Edda islandés de SNORRI STURLUSON, 1200
Me he convertido en muerte, en el destructor de mundos. Bhagavad Gita Las puertas de] cielo y de] infierno son adyacentes e idénticas.
NIKOs KAZANTZAKls, La última tentación de Clisto
La Tierraes un lugar encantador y más o menos plácido. Las cosas cambian pero lentamente. Podemos vivir toda una vida y no presenciar personalmente desastres naturales de violencia superior a una simple tormenta. Y de este modo nos volvemos relajados, complacientes, tranquilos. Pero en la historia de la naturaleza los hechos hablan por sí solos. Ha habido mundos devastados. Incluso nosotros, los hombres, hemos conseguido la dudosa distinción técnica de poder provocar nuestros propios desastres, tanto intencionados como inadvertidas. En los paisajes de otros planetas que han conservado las marcas del pasado, hay pruebas abundantes de grandes catástrofes. Todo depende de la escala temporal. Un acontecimiento que sería impensable en un centenar de años, puede que sea inevitable en un centenar de millones de años. Incluso en la Tierra, incluso en nuestro propio siglo, han ocurrido extraños acontecimientos naturales.
En las primeras horas de la mañana del 30 de junio de 1908, en Siberia Central, se observó una gigantesca bola de fuego moviéndose rápidamente a través del cielo. Cuando tocó el horizonte se produjo una enorme explosión que arrasó 2 000 kilómetros cuadrados de bosque e incendió con una ráfaga de fuego miles de árboles cercanos al lugar del impacto. La consiguiente onda de choque atmosférica dio dos veces la vuelta a la Tierra. En los dos días siguientes, el polvillo presente en la atmósfera era tan abundante que se podía leer el periódico de noche, en las calles de Londres, a 1 0 000 kilómetros de distancia, por la luz que este polvillo dispersaba.
El gobierno de Rusia, bajo los zares, no podía molestarse en investigar un incidente tan trivial, el cual después de todo, se había producido muy lejos, entre los retrasados tunguses de Siberia. Hasta diez años después de la Revolución no se envió una expedición para examinar el terreno y entrevistar a los testigos. He aquí algunas de las crónicas que trajeron consigo:
A primera hora de la mañana todo el mundo dormía en la tienda cuando ésta voló por los aires, junto con sus ocupantes. Al caer de nuevo a Tierra, la familia entera sufrió ligeras magulladuras, pero Akulina e lván quedaron realmente inconscientes. Cuando recobraron el conocimiento oyeron muchísimo ruido y vieron a su alrededor el bosque ardiendo y en gran parte devastado.
Estaba sentado en el porche de la caseta de la estación comercial de Vanovara a la hora del desayuno y mirando hacia el Norte. Acababa de levantar el hacha para reparar un tonel, cuando de pronto el cielo se abrió en dos, y por encima del bosque toda la parte Norte del cielo pareció que se cubría de fuego. Sentí en ese momento un gran calor como si se hubiese prendido fuego a mi camisa… quise sacármela y tirarla, pero en ese momento hubo en el cielo una explosión y se oyó un enorme estruendo. Aquello me tiró al suelo a unos tres sayenes de distancia del porche y por un momento perdí el conocimiento. Mi mujer salió corriendo y me metió en la cabaña. Al estruendo le siguió un ruido como de piedras cayendo del cielo o de escopetas disparando. La Tierra temblaba, y cuando estaba caído en el suelo me cubrí la cabeza porque temía que las piedras pudieran golpearme. En aquel momento, cuando el cielo se abrió, sopló del Norte, por entre las cabañas, un viento caliente como el de un cañón. Dejó señales en el suelo.
Estaba sentado tomando el desayuno al lado de mi arado, cuando oí explosiones súbitas, como disparos de escopetas. Mi caballo cayó de rodillas. Una llamarada se elevó por el lado Norte, sobre el bosque… Vi entonces que los abetos del bosque se inclinaban con el viento y pensé en un huracán. Agarré el arado con las dos manos para que no volara. El viento era tan fuerte que arrancaba la tierra del suelo, y luego el huracán levantó sobre el Angara una pared de agua. Lo vi todo con bastante claridad, porque mi campo estaba en una ladera.
El rugido aterrorizó de tal modo a los caballos que algunos salieron galopando desbocados, arrastrando los arados en diferentes direcciones, y otros se desplomaron en el suelo.
Los carpinteros, tras el primer y el segundo estallido, se santiguaron estupefactos, y cuando resonó el tercer estallido cayeron del edificio sobre la madera astillada. Algunos estaban tan aturdidos e intensamente aterrorizados que tuve que calmarlos y tranquilizarlos. Todos dejamos el trabajo y nos fuimos hacia el pueblo. Allí, multitudes enteras de habitantes estaban reunidos en las calles, aterrorizados, hablando del fenómeno.
Yo estaba en el campo;… acababa de enganchar un caballo a la grada y empezaba a sujetar el otro cuando de pronto oí que sonaba como un fuerte disparo por la derecha. Me volví inmediatamente y vi un objeto llameante alargado volando a través del cielo. La parte frontal era mucho más ancha que la cola y su color era como de fuego a la luz del día. Su tamaño era varias veces mayor que el sol pero su brillo mucho más débil, de modo que se podía mirar sin cubrirse los ojos. Detrás de las llamas había una estela como de polvo. Iba envuelto en pequeñas humaredas dispersas y las llamas iban dejando detrás otras llamitas azules. Cuando hubo desaparecido la llama, se oyeron estallidos más fuertes que el disparo de una escopeta, podía sentirse temblar el suelo, y saltaron los vidrios de las ventanas de la cabaña.
… Estaba lavando ropa en el bancal del río Kan. De pronto se oyó un ruido como el aleteo de un pájaro asustado… y apareció en el río una especie de marea. Después se oyó un estallido único tan fuerte que una de las mujeres trabajadoras… se cayó al agua.
Este notable caso se conoce por el Acontecimiento de Tunguska. Algunos científicos han sugerido que lo causó la caída de un trozo de antimateria que se aniquiló al entrar en contacto con la materia ordinaria de la Tierra, desapareciendo en un destello de rayos gamma. Pero la ausencia de radiactividad en el lugar del impacto no apoya esta teoría. Otros postulan que un mini agujero negro atravesó la Tierra entrando en Siberia y saliendo por el otro lado. Pero los datos de las ondas de choque atmosféricas no muestran indicios de que aquel día saliera proyectado un objeto por el Atlántico Norte. Quizás fuese una nave espacial de alguna civilización extraterrestre increíblemente avanzada con un desesperado problema técnico a bordo, que se estrelló en una región remota de un oscuro planeta. Pero en el lugar del impacto no hay ni rastro de una nave de este tipo. Se han propuesto todas estas ideas, algunas con más o menos seriedad. Ninguna de ellas está firmemente apoyada por la evidencia. El punto clave del Acontecimiento de Tunguska es que hubo una tremenda explosión, una gran onda de choque, un enorme incendio forestal, y que sin embargo no hay cráter de impacto en el lugar. Parece que sólo hay una explicación consecuente con todos los hechos: en 1908 un trozo de cometa golpeó la Tierra.
En los vastos espacios que separan a los planetas hay muchos objetos, algunos rocosos, otros metálicos, otros de hielo, otros compuestos parcialmente de moléculas orgánicas. Son desde granos de polvo hasta bloques irregulares del tamaño de Nicaragua o Bhutan. Y a veces, por accidente, hay un planeta en su camino. El Acontecimiento de Tunguska fue provocado probablemente por un fragmento de cometa helado de cien metros aproximadamente el tamaño de un campo de fútbol, de un millón de toneladas de peso, y moviéndose a treinta kilómetros por segundo aproximadamente.
