«Вижу Землю, покрытую голубой дымкой», — передавал с орбиты Гагарин 12 апреля 1961 года. И миллионы землян, прильнувших к своим телевизорам, как бы взглянули на планету глазами первого своего космонавта. А тот, не удержавшись, добавил чисто по-гагарински: — Красота-то какая…
Четверть века спустя телевизионные автоматические камеры космороботов вели прямые репортажи из космической «глубинки» Солнечной системы, взяв в перекрестья своих «телевиков» одну из самых малых и наиболее загадочных планет Солнечной системы — комету Галлея.
6 марта 1986 года ученые и журналисты из многих стран мира прильнули к мониторам, установленным в зале отображения Института космических исследований АН СССР. Они первыми из землян увидели в условных цветах сменных светофильтров яркие, сочные краски «небесной странницы», доселе скрываемой плотной газо-пылевой дымкой.
Поразила деталь: в рампе из дюжины мониторов, напрямую принимавших межпланетный репортаж, затесался телеприемник, на экране которого почему-то транслировалась одна из программ Центрального телевидения. Да простят меня телевизионщики, но качество межпланетных съемок, производившихся в 170 млн. км от Земли, по сочности и звучности красок превосходило ту, что была в Останкино…
«Время сигнала в пути 8 мин 53 с, — бесстрастно высвечивал информацию дисплей. — Расстояние до кометы 14 млн. км.»
По командам центра косморобот, как опытный телеоператор, искусно чередовал дальние и ближние планы, делал наплывы и наезды на кометное ядро, менял фильтры и экспозицию съемки, добиваясь наибольшей контрастности то ядра, то атмосферной оболочки «хвостатой звезды». Словом, демонстрировал столь изобретательную технику съемки, словно межпланетная мизансцена развертывалась по заранее отработанному сценарию.
Впрочем, сценарий и впрямь был. А автором его выступил большой коллектив ученых ИКИ АН СССР совместно с их коллегами из Австрии, Болгарии, ГДР, Польши, США, Франции, ФРГ и Чехословакии.
Но начнем по порядку.
Итак, ее появления, как всегда, ждали. К встрече с ней тщательно, как никогда, готовились.
Уже с 1977 года самые большие телескопы планеты зондировали небо вблизи созвездия Ориона. Астрономы высматривали комету Галлея, каждые 76 лет появляющуюся вблизи Солнца. Но лишь 16 октября 1982 года на крупнейшей в США Маунт-Паломарской обсерватории удалось получить снимки звездообразного объекта 24-й величины.
— Это она! — уверенно объявили наблюдатели, разглядев на рекордном удалении, в 11 раз превышающем расстояние от Земли до Солнца, еле различимую точку. Ее блеск был в десятки миллионов раз слабее, чем у звезд, наблюдаемых невооруженным глазом.
Сравнив данные о появлениях кометы Галлея с 11 года до н. э. по 1910 год, астрономы установили, что расположение ближайшей к Солнцу точки кометной орбиты — перигелия — в феврале 1986 года наиболее… неблагоприятно для наблюдений за ней в последние 2000 лет. Но это — лишь с Земли! А вот что касается наблюдений кометы 1986 года с помощью автоматических межпланетных станций, среди которых две советские АМС «Вега», то они-то как раз и должны были произвести революционный переворот в наших знаниях о Вселенной.
Впрочем, ученым грех жаловаться на недостаток или неинтересность информации к размышлению, до сих пор периодически им поставляемой малыми телами Солнечной системы и, в частности, кометами. Восхождение «косматой звезды» — а именно так звучит в переводе с греческого слово «кометос», — которая своей фантастически яркой, подчас пугающей красотой превращало «королеву ночи» — Луну во второразрядное небесное тело, всегда было бы только эмоциональным, сильно действующим на созерцающую публику зрелищем. Как правило, это оказывалось заметным событием и в науке, сопровождавшимся скачком в небесной механике, астрономии, планетологии, космогонии и других отраслях знаний.
Особенно велико число открытий, так или иначе связанных с появлением кометы Галлея. Блистательный каскад догадок, гипотез и открытий сопровождал кометные наблюдения еще три века назад; например, в XVII в. средневековыми учеными, вычислившими параметры ее орбиты, были заложены основы теории движения комет.
В 1704 году, готовя к печати свой ставший впоследствии знаменитым «Обзор кометной астрономии», профессор геометрии из Оксфорда Эдмунд Галлей заметил, что 3 из 24 им описанных по архивным источникам комет, имея довольно близкие орбиты, были обнаружены на земном небосклоне со средним интервалом в 74–76 лет. Уж не шла ли речь об одном и том же небесном теле?
Углубившись в исторические хроники, Галлей находит еще доказательства своей правоты: в 1301, 1378, 1456 годах «косматые звезды» также появлялись на небе и примерно с таким же интервалом.
Объяснив небольшую разницу в их периодах тем, что крупные планеты могут возмущать траектории малых небесных тел, Галлей делает вывод, обессмертивший его имя: «…с уверенностью решаюсь предсказать возвращение той же кометы в 1758 году. Если она вернется, нет более никакой причины сомневаться, что и другие кометы должны возвращаться».
Галлей умер, не дождавшись подтверждения своего прогноза, пожалуй, одного из самых ярких в истории науки. «Вычисленная» же им «космическая странница» пожаловала лишь в 1759 году (задержавшись в пути вследствие возмущающих воздействий других планет, которые невозможно было учесть из-за недостаточно разработанного тогда математического аппарата). С тех пор она носит имя открывателя — Галлея. Ее восхождение, подтвердив правильность кометной теории, оказалось главным доказательством ньютоновского закона всемирного тяготения.
В 1835 году выдающийся астроном из Дерпта (ныне Тарту) В. Я. Струве, наблюдая в телескоп необычайно развитую атмосферу кометы, обратил внимание на поразительное подобие в процессах ее свечения с северным сиянием.
Заметив тогда же, что две небольшие звезды, хотя и оказались закрытыми пышным кометным хвостом, но тем не менее своего первоначального блеска почти не ослабили, ученый сделал вывод о необычайно малой плотности кометного вещества.
Это довольно тонкое наблюдение было подтверждено инструментально в 1910 году — тогда комета Галлея перемещалась перед солнечным диском. Едва появившись на фоне Солнца, она исчезла! Во всяком случае, ни в мощные длиннофокусные рефракторы, ни в зеркальные рефлекторы с метровыми зеркалами, которыми к тому времени были оснащены Пулковская и другие обсерватории, наблюдатели не заметили на фоне светила ни малейшего следа.
Выходит, что огромная, в треть миллиона километров голова кометы оптически прозрачна, а ее твердое ядро столь невелико, что разглядеть его даже с помощью лучших астрономических инструментов невозможно?! По сделанным тогда оценкам (ныне, как мы увидим ниже, использованным при построении инженерной модели кометы Галлея), ее ядро не должно превышать нескольких километров в диаметре.
Кстати, в том же 1910 году произошло довольно редкое событие, о котором накануне много и с большим волнением писалось и говорилось: Земля должна была пройти сквозь хвост кометы.
