Глава 5 ПЕРЕДАЮЩИЕ СИСТЕМЫ

Здесь мы вновь встречаемся с нашими друзьями, которые кратко рассматривают различные возможные системы передачи цветных изображений. И в виде заключения они излагают основные принципы различных используемых в настоящее время совместимых систем цветного телевидения. Попутно они рассматривают следующие темы:

Трехканальные передающие системы. Использование одного объектива. Дихроичные зеркала и фильтры. Телевизионная камера. Трапецеидальная аберрация. Тринескоп. Системы с поочередным сложением цветных полукадров. Проблема ширины передаваемого спектра частот. Двойная совместимость. Разделение сигналов яркости и цветности. Роль несущей. Выделенные диапазоны частот. Кодирующее и декодирующее устройства.


Незнайкин открывает Америку


Незнайкин. — До сих пор, Любознайкин, ты, если так можно выразиться, показывал мне все краски, но о телевидении не было речи.

Любознайкин. — А разве прежде, чем приступить к проблеме передачи цветных изображений, не следует детально разобраться, как мы это делали, в различных физических и физиологических аспектах такого особенно сложного явления, как цвет?

Н. — Несомненно. Но я полагаю, что теперь моих знаний в этой области достаточно, чтобы я смог сам придумать одновременно простую и эффективную систему цветного телевидения. Я намереваюсь взять на свое изобретение патент, но тебе по секрету расскажу принципы этой системы.

Л. — Я сгораю от нетерпения познакомиться с твоим последним изобретением.

Н. — Система очень проста, но, как и в случае с яйцом Христофора Колумба, нужно было додуматься. Трехцветный принцип получения цветных изображений позволяет воспроизводить все краски с помощью трех основных цветов, красного, зеленого и синего, поэтому я предлагаю воспользоваться для телевизионной передачи тремя камерами, объективы которых снабжены фильтрами названных цветов. Таким образом мы получим видеосигналы, соответствующие красному, зеленому и синему изображениям. Мы передадим их на трех разных волнах на три проекционных телевизионных приемника, объективы которых также будут снабжены соответствующими цветными фильтрами. Проецируя эти три изображения на один экран так, чтобы они точно накладывались одно на другое, мы получим цветное изображение (рис. 23). Вот и все!



Рис. 23. Система одновременной передачи цветов, в которой в передающей и приемной частях используются три полных канала. Изображение воспринимается тремя камерами R, В и G, снабженными соответственно красным, синим и зеленым фильтрами. Сигналы с этих камер модулируют излучение трех передатчиков Еr, Еb и Eg. Передаваемые волны принимаются приемниками Rr, Rb и Rg; усиленные сигналы модулируют три проекционных кинескопа, снабженных красным, синим и зеленым фильтрами, а проецируемые изображения накладываются одно на другое на экране.


Л. — Мой друг, я еще раз должен разочаровать тебя и сказать, что Такая система уже очень давно была предложена.

Н. — Несчастный я! Почему я не родился раньше! Уже все изобрели до меня!.. А теперь ты, по-видимому, еще скажешь, что эта система ничего не стоит и что от нее уже давно отказались.

Л. — Ну в этом-то, дорогой друг, ты заблуждаешься. Этот принцип и в наши дни широко используется в замкнутых телевизионных системах. Так, например, благодаря такой системе сотни студентов медиков, сидя в обычной аудитории, могут наблюдать за всем ходом хирургической операции, не мешая своим присутствием работающим в операционной людям. Цвет в данном случае позволяет лучше видеть, что происходит в операционной. Это показывает, что твоя идея неплоха, но ее применение несколько ограничено, а кроме того, в подобных системах приходится прибегать к определенной коррекции.

Ты предлагаешь использовать три телевизионные камеры, каждая из которых снабжена собственным объективом с цветным фильтром. Представляешь ли ты, что в этом случае все три объектива «увидят», а следовательно, и передадут сцену под различными углами?

Н. — Да, об этом-то я и не подумал. Ведь даже если расположить наши камеры одну рядом с другой, то полученные изображения будут несколько различаться, особенно значительные различия будут для предметов, находящихся на переднем плане. Но я твердо убежден, что ты дашь мне средство для устранения этого недостатка.



