за счет физических тренировок, даже самых интенсивных.

Между кровью и тканями тела идет постоянный обмен веществ. Для перехода жидкости из артерий в ткани организм в значительной мере использует силу тяжести, а тканевые жидкости в кровь поступают через капилляры, такие тоненькие канальцы, что жидкость двигается в них за счет капиллярного давления, и тяжесть к этому отношения не имеет. В невесомости нормальное равновесие этих процессов нарушается. Фильтрация сильно замедляется, ткани обескровливаются, а кровь оказывается, наоборот, сильно разбавлена тканевой жидкостью. Расширяются центральные вены и предсердия, чтобы пропустить избыток крови. Организм же начинает этот избыток крови (увы, кажущийся!) удалять через почки. С жидкостью уходит из организма и кальций. Похоже, что при строгом постельном режиме в теле здорового человека происходит примерно то же, что в теле космонавта при невесомости. Ведь неподвижность, да еще в лежачем положении, даже в поле земного тяготения мешает правильному снабжению кровью всех тканей. Естественно, что тело «лежебоки поневоле» тоже теряет кальций, но теряет его гораздо медленнее.

Ученые мира разрабатывают лекарства, помогающие сохранению солевого равновесия, конструируют костюмы, в которых давление на организм должно хоть в какой-то степени заменять силу тяжести. И наконец, самое главное, радикальное решение проблемы — создание искусственной силы тяжести.

Тут есть два основных пути. Во-первых, поддерживать космический корабль в состоянии ускорения (положительного или отрицательного); но во время дальних полетов это потребует много дополнительной энергии.

Во-вторых, можно закрутить корабль вокруг некой оси так, чтобы на его внутренней поверхности возникла сила тяжести — способ, давным-давно освоенный фантастикой, но, правда, не наукой. Однако космические корабли пока относительно невелики, а угловая скорость вращения (для создания достаточной силы тяжести) должна быть довольно большой. Какие последствия это будет иметь для космонавта, который ведь почувствует, что его «вертят», — весьма неясно. Не попасть бы из огня да в полымя!

К невесомости не приспособлен и механизм снабжения органов тела кровью через артерии. Космонавт Павел Романович Попович в состоянии невесомости чувствовал время от времени, будто он висит головой вниз и вперед. «Впечатление такое, что стоишь на голове», — это рассказывал космонавт В. А. Шаталов. Все говорили о временных приливах крови к голове, видели, как у товарищей по кабине космического корабля становятся одутловатыми лица и даже морщины сильно сглаживаются. Это организм гонит кровь в голову с силой, достаточной для преодоления земного притяжения, а преодолевать-то в невесомости нечего. В голове крови слишком много, в ногах слишком мало. Вниз-то кровь обычно идет легко, а вверх ее надо гнать; в невесомости возникает прямо противоположная ситуация. Тело из нее само выйти не может, надо опять-таки искать способы ему помочь. Каким же образом?

Тут, видимо, возможны два пути — медико-биологический и технический. Пока космическая медицина не может предложить идеальные выходы «на все случаи жизни». Остается надежда на принцип эквивалентности. Достаточно заставить космический корабль двигаться с ускорением, чтобы на нем появилась тяжесть. Такое решение проблемы ставит труднейшие задачи, касающиеся двигателей, запасов энергии и многого другого, но все это задачи технические по своей сути. А их решать в конечном счете много проще, чем задачи медико-биологические, да еще касающиеся человека.

Первые ракеты, пошедшие (без человека) на Венеру и Марс, часть пути проходят без ускорения, по орбите искусственных спутников Солнца. Так же пойдут к планетам первые ракеты с людьми, если будет найден способ гарантировать безопасность и сохранение здоровья их экипажам. А не будет он найден — придется подождать кораблей, способных нести достаточный запас топлива, чтобы лететь к планетам напрямую. Но к этому же космонавтика будет стремиться и в том случае, если полеты по орбите спутника окажутся возможны по медицинским показателям. К чему же тратить на дорогу лишние месяцы и даже годы!