Высказывались самые невероятные предположения, в пророчествах и предсказаниях не было недостатка. «Погибнет ли Земля в текущем году?» — вопрошали броские заголовки газет. В сияющем газовом шлейфе, мрачно предрекали всезнающие газетчики, имеются ядовитые цианистые газы, ожидаются метеоритные бомбардировки и другие экзотические явления в атмосфере. Кое-кто стал под шумок подторговывать таблетками, которые якобы обладают антикометным действием.
Страхи оказались пустыми. Ни вредоносных сияний, ни бурных метеорных потоков, ни каких-либо других необычных явлений отмечено не было. Даже в пробах воздуха, взятых из верхних слоев атмосферы, не обнаружено ни малейших изменений. Выходит, кометные хвосты даже при непосредственном контакте не способны губительно воздействовать на земную атмосферу?
И по сей день этот вопрос принадлежит к разряду дискуссионных. Ряд ученых, например, считают, что вместе с космическими «осадками» на Землю могут выпадать и микроорганизмы. Случаются же вспышки эпидемий в глобальном масштабе, особенно в период, когда Земля обильно орошается метеорными потоками!..
Разумеется, категорически утверждать, что вирусы и бактерии прописаны на кометных и других малых небесных телах, было бы преждевременно. Но то, что «хвостатые звезды» содержат метилцианид, этилалкоголь и другие, более сложные органические молекулы, подтверждали спектры ряда комет. Больше того, эксперименты, предварительно проведенные советскими учеными на физико-химической модели кометы, позволили установить, что органические молекулы могут образовывать определенные структуры, соединяться химической связью и даже вступать в обменные реакции, что подчас напоминало процессы, происходящие в живых клетках.
Но это — на модели. А на «живой» комете? Что происходит там, в ее ледяных недрах, в пышном светящемся хвосте наконец? Последний, как известно, может простираться на сотни миллионов километров. Также известно, скажем, что он, как правило, направлен в сторону, противоположную Солнцу, из-за давления, оказываемого излучением. Шлейфы «косматых звезд» отличаются большим разнообразием — как по форме и цвету, так и по содержанию. Одни из них — газовые, прямолинейные — светятся ярким голубым цветом, другие — пылевые, искривленные, как турецкие ятаганы, — имеют слабый желтоватый отблеск.
Встречаются, впрочем, «космические странницы» и с двумя такими типами хвостов сразу. Интересно, что механизм свечения газовых хвостов примерно тот же, что и у ламп дневного света. Правда, в люминесцентных лампах свечение газа вызывают электроны, ускоряемые электрическим полем, а холодную люминесценцию вызывает поток солнечных фотонов. Поглотив энергию фотона, молекула газа сразу же ее переизлучает.
По мере приближения к Солнцу поверхность «космического айсберга» постепенно преображается. На расстоянии 3 а. е. (за одну астрономическую единицу (1 а. е.) принимают расстояние между Землей и Солнцем, равное 150 млн. км) из нагретого ядра начинают бить реактивные струи — джеты, скорости истечения которых подчас достигают звуковых. Это испаряются замороженные углекислый газ и вода, переходя сразу из твердой фазы в газообразную. Из-за большой плотности газа «родительские молекулы» тут же вступают друг с другом в химические реакции. Образуются вторичные, так называемые дочерние молекулы, их легко опознать по кометным спектрам и, таким образом, получить хотя бы опосредованную, косвенную информацию о ядре. Но только косвенную. Ибо пролить свет на природу родительских молекул могут только измерения, проведенные на борту космического аппарата. С Земли эту тайну не разгадать. Возможно, среди этих молекул есть аминокислоты или молекулярные комплексы другого сложного типа?.. Окончательный ответ может получить межпланетный космический зонд, когда он заглянет за газовую вуаль «космической странницы» и приступит к непосредственному исследованию кометного ядра.
Еще одна загадка связана с ионизацией выходящего с поверхности кометы газа. Под действием ультрафиолетового излучения Солнца — а именно оно, по существующим представлениям, «отвечает» за ионизационные процессы во внутренних областях кометы — может возникнуть лишь вдесятеро меньше ионов, чем наблюдается; и опять-таки, чтобы выяснить причины столь бурной ионизации кометного газа и механизм его взаимодействия с солнечной радиацией, без непосредственных экспериментов в космосе, в атмосфере «косматой звезды» не обойтись.
«…Ну а все-таки, что же еще может быть интересного в ледяной глыбе, закутанной в вуаль собственных испарений и потому недоступной взорам земных наблюдателей?» — может спросить читатель, которого не убедили приведенные доводы и который со школьной скамьи знаком с такими, в общем-то справедливыми, определениями кометы, как «грязные снежные комья» или «дымящие глыбы пыльного льда». Насколько оправдано это дорогостоящее, длительное и необычайно сложное в техническом отношении предприятие, как посылка сверхтяжелых космических роботов навстречу «косматой звезде»? Стоит ли это делать после того, как на лабораторные столы планетологов легли десятки килограммов лунных камней, а чувствительные приборы и аппараты неутомимых космических зондов уже исследовали и марсианские грунты, и венерианскую атмосферу, сфотографировали кольцо Сатурна, спутники Юпитера и даже построили радиопортрет окутанной облаками Утренней звезды?
Стоит. Хотя бы потому что приоткрыть завесу тайны об изначальных кирпичиках мироздания, из которых несколько миллиардов лет назад образовались большие и малые небесные тела, можно, только заглянув под таинственные покровы кометы, пробившись как можно ближе к ее ядру, в котором, как в космическом холодильнике, сохраняется в первозданном виде протопланетное вещество тех далеких эпох, когда шло зарождение нашей Солнечной системы, планет, жизни…
Вот для этого-то в марте 1986 года в 150 млн. км от Земли и был проведен большой «космический слет» целой эскадры космических роботов.
Несколько космических аппаратов с дальним, как говорится, прицелом были загодя запущены в один из «уголков» Солнечной системы: японские «Пионер» и «Планета», две советские автоматические станции «Вега», а также космический зонд «Джотто» Европейского космического агентства (ЕКА).
Время и место слета космических аппаратов выбраны были, разумеется, не случайно. Дело в том, что имевшиеся космические транспортные средства позволяли запускать АМС подобной массы лишь на такие орбиты, что близки земной орбитальной плоскости. Поскольку кометная орбита наклонена по отношению к ней под углом в 18°, то лишь в окрестности двух точек кометной орбиты АМС могли встретиться с кометой. Либо в так называемом восходящем узле орбиты — перед появлением кометы в перигелии, либо в нисходящем, то есть после того как «косматая звезда», побывав в перигелии, опять устремится к окраинам Солнечной системы. Предпочтение было отдано второму варианту. Ведь после максимального сближения с Солнцем оттаявший от вечного холода «космический айсберг» во всю ширь развернет свои атмосферу и хвост перед приборами и фототелевизионными камерами посланцев Земли.
