Большое в малом



Что общего?

Начну с двух историй.


История первая

На визитных карточках Юджина О’Винстерна было вытиснено золотыми буквами: «негоциант» — торговец. Портовые лоцманы, отлично осведомленные о деятельности О’Винстерна и плохо разбирающиеся в правилах хорошего тона, называли его «спекулянт». Это звучало несколько грубо, но несомненно было справедливее. Та же справедливость требует отметить, что Юджин О’Винстерн не обладал особым умом. Однако недостаток последнего он компенсировал нахальством. Нахальство — это было, пожалуй, единственное, чем располагал в 1937 году лондонский «негоциант», так как последняя операция по закупке на корню канадской пшеницы стоила ему всего его состояния.

Вот почему О’Винстерн решился везти в Индию партию станков, рассчитывая продажей или, вернее, перепродажей их поправить свои дела. В станках Юджин смыслил мало, но еще меньше ведал он об Индии. А если говорить правду, то, кроме того, что оттуда вывозят бананы и малярию, «негоциант» ничего не знал о той громадной стране, куда он плыл вместе со своим грузом.



Было бы излишне описывать первые впечатления от знакомства Юджина О’Винстерна с Индией. Ведь мы не затем повели о нем речь, чтобы познакомить читателя с описанием бомбейских баров и контор, а в других местах наш герой не бывал. И поэтому мы сразу расскажем о том, что увидел он на товарной площадке железнодорожного вокзала города Дели.

Зрелище было удручающим. Когда небольшая бригада грузчиков выгрузила первый станок из вагонов, О’Винстерн сразу заметил неладное: изо всех щелей деревянной обшивки струилась какая-то бурая жижа. Встревоженный «негоциант» велел немедленно разбить упаковочный ящик, и его взору явилась картина, которую нельзя назвать иначе чем жалкой.

Станки представляли груду ржавчины. Ржавчина образовала на металлических частях такой густой налет, что они, казалось, все были покрыты бурым снегом.

Юджин О’Винстерн кинулся к станку, схватился за какую-то деталь, но она тотчас же отвалилась и с мягким стуком упала на землю. Когда были вскрыты остальные двадцать ящиков, то выяснилось, что станки в них сохранились ненамного лучше.

Кого было винить? Беспросветное невежество О’Винстерна, который не знал той истины, что металлические вещи перед далекой транспортировкой надо густо смазывать маслом? Или ругать начальника департамента железнодорожных перевозок Индии, по милости которого станки два месяца валялись в бомбейском порту, ожидая предстоящей отправки в Дели? Сетовать на жаркий и влажный, до густоты, воздух Индии?

Нет, незадачливый «негоциант» винил более непосредственного участника его «негоции» — бога. Бормоча по адресу всевышнего такие проклятия, от которых хватил бы удар даже самого хладнокровного миссионера, Юджин целые дни бесцельно болтался по городу, ожидая, пока из резиденции губернатора придет ответ на телеграмму с просьбой дать пособие для возвращения в Лондон.

Вот тут-то во время одной из прогулок О’Винстерн обратил внимание на знаменитую делийскую колонну. Громадный обелиск возвышался посредине большой площади и почти всегда был окружен верующими. От нечего делать Юджин протиснулся сквозь толпу непрерывно бормотавших индусов и рассеянно посмотрел на колонну. Основание ее было до матового блеска отполировано губами верующих, а верхняя часть была гладкой, как обеденный стол. О’Винстерн рассеянно притронулся пальцем к колонне… затем постучал по ней ладонью… потом кулаком. Колонна была сделана из железа. Да, никакого сомнения быть не может — из железа! Но, черт возьми, каким образом оно здесь сохраняется?

Не иначе, как эти индусы чего-то подмешали в сплав. Но что?

На последний вопрос лондонский «негоциант» безуспешно пытался раздобыть ответ в течение всей последующей недели. Но когда был получен скромный перевод и билет, по которому О’Винстерн должен был через четыре дня отплыть в Лондон, Юджин решился.

Той же ночью он достал где-то напильник, трясясь от страха, отпилил от основания колонны небольшой кусочек железа и спрятал его глубоко на дно своего саквояжа. Уж в Лондоне ему помогут разобраться, из чего сделана колонна и что такое подмешано туда, что не дает железу ржаветь!

Через полтора месяца О’Винстерн направил добытый им образец железа для анализа в одну из лондонских лабораторий. К образцу было приложено письмо, которое Юджин написал, сам дивясь собственной хитрости. В письме он просил произвести анализ прилагаемого образца железа, которое он думает употребить для изготовления своего сейфа.

Когда вместо анализа О’Винстерн получил приглашение явиться в лабораторию, он, естественно, насторожился: конечно, они хотят выпытать у него, где он раздобыл этот замечательный сплав; но его не проведешь, он будет молчать.

Однако вместо всего этого шеф лаборатории, тщедушный и очкастый профессор Голл, тысячу раз извинившись перед ошарашенным такой невиданной любезностью О’Винстерном, спросил его, где уважаемый мистер раздобыл образец такого феноменально чистого железа. Профессор добавил, что он занимается анализом вот уже тридцать лет, но впервые встречается с образцом, в котором нет никаких примесей: чистое железо, аб-со-лютно чистое.