Вся история человечества есть в известном смысле процесс замены приспособления человека и общества к среде приспособлением среды к человеку и обществу. Космонавтика сейчас в самом начале, потому она и предъявляет такие требования к своим пилотам, потому мы и зовем — заслуженно зовем — первых завоевателей космоса героями.

Но человечеству предстоит жить в космосе, освоить его как собственный дом. А у себя дома быть героем уже необязательно.

Первым летчиком, поднимавшимся в относительно высокие слои атмосферы, приходилось приспосабливаться к дыханию разреженным воздухом; потом появились кислородные приборы, а сейчас для таких случаев употребляются специальные скафандры.

А уж если развивать это сравнение, то, как известно, эскимосы и огнеземельцы живут в весьма суровых условиях. Организм эскимоса гораздо хуже приспособился к холоду, чем организм огнеземельца, но несравненно более высокую культуру создали именно эскимосы, сумевшие поставить между собой и средой идеально отвечающие условиям одежду и жилище. Сравнение, может быть, слишком резкое. Но ведь космонавты — тоже, с определенной точки зрения, часть человечества, попадающая в экстремальные, необычные условия. А генеральный путь развития культуры в широком смысле этого слова — один.

Невесомость, возможно, должна быть оставлена для спутников-автоматов, как холод остался за стенами эскимосских жилищ.

Честь и слава медикам и биологам, ищущим сегодня пути борьбы с невесомостью, — на ближайшие десятилетия эта борьба актуальна и необходима. Но дальше…

А как быть с малой тяжестью, лунной, скажем?

Когда-то казалось, что тут самое трудное будет — научиться правильно ходить. Но «первые люди на Луне» буквально за полчаса выработали и довольно удачную походку и подходящую осанку.

А вот относительно того, долго ли человек сможет жить на Луне без вреда для себя, — уверенного ответа мы пока не имеем. Индивидуальное самочувствие-то должно быть несравненно лучше, чем в невесомости, поскольку есть ощущение верха и низа, кровь будет меньше приливать к голове и т. д. Но физиологические процессы, связанные с использованием организмом массы той же крови, пойдут гораздо медленней, чем на Земле; нагрузка на мышцы ног в шесть раз слабее.

Луняне — герои научно-фантастического романа Айзека Азимова «Сами боги» — нашли выход в спорте: «То, что для вас — развлечение, для нас — жизненная необходимость… Вы, земляне, приспосабливались к земной силе тяжести добрых триста миллионов лет— с того самого момента, как живые организмы выбрались на сушу… Наш организм… требует постоянной тренировки, чтобы функционировать нормально. И это касается таких сложных и тонких функций, как пищеварение, выделение гормонов и тому подобное».

И дальше Азимов дает блистательную картину гимнастических состязаний в шахте шириной пятнадцать метров и глубиною сто пятьдесят. «Правильное использование мускулатуры компенсирует слабое притяжение».

Скептицизм — удобное мировоззрение? Скептики смотрят на это скептически.

Станислав Ежи Лец

Но видеть в спорте панацею от всех бед не приходится. Мы ведь только прикоснулись к физиологическим явлениям, связанным с невесомостью или малой силой тяжести, а рассчитывать надо на годы и десятилетия. Луна же отличается от космического корабля, между прочим, и тем, что здесь не создашь за счет движения добавочную силу тяжести, не сыграешь на принципе эквивалентности. А мы ведь не можем ждать с ее освоением до тех пор, пока сумеем создавать искусственное гравитационное поле.

Проблем, нуждающихся в срочном решении, тут более чем достаточно.

Загадка тяготения — загадка?

Сочетание слов «загадка тяготения» поразительно устойчиво. Так называются и целые книги, и разделы в книгах, и статьи. И в принципе против этого никак нельзя возражать. Действительно загадка. Но почему-то словосочетание «загадка атомного ядра» встречается несравненно реже, а «загадка электромагнетизма» вообще не встречается. Между тем общая теория относительности ничуть не в меньшей степени объясняет явление гравитации, чем теория Максвелла — электромагнитные явления.