Три камеры с одним объективом

Л. — Сама логика подсказывает это средство: использовать только один объектив. Проходящие через этот объектив световые лучи надлежит равномерно распределить между тремя камерами, снабженными необходимыми цветными фильтрами.

Н. — Легко сказать, но я не вижу, как это можно осуществить…

Л. — Совсем несложно с помощью системы отражающих и полупрозрачных зеркал, которые также называют дихроичными.

Н. — Что это еще за зеркала?

Л. — Отражающее зеркало, как ты знаешь, представляет собой стекло, одна сторона которого покрыта амальгамой, состоящей из ртути и олова. В дихроичном зеркале эта амальгама заменена несколькими (в среднем двенадцатью) чрезвычайно тонкими (порядка сотни нанометров!) слоями прозрачных материалов, имеющими поочередно низкие и высокие коэффициенты преломления. Такое зеркало отражает все световые волны выше (или ниже) определенной длины и пропускает все остальные.

Н. — Значит, дихроичное зеркало можно уподобить фильтру верхних или нижних частот?

Л. — Это сравнение вполне оправдано. Как и в электрических фильтрах, здесь нет четкой границы между тем, что пропускается, и тем, что отражается: переход от одного к другому постепенный. Мы называем «синим» дихроичное зеркало, которое отражает волны длиной до 460 нм и пропускает волны длиной свыше 500 нм. Названием «красное» обозначается дихроичное зеркало, отражающее волны длиной свыше 580 нм и пропускающее все более короткие волны.

Теперь посмотри на расположение моих зеркал (рис. 24).



Рис. 24. Прошедшие через единственный объектив световые лучи с помощью системы из обычных (З) и дихроичных (ДЗB) и (ДЗR) зеркал разделяются на три пучка, которые через соответствующие фильтры подаются на трубки трех телевизионных камер В, G и R.


Поступающий из объектива свет сначала попадает на дихроичное зеркало ДЗВ, которое отражает синие лучи и пропускает зеленые и красные. Отраженные синие лучи с помощью обычного зеркала 3 направляются в выделенную для синей составляющей камеру, куда они попадают, пройдя через синий светофильтр.

Н. — Рассматривая рисунок, я вижу, что прошедшие через дихроичное зеркало ДЗВ лучи попадают на другое дихроичное зеркало, обозначенное ДЗR. Оно отражает красные лучи, но пропускает зеленые, которые направляются в выделенную для них камеру, проходя на этом пути, естественно, через зеленый светофильтр. Красные же лучи после отражения обычным зеркалом 3 и прохождения через красный светофильтр поступают в соответствующую камеру.



Л. — Именно так по принципу, который мы сейчас разобрали, устроены все телевизионные камеры, используемые в студиях цветного телевидения. В этих камерах можно обнаружить другие приспособления и другие зеркала; в них используются также различные оптические устройства, предназначенные для коррекции некоторых искажений, как, например, астигматизма, возникающего при прохождении лучей через дихроичные зеркала Но нам нет необходимости рассматривать все эти подробности Попутно я могу сказать, что искажения могут возникнуть также и в процессе приема при проецировании изображений на экран



Три передающих канала


Н. — Если проекторы установлены точно, то я не вижу, что могло бы внести искажения в полученное изображение.

Л. — Исходящий из стоящего в середине проектора прямоугольный поток света дает на экране изображение прямоугольной формы. Но изображения, проецируемые крайними проекторами, на экране получаются в форме трапеции (рис. 25).



Рис. 25. Только одна из трех, размещенная в середине проекционная трубка G дает на экране свободное от трапецеидальной аберрации изображение.


Но успокойся: у оптиков в их мешке не один фокус и им удается исправить эту трапецеидальную аберрацию. Радиотехники также успешно справляются с этой задачей.

Н. — А у меня есть еще одна идея. Почему бы при приеме не использовать ту же систему из обычных и дихроичных зеркал? Обратимость явлений.

Л. — Незнайкин, это и делают. В тех случаях, когда не требуется проецировать изображение на большой экран, можно получить три изображения на экранах обычных электронно-лучевых трубок, а затем с помощью системы, состоящей из цветных фильтров и зеркал, совместить их так, чтобы получить цветное изображение Такое устройство называют «тринескопом».

Н. — Насколько я тебя знаю, ты сейчас начнешь перечислять все недостатки «моего» способа.

