{63}
Испокон веков работала на человека лошадь. А потом человек построил взамен нее машины: автомобиль, трактор... Они сильнее лошади в десятки раз: и везут быстрее и груза берут несравненно больше. Но у лошади есть великое достоинство — зрение.
Где-нибудь в старой Москве садился ямщик на облучок, дергал вожжу и поглядывал себе по сторонам. Лошадь сама дорогу видела. Вот и задумался человек: надо, чтобы у машины тоже были глаза.
В одном из научно-фантастических рассказов описан «зрячий» автомобиль. Он сам останавливается перед красным огоньком светофора, при зеленом свете трогается в путь, объезжает препятствия и даже тормозит перед зазевавшимся прохожим. Вот это машина! Шофер на ней чувствовал бы себя не хуже, чем ямщик с отлично выдрессированной лошадью. А может, шофер и не понадобился бы вовсе. В том же рассказе «зрячий» автомобиль самостоятельно совершает долгое путешествие.
В этой фантастике нет ничего несбыточного. Давно известны фотоэлементы — «электронные глаза» машин. {65} С применением полупроводников они становятся удивительно простыми и дешевыми.
Идея электрического зрения зародилась еще в прошлом веке. И прежде всего техника получила от физики так называемые вакуумные фотоэлементы. Начало их созданию положил своими исследованиями видный русский ученый А. Г. Столетов.
Много труда потратили ученые, чтобы постичь загадки самого, казалось бы, ясного явления в природе — света. Лишь полстолетия назад секреты его удалось раскрыть.
Природа света оказалась двоякой.
Не вдаваясь подробно в сложнейшую физическую сущность, укажем только, что, с одной стороны, свет — волновое движение электромагнитного поля (те же радиоволны, только очень короткие). С другой стороны, свет — поток частиц фотонов. Получается, что, освещая предмет, мы словно обстреливаем его своеобразными сгустками электромагнитных вибраций.
Что происходит, если такая «пуля света» ударяется о поверхность металла или полупроводника? Она может отдать свою энергию электронам вещества. Некоторые из них при этом получают настолько сильные толчки, что вырываются прочь из вещества — улетают в окружающее пространство.
Представьте себе несложный прибор. В стеклянный, освобожденный от воздуха баллончик впаяны две металлические пластинки. Две проволочки соединяют их с электрической батарейкой.
Пошлем световой луч на катод — пластинку, соединенную с отрицательным полюсом. Из нее начнут вылетать электроны. Но как только они покинут металл, их немедленно подхватит электрическое поле и понесет к {67} положительно заряженной пластинке — аноду. Пока катод освещен, через прибор летят электроны. Электрический ток рожден лучом.
Описанный нами прибор — не что иное, как простейший вакуумный фотоэлемент.
Есть у вакуумного фотоэлемента важная особенность — он действует исключительно быстро. Этот «стеклянный глаз» на освещение мгновенно отзывается толчком электрического тока. Вот почему прибор служит всюду, где требуется частые световые вспышки превратить в электрические колебания.
Например, в киноаппарате звукового кино неуловимо быстро пробегают полоски «звуковой дорожки». Фотоэлемент преобразует их мелькание в пульсации тока, и в громкоговорителях звучит музыка.
На экране телевизора танцует балерина. Глядя на нее, вы тоже пользуетесь услугами «стеклянного глаза». В студии перед артисткой установлена передающая телевизионная трубка — своеобразный вакуумный фотоэлемент. Каждую секунду в нем возникают миллионы электрических импульсов, в которых и запечатляется изображение.
Итак, вакуумный фотоэлемент очень расторопен. Но зато он подслеповат. Его чувствительность к свету не удовлетворяет технику. К «стеклянному глазу» волей-неволей приходится добавлять ламповые усилители, а это удорожает и ограничивает его практическое применение.