Потерпев крах в своих надеждах организовать выработку сплавов, которые бы противостояли влажному климату Индии, Юджин занялся скупкой и перепродажей контрабанды, за каковое занятие и был в скором времени посажен в тюрьму.

А профессор Голл доложил на одном из заседаний совета института о проведенном им анализе образца железа неизвестного происхождения, в котором ему не удалось найти примесей, потому что железо было чистое, аб-со-лютно чистое!


История вторая

В 20-х годах в монастыре Киево-Печерской лавры объявился некий отец Иона. Этот священник, носивший библейское имя и священную бороду, скоро стал знаменит на весь Киев и на много верст в окрестностях. Как гласили объявления, вывешенные на воротах монастыря и написанные мирским шрифтом, отец Иона ежедневно пользовал верующих от «скорби во внутренностях» с помощью освященной им лично воды.

«Медицинские» способности привлекали в монастырь десятки больных, и скоро в приемные часы отца Ионы монастырский двор стал напоминать известный киевский базар Бессарабку в часы разгара торговли. Поднятая святыми отцами шумиха стала привлекать в монастырь и тех больных, которые до того не имели с религией ничего общего.



Все это заставило заинтересоваться новоявленным целителем редакцию комсомольской газеты. Вот почему в один апрельский день среди «болящих», толпившихся перед обителью отца Ионы, был сотрудник газеты Николай Карлышев. Николай пришел сюда без определенной цели. Он решил вначале просто присмотреться к больным, а заодно и к чудотворцу. Но, когда к больным вышел знаменитый целитель и широко благословил собравшихся, у Николая мелькнула мысль: а не притвориться ли ему больным! Решено — сделано. Согнувшись под прямым углом и не очень натурально охая, Карлышев стал в конце длинного хвоста очереди. Подойдя к отцу Ионе, Николай, подобно другим, приложился или, вернее, сделал вид, что приложился, к руке чудотворца, принял благословение вместе с пузырьком святой воды и поспешно стал в очередь снова. В тот день Карлышев раздобыл три пузырька воды. На следующий день четыре, а в последующие дни еще пять. Итого — 12 небольших бутылочек с «целебным средством», всего около литра.

Свою добычу Николай доставил профессору Бобрышеву — известному киевскому специалисту по внутренним болезням. Профессор посмотрел «святую» воду на цвет, попробовал на язык, а затем категорически заявил, что святая вода взята из Днепра и ничего дополнительного, кроме «божьей благодати», не содержит.

Все это заняло у профессора полчаса времени. В течение последующих трех часов Карлышев уговаривал профессора испробовать воду на одном из его больных. Бобрышев решительно отказывался, ссылаясь на то, что питье днепровской воды заведомо не может оказать никакого эффекта. Николай же, который хотел утверждения полной бесполезности святой воды подкрепить авторитетным свидетельством Бобрышева, продолжал настаивать. По истечении третьего часа Бобрышев, нетерпеливо поглядывая на часы, дал свое согласие.

Через три недели Карлышев снова сидел в клинике у Бобрышева. Статья была уже написана. Заключения профессора Бобрышева занимали в ней немалое место. Бобрышеву киевляне должны были поверить, а в характере заключений профессора сомневаться не приходилось.

Профессор принял Николая в своем кабинете, но в отличие от прошлого раза он не сидел в кресле, а быстро ходил по комнате, почему-то избегая смотреть в глаза Николаю.

Виноватым голосом он сообщил корреспонденту, что испытал предоставленный ему на экспертизу «препарат», то есть «воду», — поправился он — на двух больных с застарелым гастритом и одном язвеннике и во всех случаях констатировал не выздоровление, нет, но несомненное улучшение. Вот так. После этого профессор виновато развел руками, пробормотал что-то о необъяснимых загадках природы и оставил Николая наедине с собственным недоумением.

Вторичный химический анализ, на этот раз тщательный и придирчивый, подтвердил тождество с днепровской водой. Правда, бактериологический анализ выявил почти полное отсутствие микробов в воде, но это могло объясняться кипячением.

Подкупленный монастырский служка оказался весьма словоохотливым. Он рассказал, что таскает в келью отца Ионы ежедневно девять ведер воды. Отец Иона сливает эту воду в большую кадку, на дне которой лежит «мно-о-го» серебряных монет. Большего служка просто не знал.



Так тогда и не появилась разоблачающая статья против «святого целителя». Эта статья была написана позже, три года спустя. Правда, к тому времени новоявленный святой был арестован органами милиции за крупную спекуляцию иностранной валютой, но все же статья была нужна. Помогли же появлению статьи некоторые обстоятельства, о которых будет идти речь в следующих разделах.