Одно из железных правил развития науки состоит в том, что ни одно явление природы не может быть до конца объяснено созданной для такого объяснения теорией. Иначе сама наука остановилась бы и омертвела. Поэтому можно и нужно, конечно, искать более глубокую «причину тяготения», чем данная теорией гравитации Эйнштейна. Но точно так же и в той же мере можно и нужно пытаться найти и более глубокую «причину электромагнетизма», чем у Максвелла. А уж об атомном ядре мы, по мнению физиков, знаем куда меньше, чем о тяготении. И тем не менее…

В одной хорошей научно-популярной книге написано буквально следующее: «Любопытно отметить, что некоторые вопросы, поставленные наукой на заре ее развития, не могут быть решены, несмотря на все достижения современности. Одним из таких важных, интересных, но совершенно не продвинувшихся со времени Ньютона вопросов является вопрос о природе всемирного тяготения…»

А уже в следующей главе книги идет рассказ о теории Эйнштейна — это после заявления об отсутствии продвижения вперед после Ньютона в проблеме природы тяготения…

В чем же дело? Почему достойные, серьезные ученые, не работающие непосредственно в теоретической физике (не говоря уж о журналистах), так часто подчеркивают загадочность именно тяготения?

Кажется, причины тут чисто психологические. И в их числе, пожалуй, сложность теории Эйнштейна — причина из самых в данном случае малозначащих. Теория Максвелла, конечно, проще, но о загадке электромагнетизма не говорят ведь и те, кто не имеет об этой теории ни малейшего представления Гораздо важнее, что само тяготение воспринимается как сила, не подвластная человеку, наоборот даже, властвующая над ним.

То ли дело электромагнитные силы! Гидростанции и игрушечные автомобильчики, холодильники и обыкновенная лампочка… Как видеть загадку в верном слуге? Если, по старой пословице, не существует великого человека для его камердинера, то уж увидеть загадочность в камердинере еще труднее. Атомное ядро стало служить человеку совсем недавно, и все-таки тот же эффект оказался в значительной степени достигнут за четверть века, которые прошли со ввода в действие первых атомных электростанций.

Победить — для нашего житейского мышления означает и разгадать. На самом же деле это далеко не одно и то же.

…Человеческое мышление по природе своей способно давать и дает нам абсолютную истину, которая складывается из суммы относительных истин. Каждая ступень в развитии науки прибавляет новые зерна в эту сумму абсолютной истины, но пределы истины каждого научного положения относительны, будучи то раздвигаемы, то суживаемы дальнейшим ростом знания.

В. И. Ленин

Играет, видимо, свою роль и ненаглядность общей теории относительности. Привычка считать попятными только наглядные механические модели, идущая со времен Галилея, если не от Древней Греции, сохранилась у большинства из нас до сих пор.

Атом можно представить в виде миниатюрной Солнечной системы; хотя такое представление безнадежно устарело, самая возможность его позволяет относиться к атому и его ядру как к чему-то, что сам ты не знаешь, но ученые — те знают.

Для теории Максвелла механические модели так же невозможны, как для теории Эйнштейна; а как сам Максвелл в свое время пытался найти их! Не смог. Обошелся.

Электромагнетизму сегодня отсутствие механической наглядности прощается — за верную службу.

Значит, все дело в том, чтобы найти способы обуздать тяготение, управлять нм — тогда оно догонит по степени понятности электричество. Иначе с общепринятой загадочностью тяготения ничего не сможет сделать и та теория гравитации, что сменит когда-нибудь теорию Эйнштейна, — не сможет, как бы глубоко ни заглянула новая законодательница тяготения в его механизм. Ей же ей, это будет действеннее даже, чем изучение общей теории относительности в школе — такое обучение, кстати, уже стало правилом в некоторых школах и у нас, и за рубежом.

А вот управление тяготением, активная утилизация его, генерирование и укрощение — все это дело будущего.

Загрузка...