И вот тут оказалось, что природа подготовила исследователям космоса приятный сюрприз. Они могут воспользоваться удачным расположением Венеры и кометы Галлея вблизи перигелия последней. Дело в том, что «Веги», направляясь к нисходящему узлу орбиты для встречи с кометой Галлея, будут пролетать почти рядом с Венерой. Решено было совместить программу сверхдальнего полета к комете и научного десанта к Утренней звезде, главная цель которого — изучение с помощью аэростатного зонда невиданных на Земле ураганов и циклонов, бушующих в венерианской атмосфере.
Таким образом единым запуском одновременно решались сложнейшие научно-технические задачи по исследованию сразу двух интереснейших объектов Солнечной системы. Кстати, именно эта двойная цель научно-космической миссии отражена в названии международного проекта: Вега — звезда первой величины на небосводе; в то же время это слово составлено из начальных слогов названий ключевых пунктов этого необычного космического маршрута — «Венера — Галлей».
Тут возникает резонный вопрос: зачем понадобилось запускать две «Венеры», две «Веги», а позже и два «Фобоса»?.. Одна из причин та, что эффективного способа избежать непредсказуемых сюрпризов дальнего космоса пока не существует. Недавний выход из строя «Фобосов», успевших выполнить лишь часть запланированных экспериментов, — печальное тому подтверждение. Поэтому главный принцип разработчиков космической техники — принцип дублирования — вряд ли когда-нибудь будет снят с повестки дня. Причем, для повышения надежности и живучести рукотворных космических объектов делаются дубли не только отдельных узлов, агрегатов, систем, но и целых космических комплексов. Ну а что касается свидания с кометой Галлея, выпадающего раз в 76 лет, его, ясно, упустить никак нельзя: в жизни нынешнего поколения такого случая больше не представится.
Формы космороботов, автономно работающих в космосе, предельно просты и выразительны.
Действительно, что может быть проще цилиндра топливного бака, сопряженного с усеченным конусом и увенчанного сферой спускаемого аппарата?
В огромном ряду образцов космической техники «Веги» не являются исключением, скорее правилом: они созданы с использованием той же геометрической формулы, что и их предшественницы «Венеры». Нет в них ни позлащенной мишуры оберток, ни вычурных деталей — совершенно не нужных в космосе зализов, выступов и т. д. Их силовые каркасы имеют предельно обобщенную и в то же время выразительно-простую индивидуальную форму.
Они построены по принципу афоризма: в них отсечено все лишнее. Оставшееся и есть главное.
По традиции в качестве конструктивной основы АМС использованы баки двигательной установки (ДУ). К конической юбке примыкает приборный отсек, выполненный в виде тора. К верхнему и нижнему шпангоутам баков прикреплены ферменные конструкции солнечных батарей. Поверх баков ДУ смонтирована коническая подставки — в ее ложбинку укладывается шар спускаемого аппарата.
В центре баков расположена остронаправленная параболическая антенна. Она строго ориентирована в сторону Земли при пролете Венеры и кометы Галлея. На солнечной стороне приборного отсека смонтирован блок астронавигационных приборов с датчиками ориентации: на Солнце, а также на звезду Канопус и Землю.
Характерная для космороботов деталь: уже по одному тому, как расположены на борту АМС научные приборы, можно судить об их назначении, характере проводимых с их помощью экспериментов.
Вот, например, магнитометр и анализаторы плазменных волн. Чтобы измерить невозмущенные магнитные и электрические поля, их датчики вынесены на специальных штангах как можно дальше от корпуса космического аппарата. В то же время датчики у тех приборов, что предназначены для контактных измерений частиц и плазмы кометы, смонтированы с той стороны корпуса АМС, которая обращена к набегающему потоку кометной пыли.
Особняком держатся оптические средства наблюдения за ядром кометы — трехканальный и инфракрасный спектрометры, телевизионные камеры и аналоговый датчик наведения, они установлены на автоматической стабилизированной платформе (АСП).
Ниже мы еще посмотрим, что представляет и откуда появилась платформа, а пока, вернемся к космическому тандему, приближающемуся к Венере.
При подлете к Утренней звезде от каждой «Веги» отделился спускаемый аппарат (СА), который, совершив сначала аэродинамическое торможение, затем плавный спуск на парашюте и на тормозном щитке, мягко опустился на скорости около 7 м/сек на венерианскую поверхность. Энергию удара поглотил своего рода одноразовый амортизатор — тонкостенная тороидальная оболочка, которая в момент посадки пластически деформировалась. Она же и сориентировала СА после посадки.
В течение часового полета в атмосфере приборы СА передали на борт «Веги», а та в свою очередь транслировала на Землю информацию о температуре, давлении, скорости ветра. Специальные датчики проанализировали состав атмосферных газов. Специалистам, изучающим развитие Солнечной системы, особенно важно знать, каково содержание инертных газов и их изотопов, в том числе и реликтовых, поскольку многие из них сохранились со времен формирования планеты.
Совершив посадку, СА включил грунтозаборное устройство с миниатюрным буром, способным забуриться в породы практически любой твердости, и приступил к исследованию химического состава грунта, а также измерил содержание в нем радиоактивных элементов.
В считанные после посадки минуты были отобраны образцы. После удаления окружающей их газовой атмосферы, они через шлюзовой канал попали внутрь посадочного аппарата, в грунтоприемник. Здесь порода облучалась радиоизотопным источником. Возникающее при этом флюоресцентное излучение — оно зависит от содержания того или иного элемента — регистрировалось детектором. Информация по мере ее накопления в многоканальном анализаторе импульсов периодически передавалась на Землю телеметрической системой.
Напомним, что впервые химический состав грунта Утренней звезды анализировали рентгенорадиометры космических станций «Венера-13» и «Венера-14». Чтобы не дублировать их результаты, СА впервые были посажены в высокогорном районе. Знание состава грунта в различных точках поверхности, отстоящих друг от друга на многие сотни километров, дало возможность судить о том, насколько разнообразны типы местных пород. С другой стороны, теперь можно представить, как осуществляется химическое взаимодействие поверхности и атмосферы.
Сравнение элементного состава грунта — а он иной, чем в местах предыдущих посадок — позволило исследователям представить, в каких условиях формировались геологические структуры, как развивались процессы эрозии. Ну а рассчитав возможный состав местных минералов, можно судить и о процессах взаимодействия атмосферы с раскаленной поверхностью.
В экстремальных условиях Венеры нельзя было пренебречь единственным, пожалуй, способом исследовать ее породы на предмет содержания в них таких естественных радиоактивных элементов, как уран, торий, калий. Ведь предшествующие эксперименты, когда была получена уникальная информация о составе венерианских пород, показали высокую эффективность гамма-спектрометрических приборов.
Гамма-спектрометры «Веги» действовали по следующему, уже знакомому нам сценарию. Гамма-кванты, излучаемые радиоактивными породами Венеры, попадали на чувствительный кристалл, вызывая в нем вспышки тем большие, чем «энергичнее» попадающие на кристалл гамма-кванты. После дополнительного усиления сигналы регистрировались многоканальным амплитудным анализатором. Телеметрия четко передавала информацию на Землю.