Вот эти две истории, которые я считал нужным рассказать читателю. Предвижу вполне законный вопрос: во-первых, почему рассказы о незадачливом спекулянте и мнимом святом появляются на страницах книги, посвященной проблемам современной химии; и во-вторых, если даже предположить, что эти рассказы автор ввел просто для развлечения читателя, то что общего имеют они друг с другом. Я полагаю, что в дальнейших разделах этой главы читатель найдет ответ на все эти вопросы.


Чистое вещество… это не просто

В предыдущей главе «Алхимия XX века» читатель познакомился с тем, как химики настойчиво и неутомимо охотились за исчезающе малыми количествами вещества. Терпеливо, атом к атому, микрограмм к микрограмму, собирали они мельчайшие дозы химических элементов. Эти охотники знали, что микрограммы выделенных ими новых элементов принесут химии «тонны» ценнейших сведений.

В этом очерке речь тоже пойдет о химиках-«охотниках». И так же, как и там, здесь будет описана охота за малыми и сверхмалыми количествами веществ.

Однако «охотники» в этой главе будут заниматься поисками малых количеств веществ не с целью собрать их, а, наоборот, изгнать из исследуемого вещества.

Впрочем, если рассказывать по порядку, то, очевидно, следовало бы начать с химика Кольрауша. Это был видный немецкий исследователь, который работал в последней четверти прошлого века. Несколько лет своей научной деятельности Кольрауш посвятил… беспрестанной перегонке из сосуда в сосуд одной и той же порции воды.



К исходу четвертого года директор института, где работал Кольрауш, уже не решался заводить гостей в лабораторию исследователя. Директор знал, что на каждую группу посетителей всегда найдется присяжный остряк, который вспомнит Лапутянскую Академию наук.

Однако знатоки «Путешествий Гулливера» напрасно изощрялись в остроумии. В отличие от ученых летающего острова Лапуты, Кольрауш преследовал истинно научные цели: он пытался как можно лучше очистить воду.

Я не сомневаюсь, что у читателя сразу же возник вопрос: неужели очистка воды является таким сложным делом, что ему надо посвящать годы жизни? Не напутал ли здесь автор? Нет, не напутал.

Возьмем самый обычный пример из повседневной деятельности химика-исследователя. Вот я пришел сегодня в лабораторию и мне нужно получить чистую воду. Нет, далеко не такой степени чистоты, какой добивался и в конце концов добился Кольрауш! Мне нужна просто чистая вода, чтобы приготовить раствор какого-либо вещества, по возможности свободная от примесей.

Из водопроводного крана я наливаю в колбу воду, которая, с моей точки зрения, с точки зрения химика, является не просто грязной, а представляет собой какое-то болото. В этой воде содержится большое число различных солей натрия, калия, кальция, магния. В то время как вода протекала по трубам, в нее перешло большое количество железа, неощутимое, конечно, для того, кто пьет эту воду, но вполне достаточное, чтобы я мог обнаружить его присутствие с помощью роданида калия. На водоочистительной станции воду хлорировали, и при этом в ней осталось такое количество хлора, что прибавление к ней нескольких капель азотнокислого серебра делает ее похожей по внешнему виду на молоко — это выпало хлористое серебро. Кроме этого, в воде находится значительное, опять-таки с точки зрения химика, количество органических веществ: мельчайшие частицы растений, бактерий и проч. В этой водопроводной воде растворено не большое, а прямо-таки громадное количество воздуха — каждый, кто даст постоять стакану холодной водопроводной воды в комнате, может убедиться в этом: на стенках стакана появится большое количество пузырьков воздуха.

А углекислый газ, растворенный в воде! А сернистый газ, который пусть и в очень незначительном количестве поглотили воды реки, когда они протекали мимо любого завода, отапливающегося углем? А фенол, который где-то в верховьях выпустил в воду нерадивый директор химического завода? Словом, можно сказать, что в той водопроводной воде, которую я налил из крана, содержится в ощутимых количествах, помимо водорода и кислорода, еще добрая треть элементов Периодической системы Д. И. Менделеева. Ошибся бы я при этом разве только в сторону преуменьшения. Пусть все эти примеси безвредны для человека, утоляющего жажду, но мне, химику, они мешают. И я приступаю к их удалению.

Сначала я кипячу воду со щелочным раствором перманганата калия. При этом окисляется большинство органических веществ, находящихся в воде. Затем я повторно кипячу воду с подкисленным раствором перманганата. Эта операция должна привести к окончательному разрушению всех органических веществ. После этого воду перегоняют. При перегонке освобождаются от основного количества примесей: от солей металлов, от значительной части воздуха. Полученная так называемая дистиллированная вода далеко еще не чистая. В ней содержится сравнительно много воздуха, остался почти весь углекислый газ. Так как все операции проводились в стеклянной посуде, то вода содержит много едкого натра и кремниевой кислоты, которые перешли в нее из стекла. Словом, до чистой воды еще далеко.