Si un impacto de este tipo acaeciese hoy en día podría confundirse, sobre todo en el momento inicial de pánico, con una explosión nuclear. El impacto cometario y la bola de fuego simularían todos los efectos de una explosión nuclear de un megatón, incluyendo la nube en forma de hongo, con dos excepciones: no habría radiaciones gamma ni precipitación de polvo radiactivo. ¿Es posible que un acontecimiento, raro aunque natural, el impacto de un considerable fragmento cometario, desencadene una guerra nuclear? Extraña escena: un pequeño cometa choca contra la Tierra, como lo han hecho ya millones de ellos, y la respuesta de nuestra civilización es la inmediata autodestrucción. Quizás nos convendría entender un poco mejor que hasta ahora los cometas, las colisiones y las catástrofes. Por ejemplo, un satélite norteamericano Vela detectó el 22 de septiembre de 1979 un doble e intenso destello luminoso procedente de la región del Atlántico Sur y de la parte occidental de Océano índico. Las primeras especulaciones sostenían que se trataba de la prueba clandestina de un arma nuclear de baja potencia (dos kilotones, la sexta parte de energía de la bomba de Hiroshima) llevada a cabo por Sudáfrica o Israel. En todo el mundo se consideró que las consecuencias políticas eran serias. Pero, ¿y si los destellos se debieran a un asteroide pequeño o a un trozo de cometa? Se trata de una posibilidad real, porque los reconocimientos en la zona de los destellos no mostraron ningún vestigio de radiactividad anormal en el aire. Esta posibilidad subraya el peligro que supone, en una época de armas nucleares, no controlar mejor los impactos procedentes del espacio.
Un cometa está compuesto principalmente por hielo de agua (H20) con un poco de hielo de metano (CH4), y algo de hielo de amoníaco (NH3) Un modesto fragmento cometario, al chocar con la atmósfera de la Tierra, produciría una gran y radiante bola de fuego, y una potente onda explosiva que incendiaría árboles, arrasaría bosques y se escucharía en todo el mundo. Pero no podría excavar en el suelo un cráter grande. Todos los hielos se derretirían durante la entrada. Del cometa quedarían pocas piezas reconocibles, quizás sólo un rastro de pequeños granos provenientes de las partes no heladas del núcleo cometario. Recientemente, el científico soviético E. Sobotovich ha identificado un gran número de diamantes diminutos esparcidos por la zona de Tunguska. Es ya conocida la existencia de diamantes de este tipo en meteoritos que han sobrevivido al impacto y cuyo origen último pueden ser los cometas. En muchas noches claras, mirando pacientemente hacia el cielo, puede verse en lo alto algún meteorito solitario brillando levemente. Algunas noches puede verse una lluvia de meteoritos, siempre en unos mismos días del año; es un castillo natural de fuegos artificiales, un espectáculo de los cielos. Estos meteoritos están compuestos por granos diminutos, más pequeños que un grano de mostaza. Más que estrellas fugaces son copos que caen. Brillan en el momento de entrar en la atmósfera de la Tierra, y el calor y la fricción los destruyen a unos 100 kilómetros de altura. Los meteoritos son restos de cometas. 1 Los viejos cometas, calentados por pasos repetidos cerca del Sol, se desmembrara, se evaporan y se desintegran. Los restos se dispersan llenando toda la órbita cometaria. En el punto de intersección de esa órbita con la de la Tierra, hay un enjambre de meteoritos esperándonos. Parte del enjambre está siempre en la misma posición en la órbita de la Tierra, y la lluvia de meteoritos se observa siempre el mismo día de cada año. El 30 de junio de 1908 fue el día correspondiente ala lluvia del meteorito Beta Tauris, relacionado con la órbita del cometa Encke. Parece que el Acontecimiento de Tunguska fue causado por un pedazo de cometa Encke, un trozo bastante más grande que los diminutos fragmentos que causan estas lluvias de meteoritos, resplandecientes e inofensivas.
Los cometas siempre han suscitado temor, presagios y supersticiones. Sus apariciones ocasionales desafiaban de modo inquietante la noción de un Cosmos inalterable y ordenado por la divinidad. Parecía inconcebible que una lengua espectacular de llama blanca como la leche, saliendo y poniéndose con las estrellas noche tras noche, estuviera allí sin ninguna razón, que no trajera algún presagio sobre cuestiones humanas. Así nació la idea de que los cometas eran precursores del desastre, augurios de la ira divina; que predecían la muerte de los príncipes y la caída de los reinos. Los babilonios pensaban que los cometas eran barbas celestiales. Los griegos las veían como cabelleras flotantes, los árabes como espadas llameantes. En la época de Tolomeo los cometas se clasificaban laboriosamente, según sus formas, en rayos, trompetas, jarras y demás. Tolomeo pensó que los cometas traían guerras, temperaturas calurosas y desórdenes. Algunas descripciones medievales de cometas parecen crucifijos volantes no identificados. Un superintendente u obispo luterano de Magdeburgo llamado Andreas Celichius publicó en 1578 una Advertencia teológico del nuevo cometa, donde ofrecía la inspirada opinión según la cual un cometa es la humareda espesa de los pecados humanos, que sube cada día, a cada hora, en cada momento, llena de hedor y de horror ante la faz de Dios, volviéndose gradualmente más espesa hasta formar un cometa con trenzas rizadas, que al final se enciende por la cólera y el fuego ardiente del Supremo Juez Celestial. Pero otros replicaron que si los cometas fuesen el humo de los pecados, los cielos estarían ardiendo continuamente.
El dato más antiguo sobre la aparición del cometa Halley (o de cualquier otro cometa) aparece en la obra china Libro del príncipe de Huai Nan, participante en la marcha militar del rey Wu contra Zhou de Yin. Fue en el año 105 7 a. de C. La aproximación del cometa Halley a la Tierra en el año 66 es la explicación más probable del relato de Josefo sobre una espada que estuvo colgando un año entero sobre Jerusalén. En 1066, los normandos presenciaron un nuevo regreso del cometa Halley. Pensaron que debía de presagiar la caída de algún reino, y así el cometa incitó, y en cierto modo precipitó la invasión de Inglaterra por Guillermo el Conquistador. El cometa fue notificado a su debido tiempo en un periódico de la época, el Tapiz de Bayeux. En 1301 Giotto,, uno de los fundadores de la pintura realista moderna, presenció otra aparición del cometa Halley y lo introdujo en una
escena de la Natividad. El Gran Cometa de 1466, de nuevo el Halley, aterrorizó a la Europa cristiana; los cristianos temieron que Dios, que envía los cometas, pudiera estar de parte de los turcos que acababan de apoderarse de Constantinopla.
Los principales astrónomos de los siglos dieciséis y diecisiete estuvieron fascinados por los cometas, e incluso a Newton le daban un poco de vértigo. Kepler describió los cometas precipitándose a través del espacio como peces en el agua, pero disipados por la luz solar, pues la cola cometaria siempre señala en dirección contraria al Sol. David Hume, en muchos casos un intransigente racionalista, jugó por lo menos con el concepto de que los cometas eran las células reproductoras los óvulos o el esperma de los sistemas planetarios, y que los planetas se producían practicando una especie de sexo interestelar. Cuando Newton era estudiante y no había inventado aún el telescopio reflector, pasó muchas noches seguidas en vela explorando a simple vista el cielo en búsqueda de cometas, con un fervor tal que cayó enfermo de agotamiento. Newton, secundando a Tycho y a Kepler, concluyó que los cometas vistos desde la Tierra no se mueven en el interior de nuestra atmósfera, como Aristóteles y otros habían pensado, sino que están bastante más lejos que la Luna, aunque más cerca que Saturno. Los cometas brillan, al igual que los planetas, porque reflejan la luz solar, y están muy equivocados quienes los sitúan casi tan lejos como las estrellas fijas; pues si así fuese, los cometas no podrían recibir más luz de nuestro sol que la que nuestros planetas reciben de las estrellas fijas. Demostró que los cometas, como los planetas, se mueven en elipse: Los cometas son una especie de planetas que giran en órbitas muy excéntricas alrededor del Sol. Esta desmitificación, esta predicción de las órbitas cometarias regulares, permitió a su amigo Edmund Halley calcular en 1707 que los cometas de 1531, 1607, y 1682 eran apariciones del mismo cometa a intervalos de 76 años, y predecir su regreso en 1758. El cometa llegó a su debido tiempo y le dedicaron, póstumamente, su nombre. El cometa Halley ha jugado un importante papel en la historia humana, y puede que sea el objetivo de la primera sonda espacial hacia un cometa, durante su regreso en 1986.