Последующее изучение полученных материалов (оно, кстати, продолжается до сих пор) позволит ученым заглянуть в далекое геологическое прошлое нашей соседки по Солнечной системе.
Работа на поверхности, нагретой до нескольких сотен градусов, длилась почти четверть часа. Гораздо более длительное время — двое суток — велись исследования в облачном слое Венеры при помощи аэростатного зонда (АЗ), отделившегося от спускаемого аппарата на высоте примерно 54 км.
Нужна поистине снайперская точность наведения АМС, чтобы не имеющий собственной системы управления СА выполнил эту операцию точно на заданной высоте, а главное — в нужном районе. Ведь АЗ должен был попасть на ночную сторону планеты, оставаясь при этом на границе прямой видимости с Земли! Только благодаря соблюдению всех этих условий оболочка АЗ не была испепелена огненной атмосферой, а зонд смог дрейфовать в течение почти двух суток (46 ч), преодолев расстояние около 12 тыс. км со скоростью 250 км/ч! Один из аэростатов дрейфовал в северном, а другой — в южном полушарии.
Любопытно, что почти 20 лет назад на одном из заседаний творческой лаборатории «Инверсор», действующей при редакции журнала «Техника — молодежи», энтузиастами обсуждался проект, предусматривающий использование аэростатных газонаполненных оболочек сначала для исследования, а впоследствии для освоения Венеры. И вот то, что некогда казалось фантастическим, не слишком обоснованным домыслом, стало реальной конструкцией, с помощью которой впервые в мире осуществлено принципиально новое направление в исследовании атмосферы Утренней звезды. В частности, найдены ответы на ряд вопросов, которые до сих пор не удалось решить с помощью спускаемых аппаратов.
Одна из самых удивительных особенностей венерианской атмосферы — вращение всего облачного слоя с ураганной скоростью. И хотя подобная — в одну сторону, с востока на запад — супер циркуляция существенно отличается от земной (венерианская атмосфера прокручивается этим своеобразным глобальным циклоном всего за 4 суток), ее исследование имеет принципиальное значение для понимания тех механизмов, что определяют долгопериодическпе изменения климата Земли. Так, предполагалось, что причиной столь стремительной закрутки являются приливные явления. Но в этом случае уже через короткий промежуток времени необычайно плотная атмосфера Утренней звезды увлекла бы, раскрутила и саму планету, ускорив ее вращение за счет сил трения! Но может быть, действуют и какие-то иные факторы? В таком случае, как осуществляется передача момента количества движения от твердой поверхности к пусть даже и весьма плотному, но все-таки газовому слою?
До настоящего времени неясно, однако, что же поддерживает столь быстрое его вращение. Поскольку температура дневной и ночной сторон планеты практически одинакова, причин для теплового движения атмосферы нет. Вокруг оси сама Венера вращается очень медленно, да и у ее поверхности ветры, как измерили метеоприборы посадочных аппаратов (так и ожидалось), всего лишь 1 м/с. Поскольку это один из наиболее интересных пунктов программы, продолжающей на новом, более высоком уровне исследования венерианской атмосферы, остановимся на нем подробнее.
АЗ начал действовать сразу после того, как от спускаемого аппарата была отстранена верхняя теплозащитная полусфера. Зонд был сброшен, отделена крышка парашютного контейнера и выпущен стабилизирующий парашют. Автономный спуск зонд совершал до тех пор, пока не сработало программно-временное устройство, по команде которого был сброшен стабилизирующий парашют и выброшен купол другого, тормозящего. В это время и открылся аэростатный контейнер, нижняя балластная часть которого, падая под действием собственного веса, извлекала аэростатную оболочку. Когда ее фторлоновая, пропитанная лаком ткань расправилась и гондола с подвешенными к ней метеоприборами и радиопередатчиком устремилась вниз, раздался еще один выстрел. Это включился пироклапан, аэростат наполнился гелием. Скорость спуска АЗ замедлилась: начала действовать аэростатическая сила, к тому же резко увеличилось торможение за счет лобового сопротивления АЗ. Понемногу падение, погружение в атмосферу прекратилось. Скорость АЗ упала до нуля, поскольку атмосфера, разогревая аэростатную оболочку, заставила расширяться содержащийся в ней газ. Достигнув максимального погружения, аэростат подвсплыл на высоту равновесия. Начался его дрейф в раскаленных струях, за которым неотрывно следили самые мощные радиотелескопы Европы, Азии, Америки, Африки и Австралии. Используя метод радиоинтерферометрии с большой базой, 70-метровые, работающие в паре радиотелескопы в Уссурийске и Евпатории, разнесенные на расстояние — базу — около 10 тыс. км, с точностью до метра определяли перемещение невидимой точки на диске Венеры, с огромной точностью рассчитывая скорость «огненного дрейфа». Причем на расстоянии, превышающем 110 млн. км. 1:10 000 000 — такова погрешность этого фантастического эксперимента.
— Это все равно, что наблюдателю, находящемуся в Европе, измерить перемещение секундной стрелки ручных часов у рыбака, ведущего промысел в Мексиканском заливе — так оценил один из американских астрономов качество уникального межпланетного эксперимента.
— Научные приборы для метеорологических измерений на аэростатах были разработаны в ИКИ АН СССР, — говорит заместитель директора института В. М. Балебанов. — В качестве партнеров в этих экспериментах участвовали ученые Франции, а вместе с ними, как своего рода «субподрядчики», американские специалисты.
Прежде всего были зарегистрированы чрезвычайно сильные вертикальные порывы ветра, достигающие более 1 м/с (на Земле, например, вертикальный ветер не превышает нескольких сантиметров в секунду). О чем это говорит? Прежде всего о мощных атмосферных вихрях на высотах порядка 54 км (т. е. в зоне плавания аэростатов).
На ночной стороне аппаратурный комплекс аэростатов зафиксировал световые вспышки. Что они означают — пока неясно. Может быть, это молнии?.. Ведь грозовые явления в атмосфере Венеры были обнаружены еще спускаемыми аппаратами станций «Венера-11» и «Венера-12». Или, может, это извержения вулканов? Вспомним картину К. Брюллова «Гибель Помпеи», где над извергающимся Везувием сверкают молнии… Во всяком случае, именно предположение о вулканической деятельности перекликается с объяснением факта изменения содержания двуокиси серы в атмосфере Венеры.
— Одна из главных задач исследований облачного слоя Венеры, — продолжает Вячеслав Михайлович, — состояла в уточнении фотохимических процессов, ответственных за его образование. Судя по полученным ранее косвенным данным, можно было предположить, что облака состоят в основном из серной кислоты (концентрации 75–85%) с примесью хлора. Но прямых определений серной кислоты в облачном слое не было. Да и непонятно, в какой форме в облаках присутствует хлор.
Химический анализ аэрозоля — использовался метод каталитического разложения серной кислоты на угле — показал: облака Венеры содержат серную кислоту в аэрозольной форме. Кроме того, в аэрозоль входят также элементная сера, хлор, фосфор. Вот такой коктейль!