Эту дистиллированную воду я снова кипячу в течение нескольких часов, чтобы удалить возможно больше газов, в том числе и хлора, а затем переливаю в перегонную колбу. В отличие от предыдущей, эта колба сделана из платины, холодильник, в котором конденсируются пары воды, отлит целиком из олова, приемная колба тоже сделана из платины. Эти металлы почти не растворяются в воде. При перегонке необходимо соблюдать предосторожность, чтобы вода нигде не соприкасалась с воздухом, иначе она снова «натянет» кислород, азот и углекислый газ. Полученная вода называется уже бидистиллатом. Конец! С этой водой мне уже можно работать.

Одно описание процесса очистки воды заняло у читателя, вероятно, несколько минут. Сколько же времени приходится его осуществлять на практике?

Но все-таки я получил не очень чистую воду. Установить это можно легко: достаточно опустить в нее электроды, соединенные с источником электрического тока. Стрелка прибора покажет, что вода проводит электрический ток, хотя она неэлектролит и проводить не должна. Значит, мы не полностью удалили из нее примеси. Электропроводность полученной воды, правда, небольшая и имеет порядок 10-6 обратных омов. Кольрауш, который значительно тщательнее очищал воду, смог получить значения электропроводности в сто раз меньше. Это означало, что вода у него была много чище. Однако достаточно было подержать эту воду в течение нескольких минут в открытом сосуде, чтобы электропроводность начала быстро увеличиваться: в воде растворялся углекислый газ воздуха.

То, что я сейчас рассказал о воде, с успехом можно отнести к любому другому веществу. Разница только в том, что в большинстве случаев очистка веществ является еще более длительной и кропотливой операцией, чем получение чистой воды.

Мы помним, что абсолютно чистых веществ в природе нет. В любом соединении всегда присутствуют большие или меньшие количества посторонних веществ. По мере того как усовершенствовались методы химического анализа, химики стали получать все более подробные сведения о том, сколько примесей присутствует в исследуемом веществе и каков их характер. Однако одно дело знать, сколько имеется примесей, а совсем другое — освободиться от этих примесей.

Да и то сказать, что эта последняя операция часто не была нужна. В самом деле, зачем прибегать к хитроумным манипуляциям, тратить много времени, губить ценные химические реактивы — и все это только для того, чтобы иметь возможность сказать, что добытое тобой соединение имеет чистоту, например, не 99,99, а 99,999. Да стоит ли этого одна тысячная?! Ну, разумеется, нет.

Вот почему никто из химиков пока не стремился получать абсолютно чистые вещества. Но тут как раз наступил момент, когда надо рассказать об одной истории, которую почти все химики приняли как научную сенсацию.


Проблемы возникают так…

Я написал слово «сенсация» и задумался: а правильно ли я перевел те определения, которыми характеризовалось в зарубежной литературе 20-х годов это открытие? Видимо, правильно. Подобно другим сенсациям, это открытие, нашумев, и притом весьма сильно, в научных и околонаучных кругах, потом с непостижимой быстротой забылось и в течение двадцати лет не упоминалось даже в самых фундаментальных руководствах. Почему? Возможно, потому, что слишком уж невероятными показались химикам 20-х годов факты, описанные в нескольких небольших статьях. Репутация солидных научных журналов, где публиковались эти статьи, заставляла относиться к ним с некоторым уважением. Многовековой же опыт физики и химии принуждал к мысли: не мистификация ли эти сообщения? Обдумывая все это, солидные профессора приходили к одному несомненному выводу: абсолютно непонятно. И как это часто бывает, люди предпочли не искать разгадку удивительных явлений, а попросту забыли о них.

Трудно приготовить тщательно очищенное вещество, но еще труднее сохранить его в чистом состоянии. Со всех сторон его подстерегают враги. В него может попасть капля постороннего соединения, пепел из трубки исследователя, маникюрный лак с ногтей ассистентки, залетевшая в окно пыльца цветов и тысяча других самых разнообразных веществ. Особенно трудно сохранить чистые вещества от проникновения примесей из воздуха и влаги, содержащейся в атмосфере. Ведь воздух проникает всюду, от воздуха не спрячешься!

Вот почему, сохраняя очищенные вещества, их запаивают в стеклянные или сделанные из какого-либо другого материала сосуды.

Так поступил однажды и английский химик Бейкер, когда он в 1908 году запаял в стеклянной трубке азотистый ангидрид — жидкость, которая кипит при температуре +3,5°. Правда, на этот раз азотистый ангидрид находится в трубке вместе с пятиокисью фосфора. Дело в том, что при получении азотистого ангидрида экспериментатор случайно примешал к нему некоторое количество воды. Пятиокись же фосфора является одним из самых «жадных» к воде веществ: почти ни одно из известных нам соединений так активно не соединяется с водой, как этот белый порошок.



Во всем, что я сейчас изложил, пока нет ничего удивительного, что могло бы явиться материалом для сенсации. Пока, как говорится, идет присказка. Сказка будет впереди…

Прошло лет пять. И вот Бейкер вспомнил, что у него в лаборатории хранится трубка с запаянным азотистым ангидридом, который как раз в это время понадобился ему для каких-то экспериментов. В лабораторной практике химики всего мира обычно очищают жидкости перегонкой. Для того чтобы отделить азотистый ангидрид от кусочков пятиокиси фосфора, Бейкер налил жидкость в перегонную колбу и начал ее нагревать.