Изобретатели приложили много остроумия и выдумки, желая увеличить чувствительность прибора. Катод фотоэлемента покрывали специальными веществами, в баллон вводили газ, придумали даже хитроумные умножители электронов. {67}
И все-таки «стеклянный глаз» не приобрел достаточной чувствительности к свету. Да и не только в этом видели инженеры недостатки прибора. Как и всякое стекло, он был хрупок, не очень долговечен, неэкономичен. Плохо чувствовал себя нежный стеклянный прибор в машине, около грохочущих валов и шестерен. Трудно было приспособить его к работе в заводском цеху.
Много бились над усовершенствованием «стеклянного глаза», но решающих успехов достичь так и не удалось.
Между тем еще восемьдесят лет назад было открыто явление, подсказывающее выход из создавшегося положения.
Для одной из своих работ английский физик Уиллоу-бай Смит подыскивал материалы с большим электрическим сопротивлением. Ученый перепробовал множество веществ и в конце концов решил остановиться на палочке из полупроводника — селена.
Смит включил селеновую палочку в свою электрическую схему. И спустя некоторое время произошло непонятное: внезапно ток в цепи резко возрос. Ученый проверил, нет ли где короткого замыкания. Все оказалось в порядке. И вдруг он заметил: на селеновую палочку падает из окна золотистое пятнышко солнечного света. Неужели это оно так изменило электропроводность? Смит загородил луч рукой — и ток уменьшился. Виновник был найден!
Ученый сообщил об открытии своим коллегам, и вскоре было создано первое селеновое фотосопротивление. Идеально простой прибор — маленький кусочек полупроводника — оказался в десятки раз более чувствительным к свету, чем человеческий глаз!
Как и многое в физике полупроводников, изобретение фотосопротивления вначале не вызвало интереса. О нем {68} быстро забыли и вспомнили лишь через полстолетие, когда удивительная способность селена «чувствовать» свет была открыта заново.
За последние десятилетия исследователи нашли множество полупроводников, обладающих в той или иной мере замечательным свойством селена.
Удалось подробно выяснить и сущность их взаимодействия со светом. Все там получается куда проще, чем в баллоне вакуумного фотоэлемента.
Очередь «световых пуль» вонзается в толщу полупроводника. Там фотоны растрачивают свою энергию на освобождение электронов из плена атомов, на создание дырок.
Наверху — схема конструкции селенового фотосопротивления: 1 — селен; 2 — штырьки на стекле; 3 — электроды Внизу — внешний вид фотосопротивлений, выпускаемых отечественной промышленностью.
{69}
Получившие свободу носители тока не вылетают за пределы вещества, как в вакуумном фотоэлементе. Их тут же, прямо в глубине полупроводника, подхватывает электрическое поле.
Сейчас из разных материалов создано великое множество фотосопротивлений. Их устройство и внешний облик разнообразны — в зависимости от назначения. Правда, фотосопротивления уступают вакуумным фотоэлементам в расторопности, быстроте работы, иногда меняют свойства при переменах температуры. Но все они легки в изготовлении, надежны, долговечны, дешевы. А главное, эти «каменные глаза» в тысячи раз чувствительнее «стеклянных глаз».
Есть фотосопротивления, которые, подобно термисторам, улавливают инфракрасные лучи (даже и те, что испускаются человеческим телом). Другие регистрируют ультрафиолетовое излучение, лучи Рентгена, радиоактивные гамма-лучи. И неудивительно, что на основе этих неприхотливых приборов начала бурно развиваться самая разнообразная автоматика.
В нашей стране большая заслуга в создании и внедрении фотосопротивлений принадлежит неутомимому энтузиасту физики полупроводников — ленинградскому ученому Б. Т. Коломийцу.
У нас первую путевку в жизнь фотосопротивления получили на Ленинградском мыловаренном заводе имени Карпова. Здесь они добросовестно считают куски мыла, сходящие с конвейера.
Движется кусок мыла и пересекает световой луч, направленный на фотосопротивление. Ток в приборе ненадолго уменьшается, что тотчас фиксирует электромеханический счетчик.