Л. — До тех пор, пока изображение передается в замкнутой системе по проводам или по коаксиальному кабелю на относительно небольшое расстояние, эта система вполне приемлема. Впрочем, как я уже сказал, это же устройство используется в телевизионной камере при передаче цветных программ из телецентра. Но если ты предложишь использовать в качестве несущей видеосигналов от трех камер три волны разной длины, то встретишь категорический отказ.

Н. — Понимаю: пресловутая «загруженность эфира», о которой всегда говорят, хотя гипотеза об эфире уже давным давно отвергнута.

Л. — И тем не менее это очень удобная для разговора форма. Ведь жизненное пространство в частотном спектре отмерено нам очень скупо. И если для одного передатчика ты захочешь занять полосу частот трех передатчиков, то вызовешь настоящую войну. А кроме того, представляешь ли ты себе размеры и цену приемной установки, эквивалентной трем обычным телевизорам?



Поочередное сложение цветных полукадров

Н. — Моя мать никогда не позволит поставить подобную аппаратуру в нашей маленькой гостиной… Поэтому я вынужден отказаться от своего проекта, хотя в нем, как это ты сам признаешь, есть полезные идеи. И раз одновременная передача всех трех основных цветов оказалась совершенно непрактичной, почему бы нам не воспользоваться принципом последовательной передачи, который выдвинут французом Константином Сенлеком и до сих пор является основой любого монохроматического телевидения? Что скажешь ты, Любознайкин, о системе, где последовательно передавались бы все три изображения: красное, зеленое и синее при условии достаточна быстрого чередования, чтобы восприятия складывались в нашем мозгу и создавали впечатление изображения во всех его природных цветах.

Л. — То, что ты предлагаешь, не только возможно, но уже было осуществлено на практике. Даже больше: предлагаемый тобой метод был разработан американской радиовещательной компанией CBS (Columbia Broadcasting System) и официально принят в 1950 г. Федеральной комиссией связи FCC (Federal Communications Commission), которая в Соединенных Штатах ведает всеми областями электросвязи.

Н. — Как видишь, мои идеи имеют ценность! Но как практически они были реализованы?

Л. — Последовательно передавали полукадры четных и нечетных строк всех трех цветов. Например, в следующем порядке:

1) нечетные строки красного цвета;

2) четные строки зеленого цвета;

3) нечетные строки синего цвета;

4) четные строки красного цвета;

5) нечетные строки зеленого цвета;

6) четные строки синего цвета

… и так далее…

Для этой цеди перед единственным объективом телевизионной камеры вращается прозрачный диск, разделенный на шесть секторов-фильтров R — G — В — R — G — В. Диск можно заменить шестигранной полой призмой, вращающейся вокруг кинескопа. Главное в том, чтобы свет последовательно проходил через светофильтры трех основных цветов.



Н. — А какова частота чередования полукадров?

Л. — В Европе мы передаем в секунду 25 полных кадров или 50 полукадров. Следовательно, при сохранении такой частоты каждый оборот диска соответствует 6 полукадрам, значит, мы должны вращать диск со скоростью 50:6, или немногим более 8 оборотов в секунду.


Слишком много недостатков!

Н. — Это немало для нашего диска, который должен быть внушительных размеров, ибо сектор, занимающий 1/6 круга, должен полностью закрывать экран кинескопа. Поэтому, как я догадываюсь, перед экраном приемника подобный же диск вращается синхронно с диском на передающей камере. Впрочем, ты писал мне об этом в своем письме (рис. 26).



Рис. 26. Принцип системы с поочередным сложением цветных полукадров, в которой в передающей части перед камерой, а в приемной части перед кинескопом установлены вращающиеся диски с фильтрами.


Л. — Да, дорогой друг, вращающийся с подобной скоростью большой диск развивает центробежную силу, пренебрегать которой нельзя. Вторжение механики в царство радиоэлектроники при всех обстоятельствах само по себе неприятно. Но и без этого система отличается большими недостатками.

Пойми, что полное изображение создается из четных и нечетных строк всех трех основных цветов за один полный оборот диска, или за 6/50 сек, т. е. примерно за 1/8 сек, что несколько превышает длительность сохранения зрительного ощущения. А это означает, что у нас больше не будет впечатления непрерывности и изображение начнет мелькать.

Н. — Да, это очень существенно!