Что касается формы облаков, то измерения выявили их сложную слоистую структуру. Один из спускаемых аппаратов, АМС «Вега-1», обнаружил, как минимум, пять облачных ярусов.
Теперь мысленно снова вернемся на борт «Веги», которую мы оставили в момент расстыковки пролетного и спускаемого аппаратов. С одной стороны, посадочный аппарат (ПА) стремился как можно прицельнее высадить «аэростатный десант», обеспечив точный (под заданным углом) вход СА в атмосферу, с другой — он обязан был пролететь мимо Венеры по. такой траектории, чтобы обеспечить наилучшие условия для ретрансляции сигналов СА на Землю. Взаимоисключающие требования! Но даже если бы ПА «исхитрился» и выполнил их все, он уже никак не вышел бы на межпланетную траекторию для полета к комете…
Решая эту непростую задачу, баллистики пришли к такому неожиданному решению. ПА должен совершить дополнительный активный маневр уже после пролета Венеры — «вырулить» на межпланетную магистраль и ведущую к нисходящему узлу кометной орбиты!
Но вот беда: насколько точно комета, находящаяся в это время между орбитами Юпитера и Сатурна, станет придерживаться своей орбиты после прохождения перигелия, пока неизвестно, поскольку полет к небесному телу, параметры движения которого неизвестны с необходимой точностью, осуществляется впервые.
Таков один из удивительнейших парадоксов путешествия к комете…
— Как же так, — может возразить читатель, — разве после переоткрытия кометы астрономы не вычислили все параметры ее новой орбиты?
Правильно, вычислили. Даже сосчитали, что перигелий наша космическая гостья пройдет 9 февраля 1986 года в 10 ч по московскому времени, что это всего лишь на 5 ч 13 мин раньше (и всего лишь на 11 тыс. км дальше), чем предполагалось по прежним расчетам.
И все же… Нет ничего другого, столь подверженного изменениям в звездном мире, как кометные орбиты. Любая планета может сбить их с пути — уж таковы свойства малых тел, и в предугадывании этих главных особенностей для специалистов состояла одна из самых больших сложностей проекта «Вега».
Чтобы обеспечить космический слет в назначенный срок и снабдить АМС информацией для коррекции орбит в течение всего времени полета, целая армия вычислителей, используя все новые и новые данные наблюдений самых крупных телескопов планеты, без конца уточняла координаты кометной орбиты.
В ход пошли результаты не только самых последних наблюдений, но и сведения, почерпнутые из астрономических хроник 1910, 1835, 1759, даже 1652 года! Только совместный — комплексный! — анализ всей этой информации, накопленной человечеством за многие века астрономической практики, позволил принять точно выверенное, единственно правильное решение о коррекции орбит АМС. Таким образом, можно без большого преувеличения сказать, что в реализации «проекта века» участвовали ученые из многих стран и, добавим, многих времен!
Характеризуя поистине астрономический объем вычислительной работы, необходимой для того, чтобы создать теорию движения кометы Галлея, приведем один пример: в США были обработаны результаты практически всех астрономических измерений, выполненных… с 1759 года! Аналогичную работу проделали и советские специалисты.
— Если все наши вычисления верны, — сказал заведующий одной из лабораторий Института космических исследований доктор технических наук Г. А. Ованесов, — то в двух днях пути на расстоянии в 14 млн. км от кометы телевизионная система (ТВС) проведет первую съемку кометы.
За сутки до пролета начнется второй сеанс съемки. Наконец, за 2 ч до расчетного момента сближения с ядром кометы пройдет основной сеанс…
— Впрочем, что это я вам рассказываю, — спохватился Генрих Аронович. — Лучше один раз увидеть, не так ли? Давайте совершим пробный подлет к комете с помощью компьютера.
Мы вошли в аппаратную (а дело было буквально через несколько дней после старта АМС, то есть более чем за год до ожидаемого события). Дальнейшее произошло так стремительно, что я даже не успел почувствовать разочарования, неизбежного, когда обстоятельно анатомируют чудо.
…Тихонько зажужжал компьютер, и на экране дисплея выплыла яркая светящаяся звездочка. Потом — еще несколько точек.
— На этом этапе наведения, — прокомментировал заведующий лабораторией, — кометы от других звезд не отличить. Поэтому «Вега» летит, ориентируясь на звезды.
Но вот изображение выросло, вспыхнула надпись: «Расстояние между кометой и станцией 14 млн. км, время до встречи 300 тыс. с». В углу экрана неоновым светом вспыхнула кадрирующая рамка, подобная той, что бывает в видоискателе дальномера.
— Пиропатроны отстрелили платформу наведения, она заняла рабочее положение, — сообщил Ованесов. — ТВС с помощью широкоугольного объектива обследует небосвод.
Случай оказался самый неблагоприятный: станция комету не видела и действовала вслепую, пытаясь поймать в поле зрения нечто, отличающееся по внешнему виду от звезд и туманностей. В ее электронной памяти была записана фотометрическая модель — аналог кометы, теперь ТВС искала ее прототип.
Но вот неоновая рамка, прилежно обойдя почти все секторы обзора, зацепила наконец край «косматой звезды».
Платформа замерла, словно бы прицеливаясь, затем, решительно подавая команды своим электрическим корректирующим двигателям, стала быстро «загонять» комету в рамку. Кометное ядро росло на глазах — АМС приближалась к цели.
И вот тут «космический айсберг» повел себя непредвиденно. Из его ядра ударила ослепительная, напоминающая медленную молнию вспышка — джет. Любая из существующих систем наведения, реагирующая на наиболее яркое пятно в кадре, должна была поддаться «отвлекающему маневру» джета…
Но… бортовая ЭВМ изменила экспозицию съемки — и все встало на свои места. Парировав «выпад» кометы, платформа продолжала наведение.
Затем последовал целый каскад искусно подобранных «чрезвычайных происшествий» — ни на одну из этих «удочек» станция не попадалась. ЭВМ, хладнокровно просчитывала варианты, принимала безошибочное решение, пока на экране не вспыхнула надпись: «Расстояние до ядра — 10 тыс. км».
Замечу, что не только я, впервые видевший этот инженерно-фантастический фильм, был захвачен происходящими на экране событиями, которым реально предстояло случиться лишь через год. Даже сотрудники лаборатории нет-нет да и подходили к дисплею, словно бы позабыв, что за всеми перипетиями космической остросюжетной фабулы стоит вдохновенно выстроенный алгоритм наведения АМС на ядро кометы, а развитием событий талантливо управляет система программ. Она же командовала и машинным переводом с языка математической логики на «диалект» цветных зрительных образов, чем, кстати, существенно облегчала исследователям усвоение огромного потока быстроменяющейся информации. Трудно придумать более красивое и более убедительное доказательство того, что вдохновенный инженерный расчет, как и высокая поэзия, способен предвидеть, точнее, предвычислять будущее!
— Не слишком ли «сгущены» краски, которыми рисуется «коварство» кометного ядра? — спросил я тогда у Ованесова.