Los científicos planetarios modernos a veces afirman que la colisión de un cometa con un planeta podría suponer una considerable contribución a la atmósfera planetario. Por ejemplo, toda el agua presente actualmente en la atmósfera podría explicarse por el impacto reciente de un cometa pequeño. Newton señaló que la materia de la cola de los cometas se disipa en el espacio interplanetario, se desprende del cometa y poco a poco es atraída por la gravedad hacia los planetas cercanos. Creía que el agua en la Tierra se perdía gradualmente, gastándose en la vegetación y en la putrefacción, y convirtiéndose en tierra seca… Los fluidos, si no se suministran desde el exterior, han de disminuir continuamente, y al final han de faltar del todo. Parece que Newton creyó que los océanos de la Tierra son de origen cometario, y que la vida es posible solamente porque la sustancia cometaria cae sobre nuestro planeta. En un arrebato místico aún fue más lejos: Además sospecho que el espíritu proviene principalmente de los cometas, el cual es por supuesto la parte más pequeña pero la más sutil y provechosa de nuestro aire, y tan necesaria para sustentar la vida de todas las cosas, incluyendo la nuestra.
Ya en 1869 el astrónomo William Huggins encontró una identidad entre algunos aspectos del espectro de un cometa y el espectro del gas natural u oliflcante. Huggins había encontrado materia orgánica en los planetas; años después se identificó en la cola de los cometas cianógeno, CN, consistente en un átomo de carbono y uno de nitrógeno, el fragmento molecular que produce los cianuros. Cuando la Tierra en 1 9 1 0 estaba a punto de atravesar la cola del cometa Halley mucha gente se aterrorizó, porque no tuvo en cuenta que la cola de un cometa es extraordinariamente difusa: el peligro real del veneno presente en la cola de un cometa es bastante menor que el peligro que ya en 19 1 0 suponía la polución industrial de las grandes ciudades.
Pero eso no tranquilizó a casi nadie. Los titulares del Chroniele de San Francisco del 15 de mayo decían, por ejemplo, Cámara para cometas tan grande como una casa, El cometa llega y el marido se reforma, Fiestas cometarias, última novedad en Nueva York. El Examiner de Los Ángeles adoptaba un tono frívolo: Dime: ¿No te ha cianogenado aún este cometa?… Toda la raza humana tendrá un baño gratuito de gases, Se prevén grandes juergas, Muchos sienten el gusto del cianógeno, Una víctima se encarama a un árbol para intentar telefonear al Cometa. En 19 1 0 se celebraron fiestas para divertirse antes de que la contaminación de cianuro acabara con el mundo. Los vendedores pregonaban píldoras anticometa y mascarillas de gas, que fueron una extraña premonición de los campos de batalla de la primera guerra mundial.
En nuestra época subsiste cierta confusión con respecto a los cometas. En 1957 yo trabajaba de licenciado en el Observatorio Yerkes de la Universidad de Chicago. Estaba solo en el observatorio a altas horas de la noche cuando oí sonar insistentemente el teléfono. Al contestar, una voz que delataba un avanzado estado de ebriedad dijo: Quiero hablar con un astrónomo. ¿Puedo ayudarle en algo? Sí, verá, estamos en el jardín con esta fiesta, aquí en Wilmette, y hay algo en el cielo. Pero lo bueno es e si lo miras directamente desaparece. Y si no lo miras está ahí. Ea parte más sensible de la retina no está en el centro del campo de visión. Las estrellas débiles y otros objetos pueden verse desviando la vista ligeramente. Yo sabía que en el cielo y apenas visible en aquel momento había un cometa recién descubierto llamado Arend Roland. Le dije por tanto que lo que estaba viendo era probablemente un cometa. Hubo un largo silencio, seguido de la pregunta: ¿Y eso qué es? Un cometa respondí es una bola de nieve de una milla de ancho. Después de un largo silencio el borracho solicitó: Quiero hablar con un astrónomo de verdad. Cuando reaparezca en 1986 el cometa Halley me gustará saber qué dirigentes políticos se asustarán de la aparición, y qué otras estupideces nos tocará oír.
Los planetas se mueven en órbitas elípticas alrededor del Sol, pero sus órbitas no son muy elípticas. De entrada y a primera vista, son casi indistinguibles de un círculo. Son los cometas especialmente los cometas de largo período los que tienen órbitas espectacularmente elípticas. Los planetas son los veteranos del sistema solar interno; los cometas son recién llegados. ¿Por qué las órbitas planetarias son casi circulares y están netamente separadas unas de otras? Porque si los planetas tuvieran órbitas muy elípticas, de modo que sus trayectorias se cortasen, antes o después se produciría una colisión. En la historia inicial del sistema solar, hubo probablemente muchos planetas en proceso de formación. Los planetas cuyas órbitas elípticas se cruzaban tendieron a colisionar y a destruirse entre ellos. Los de órbitas circulares tendieron a crecer y a sobrevivir. Las órbitas de los planetas actuales son las órbitas de los supervivientes de esta selección natural mediante colisiones, la edad mediana y estable de un sistema solar dominado por impactos catastróficos iniciales.
En el sistema solar más exterior, en la oscuridad de más allá de los planetas, hay una vasta nube esférica de un billón de núcleos cometarios, orbitando al Sol no más rápidamente que un coche de carreras en las 500 millas de Indianápolis. 1 Un cometa más o menos típico tendría el aspecto de una bola gigante de nieve en rotación, de un kilómetro de diámetro aproximadamente. La mayoría de los cometas nunca atraviesan el límite marcado por la órbita de Plutón. Pero en ocasiones el paso de una estrella provoca una agitación y conmoción gravitatorias en la nube cometaria, y un grupo de cometas se encuentra trasladado a órbitas muy elípticas y precipitándose hacia el Sol. Su recorrido sufre luego más variaciones por encuentros gravitatorios con Júpiter y Satumo, y una vez cada cien años más o menos tiende a emprender una carrera hacia el interior del sistema solar. En algún punto entre las órbitas de Júpiter y Marte empezará a calentarse y a evaporarse. La materia que sale expulsada de la atmósfera del Sol, el viento solar, transporta fragmentos de polvo y de hielo hacia detrás del cometa, formando una cola incipiente. Si Júpiter tuviera un metro de longitud nuestro cometa sería más pequeño que una mota de polvo, pero su cola una vez desarrollada del todo es tan grande como las distancias entre los mundos. Cuando está a una distancia que le hace visible desde la Tierra provoca, en cada una de sus órbitas, estallidos de fervor supersticioso entre los terrestres. Pero con el tiempo, los terrestres comprenden que los cometas no viven en la misma atmósfera que ellos, sino fuera, entre los planetas. Calculan luego su órbita. Y quizás un día no muy lejano lancen un pequeño vehículo espacial dedicado a investigar a este visitante del reino de las estrellas.
Los cometas, más tarde o más temprano, chocan con los planetas. La Tierra y su acompañante la Luna tienen que estar bombardeadas por cometas y por pequeños asteroides, los escombros que quedaron de la formación del sistema solar. Puesto que hay más objetos pequeños que grandes, tiene que haber más impactos de pequeños objetos que de grandes. El impacto de un pequeño fragmento cometario con la Tierra, como el de Tunguska, debería ocurrir una vez cada cien mil años aproximadamente. Pero el impacto de un cometa grande, como el corneta Halley, cuyo núcleo es quizás de veinte kilómetros de diámetro, debería ocurrir solamente una vez cada mil millones de años.