Л. — И это еще не все. За изображением движущихся людей или предметов на экране будет следовать цветная бахрома. Понять причину этой неприятности несложно. Предположим, что за 1/8 сек изображение предмета на экране переместилось на 1 см. За это время оно поочередно было красным, зеленым, синим и еще раз красным, зеленым и синим, но при этом не произошло точного наложения этих одноцветных изображений одно на другое, иначе говоря, контуры этих одноцветных изображений появились на экране смещенными относительно друг друга.



Н. — Я предполагаю, что такое же явление должно возникнуть, если телезритель сделает годовой резкое движение в сторону: вследствие некоторого расстояния, отделяющего фильтр от экрана, возникает определенный параллакс, который тоже должен проявляться в виде цветной каймы на изображении.

Л. — Ты не ошибаешься, Незнайкин. А что ты думаешь об этой так называемой системе «последовательной передачи полукадров» с точки зрения пресловутого «загромождения эфира»?

Н. — Положительно ничего хорошего, но также и ничего плохого, так как в этом случае мы занимаем канал такой же ширины как в обычном черно-белом телевидении. И, несомненно, именно по этой причине данная система получила благословение американской Федеральной комиссии связи.

Л. — Но не надолго, так как уже через год, в 1951 г., FCC изменила свое мнение и приняла в качестве стандарта для цветного телевидения систему, предложенную Национальным комитетом по телевидению — NTSC (National Television System Committee). Но существуют и другие системы, я лишь назову проекты других систем, и, в частности, созданные исследователями американской фирмы RCA (Radio Corporation of America), которые основаны не на чередовании полукадров трех основных цветов, а на чередовании строк и даже на чередовании точек. Но все эти системы обладают одним главным и общим для них недостатком — они несовместимы!

Н. — Но это ужасно!.. По крайней мере мне так кажется, ибо я совсем не представляю, о какого рода несовместимости идет речь.


Условия двойной совместимости

Л. — Здесь мы с благодарностью должны упомянуть имя французского инженера Жоржа Валенси, крупного специалиста по электросвязи и, несомненно, одного из выдающихся пионеров телевидения, который еще до второй мировой войны четко сформулировал условия двойной совместимости, которым должна удовлетворять любая рациональная система цветного телевидения. Абсолютно справедливо Валенси предположил, что как цветная фотография и цветное кино не уничтожили «черно-белых» фотографий и кино, так и цветное телевидение не приведет к исчезновению черно-белого телевидения. Между этими двумя видами телевидения должен установиться статут «мирного сосуществования».

Действительно, в каждой стране к началу цветных передач миллионы семей уже имеют черно-белые телевизоры. Поэтому, чтобы никого не обидеть, Валенси выдвинул два следующих основных требования:

1. Передаваемые в цвете программы должны также исправно приниматься черно-белыми телевизорами, на экранах которых они, разумеется, появятся только в одном цвете (или, как обычно говорят, в черно-белом варианте).

2. Передаваемые в эфир черно-белые программы должны также приниматься цветными телевизорами, на которых они, естественно, будут одноцветными.

Н. — Значит, если я правильно понимаю, эти принципы двойной совместимости имеют целью дать каждому телезрителю, как владеющему старым черно-белым, так и современным цветным телевизором, возможность принимать все программы независимо от того, передаются они в цвете или в черно-белом варианте; в первом случае, естественно, все передачи будут приниматься как черно-белые.

Л. — Я вижу, что ты хорошо понял суть проблемы.

Н. — Но я не так ясно вижу, каким должно быть решение. Разумеется, не сложно получить одноцветное изображение черно-белой передачи на экране цветного телевизора…



У Незнайкина рождается яркостная идея

Л. — Ошибаешься, дорогой друг! Именно это наиболее сложно осуществить. Позже ты увидишь, что из всех возможных цветов труднее всего воспроизвести белый и черный. Как часто приходится видеть горные пейзажи с розовым, синим, желтым или зеленоватым, но никогда не белым снегом, потому что телевизор недостаточно отрегулирован…

Н. — Очень любезно со стороны твоего Валенси сформулировать условия. Ведь их еще надо иметь возможность выполнить!

Л. — Он более любезен, чем ты предполагаешь, так как он не только высказал принцип совместимости, но и указал пути, позволяющие удовлетворить эти требования. Все принятые в настоящее время системы основаны на идеях, сформулированных им еще до войны. И если я так долго разъяснял тебе физические характеристики цвета и его восприятия человеком, то делал это лишь дли того, чтобы ты легче понял основную мысль Валенси.