…В этот день люди, проходившие по Слау-стрит, могли наблюдать, как из подъезда научного института вышел немолодой уже человек, который усиленно спорил о чем-то сам с собой с выражением крайнего недоумения.

Что и говорить, у Бейкера были все основания быть пораженным! Когда началась перегонка азотистого ангидрида, сначала все шло как обычно. Ангидрид налили в охлажденную снаружи льдом колбу: приемник, куда должна была собраться перегоняющаяся жидкость, тоже поместили в лед. После этого Бейкер стал ждать, когда ангидрид, нагреваясь при комнатной температуре, начнет кипеть. Прошло десять минут, двадцать, но перегонка не начиналась. Разговаривая со своим сотрудником, Бейкер машинально взглянул на термометр, который был опущен в жидкость, и остановился на полуслове. Термометр показывал 20°, то есть ровно столько, какова была температура окружающего воздуха. Согласно всем справочникам, азотистый ангидрид должен был уже давно кипеть, но жидкость оставалась недвижимой. Пожав плечами на немой вопрос ассистента, Бейкер начал осторожно подогревать колбу. Никакого эффекта: синяя жидкость оставалась спокойной.

30°… 35°… 40°… Только при 43° началась перегонка. Азотистый ангидрид кипел, вопреки всем справочникам, вопреки здравому смыслу, на 40° выше, чем ему полагалось.

«Может быть, это не то вещество, за которое я его принимаю?» — мелькнула у Бейкера мысль. Немедленно был проведен анализ: чистейший азотистый ангидрид, чистейший, 100 %! Снова повторили перегонку: 43°. Это было невероятно.

За соседним столом ассистент Бейкера, все время оглядываясь на непонятную колбу, лихорадочно приготовлял из азотной кислоты азотистый ангидрид. Вот она, синяя жидкость, по внешнему виду ничем не отличающаяся от своей соседки, стоящей рядом. Какова будет ее температура кипения? Термометр показывал 3,5°. Все правильно. Снова начали перегонять первую жидкость: 43°.

Бейкер приказал запаять обе жидкости, оделся и вышел. Быть в лаборатории лицом к лицу с этой пугающей загадкой он больше не мог.

Что же так поразило английского химика? Неужели какие-то сорок градусов могли стать причиной столь сильного волнения?

Могли! Дело в том…


Постоянны ли постоянные величины?

…Дело в том, что каждое вещество, так же как и каждое химическое соединение, обладает определенными физическими и химическими свойствами.

Можно брать, например, воду из Индийского океана и из заплесневелого болота, из полярной льдины и из дорожной лужи, но все равно, каким бы ни было ее происхождение, всегда она будет и замерзать при 0°, а кипеть при 100°. Бензол, добытый из продуктов переработки каменного угля, и бензол, полученный синтетически, например из ацетилена, не отличаются друг от друга ни на йоту.

Не знаю, можно ли назвать даже аксиомой настолько очевидное для каждого следующее положение: данному химическому соединению отвечает одна вполне определенная температура кипения, одна температура плавления, одна плотность и т. д. Более того, это правило лежит в основе процессов получения очищенных от примесей веществ. Если хотят, например, получить чистую уксусную кислоту, то удаляют из нее примеси до тех пор, пока ее температура плавления не станет равной 16,6°. Теперь исследователь может быть уверен, что он держит в руках чистый препарат уксусной кислоты. Если химик, перегоняя какое-либо вещество, видит, что при нормальном атмосферном давлении оно кипит, скажем, при 110,8°, то он уверенно может сказать, что в колбе у него находится толуол.

И вот теперь аксиома стала теоремой. То, что каждому веществу отвечают определенные свойства, приходилось еще доказывать.

Есть целый ряд веществ, с которыми химикам приходится иметь дело в лабораториях почти каждый день. Для этих веществ температуры кипения и плавления были определены особенно тщательно. Загляните в любой, даже самый краткий справочник, там вы найдете: бензол кипит при 80°, спирт — при 78,4°, бром — при 59°, диэтиловый эфир — при 35°.

Словом, физические константы этих веществ изучены, как говорится, вдоль и поперек. С ними и решил начать Бейкер следующую серию опытов.

Опытов? Над чем? Неужели исследователю стала ясной причина такого невероятного поведения азотистого ангидрида?

Нет, разумеется, причина известной не была, но подозрения возникли. «Виновником» считали воду.

Читатель уже знает, каких трудов стоит химику получить чистое вещество. Очевидно, что чем выше степень очистки вещества, тем труднее его приготовить. Можно тщательно очистить какое-либо органическое вещество от примесей неорганических веществ. Значительно труднее, но тоже вполне осуществимо очистить это соединение от примеси посторонних органических веществ. Но как уберечься от воздуха и, главное, от паров воды, содержащихся в нем?