— Поскольку никто из нас пока еще не знает, что представляет собой объект на самом деле, мы строили математическую модель, самую неудобную с точки зрения системы наведения, — ответил он. — И если станция, попав в экстремальные условия, с честью вышла из трудного положения, значит, для более благоприятной ситуации все должно сойти еще благополучнее.
Такую станцию, подумал я тогда, не стыдно было б показать в другой галактике. Как высшее достижение нашей цивилизации.
Полет межпланетных роботов к комете Галлея — они неслись навстречу «косматой звезде» с суммарной скоростью 78 км/с, чтобы разминуться с ней на расстоянии «всего» 10 тыс. км, — относился к категории «особо опасных». По сравнению с ним обычный полет к Венере, как образно заметил один из конструкторов станции, выглядит заурядной загородной поездкой на автомобиле. Повышенную опасность заключали в себе пылинки кометной атмосферы… массой в сотые и даже тысячные доли грамма. Без специальной защиты серийная «Венера» — а используется именно эта, многократно испытанная, с отработанными системами АМС — при встрече с кометой Галлея превратилась бы в решето. Расчеты, выполненные на ЭВМ, предсказывали, что давление в зоне удара пылинки об обшивку аппарата может достигать немыслимых значений — до 50 млн. атм.
Чтобы обезопасить приборы от разрушения, оградить жизненно важные узлы станции, кабельные сети и прочее, АМС оборудована двух-, а местами даже трехслойными экранами, масса которых только на платформах достигала 14 кг.
Их рифленые слои из сверхпрочной металлической фольги гасили энергию микрочастиц следующим образом. При ударе наружный слой играл роль только испарителя пылевой частицы. В результате микровзрыва образовывался микрократер и осколки под большими углами к направлению первоначального ее движения разлетались в стороны. Второй слой еще больше гасил энергию проникших к нему осколков, затем третий… Последней же, четвертой преградой на пути наиболее энергичных прорвавшихся частиц вставала сама стенка прибора.
Как известно, любой отправляемый в космос агрегат или прибор проходит всесторонние наземные испытания — на термовыносливость, вакуумную прочность, радиационную устойчивость, причем так, что все особенности реальных, космических условий удается, как правило, воспроизвести с достаточной полнотой в земных условиях.
А вот как промоделировать космическую бомбардировку микрочастицами кометы пылезащитных экранов АМС? Ведь разогнать кремниевую или, скажем, железную пылинку до скорости 80 км/с невозможно ни в одном из существующих ускорителей.
Ученым пришлось обратиться к теории, численному эксперименту. Была построена инженерная модель столкновения.
И что же? Подробнейшее ее рассмотрение дало неутешительный ответ: необходимой гарантии защиты косморобота от пыли быть не может. В принципе. Это обстоятельство заставило ученых отказаться от промежуточной записи поступающей на борт «Веги» научной информации на запоминающее устройство. Поэтому все сведения сразу же передавались на Землю.
Что и говорить, это условие резко усложнило задачи, стоящие перед конструкторами. Ведь оно означало, что в течение всего пролета станции сквозь кометную атмосферу остронаправленную антенну АМС нужно постоянно ориентировать на Землю. Но как при этом быть с той частью научной аппаратуры, которая, изучая кометное ядро оптическими средствами, должна постоянно нацеливаться на зону наибольшей яркости «косматой звезды»? Как «развязать» этот непростой узел проблем, осложняющийся еще и тем, что полет АМС в атмосфере кометы будет, по всей вероятности, «слепым»? Следовательно, ориентировать станцию с помощью оптических датчиков скорее всего не удастся. Стабилизировать аппарат пришлось при помощи гироскопов.
Вдумайтесь в эти взаимоисключающие условия задачи. С одной стороны, требовалось точно держать пролетный аппарат на траектории, с другой — приборам и датчикам, находящимся на его борту, нужно прицельно, с точностью до угловой секунды, постоянно брать «на мушку» небесное тело, угловые размеры которого непрестанно меняются!
Задача подобного класса сложности никогда не решалась мировой наукой. Пришлось разрабатывать принципиально новую исследовательскую платформу.
— И такая в прямом и переносном смысле платформа, — говорит один из создателей необычной конструкции Г. Сасин, — была создана в кратчайшие сроки специалистами Института космических исследований совместно с чехословацкими учеными и инженерами. С ее помощью удалось «развязать» приборный комплекс и станцию, сделать его независимым от ориентации АМС.
В свое время для вертикальных ракет-зондов конструировали простейшие платформы, используемые для наведения научных приборов на Солнце. Потом стали оснащать ими спутники связи. С их помощью направленные антенны могли не отрываясь следить за определенным наземным пунктом.
Но все эти элементарные «подставки под оборудование» не могли бы, разумеется, обеспечить высокой точности наведения исследовательских инструментов, эффективность работы которых сильно зависит от положения в пространстве относительно объекта наблюдения.
Без преувеличения можно сказать, что автоматическая стабилизированная платформа (АСП) открыла новое направление в развитии космического приборостроения. Это сервомеханизм, как его называют конструкторы, массой около 100 кг с двумя степенями свободы, который с минимальной погрешностью может перемещаться в двух взаимоперпендикулярных направлениях. Научная аппаратура массой 80 кг была установлена на раме платформы, которая в течение почти 15-месячного полета к комете Галлея была пристегнута специальными креплениями к расширяющейся части пролетного аппарата. И лишь недели за две до встречи с «косматой звездой» три пиропатрона открепили эту платформу. Распрямляясь, мощная пружина торсиона перевела платформу в рабочее положение. Далее отщелкнулись крышки телевизионных объектов и датчиков наведения. Так платформа обрела «зрение» и, подчиняясь командам бортового микропроцессора, в автоматическом режиме начала разыскивать комету.
Выносная консоль АСП сконструирована таким образом, чтобы в поле зрения датчиков и приборов «телевиков» не попадали панели солнечных батарей, штанги, антенны и другие навесные элементы АМС. В случае необходимости платформа совершала своеобразный «нырок» под днище пролетного аппарата, например, чтобы произвести телевизионную съемку ядра кометы, когда та будет удаляться от станции.
Для облегчения механизмы платформы были выполнены негерметичными. Это кажется невероятным: прецизионные узлы, пробыв почти полтора года в открытом космосе безо всяких дополнительных мер предосторожности, вдруг включаются в работу!
Да, в условиях космического холода и вакуума редукторные шестерни работали без смазки. Обычные масла, как известно, к работе в космосе непригодны. Инженеры пробовали заменить жидкую смазку на графит — и вместо того, чтобы уменьшить трение, он, став в условиях космоса хрупким и твердым, действовал на трудящиеся части как абразивный порошок! Вышли из положения, напылив на трущиеся поверхности дисульфид молибдена. На земле у этой смазки репутация была несколько «подмоченной»: порошок жадно набирал воду. А вакуум, напротив, его обезвоживал — земной минус смазки превратился в космический плюс. Внедрение такой смазки, с помощью которой удалось разгерметизировать и, следовательно, облегчить механизм, позволило в конечном итоге увеличить полезную массу научной аппаратуры на борту АМС.