Н. — Подожди, Любознайкин! Мне кажется и без твоего объяснения я уже кое о чем догадался. В черно-белом (или, говоря строго, в монохроматическом) изображении элементы для нас различаются только своей яркостью. Следовательно, чтобы черно-белый телевизор был способен принимать цветные передачи, необходимо, чтобы несущая волна была модулирована видеосигналом яркости, как модулируется несущая черно-белого передатчика.

Л. — Должен признать, Незнайкин, что я восхищаюсь твоей мощной способностью логически мыслить. Высказанное тобой предположение исключительно правильно. И в американской системе NTSC, и в созданной во Франции системе SECAM, и в системе немецкого происхождения PAL несущая модулируется по амплитуде видеосигналом яркости, который характеризует относительную яркость последовательно рассматриваемых элементов изображения, И телезритель, имеющий черно-белый телевизор, принимает эти изображения, но не может видеть всей гаммы красок, которой, наслаждаются счастливые владельцы цветных телевизоров.

Н. — Теперь я понимаю, почему при составлении яркостного сигнала Y так странно дозируют сигналы трех основных цветов:

Y = 0.59R + 0.30G + 0.11B

Наш глаз наиболее чувствителен к зеленым и наименее чувствителен к синим лучам, и такая смесь делается для того, чтобы те, кто видит черно-белое монохроматическое изображение, имели впечатление такой же интенсивности, как и те, кому посчастливилось любоваться всем богатством красок. Поэтому в яркостный сигнал вводят 59 % зеленого, только 30 % красного, а частичка синего составляет всего лишь оставшиеся 11 %.



Л. — Ты, Незнайкин, сейчас находишься в расцвете своих творческих сил! Совершенно верно, что, учитывай неодинаковую чувствительность глаза к различным цветам, так дозируют величину трех сигналов основных цветов, чтобы яркостное впечатление при приеме цветных передач на черно-белый телевизор тоже было хорошим. А черно-белые программы также в наилучших условиях принимались цветным телевизором.



Несущая и поднесущая

Н. — А каким образом доставляют цветному телевизору ту дополнительную информацию, которая придает цвета черно-белому изображению?

Л. — Для этого необходимо передавать сигналы цветности. Я позволю себе напомнить тебе, что этим термином обозначают ощущение цветового тона и насыщенности, вызываемое спектральным составом света. Принцип трехцветного способа…

Н. — Надеюсь, Любознайкин, ты не скажешь мне, что кроме одной передающей яркость волны для доставки относительных величин трех основных цветов нам, потребуются еще три волны! Что станет тогда с пресловутым «загромождением эфира»?!

Л. — Успокойся, дорогой друг. Для передачи всех сигналов мы ограничимся только одной несущей волной. Но мы оснастим ее своего рода искусственной рукой, которую назовем поднесущей, она и будет посланцем цветности (рис. 27).



Рис. 27. Спектр частот, занимаемых несущей, модулированной по амплитуде сигналом яркости, и поднесущей, не модулированной (вверху) или модулированной сигналами цветности (внизу).


Н. — Все лучше и лучше! Прежде всего, что пред- представляет собой поднесущая?

Л. — Речь идет о хитром приеме, которым часто пользуются в технике электросвязи и, в частности, в многоканальной телефонии. Ты знаешь, что телевизионные передачи ведутся в диапазоне метровых и особенно дециметровых волн, частоты которых измеряются сотнями мегагерц. Ты также знаешь, что видеосигналы занимают полосу в несколько мегагерц (6 Мгц в европейском 625-строчном стандарте). Модулируемая несущая располагается так, что по одну и другую стороны от ее частоты находятся две боковые полосы модуляции. Для уменьшения места, занимаемого передачей, в спектре частот значительную часть боковой полосы подавляют.

Н. — Все это, Любознайкин, я давно знаю, ведь ты мне это объяснил еще тогда, когда обучал меня основам радиотехники.

Л. — А теперь предположим, что ты модулируешь свою несущую сигналом только одной частоты, скажем, 4,43 Мгц.

Н. — Этот сигнал породит две боковые частоты модуляции, отстоящие от частоты несущей волны на 4,43 Мгц в большую и в меньшую стороны.