Cuando un objeto pequeño o de hielo colisiona con un planeta o una luna, quizás no produzca una cicatriz muy señalada. Pero si el objeto que hace impacto es mayor o está formado principalmente por rocas, se produce en el impacto una explosión que excava un cuenco hemisférico llamado cráter de impacto. Y si ningún proceso borra o rellena el cráter, puede durar miles de millones de años. En la Luna no hay casi erosión y cuando examinamos su superficie la encontramos cubierta con cráteres de impacto, en número muy superior al que puede explicar la dispersa población de residuos cometarios y asteroidales que ahora ocupa el sistema solar interior. La superficie de la Luna ofrece un elocuente testimonio de una etapa previa de la destrucción de mundos, que finalizó hace ya miles de millones de años. 1 Los cráteres de impacto no son exclusivos de la Luna. Los encontramos en todo el sistema solar interior; desde Mercurio, el más cercano al Sol, hasta Venus, cubierto de nubes, y hasta Marte con sus lunas diminutas, Fobos y Deimos. Éstos son los planetas terrestres, nuestra familia de mundos, los planetas más o menos parecidos a la Tierra. Tienen superficies sólidas, interiores formados por roca y hierro, y atmósferas que van desde el vacío casi total hasta presiones noventa veces superiores a las de la Tierra. Se agrupan alrededor del Sol, la fuente de luz y calor, como excursionistas alrededor del fuego de campamento. Todos los planetas tienen unos 4 600 millones de años de edad. Todos ellos, al igual que la Luna, ofrecen testimonios elocuentes de una era de impactos catastróficos en la primitiva historia del sistema solar.
Más allá de Marte entramos en un régimen muy diferente: el reino de Júpiter y de otros planetas jovianos o gigantes. Se trata de mundos inmensos compuestos principalmente de hidrógeno y de helio, con menos cantidades de gases ricos en hidrógeno, como el metano, amoníaco y agua. No vemos aquí superficies sólidas, solamente la atmósfera y las nubes multicolores. Son planetas serios, no pequeños mundos fragmentarios como la Tierra. Dentro de Júpiter podría caber un millar de Tierras. Si en la atmósfera de Júpiter cayese un cometa o un asteroide, no esperaríamos que se formara un cráter visible, sino sólo un claro momentáneo entre las nubes. No obstante, sabemos también que en el sistema solar exterior ha habido una historia de colisiones que ha durado miles de millones de años; porque Júpiter tiene un gran sistema de más de una docena de lunas, cinco de las cuales fueron examinadas de cerca por la nave espacial Voyager. También aquí encontramos pruebas de catástrofes pasadas. Cuando el sistema solar esté totalmente explorado, probablemente tendremos pruebas de impactos catastróficos en todos los nueve mundos, desde Mercurio a Plutón, y en todas las pequeñas lunas, cometas y asteroides.
En la cara próxima de la Luna hay unos 10 000 cráteres visibles con el telescopio desde la Tierra. La mayoría de ellos están en antiguas montañas lunares y datan de la época de formación final de la Luna por acreción de escombros interplanetarios. Hay alrededor de un millar de cráteres mayores de un kilómetro de longitud en los mapia (en latín mares), las regiones bajas que quedaron inundadas, quizás por lava, poco tiempo después de su formación, cubriendo los cráteres preexistentes. Por lo tanto, los cráteres de la Luna deberían formarse hoy, de modo muy aproximado, a razón de 109 años/l 04 cráteres = 1 01 años/cráter, un intervalo de cien mil años entre cada fenómeno de craterización. Es posible que hubiera más escombros interplanetarios hace unos cuantos miles de millones de años que ahora, y quizás tendríamos que esperar más de cien mil años para poder ver la formación de un cráter en la Luna. La Tierra tiene un área mayor que la Luna, por lo tanto tendríamos que esperar unos diez mil años entre cada colisión capaz de crear en nuestro planeta cráteres de un kilómetro de longitud. Si tenemos en cuenta que el Cráter del Meteorito de Arizona, un cráter de impacto de un kilómetro aproximado de longitud, tiene treinta o cuarenta mil años de antigüedad, las observaciones en la Tierra concuerdan con estos cálculos tan bastos.
El impacto real de un cometa pequeño o de un asteroide con la Luna puede producir una explosión momentánea de brillo suficiente para que sea visible desde la Tierra. Podemos imaginarnos a nuestros antepasados mirando distraídamente hacia arriba una noche cualquiera de hace cien mil años y notando el crecimiento de una extraña nube en la parte de la Luna no iluminada, nube alcanzada de repente por los rayos del Sol. Pero no esperamos que un acontecimiento tal haya sucedido en tiempos históricos. Las probabilidades en contra deben de ser como de cien a uno. Sin embargo hay un relato histórico que puede ser la descripción real de un impacto en la Luna visto desde la Tierra a simple vista: la tarde del 25 de junio de 1178, cinco monjes británicos contaron algo extraordinario, que después quedó registrado en la crónica de Gervasio de Canterbury, considerada generalmente como un documento fidedigno de los acontecimientos políticos y culturales de su tiempo: el autor interrogó a los testigos oculares quienes afirmaron, bajo juramento, decir la verdad de la historia. La crónica cuenta:
Había una brillante luna nueva, y como es habitual en esta fase sus cuernos estaban inclinados hacia el Este. De pronto el cuerno superior se abrió en dos. En el punto medio de la división emergió una antorcha flameante, que vomitaba fuego, carbones calientes y chispas.
Los astrónomos Derral Mulholland y Odile Calame han calculado que un impacto lunar produciría una nube de polvo emanando de la superficie de la Luna con un aspecto bastante similar al descrito por los monjes de Canterbury.
Si un impacto como ése se hubiera producido hace solamente 800 años, el cráter todavía sería visible. La erosión en la Luna es tan ineficaz, a causa de la ausencia de agua y de aire, que cráteres incluso pequeños que tienen ya unos cuantos miles de millones de años de edad se conservan relativamente bien. La descripción que Gervasio reproduce permite precisar el sector de la Luna al que se refieren las observaciones. Los impactos producen rayos, estelas lineales de polvo fino arrojado durante la explosión. Los rayos de este tipo están asociados con los cráteres más jóvenes de la Luna; por ejemplo, los que recibieron las nombres de Aristarco, Copémico y Kepler. Pero si bien los cráteres pueden resistir la erosión en la Luna, los rayos, que son excepcionalmente finos, no pueden. A medida que pasa el tiempo, la llegada de micrometeoritos polvillo fino del espacio basta para, remover y cubrir los rayos, que desaparecen gradualmente. Por lo tanto los rayos son la firma de un impacto reciente.
El meteoricista Jack Hartung ha señalado que un cráter muy reciente, un cráter pequeño de aspecto nuevo con un prominente sistema de rayos está en la región de la Luna indicada por los monjes de Canterbury. Se le llamó Giordano Bruno, un estudioso católico del siglo dieciséis, que sostenía la existencia de una infinidad de mundos, muchos de ellos habitados. Por éste y por otros crímenes fue quemado en la hoguera el año 1600.
Calame y Mulholland han ofrecido otro tipo de pruebas consistentes con esta interpretación. Cuando un objeto choca con la Luna a gran velocidad, la hace oscilar ligeramente. Las vibraciones acaban amortiguándose pero no en un período tan breve de ochocientos años. Este temblor puede estudiarse con la técnica de las reflexiones por láser. Los astronautas del Apolo situaron en diversos lugares de la Luna espejos espaciales llamados retroreflectores de láser. Cuando un rayo de láser procedente de la Tierra incide en un espejo y vuelve de rebote, el tiempo que tarda en ir y volver puede calcularse con notable precisión. Este tiempo multiplicado por la velocidad de la luz nos da la distancia de la Luna en ese momento con precisión igualmente notable. Tales mediciones, llevadas a cabo durante años, revelan que la Luna presenta una vibración o temblor con un período (tres años aproximadamente) y una amplitud (tres metros aproximados), que concuerda con la idea de que el cráter Giordano Bruno fue excavado hace menos de un millar de años.