Вот почему, приступая к очистке бензола, брома, сероуглерода, спирта и других веществ, Бейкер уже знал, что от воды, от ничтожных следов воды, проникающих в очищенные вещества из воздуха, ему избавиться не удастся.

Итак, основная предпосылка была следующей: все описанные до настоящего времени химические соединения, какими бы чистыми они ни считались, всегда содержат некоторую, пусть самую ничтожную, примесь воды. Задача опыта: получить несколько абсолютно (абсолютно!) чистых веществ. Для этого тщательно очищенные обычным способом жидкости были запаяны в стеклянные трубки вместе с пятиокисью фосфора и спрятаны в ящик лабораторного стола.

В рабочем журнале появилась запись: 27 ноября 1913 года. Далее: январь… март… июнь… 1914 года. На этом записи обрывались.

Началась первая мировая война. В то бурное время Бейкеру было не до трубок. Империалистические правительства требовали от химиков составы новых взрывчатых веществ и рецепты смертоносных газов. Вот почему Бейкер вернулся к своим трубкам лишь через девять лет после того, как они были запаяны.


Вопросы, вопросы…

Трубки были вскрыты в 1922 году. Вскрытие производилось в условиях, которые исключали присутствие влаги: сосуды старательно высушивались, кончики трубок отламывались под ртутью.

Результаты превзошли все, даже самые смелые ожидания.

Первым перегонялся бензол. «Обычный» бензол, как известно, имеет температуру кипения 80°. Этот же закипел только при 106°. Дальше уже не было времени поражаться, и Бейкер с сотрудниками едва успевали вносить в лабораторные журналы новые поразительные факты: диэтиловый эфир кипел при температуре 83° вместо причитающейся ему «обычной» 35°; бром начинал перегоняться при 118°, в то время как «обычный» бром начинает кипеть при 59°, ртуть кипела при 459° вместо 357°, сероуглерод — при 80° (обычная температура кипения этого соединения 46°). Первые признаки перегонки спирта появились при 138°, в то время как спирт, очищенный обычными методами, закипает при температуре 78,4°.

Точно так же вели себя и другие жидкости, подвергнутые длительной сушке. Всего же было исследовано одиннадцать веществ.

Когда Бейкер спустя несколько дней сообщил о новых фактах своим ученым коллегам, те встретили это по-разному: одни откровенно хохотали, настолько нелепыми казались им эти слова, другие глубокомысленно закатывали глаза, а когда Бейкер отходил, недоуменно пожимали плечами, третьи же, наиболее «дальновидные», убеждали ученого:

— Удивляюсь вам, дорогой коллега! Неужели вы не видите, что имели дело с самым обыкновенным явлением перенагревания, когда очень чистая жидкость может некоторое время существовать при температурах несколько выше температуры кипения, оставаясь в жидком состоянии?



— Перенагревание, господа, — приходилось вступать в спор Бейкеру, — здесь совершенно исключено. Во-первых, на дно колбы, из которой велась перегонка, бросались кусочки пористого фарфора, а это, как известно, исключает возможность образования перегрева. Во-вторых, как происходит кипение жидкости, если имеет место перегрев? Жидкость все время остается внешне спокойной, пока температура не подымается на несколько градусов выше температуры кипения, а затем внезапно и очень бурно вскипает, причем все содержимое колбы становится пенообразным. В моем же случае, уважаемые коллеги, кипение начиналось совершенно спокойно, так же проходила и перегонка. Кроме того, не надо забывать, что перегрев бывает обычно не более чем на три-четыре, ну, самое большее, на десять градусов, а здесь — семьдесят — восемьдесят градусов! Нет, это не перегрев, господа!

«Господа» уже и сами видели, что здесь нет ничего общего с явлением перегрева. Это обычно клало конец научным спорам, и дальнейший разговор входил уже в сферу излишних бытовых переживаний.

Итак, налицо было новое выдающееся научное открытие, и все было бы хорошо, более того, блестяще, если бы… если бы Бейкер сам хоть в какой-либо степени догадывался, каким образом длительная осушка вещества может привести к таким поразительным и не укладывающимся в рамки обычных научных представлений последствиям.

Ко всему, через несколько дней выяснились еще новые факты. Оказывается, вещества, подвергнувшиеся длительной осушке, изменяли также и свою температуру плавления. Ромбическая сера плавилась при температуре 117,5° вместо 112,8°, йод — при температуре 116° вместо 114°. В сторону увеличения изменилась температура замерзания и жидкостей: бром замерзал на 2,8° выше своей «обычной» температуры замерзания, а бензол — на 0,6° выше, чем это ему «полагалось».

Как видим, было от чего прийти в смятение. С одной стороны, громадный фактический материал, накопленный не одним поколением тысяч и тысяч химиков. С другой стороны, совершенно очевидный факт, который наблюдался и воспроизводился в лаборатории неоднократно. Итак, какое все же из положений соответствует действительности? Отвечают ли каждому веществу определенные свойства? Впрочем, если в высушиваемом веществе имеется некоторая примесь влаги, значит, это не индивидуальное вещество. Но почему же тогда все исследователи всегда получали, скажем, для свойств бензола одни и те же значения, и только при многолетнем высушивании удалось установить изменение свойств? Вопросы, вопросы, вопросы..