Советские и зарубежные специалисты, с которыми мне довелось беседовать о проекте «Вега», единодушно отмечали такую его отличительную черту: создана исследовательская аппаратная очень широкого диапазона, позволяющая «археологам космоса» рассмотреть малоисследованный объект нашей Вселенной во всем диапазоне его свойств, выяснить глубинные процессы, происходящие в недрах комет.
Есть немало доводов в пользу того, что кометные ядра в основном состоят из водяных, углекислотных, аммиачных и тому подобных льдов. Однако на спектральных пластинках до сих пор находили лишь опознавательные знаки окиси углерода. На этот раз местом опознания «родительских» молекул выбрали спектр флуоресценции в так называемой ближней инфракрасной области, где скорее всего можно было обнаружить колебательное возбуждение первичных молекул. Однако их «вклад» в излучение столь мал, что почти находится на уровне пороговой чувствительности трехканального спектрометра. А если повторить опыт несколько раз? Так удалось перешагнуть этот порог, и в руках ученых оказались до сих пор тщетно разыскиваемые «автографы».
На борту «Веги» работал и инфракрасный спектрометр французского производства, оборудованный тремя оптическими каналами. Два из них предназначены для работы в спектроскопическом режиме, третий — снимал «теневой» портрет ядра кометы в инфракрасных лучах. Для изучения взаимодействия солнечного ветра с атмосферой и ионосферой кометы на борту АМС также работал сконструированный специалистами ВНР, ФРГ и СССР детектор, с помощью которого изучались ионы, ускоренные в районе кометы. Для измерения распространяющихся в комете электромагнитных волн, регистрируемых двумя антеннами, предназначался анализатор плазменных волн, разработанный чехословацкими, польскими, французскими и советскими специалистами.
На первый взгляд может показаться, что ряд приборов просто-напросто дублировал друг друга; больше того, некоторые данные — о скорости образования кометных частиц, об их размерах и параметрах их движения — уже известны специалистам благодаря косвенным измерениям.
На самом деле это не так. До сих пор большинство данных получали в результате спектрометрических измерений, причем только в видимом и ИК-диапазоне. Но кометный эксперимент охватывал всю «радугу» спектра, тем самым закрывая максимум «белых пятен». До сих пор не хватало прямых измерений вблизи ядра кометы.
Чтобы получить такую исчерпывающую информацию о простой кометной пылинке, нужно суметь зарегистрировать удар по мишени каждой отдельной частицы. Специалистам пришлось ломать голову над тем, как перевести вещество пылинки из твердого в плазменное состояние (непременное условие всех спектроскопических методов исследования вещества). Столкновение на скорости 78 км/с приводило к мгновенному испарению объекта исследования. Разумеется, при столкновении испарялась не только пылевая частица: какая-то доля материала мишени тоже уходила в облачко плазмы. Но зная, что мишень сделана из чистого серебра, не представляло большого труда отделить, как говорится, зерна кометного вещества от плевел мишени.
Поскольку объем получаемых прибором сведений исключительно велик (вблизи кометы регистрировалось до 12 ударов в секунду, и всего была собрана информация о нескольких тысячах частиц), а передача этих сведений на Землю ограничена пропускной способностью телеметрических каналов связи, то в составе прибора предусмотрен специализированный микропроцессор, который по нескольким программам производил предварительную обработку информации и самостоятельно отбирал наиболее «информативные» удары.
Но ведь пыль пыли рознь: в космическом пространстве оказывались и частицы, не имеющие никакого отношения к комете. Как в течение долгого пути уберечь чувствительные элементы прибора от их воздействия?
— Мы поступили так же, как автомобилист на пыльном проселке, — рассказывал мне один из разработчиков прибора В. Хромов, — когда, открыв жалюзи, он создает в салоне давление выше атмосферного. Мы закрыли входной патрубок корпуса прибора специальной крышкой и подали внутрь газ. Снаружи — космический вакуум, внутри — почти атмосферные условия. Ни одна посторонняя частица в прибор не попадет: сгорит. А за 10 дней до сближения с кометным ядром по команде с земли крышка открылась и прибор — «Пума» — приступил к работе.
Но вот на мишени «взорвался» мельчайший кусочек кометы — и в миллиардную долю секунды образовался плазменный сгусток. Что дальше? Возникла яркая вспышка. Она регистрировалась фотоумножителем, «запускающим» отсчет времени.
Основной рабочий инструмент «Пумы» — ускоряющее электромагнитное поле. Ионы разных элементов обладают разной массой. Поэтому одно и то же напряжение разгоняло легкие ионы до значительно больших скоростей, чем тяжелые. А значит, на регистрирующий элемент прибора — коллектор — они приходили в разное время. Зная их время в пути, можно сказать, о каком элементе идет речь.
Правда, тут есть одна тонкость. Ускоряющее поле сообщало всем ионам с одинаковой массой одинаковую энергию. Но в начальный момент времени, при ударе разных тяжелых и легких пылинок о мишень, ионы с одинаковой массой приобретали все-таки чуть разную энергию. А это приводило бы к неодновременности их попадания на коллектор, чего быть не должно. Выравнивание скоростей ионов происходило в рефлекторе. Это своего рода электростатическое зеркало обладает свойством притормаживать слишком быстрые и «подгонять» медленные ионы. Принцип его действия можно пояснить таким примером.
Представьте себе шарик на резинке. Бросаете его в сторону — резинка шарик возвращает. Чем сильнее бросок, тем больше возвращающая сила. Замените шарик ионом, возвращающую силу резинки — напряженностью поля, и вы получите представление о том, как работало электростатическое зеркало. Далее, зная химический состав пылинок, их спектр, массу, частоту соударений, можно воссоздать картину их распределения в кометной атмосфере в зависимости от размеров, вычислить, на каком расстоянии от ядра находилась частица той или иной массы.
Дублеры, как известно, остаются на Земле… Случилось так, что именно это, бытующее с начала освоения космоса правило предоставило мне редкую возможность рассмотреть дублеров межпланетных роботов, в то время как они накручивали на свои космические спидометры уже десятки миллионов километров.
Я побывал в лабораторно-испытательном корпусе Института космических исследований, когда операторы вновь готовили платформу к работе. Задача, стоящая перед агрегатом-дублером, — до мельчайших подробностей воспроизводить все то, что происходит с АСП там, при подлете к комете Галлея, чтобы принять единственное правильное решение.
…Освобожденная от тепловых и вакуумных экранов, сплошь уставленная приборами, платформа являла собой редкое по красоте зрелище. Любой из приборов, удостоившийся чести работать на ней, представлял вне всякого сомнения вершинное достижение научной мысли ученых.
Удивительный парадокс. Несмотря на то что за последние 100 лет наблюдений в косматой «шевелюре» комет не осталось, кажется, ни одного не сфотографированного и не промеренного «волоска», никто из астрономов не смог предсказать главного: как выглядят их ядра, скрываемые непроницаемой газопылевой вуалью.