Estas pruebas son deductivas e indirectas. Como ya he dicho, no es probable que un fenómeno así haya sucedido en tiempos históricos. Pero las pruebas son, por lo menos, sugestivas. También nos hace pensar, como el Acontecimiento de Tunguska y el Cráter del Meteorito de Arizona, que no todas las catástrofes por impacto ocurrieron en la historia primitiva del sistema solar. Pero el hecho de que solamente unos cuantos cráteres lunares tengan sistemas extensos de rayos también nos hace pensar que, incluso en la Luna, se produce cierta erosión. 1 Si tomamos nota de los cráteres que se superponen a otros y estudiamos otros signos de la estratigrafia lunar podremos reconstruir la secuencia de los fenómenos de impacto y de inundación, de las cuales la formación del cráter Bruno es quizás la más reciente. En la página 89 se ha intentado visualizar los sucesos que crearon la superficie del hemisferio lunar que vemos desde la Tierra.
La Tierraestá muy cerca de la Luna. Si en la Luna los cráteres de impacto son tan numerosos, ¿cómo los ha evitado la Tierra? ¿Por qué el Cráter del Meteorito es tan extraño? ¿Piensan los cometas y los asteroides que es imprudente chocar con un planeta habitado? Tanto control es improbable. La única explicación Posible es que los cráteres de impacto se formaron a ritmos muy similares tanto en la Tierra como en la Luna, pero que la falta de aire y de agua en la Luna ha permitido conservarlos durante períodos inmensos de tiempo, mientras que en la Tierra la lenta erosión los borra o los rellena. Las corrientes de agua, el arrastre, de arena por el viento, y la formación de montañas son procesos muy lentos. Pero al cabo de millones o de miles de millones de años, son capaces de dejar totalmente erosionadas cicatrices de impactos incluso muy grandes.
En la superficie de cualquier luna o planeta, habrá procesos externos, como los impactos procedentes del espacio, y procesos internos, como los terremotos; habrá fenómenos rápidos y catastróficos, como explosiones volcánicas, y procesos de una lentitud acusadísima, como la formación de hoyuelos en una superficie por algunos granos de arena llevados por el viento. No hay una respuesta general que permita saber' qué procesos dominan, los exteriores o los interiores, los fenómenos raros pero violentos, o los comunes y poco visibles. En la Luna los fenómenos exteriores, catastróficos, influyen poderosamente; en la Tierra dominan los procesos internos, lentos. Marte es un caso intermedio.
Entre las órbitas de Marte y de Júpiter hay incontables asteroides, planetas terrestres diminutos. Los más grandes tienen varios cientos de kilómetros de diámetro. Muchos tienen formas oblongas y van dando tumbos a través del espacio. En algunos casos parecen haber dos o más asteroides orbitando el uno muy cerca del otro. Las colisiones entre los asteroides suceden con frecuencia, y en ocasiones se desprende un pequeño fragmento que intercepta accidentalmente la Tierra, y cae al suelo como un meteorito. En las exposiciones, en las vitrinas de nuestros museos están los fragmentos de mundos lejanos. El cinturón de asteroides es una gran rueda de molino, que produce piezas cada vez más pequeñas hasta ser simples motas de polvo. Los fragmentos asteroidales mayores, junto con los cometas, son los principales responsables de los cráteres recientes en las superficies planetarias. Es posible que el cinturón de asteroides sea un lugar en donde las mareas gravitatorias del cercano planeta gigante Júpiter impidieron que llegara a formarse un planeta; o quizás son los restos destrozados de un planeta que explotó por sí solo. Esto parece improbable, pues ningún científico en la Tierra sabe de qué manera podría explotar un planeta por sí solo, lo cual probablemente dé lo mismo.
Los anillos de Saturno guardan algún parecido con el cinturón de asteroides: billones de diminutas lunas heladas orbitando el planeta. Pueden representar los escombros que la gravedad de Satumo no dejó convertirse por acreción en una luna cercana, o puede que sean los restos de una luna que deambulaba demasiado próxima y que fue despedazada por las mareas gravitatorias. Otra explicación es que los anillos sean la posición de equilibrio estático entre el material expulsado por una luna de Satumo, por ejemplo Titán, y el material que cae en la atmósfera del planeta. Júpiter y Urano también tienen sistemas de anillos, no descubiertos hasta hace poco, y casi invisibles desde la Tierra. La posible existencia de un anillo en Neptuno es un problema prioritario en la agenda de los científicos planetarios. Es posible que los anillos sean un típico adorno de los planetas de tipo joviano en todo el Cosmos.
Un libro popular, Mundos en colisión, publicado en 1950 por un siquiatra llamado Immanuel Velikovsky, afirma que ha habido grandes colisiones recientes desde Saturno hasta Venus. Según el autor, un objeto de masa planetario, que él llama cometa, se habría formado de alguna manera en el sistema de Júpiter. Hace unos 3 500 años se precipitó hacia el sistema solar interior y tuvo repetidos encuentros con la Tierra y Marte, consecuencias accidentales de los cuales fueron la división del Mar Rojo que permitió a Moisés y a los israelitas escapar del Faraón, y el cese de la rotación de la Tierra por orden de Josué. También produjo, según Velikovsky, vulcanismos y diluvios importantes. 4 Velikovsky imagina que el cometa, después de un complicado juego de billar interplanetario, quedó instalado en una órbita estable, casi circular, convirtiéndose en el planeta Venus, planeta que, según él, no había existido antes.
Estas ideas son muy probablemente equivocadas, como ya he discutido con una cierta extensión en otro lugar. Los astrónomo no se oponen a la idea de grandes colisiones, sino a la de grandes colisiones recientes. En cualquier modelo del sistema solar es imposible mostrar el tamaño de los planetas a la misma escala que sus órbitas, porque los planetas serían entonces tan pequeños que apenas se verían. Si los planetas aparecieran realmente a escala, como granos de polvo, comprenderíamos fácilmente que la posibilidad de colisión de un determinado cometa con la Tierra en unos pocos miles de años es extraordinariamente baja. Además, Venus es un planeta rocoso, metálico, pobre en hidrógeno. No hay fuentes de energía para poder expulsar de Júpiter cometas o planetas. Si uno de ellos pasara por la Tierra no podría detener la rotación de la Tierra, y mucho menos ponerla de nuevo en marcha al cabo de veinticuatro horas. Ninguna prueba geológica apoya la idea de una frecuencia inusual de vulcanismo o de diluvios hace 3 500 años. En Mesopotamia hay inscripciones referidas a Venus de fecha anterior a la época en que Velikovsky dice que Venus pasó de cometa a planeta. 1 Es muy improbable que un objeto con una órbita tan elíptica pudiera pasar con rapidez a la órbita actual de Venus, que es un círculo casi perfecto. Etcétera.
Muchas hipótesis propuestas tanto por científicos como por no científicos resultan al final erróneas. Para ser aceptadas, todas las ideas nuevas deben superar normas rigurosas de evidencia. Lo peor del caso Velikovsky no es que su hipótesis fuera errónea, o estuviese en contradicción con los hechos firmemente establecidos, sino que ciertas personas que se llamaban a sí mismas científicos intentaron suprimir el trabajo de Velikovsky. La ciencia es una creación del libre examen, y a él está consagrada: toda hipótesis, por extraña que sea, merece ser considerada en lo que tiene de meritorio. La eliminación de ideas incómodas puede ser normal en religión y en política, pero no es el camino hacia el conocimiento; no tiene cabida en la empresa científica. No sabemos por adelantado quién dará con nuevos conceptos fundamentales.
Venus tiene casi la misma masa, 6 el mismo tamaño y la misma densidad que la Tierra. Al ser el planeta más próximo a nosotros, durante siglos se le ha considerado como hermano de la Tierra. ¿Cómo es en realidad nuestro planeta hermano? ¿Puede que al estar algo más cerca del Sol sea un planeta suave, veraniego, un poco más cálido que la Tierra? ¿Posee cráteres de impacto, o los eliminó todos la erosión? ¿Hay volcanes? ¿Montañas? ¿Océanos? ¿Vida?