Нет, тут надо все обдумать систематически. Надо определить, что в этой истории ясно? Ясного очень и очень немного.



Нет сомнений, что «виной» всему влага, потому что подобный эффект достигается только с помощью пятиокиси фосфора и подобных ему «любителей» воды. Доказательством этому может служить хотя бы то, что если высушенные жидкости оставить ненадолго на воздухе, хотя бы на пять минут, то их температура кипения начинает быстро понижаться и становится нормальной. (Впрочем, нормальной ли? А может быть, именно более высокая температура нормальная?.) Это связано с быстрым поглощением воды из воздуха, потому что если сухие жидкости поместить в атмосферу обезвоженного воздуха, то их свойства сохраняются.

Кроме того, можно догадываться, почему для достижения этого эффекта, названного Бейкером «эффектом высушивании», надо было подвергать вещества такой невероятно длительной (пять — девять лет!) осушке. Один из важнейших законов химии — закон действующих масс, открытый знаменитым русским химиком Н. Н. Бекетовым, гласит: скорость химической реакции пропорциональна концентрации взаимодействующих веществ.

Какова могла быть первоначальная концентрация воды в бензоле вместе с пятиокисью фосфора? Трудно сказать. Но вряд ли больше одной тысячной процента. После же того, как процесс высушивания начался, это количество вначале быстро, а потом все медленнее и медленнее стало уменьшаться: миллионная доля процента, десятимиллионная, стомиллионная… Соответственно этому все медленнее и медленнее идет реакция взаимодействия пятиокиси фосфора с водой, содержавшейся в бензоле. Стомиллионная доля процента… Если подставить эту величину в произведение, которым определяется скорость процесса высушивания, то понятно, что результат будет очень мал.

Вот почему на абсолютное высушивание бензола и других жидкостей требуются годы и годы.

Итак, некоторые стороны наблюдавшихся Бейкером явлений были объяснимы или почти объяснимы. Но все вопросы, перечисленные выше, так и остались вопросами. И что самое печальное: неизвестно, в какую сторону двинуться, чтобы отыскать ответы на эти вопросы.

Вот тогда-то и прозвучало впервые слово «сенсация». Нет, сенсация — это вовсе не обязательно, чтобы газеты выходили с аршинными заголовками, а газетчики на перекрестках надрывались от крика. Сенсация может быть и в удивленных вопросах аудитории, слушающей научный доклад, и в многозначительном перешептывании коллег, и в повышенной нервозности тона статей, посвященных сенсационному открытию. Впрочем, последней, пожалуй, было больше, чем это подобало бы даже в таких исключительных обстоятельствах.

В типографиях, набирающих строгие научные журналы — а журналы, где велась полемика об открытии Бейкера, принадлежали именно к таким, — самой неходкой литерой являлся, очевидно, восклицательный знак: в научных работах не принято отдавать дань эмоциям. Пусть, читатель возьмет наудачу какой-нибудь том журнала английского химического общества, где в свое время печатались основные статьи Бейкера, ну скажем, комплект за 1928 год. Могу биться об заклад, что во всей пятикилограммовой годовой подшивке вы не найдете ни одного восклицательного знака. Поэтому легко представить, как были удручены рабочие, набирая статьи, посвященные обсуждению «эффекта высушивания». Страницы некоторых из этих работ количеством восклицательных знаков походят на изображения строевого леса. Вот-то метались наборщики, одалживая друг у друга эту ставшую внезапно драгоценной литеру!

Один наиболее экспансивный автор заключил свою статью четырьмя — ни больше, ни меньше — восклицательными знаками, причем слово, которое венчало эту фразу, в переводе на русский язык звучит приблизительно как «бред», «чепуха».

Мне, например, не приходилось больше встречать в научных журналах статьи, где попадались бы такие категорические и резкие определения и эпитеты, как «сверхгениальный» и «поверхностный», «гений» и «верхогляд», «спекуляция» и «прозорливость» и т. д.

Понятно, почему результаты опытов Бейкера вызвали такое удивление и полемику среди ученых 20-х годов. Ведь и сейчас, почти через сорок лет после этого открытия, читатель, очевидно, недоумевает, в чем причина столь невероятного волшебного влияния ничтожных примесей воды.

Ясно также и то, почему это открытие стало сенсацией, то есть было забыто так скоро. Дело в том, что мало кто из химиков отважился на повторение этих экспериментов: у кого хватит терпения проводить опыт, который длится девять лет!

Но армия химиков на Земле велика. Поэтому нашлись энтузиасты, которые спокойно, без полемического задора принялись за проверку опытных данных английского ученого.


Спустя несколько лет…

Спустя несколько лет из громадного океана химической литературы стали выплывать отдельные работы, посвященные разработке «эффекта высушивания». Стали выясняться некоторые подробности, а ничто так не важно в науке, как подробности.