{70}
Уже четыре года автоматика действует безотказно.
Новаторы завода соединили со счетчиком особый прибор — «ритмомер». Взглянув на него, можно в любой момент судить о выполнении сменного и месячного плана.
Вот другой пример.
По желобу катятся отшлифованные шарики для подшипников. Они не все одинаковы. Те, что хорошо обработаны, — блестящие, яркие, словно капельки ртути. Но попадаются и тусклые. Эти недостаточно отшлифованы.
Шарики быстро бегут и доходят до перепутья: желоб раздваивается, а на перекрестке — калитка. Словно по взмаху волшебной палочки, она открывает то правый путь, то левый. Все блестящие шарики беспрепятственно проходят вправо — к сборке, а тусклые — влево, в ящик брака.
Как устроен автомат? Тоже на основе фотосопротивления.
Оно стоит возле желоба, перед калиткой. Прибор успевает «осмотреть» каждый шарик и дать электрическую команду калитке — какую дорожку открыть. Ведь свет от блестящих и тусклых шариков отражается {71} по-разному. На заводах шарикоподшипников этот простой механический контролер заменяет десятки людей.
Фотосопротивления потрудились и при печатании книжки, которую вы сейчас читаете. В типографии они следили, чтобы в машину не попал лишний лист бумаги, чтобы листы ложились ровно, не рвались. При любой неполадке фотосопротивления тотчас останавливали печатную машину.
Цех автомобильного завода. Работница быстро кладет под пресс стальную заготовку. Удар — и готов корпус будущей фары. Через секунду — новый удар, еще одна фара вынута из-под штампа. Опять удар — готова следующая деталь... Вы подошли поближе, любуетесь, как ловко мнет машина толстые стальные круги. И вдруг работница предлагает вам:
— Суньте руку под ползун!
Что это? Послышалось вам или с ума сошел человек? Нет, она улыбается:
— Что, трусите? Боязно испробовать?
— Что ж тут пробовать! Ведь разможжит руку, мокрое место останется!
— Ну, так я попробую!
Не успеваете вы опомниться, как она сует руку под самый ползун... и тут же грозная махина металла, сердито рявкнув тормозами, замирает на месте.
— Техника безопасности! — гордо поясняет работница.
Если вы расспросите ее, почему же рука осталась цела, она расскажет вам много интересного.
Чего только не изобретали инженеры для безопасности работы на прессах! Делали, например, не одну кнопку включения машины, а две, чтобы обе руки рабочего занять. Придумали и такое: когда ползун движется вниз, {72} вперед выдвигается планка, отбрасывающая руки человека, если они попадут в опасное место. Пробовали даже привязывать руки рабочего на тонкие цепи — при каждом движении ползуна вниз руки поднимались на цепях. Нетрудно представить, как неудобны были такие приспособления, как они раздражали людей, мешали работать.
А этот пресс зрячий. Он не только работает, но и глядит, как бы не прищемить человека. Попадешь невзначай рукой под ползун — пересекается световой лучик от лампочки к фотосопротивлению, и оно дает команду тормозам. Работать стало легко и безопасно.
Знаете, как охотятся на волков? Берут гирлянду красных флажков и развешивают ее на деревьях вокруг леса. Волки натыкаются на флажки, их непривычный вид пугает их, и они отбегают назад. Но в одном месте в гирлянде устроен разрыв. Волк бросается туда и попадает под выстрел охотника, спрятавшегося в засаде.
В одном из цехов Московского завода «Прожектор» прежде тоже можно было видеть такую гирлянду. Зачем?
Представьте себе, что идет испытание прожектора. Высоковольтная испытательная установка находится прямо в цехе. Когда ток включен, проходить близко нельзя: напряжение смертельное — 3000 вольт. И вот, чтобы обезопасить людей, установку окружали гирляндой флажков. Это условный сигнал — не входи в запретную зону.