La primera persona que contempló Venus a través del telescopio fue Galileo en 1609. Vio un disco absolutamente uniforme. Galileo observó que presentaba, como la Luna, fases sucesivas, desde un fino creciente hasta un disco completo, y por la misma razón que ella: a veces vemos principalmente el lado nocturno de Venus y otras el lado diurno; digamos también que este descubrimiento reforzó la idea de que la Tierra gira alrededor del Sol y no al revés. A medida que los telescopios ópticos aumentaban de tamaño y que mejoró su resolución (la capacidad para distinguir detalles finos), fueron sistemáticamente orientados hacia Venus. Pero no lo hicieron mejor que el de Galileo. Era evidente que Venus estaba cubierto por una densa capa de nubes que impiden la visión. Cuando contemplamos el planeta en el cielo matutino o vespertino, estamos viendo la luz del Sol reflejada en las nubes de Venus. Pero después de su descubrimiento y durante siglos, la composición de esas nubes fue totalmente desconocida.
La ausencia de algo visible en Venus llevó a algunos científicos a la curiosa conclusión de que su superficie era un pantano, como la de la Tierra en el período carbonífero. Él argumento suponiendo que se merezca este calificativo era más o menos el siguiente: No puedo ver nada en Venus. ¿Por qué?
Porque Venus está totalmente cubierto de nubes. ¿De que' están formadas las nubes? De agua, por supuesto.
Entonces, ¿por qué son las nubes de Venus más espesas que las de la Tierra?
Pues si hay más agua en las nubes también habrá más agua en la superficie. ¿Qué tipo de superficies son muy húmedas?
Y si hay pantanos, ¿no puede haber también en Venus cicadáceas y libélulas y hasta dinosaurios? Observación: No podía verse absolutamente nada en Venus. Conclusión: El planeta tenía que estar cubierto de vida. Las nubes uniformes de Venus reflejaban nuestras propias predisposiciones. Nosotros estamos vivos y nos excita la posibilidad de que haya vida en otros lugares. Pero sólo un cuidadoso acopio y valoración de datos puede decimos qué mundo determinado está habitado. En el caso de Venus nuestras predisposiciones no quedan complacidas.
La primera pista real sobre la naturaleza de Venus se obtuvo trabajando con un prisma de vidrio o con una superficie plana, llamada red de difracción, en la que se ha grabado un conjunto de líneas finas, regularmente espaciadas. Cuando un haz intenso de luz blanca y corriente pasa a través de una hendidura estrecha y después atraviesa un prisma o una red, se esparce formando un arco iris de colores, llamado espectro. El espectro se extiende desde las frecuencias altas 1 de la luz visible hasta las bajas: violeta, azul, verde, amarillo, anaranjado y rojo. Como estos colores pueden verse, se les llamó el espectro de la luz visible. Pero hay mucha más luz que la del pequeño segmento del espectro que alcanzamos a ver. En las frecuencias más altas, debajo del violeta, existe una parte del espectro llamada ultravioleta: es un tipo de luz perfectamente real, portadora de muerte para los microbios. Para nosotros es invisible, pero la detectan con facilidad los abejorros y las células fotoeléctricas, En el mundo hay muchas más cosas de las que vemos.
Deba o del ultravioleta está la parte de rayos X del espectro, y debajo de los rayos X están los rayos gamma. En las frecuencias más bajas, al otro lado del rojo, está la parte infrarrojo del espectro. Se descubrió al colocar un termómetro sensible en una zona situada más allá del rojo, en la cual de acuerdo con nuestra vista hay oscuridad: la temperatura del termómetro aumentó. Caía luz sobre el termómetro, aunque esta luz fuera invisible para nuestros ojos. Las serpientes de cascabel y los semiconductores contaminados detectan perfectamente la radiación infrarrojo. Debajo del infrarrojo está la vasta región espectral de las ondas de radio. Todos estos tipos, desde los rayos gamma hasta las ondas de radio, son igualmente respetables. Todos son útiles en astronormía. Pero a causa de las limitaciones de nuestros ojos tenemos un prejuicio en favor, una propensión hacia esa franja fina de arco iris que llamamos el espectro de luz visible.
En 1844, el filósofo Auguste Comte estaba buscando un ejemplo de un tipo de conocimiento que siempre estaría oculto. Escogió la composición de las estrellas y de los planetas lejanos. Pensó que nunca los podríamos visitar fisicamente, y que al no tener en la mano muestra alguna de ellos, nos veríamos privados para siempre de conocer su composición. Pero a los tres años solamente de la muerte de Comte, se descubrió que un espectro puede ser utilizado para determinar la composición química de los objetos distantes. Diferentes moléculas o elementos químicos absorben diferentes frecuencias o colores de luz, a veces en la zona visible y a veces en algún otro lugar del espectro. En el espectro de una atmósfera planetario, una línea oscura aislada representa una imagen de la endidura en la que falta luz: la absorción de luz solar durante su breve paso a través del aire de otro mundo. Cada tipo de línea está compuesta por una clase particular de moléculas o átomos. Cada sustancia tiene su firma espectral característica. Los gases en Venus pueden ser identificados desde la Tierra, a 60 millones de kilómetros de distancia. Podemos adivinar la composición del Sol (en el cual se descubrió por primera vez el helio, nombrado a partir de Helios, el dios griego del Sol); la composición de estrellas magnéticas A ricas en europio; de galaxias lejanas analizadas a partir de la luz que envían colectivamente los cien mil millones de estrellas integrantes. La astronomía espectroscópica es una técnica casi mágica. A mí aún me asombra. Auguste Comte escogió un ejemplo especialmente inoportuno.
Si Venus estuviera totalmente empapado resultaría fácil ver las líneas de vapor de agua en su espectro. Pero las primeras observaciones espectroscópicas, intentadas en el observatorio de Monte Wilson hacia 1920, no descubrieron ni un indicio, ni un rastro de vapor de agua sobre las nubes de Venus, sugiriendo la presencia de una superficie árida, como un desierto, coronada por nubes en movimiento de polvo fino de silicato. Estudios posteriores revelaron la existencia de enormes cantidades de dióxido de carbono en la atmósfera, con lo que algunos científicos supusieron que toda el agua del planeta se había combinado con hidrocarbonos para formar dióxido de carbono, y que por tanto la superficie de Venus era un inmenso campo petrolífero, un mar de petróleo que abarcaba todo el planeta. Otros llegaron a la conclusión de que la ausencia de vapor de agua sobre las nubes se debía a que las nubes estaban muy frías y toda el agua se había condensado en forma de gotitas, que no presentan la misma estructura de línea espectrales que el vapor de agua. Sugirieron que el planeta estaba totalmente cubierto de agua, a excepción quizás de alguna que otra isla incrustada de caliza, como los acantilados de Dover. Pero a causa de las grandes cantidades de dióxido de carbono presentes en la atmósfera, el mar no podía ser de agua normal; la química física exigía que el agua fuese carbónico. Venus, proponían ellos, tenía un vasto océano de seltz.
El primer indicio sobre la verdadera situación del planeta no provino de los estudios espectroscópicos en la parte visible del espectro o en la del infrarrojo cercano, sino más bien de la región de radio. Un radiotelescopio funciona más como un fotómetro que como una cámara fotográfica. Se apunta hacia una región bastante extensa del cielo y registra la cantidad de energía, en una frecuencia de radio dada, que llega a la Tierra. Estamos acostumbrados a las señales de radio que transmiten ciertas variedades de vida inteligente, a saber, las que operan las estaciones de radio y televisión. Pero hay otras muchas razones para que los objetos naturales emitan ondas de radio. Una de ellas es que estén calientes. Cuando en 1956 se enfocó hacia Venus un radiotelescopio primitivo, se descubrió que el planeta emitía ondas de radio como si estuviera a una temperatura muy alta. Pero la demostración real de que la superficie de Venus es impresionantemente caliente se obtuvo cuando la nave espacial soviética de la serie Venera penetró por primera vez en las nubes oscurecedoras y aterrizó sobre la misteriosa e inaccesible superficie del planeta más próximo. Resultó que Venus está terriblemente caliente. No hay pantanos, ni campos petrolíferos no océanos de seltz. Con datos insuficientes es fácil equivocarse.