Ясно, что создатели космических зондов стремились заглянуть за вуаль кометной атмосферы, провести эксперименты в околоядерной зоне. Но полет «впритирку» к ядру, то и дело взрывающемуся пылевыми протуберанцами, чреват серьезной опасностью: крупные, массой до грамма пылевые частицы, врезаясь на скорости 78 км/с даже в «бронированную» обшивку космороботов, могли повредить его жизненно важные узлы. Разумеется, в случае удачи подобной космической миссии телевизионные системы, как говорится, «в упор» могли рассмотреть ядро «небесной странницы». Однако расчеты показывали, что в этом варианте вероятность поражения весьма велика.
Разумеется, существовала и другая крайность: разминуться с кометным ядром на сравнительно безопасном (скажем, в несколько десятков тысяч километров) расстоянии и тем самым наверняка уберечь приборы и панели солнечных батарей АМС от сокрушающей бомбардировки космической пылью. Конечно, в случае «непыльного сближения» объем добытой космороботами информации был бы гораздо скромнее.
Авторы проекта «Венера — Галлей» избрали тактику пролета, оказавшуюся оптимальной. «Вега-1» подошла к ядру кометы Галлея на расстояние 8912 км, а «Вега-2» — 8036 км.
В результате собрана уникальная научная информация, полная обработка которой, как считают специалисты, займет несколько лет. Наиболее ценная ее часть — свыше полутора тысяч портретных снимков кометы Галлея — передавалась на Землю в реальном времени. Подобный межпланетный репортаж из точки, удаленной от нашей планеты на 170 млн. км, советским космороботам удалось провести первым в мире.
Однако сколь ни искусны оказались телевизионные системы «Вег», автоматически «загонявшие» в кадр весьма капризный природный объект, умело менявшие и подбиравшие фильтры и экспозиции, комета Галлея не спешила расставаться со своими тайнами.
Лишь компьютерная детальная обработка изображения кометного ядра, маскируемого мощными газопылевыми выбросами — джетами, позволила определить его контуры и размеры, отражательную способность и другие параметры.
Итак, перед нами тело неправильной формы длиной 16 км и около 8 км в поперечнике. Внешняя схожесть этой «картофелины» с марсианскими спутниками Фобосом и Демосом (и не исключено, с некоторыми малыми спутниками Сатурна и Урана) основательно подкрепила гипотезу, предполагающую, что кометные ядра родились в той области Солнечной системы, где ныне находятся планеты-гиганты (и которые в процессе своего формирования и забросили свои осколки на далекие задворки Солнечной системы).
Отметим, что, поскольку у кометы Галлея период вращения вокруг собственной оси составляет около 53 ч — этим, кстати, объясняется, что снимки «Веги-1» и «Веги-2» несколько отличаются друг от друга, — мы имеем возможность взглянуть на «небесную странницу» с разных точек зрения и даже построить объемное изображение уникального природного объекта.
Далее, установлено, что комета Галлея, проходя вблизи Солнца, выбрасывала в космическое пространство миллионы тонн водяного пара ежесуточно — основного, по-видимому, вещества ее ядра.
Здесь необходимо сделать отступление. Дело в том, что приборному комплексу АМС впервые удалось зафиксировать излучение от внутренних областей кометы, испущенное так называемыми родительскими, то есть входящими в состав кометного ядра, молекулами. С Земли провести подобное наблюдение невозможно в принципе. Кроме того, «родительские молекулы» после обработки ультрафиолетовым солнечным излучением химически видоизменяются, что также делает невозможным их «опознание».
На фоне мощных спектральных линий водяного пара отчетливо (хотя и намного слабее) проявились полосы углекислого газа и других, скорее всего углеводородных примесей. Что касается уже видоизмененных — «вторичных» — молекул, то среди них исследователи опознали хорошо знакомые по наземным наблюдениям гидроксил, циан, двухатомный углерод и т. д.
Вблизи Солнца комета обильно парила и пылила. Пылевые счетчики, скрупулезно подсчитывавшие каждую попавшую на их детекторы частицу, установили, что ежесуточно кометное ядро выбрасывало около миллиона тонн пыли! Причем наиболее интенсивные пылевые фонтаны приходились на зоны с особо мощными истечениями газов. Любопытно, что при таком расходе — около 100 млн. т на виток — это небесное тело массой около 200 млрд. т проживет еще не одно тысячелетие.
Итак, концепция «айсбергов» получила подтверждение? Не будем торопиться. Мешает один бесспорно установленный факт: оптическими измерениями установлено, что отражательная способность, или, как говорят, физики, альбедо ядра, имеет низкую — около 45% — величину.
Такое же альбедо наблюдается у колец Урана и недавно открытых его спутников, а также у темных областей Япета. Это свидетельствует, по-видимому, — о наличии первичного углистого вещества, аккреция (то есть выпадение под действием гравитации) которого произошла на самых ранних стадиях развития Солнечной системы.
Но это что-то очень мало похоже на поверхность ледяной глыбы. К тому же она… горячая! Этот факт установлен ИК-спектрометрами «Вег». Измерения показали, что температура излучающей области достигала 100 °C.
Возможно ли, чтобы ледяной панцирь айсберга, пусть даже и космического, мирно уживался с «пламенем» его поверхности?
Но вспомним потемневшие весенние сугробы на городских улицах, долго тающие под мартовским солнцем. Немногие знают, что поверхность сугроба разогревается до 20–30 °C, но благодаря отличным теплоизоляционным свойствам образовавшейся на нем пористой корочки из пыли, гари и копоти холод внутри него сохраняется многие дни…
Чем не модель кометы, позволяющая удачно разрешить многие противоречия? Кометное ядро — это водный лед, в кристаллическую решетку которого внедрились примесные молекулы. В этот лед, как показали эксперименты, вкраплены различные тугоплавкие частицы метеоритного происхождения. По мере бурного испарения льда на его поверхности скапливается черный пористый слой, обладающий низкой теплопроводностью. По-видимому, ядро покрыто коркой из высокополимерного органического вещества. Поглощая солнечное излучение, она часть энергии отражает (в ИК-диапазоне) в окружающее пространство, а часть тепла передает ледяному панцирю. Образующийся пар время от времени пробивается через поры оболочки, толщина которой, по разным оценкам, колеблется от нескольких миллиметров до нескольких сантиметров, а если это не удастся — взламывает ее. Тогда с поверхности ядра начинают бить мощные газовые струи, увлекающие за собой пылевые частицы. Очевидно, срок жизни слоя невелик: он полностью обновляется примерно за сутки.
Особо уникальные данные о составе кометного вещества собрал пылеударный масс-спектрометр «Пума», который проанализировал химический состав около 2000 каменистых и металлических частиц, выброшенных газовыми струями. Они оказались метеоритного происхождения, и в них преобладали натрий, магний, кальций, железо, кремний, а также вода и углерод. В этом весьма пестром и сложном перечне элементов и их распределении закодированы тепловые процессы, происходившие на ранних этапах образования Солнечной системы.
Анализ пылевых частиц убедительно продемонстрировал присутствие в них сложных органических соединений. По всей видимости, совокупность имеющихся данных о пыли позволяет сделать вывод о ее межзвездном происхождении.