Л. — Совершенно правильно. Впрочем, мы можем убрать одну из этих двух боковых. А теперь предположи, что эти колебания с частотой 4,43 Мгц, которые и являются поднесущей, в свою очередь модулируются сигналами значительно более низкой частоты.

Н. — Но это заколдованный круг! Как я полагаю, в этом случае по обе стороны поднесущей частоты образуются боковые полосы частот модуляции. При графическом воспроизведении чистая, т. е синусоидальная, поднесущая представляет собой простую вертикальную линию. В случае модуляции она превращается в прямоугольник, ширина которого определяется наибольшей величиной модулирующей частоты.



Передача цветности

Л. — Чудесно, Незнайкин! Теперь я могу сказать тебе, что эта частота 4,43 Мгц была принята для европейского стандарта цветного телевидения с разложением на 625 строк. И эту поднесущую модулируют цветоразностными сигналами, которые занимают относительно узкую полосу частот.

Н. — Почему?

Л. — Потому, что для цветности нам совершенно нет необходимости иметь такую же высокую разрешающую способность, как для яркости. Вспомни о хроматической аберрации и о неравномерном распределении колбочек, что снижает разрешающую способность глаза для цветных изображений. Разрешающая способность глаза для цветных тонов и степеней насыщенности далеко не критична. Четкость передачи деталей цветного изображения практически не связана с их цветом и определяется яркостью. Поэтому сигнал яркости передается полностью, т. е. с такой же шириной полосы, как в черно-белом телевидении. Что же касается сигнала цветности, то он занимает довольно узкую полосу частот, чтобы не выходить за пределы полосы частот сигнала яркости, как это показано на моем графике.

Н. — После твоего объяснения у меня нет никаких возражений против снижения четкости в цветности. Я вспоминаю, как в раннем детстве я забавлялся раскрашиванием напечатанных черно-белых картинок. Я закрашивал картинки широкими мазками толстой кисточкой, и мои краски почти везде выходили за контуры рисунка. Но результат был совсем неплохой, так как восприятие в первую очередь зависело от напечатанного черной краской рисунка.



Л. — Как ты видишь, благодаря хитрому приему с поднесущей, которая доставляет цветность, общая ширина полосы, занимаемая при передаче цветной телевизионной программы, не шире полосы частот, используемой в черно-белом телевидении.

Н. — Это действительно очень хорошо. Но я чувствую, как в моем мозгу возникают и сталкиваются между собой тысячи вопросов. Как может поднесущая доставлять информацию о трех основных цветах. Каким образом…

Л. — Помилуй, Незнайкин, остановись! Не все сразу. Модулирование поднесущей производится по амплитуде в системах NTSC и PAL; в системе SECAM поднесущая модулируется по частоте. Что же касается трех основных цветов, то из них передают только два: красный и синий или, точнее, разность между сигналами цвета R и В и сигналами яркости Y или

R — Y и B — Y,

Н. — Но в этом случае изображение воспроизводится только двухцветным способом? Ты приносишь в жертву зеленый? Этот цвет надежды!..

Л. — Успокойся: зеленый восстанавливается при приеме. Не забывай, что сигнал яркости содержит сигналы всех трех цветов. Таким образом, располагая сигналом яркости Y, полученным в результате демодуляции несущей, ты можешь для начала вновь получить сигналы R и В путем простого сложения передаваемых сигналов:

Y + (R — Y) = R;

Y + (B — Y) = B

И тебе остается лишь вычесть эти два сигнала из Y (который представляет собой сумму всех трех цветных сигналов), чтобы вновь обрести «зеленый» сигнал.

Н. — Это кажется тебе очень простым. Но я начинаю испытывать головокружение. Я просто не вижу, каким образом из всех этих сигналов можно получить при приеме настоящие краски.

Л. — А почему бы тебе в один прекрасный день не посетить Музей электронно-лучевой трубки? Там ты найдешь ответ на многие вопросы… А пока запомни, что различные манипуляции, имеющие целью различное комбинирование сигналов яркости и цветности при передаче, осуществляются совокупностью схем, входящих в кодирующее устройство. А в приемнике имеется декодирующее устройство, служащее для извлечения из передаваемых сложных сигналов напряжений, которые прилагаются к электродам чудесного прибора, который тебе покажут в Музее электронно-лучевой трубки.



Загрузка...