Cuando yo saludo a una amiga la veo reflejada en luz visible, generada, por ejemplo, por el Sol o por una lámpara incandescente. Los rayos de luz rebotan en mi amiga y entran en mis ojos. Pero los antiguos, incluyendo una figura de la categoría de Euclides, creían que veíamos gracias a rayos que el ojo emitía de algún modo y que entraban en contacto de modo tangible y activo con el objeto observado. Ésta es una noción natural que aún persiste, aunque no explica la invisibilidad de los objetos de una habitación oscura. Hoy en día combinamos un láser y una fotocélula, o un transmisor de radar y un radiotelescopio, y de este modo realizamos un contacto activo por luz con objetos distantes. En la astronomía por radar, un telescopio en la Tierra transmite ondas de radio, las cuales chocan, por ejemplo, con el hemisferio de Venus que en este momento está mirando hacia la Tierra, y después de rebotar vuelven a nosotros. En muchas longitudes de onda, las nubes y la atmósfera de Venus son totalmente transparentes para las ondas de radio. Algunos puntos de la superficie las absorberán, o si son muy accidentadas las dispersarán totalmente, y de este modo aparecerán oscuras a las ondas de radio. Al seguir los rasgos de la superficie que se iban moviendo de acuerdo con la rotación de Venus, se pudo determinar por primera vez con seguridad la longitud de su día: el tiempo que tarda Venus en dar una vuelta sobre su eje. Resultó que Venus gira, con respecto a las estrellas, una vez cada 243 días terrestres, pero lo hace hacia atrás, en dirección opuesta a la de los demás planetas del sistema solar interior. Por consiguiente, el Sol nace por el oeste y se pone por el este, tardando de alba a alba 118 días terrestres. Es más, cada vez que está en el punto más próximo a nuestro planeta, presenta a la tierra casi exactamente la misma cara. La gravedad de la Tierra consiguió de algún modo forzar a Venus para que tuviera esta rotación coordinado con nuestro planeta, y este proceso no pudo ser un proceso rápido. Venus no podía pues tener unos pocos miles de años, sino que debía ser tan viejo como los demás objetos del sistema solar interior.
Se han obtenido imágenes de radar de Venus, algunas con telescopios de radar instalados en la tierra, otras desde el vehículo Pioneer Venus en órbita alrededor de aquel planeta. Estas imágenes contienen fuertes pruebas de la presencia de cráteres de impacto. El número de cráteres ni demasiado grandes ni demasiado pequeños presentes en Venus es el mismo existente en las altiplanicies lunares, y su número nos vuelve a confirmar que Venus es muy viejo. Pero los cráteres de Venus son notablemente superficiales, como si las altas temperaturas de la superficie hubieran producido un tipo de roca que fluyese en largos períodos de tiempo, como caramelo o masilla, suavizando gradualmente los relieves. Hay grandes altiplanicies, el doble de altas que las mesetas tibetanas, un inmenso valle de dislocación, posiblemente volcanes gigantes y una montaña tan alta como el Everest. Vemos ya ante nosotros un mundo que antes las nubes ocultaban totalmente; y sus rasgos característicos han sido explorados por primera vez con el radar y con los vehículos espaciales.
Las temperaturas en la superficie de Venus, deducidas por la radioastronomía y confirmadas por mediciones directas realizadas con naves espaciales, son de unos 480 oC, más altas que las del horno casero más caliente. La correspondiente presión en la superficie es de 90 atmósferas, 90 veces la presión que sentimos debido a la atmósfera de la Tierra, y equivalente al peso del agua a un kilómetro de profundidad bajo los océanos. Para que un vehículo espacial pueda sobrevivir largo tiempo en Venus, tiene que estar refrigerado y además tiene que estar construido como un sumergible de gran profundidad.
Cerca de una docena de vehículos espaciales de la Unión Soviética y de los Estados Unidos han entrado en la densa atmósfera de Venus y han atravesado sus nubes; unos pocos han sobrevivido realmente durante casi una hora en su superficie. 1 Dos naves espaciales de la serie soviética Venera tomaron fotografías en su superficie. Sigamos los pasos de estas misiones exploradoras y visitemos otro mundo.
Las nubes ligeramente amarillentas pueden distinguirse en la luz visible y corriente, pero como Galileo observo por primera vez, no muestran prácticamente ningún rasgo. Sin embargo, si las cámaras captan el ultravioleta, vemos un elegante y complejo sistema meteorológico en rotación dentro de la alta atmósfera, con unos vientos que van aproximadamente a 1 00 metros por segundo, unos 360 kilómetros por hora. La atmósfera de Venus se compone de un 96% de dióxido de carbono. Hay pequeños rastros de nitrógeno, de vapor de agua, de argón, de monóxido de carbono y de otros gases, pero la proporción de hidrocarbonos o de carbonos hidratados es menor a un 0, 1 por cada millón. Las nubes de Venus resultan ser en su mayor parte una solución concentrada de ácido sulfúrico. También aparecen pequeñas cantidades de ácido clorhídrico y de ácido fluorhídrico. Aunque uno se sitúe entre sus nubes altas y frías, Venus resulta ser un lugar terriblemente desagradable.
Muy por encima de la superficie de las nubes visibles, a unos 70 km. de altitud, hay una continua neblina de pequeñas partículas. A 60 kilómetros nos sumergimos dentro de la nubes y nos encontramos rodeados por gotitas de ácido sulfúrico concentrado. A medida que vamos descendiendo, las partículas de las nubes tienden a hacerse más grandes. En la atmósfera inferior quedan sólo restos del gas acerbo, es decir del dióxido sulfúrico, So2Este gas circula sobre las nubes, es descompuesto por la luz ultravioleta del Sol, se recombina allí con agua formando ácido sulfúrico, el cual a su vez se condensa en gotitas, se deposita, y a altitudes más bajas se descompone por el calor en SO2 y en agua otra vez, completando así el ciclo. En Venus, en todo el planeta, siempre está lloviendo ácido sulfúrico, y nunca una gota alcanza la superficie.
La niebla teñida de sulfúrico se extiende hacia abajo hasta unos 45 kilómetros de la superficie de Venus; a esta altura emergemos en una atmósfera densa pero cristalina. Sin embargo, la presión atmosférica es tan alta que no podemos ver la superficie. La luz del Sol rebota en todas las moléculas atmosféricas hasta que perdemos toda imagen de la superficie. Allí no hay polvo, ni nubes, sólo una atmósfera que se hace palpablemente cada vez más densa. Las nubes que cubren el cielo transmiten bastante luz solar, aproximadamente la misma que en un día encapotado de la Tierra.
Venus, con su calor abrasador, con sus presiones abrumadoras, con sus gases nocivos, y con ese brillo rojizo y misterioso que impregna todas las cosas, parece menos la diosa del amor que la encarnación del infierno. Por lo que hemos podido descubrir hasta ahora, hay por lo menos en algunos lugares de la superficie campos cubiertos con un conjunto irregular de rocas desgastadas, un paisaje estéril y hostil, amenazado ocasionalmente por los restos erosionados de un pecio espacial procedente de un planeta lejano, absolutamente invisible a través de aquella atmósfera espesa, nebulosa e invisible.
Venus es una especie de catástrofe a nivel planetario. Parece bastante claro actualmente que la alta temperatura de su superficie se debe a un efecto de invernadero a gran escala. La luz solar atraviesa la atmósfera y las nubes de Venus, que son semitransparentes a la luz visible, y alcanza la superficie. La superficie, que se ha calentado, trata de irradiar de nuevo este calor hacia el espacio. Pero al ser Venus mucho más frío que el Sol emite radiaciones principalmente en el infrarrojo, y no en la región visible de] espectro. Sin embargo, el dióxido de carbono y el vapor de agua de la atmósfera de Venus 10 son casi perfectamente opacos a la radiación infrarrojo; el calor del Sol queda atrapado eficazmente, y la temperatura de la superficie aumenta hasta que la pequeña cantidad de radiación infrarrojo que escapa poco a poco de su enorme atmósfera equilibra la luz solar absorbida en la atmósfera inferior y en la superficie.