Только человек, в отличие от волка, не боится флажков. Бывало, понадобилась слесарю отвертка, которая лежала на станке за гирляндой, — и он рисковал, шел в опасное место. Такие случаи происходили нередко. Приходилось испытателям зорко следить за окружающими людьми, всегда быть наготове вовремя выключить ток. {73}
Теперь никаких флажков в цехах завода не увидишь. Испытатели перестали нервничать. Они поставили на стражу фотосопротивления.
Свет маленькой лампочки, собранный линзой в узкий луч, передается, как по эстафете, несколькими зеркалами, опоясывает запретную зону и попадает на «кристаллический глаз». Если кто-нибудь войдет на опасное место, он неминуемо разрывает луч — ток, идущий через фотосопротивление, резко слабеет, а вследствие этого немедленно выключается высокое напряжение.
Подобных зрячих автоматов-спасителей теперь сотни.
За столом сидит человек в темных очках. Он совершенно слепой. Но перед ним книга — обыкновенная книга, такая же, как и та, что сейчас раскрыта перед вашими глазами. И слепой читает эту книгу.
Известно, что люди, лишенные зрения, читают на ощупь — пальцами. В книгах, которые издаются для слепых, буквы, цифры, знаки препинания изображаются сочетаниями выпуклых точек. Но теперь слепые могут читать и любой обычный печатный текст — книгу, журнал, газету и т. д.
Над книгой, которая лежит перед человеком в темных очках, вплотную к странице движется вдоль строки небольшой металлический цилиндрик. А рядом укреплена дощечка, на которой покоится рука слепого. Под его пальцем рядком расположены шесть отверстий, из которых то и дело выскакивают кончики металлических стерженьков. Цилиндрик движется вдоль строки, и стерженьки быстро меняют расположение: одни прячутся, другие появляются. Оказывается, конфигурация стерженьков в отверстиях соответствует буквам в книге, над которыми в это время проходит цилиндрик.
{74}
Читающая машина для слепых.
Чем же это достигается?
Когда цилиндрик проходит над той или иной буквой, он освещает ее и через маленькую линзу проектирует ее изображение, как в фотоаппарате, на шесть крохотных фотосопротивлений. В зависимости от очертания букв фотосопротивления освещаются в разном порядке, и поэтому электрический ток, идущий через них, меняется. С каждым из фотосопротивлений связан через реле электромагнит, приводящий в движение один из стерженьков. Касаясь пальцем стерженьков, слепой и читает книгу. Аппарат как бы переводит ее на язык, понятный людям, лишенным зрения.
Чтобы обучиться читать с помощью этого устройства, слепому требуется всего несколько часов. Нетрудно представить себе, с каким восторгом приняли незрячие люди эту замечательную «читающую машину».
Сконструирована и другая система подобного аппарата. В ней фотосопротивления соединены со звуковыми {75} электрическими генераторами, создающими звуки разной высоты. Читающая головка-цилиндрик ползет над буквами, фотосопротивления затемняются в разных сочетаниях и включают разные генераторы. Из громкоговорителя слышится нечто похожее на быструю смену простеньких музыкальных аккордов.
Слепой быстро усваивает голоса и особенности «поющих букв». Аппарат как бы читает ему вслух.
Можно без конца писать о других примерах доброй службы фотосопротивлений. Области их применения множатся буквально с каждым месяцем. И используется в таких незамысловатых приборах чувствительность полупроводников к свету — вторая особенность этих материалов.
Впрочем, только ли фотосопротивления могут быть созданы на основе этого свойства?
Вспомните чувствительность полупроводников к теплу. В наиболее простом виде она дала технике термисторы. Но как только ученые скомбинировали электронный и дырочный полупроводники, то же свойство привело к созданию других ценнейших устройств — термоэлементов.
Что, если испробовать подобный путь и в практическом освоении светочувствительности полупроводников? Не поможет ли это еще дальше усовершенствовать «зрение» машин и приборов?
{76}