Nuestro mundo vecino resulta ser un lugar triste y desagradable. Pero volveremos a Venus. Es un planeta fascinante por propio derecho. Al fin y al cabo, muchos héroes míticos de la mitología griega y nórdica, hicieron esfuerzos famosos y reconocidos para visitar el infierno. También hay mucho que aprender sobre nuestro planeta, que es un cielo relativo, comparado con el infierno.
La Esfinge,' mitad persona y mitad león, fue construida hace más de 5 500 años. Los rasgos de su rostro estaban esculpidos de modo preciso y neto. Ahora están limados y desdibujados por las tormentas de arena del desierto egipcio y por las lluvias ocasionales de miles de años. En la ciudad de Nueva York hay un obelisco llamado la Aguja de Cleopatra, procedente de Egipto. Sólo ha pasado un centenar de años en el Central Park de la ciudad y sus inscripciones se han borrado casi totalmente a causa del humo y de la polución industrial; una erosión química como la existente en la atmósfera de Venus. La erosión en la Tierra destruye la información lentamente, pero es un proceso gradual el choque de una gota de agua, el pinchazo de un grano de arena que puede pasarse por alto. Las grandes estructuras, como las cordilleras montañosas, sobreviven decenas de millones de años; los cráteres de impacto más pequeños, quizás un centenar de miles de años; 11 las construcciones humanas de gran escala solamente unos miles de años. La destrucción no sólo se da a través de una erosión de este tipo, lenta y uniforme, sino también por grandes y pequeñas catástrofes. La Esfinge ha perdido la nariz. Alguien disparó sobre ella en un momento de ociosa profanación: unos dicen que fueron los turcos mamelucos, otros los soldados napoleónicos.
En Venus, en la Tierra y en algún lugar más del sistema solar, hay pruebas de destrucciones catastróficas, atemperadas o superadas por procesos más lentos, más uniformes: en la Tierra, por ejemplo, la lluvia, que se canaliza en arroyuelos, riachuelos y ríos, y crea inmensas cuencas aluviales; en Marte, los restos de antiguos ríos que surgieron quizás del interior del suelo; en lo, una luna de Júpiter, parece que hay amplios canales excavados por el flujo de azufre líquido. En la Tierra hay poderosos sistemas meteorológicos, como también en la alta atmósfera de Venus y de Júpiter. Hay tormentas de arena en la Tierra y en Marte; hay relámpagos en Júpiter, en Venus y en la Tierra. L ‹)s volcanes proyectan residuos sólidos en las atmósferas de lo y de la Tierra. Los procesos geológicos internos deforman lentamente las superficies de Venus, de Marte, de Ganímedes y de Europa, al igual que en la Tierra. Los glaciares, proverbiales por su lentitud, remodelan en gran escala los paisajes de la Tierra y probablemente también los
de Marte. No es necesario que estos procesos sean constantes en el tiempo. Antaño, la mayor parte de Europa estuvo cubierta por el hielo. Hace unos cuantos millones de años el lugar donde hoy se encuentra la ciudad de Chicago estaba sepultado bajo tres kilómetros de hielo. En Marte, y en los demás cuerpos de] sistema solar, vemos características que no podrían producirse hoy en día, paisajes trabajados hace cientos de miles o de millones de años, cuando el clima planetario era probablemente muy diferente.
Hay un factor adicional que puede alterar el paisaje y el clima de la Tierra: la vida inteligente, capaz de realizar cambios ambientales en gran escala. Al igual que Venus, también la Tierra tiene un efecto de invernadero debido a su dióxido de carbono y a su vapor de agua. La temperatura global de la Tierra estaría per debajo del punto de congelación del agua si no fuese por el efecto de invernadero, que mantiene los océanos líquidos y hace posible la vida. Un pequeño invernadero es buena cosa. La Tierra tiene, al igual que Venus, unas 90 atmósferas de dióxido de carbono, pero no en la atmósfera sino incluido en la corteza en forma de rocas calizas y de otros carbonatos. Bastaría con que la Tierra se trasladara un poco más cerca del Sol, para que la temperatura aumentara ligeramente. El calor extraería algo de Co2 de las rocas superficiales, generando un efecto más intenso de invernadero que a su vez calentaría de modo incrementar la superficie. Una superficie más caliente vaporizaría aún más los carbonatos y daría más Co2, con la posibilidad de que el efecto de invernadero se disparara hasta temperaturas muy altas. Esto es exactamente lo que pensamos que sucedió en las primeras fases de la historia de Venus, debido a la proximidad de Venus con el Sol. El medio ambiente de la superficie de Venus es una advertencia: algo desastroso puede ocurrirle a un planeta bastante parecido al nuestro.
Las principales fuentes de energía de nuestra actual civilización industrial son los llamados carburantes fósiles. Utilizamos como combustible madera y petróleo, carbón y gas natural, y en el proceso se liberan al aire gases de desecho, principalmente CO2. En consecuencia el dióxido de carbono contenido en la Tierra está aumentando de un modo espectacular. La posibilidad de que se dispare el efecto de invernadero sugiere que tenemos que ir con cuidado: incluso un aumento de uno o dos grados en la temperatura global podría tener consecuencias catastróficas. Al quemar carbón, petróleo y gasolina, también introducimos ácido sulfúrico en la atmósfera. Ahora mismo nuestra estratosfera posee, al igual que Venus, una neblina considerable de diminutas gotas de ácido sulfúrico. Nuestras grandes ciudades están contaminadas con moléculas nocivas. No comprendemos los efectos que tendrán a largo plazo todas estas actividades.
Pero también hemos estado perturbando el clima en el sentido opuesto. Durante cientos de miles de años los seres humanos han estado quemando y talando los bosques, y llevando a los animales domésticos a pastar y a destruir las praderas. La agricultura intensiva, la deforestación industrial de los trópicos y el exceso de pastoreo son hoy desenfrenados. Pero los bosques son más oscuros que las praderas, y las praderas lo son más que los desiertos. Como consecuencia, la cantidad de luz solar absorbida por el suelo ha ido disminuyendo y los cambios en la utilización del suelo han hecho bajar temperatura de la superficie de nuestro planeta. Es posible que este enfriamiento aumente el tamaño del casquete de hielo polar, el cual con su brillo reflejará aún más la luz solar desde la Tierra, enfriando aún más el planeta y disparando un efecto de albedo.
Nuestro encantador planeta azul, la Tierra, es el único hogar que conocemos. Venus es demasiado caliente, Marte es demasiado frío. Pero la Tierra está en el punto justo, y es un paraíso para los humanos. Fue aquí, al fin y al cabo, donde evolucionamos. Pero nuestro agradable clima puede ser inestable. Estamos perturbando nuestro propio planeta de un modo serio y contradictorio. ¿Existe el peligro de empujar el ambiente de la Tierra hacia el infierno planetario de Venus o la eterna era glacial de Marte? La respuesta sencilla es que nadie lo sabe. El estudio del clima global, la comparación de la Tierra con otros mundos, son materias que están en sus primeras bases de desarrollo. Son especialidades subvencionadas con escasez y de mala gana. En nuestra ignorancia continuamos el actual tira y afloja, continuamos contaminando la atmósfera y abrillantando el terreno, sin damos cuenta de que las consecuencias a largo plazo son en su mayor parte desconocidas.
Hace unos cuantos millones de años, cuando los seres humanos comenzaron a evolucionar en la Tierra, era ya éste un mundo de media edad, a 4 600 millones de años de distancia de las catástrofes e impetuosidades de su juventud. Pero ahora los humanos representamos un factor nuevo y quizás decisivo. Nuestra inteligencia y nuestra tecnología nos han dado poder para afectar el clima. ¿Cómo utilizaremos este poder? ¿Estamos dispuestos a tolerar la ignorancia y la complacencia en asuntos que afectan a toda la familia humana? ¿Valoramos por encima del bienestar de la Tierra las ventajas a corto plazo? ¿O pensaremos en escalas mayores de tiempo, preocupándonos por nuestros hijos y por nuestros nietos, intentando comprender y proteger los complejos sistemas que sostienen la vida en nuestro planeta? La Tierra es un mundo minúsculo y frágil. Hay que tratarlo con cariño.