Так как все-таки было довольно скучно ждать несколько лет, пока проявится загадочное действие абсолютного высушивания, амстердамский химик Смитс решил по возможности сократить время, необходимое для достижения этого эффекта. Для этого надо было, чтобы в исходном для высушивания веществе было как можно меньше воды. Смитс установил, что основное количество воды, находящееся в высушиваемом веществе, возникает главным образом из микроскопических капилляров в стекле сосудов, где сохраняются эти жидкости. Обычное высушивание не может удалить воду из этих капилляров, и поэтому несколько работ Смитса посвящены описанию хитроумного приспособления, с помощью которого можно сплавлять капилляры в стекле сосудов, одновременно откачивая из них воздух, содержащий испаряющуюся воду.

Усилия экспериментаторов достигли цели: удалось значительно уменьшить первоначальное количество воды в высушиваемом веществе. Насколько? Вот этого уж сказать никто не мог. В то время химики «сидели» где-то около шестого десятичного знака, и эти ступеньки были гораздо ниже того уровня, который соответствовал количеству воды в высушиваемом веществе. Впрочем, важно было другое: удалось достичь «эффекта высушивания» за один год, а в некоторых случаях даже за девять месяцев.

Другой химик — Мейли — доказал, что время высушивания можно значительно сократить, если сосуды, в которых вещества запаяны в контакте с пятиокисью фосфора, хранить при высокой температуре. Это была хорошая мысль, потому что известно, что с повышением температур скорость химических реакций значительно ускоряется.



Таковы были два ручейка работ по сверхчистым веществам, которые мне удалось отыскать в море химической литературы того времени: Смитс и Мейли. Эти ручейки пожурчали некоторое время и исчезли, оставив каждый по три-четыре статьи. Столь длительные эксперименты, видимо, надоели даже энтузиастам.

Наступила некоторая пауза, и в 1924 году, наконец, снова появилась статья по сверхчистым! Тот же Смитс. Интересно, что там? Поистине «эффект высушивания» имеет какое-то свойство вызывать у ученых лирическое настроение. Передо мной дневник. Да, да, дневник в химическом журнале. С числами, днями недели и даже часами. Дневник с выражением эмоций автора по поводу проводимых опытов, его горести и радости.

Статья посвящена решению следующего вопроса: повышается ли температура кипения высушиваемых жидкостей внезапно, скачком, или постепенно — по мере удаления из нее влаги?

Был взят тщательно очищенный бензол. Описание процедуры очистки даже на скупом и точном языке химиков занимает почти две страницы, и мы его опустим. В начале эксперимента бензол, как и все остальные «бензолы» на земном шаре, имел температуру кипения 80°. 2 июня 1923 года жидкость была запаяна в специальный прибор, в котором его можно было перегонять из одного сосуда в другой, без контакта с воздухом, и где он находился все время вместе с пятиокисью фосфора.

25 августа бензол уже имел температуру кипения 81,5°. 23 февраля 1924 года — почти через девять месяцев после начала высушивания — бензол кипел при температуре 87°. Все шло как нельзя лучше. Но в этот день экспериментатора постигло несчастье. На колбу случайно упала курительная трубка. И хотя это была не громадная шкиперская трубка, которыми в кабаках Амстердама, случалось, проламывали друг другу головы подгулявшие моряки, а скромная вересковая трубочка ученого, все равно колба с бензолом дала небольшую трещинку. Трещинка была еле заметной, и к тому же ее почти тотчас же запаяли, но и этих нескольких минут оказалось достаточно, чтобы в колбу проникло ничтожное количество воздуха, содержавшего влагу. Опыт был испорчен: термометр снова показывал 80°.



Однако опыт продолжался. Через месяц после злополучного дня бензол кипел при температуре на полтора градуса выше. Еще через месяц температура кипения поднялась на три градуса по сравнению с первоначальной величиной, и, наконец, через год весь бензол перегонялся в интервале 86,6–87,7°. После этого опыт прекратили, хотя, продолжая дальше высушивать бензол, можно было довести его температуру кипения до той величины, которой достиг Бейкер, — до 106°, а быть может, и больше.

Надо не забывать, что Бейкера и его немногочисленных последователей при проведении каждого эксперимента мучил один вопрос: в чем дело, почему ничтожная, настолько ничтожная, что ее даже трудно выразить каким-либо определенным числом, примесь воды может оказывать такое разительное действие на свойства веществ?

Решению этого вопроса в той или иной степени был подчинен каждый эксперимент. Но шли годы, а решение вопроса было не ближе чем в 1913 году, когда впервые был открыт «эффект высушивания». Разве что только острота удивления притупилась немного.

Однако, когда исследователи поднялись еще на несколько ступенек, когда появилось еще несколько работ, забрезжил свет разгадки.


Еще несколько ступенек

Козьма Прутков в одном из своих афоризмов утверждает, что можно извлечь пользу даже из наблюдения расходящихся по воде кругов после падения камешка. Не знаю, какую именно пользу имел в виду этот вымышленный острослов. Однако могу подтвердить, что один из исследователей в аналогичной ситуации сумел сделать весьма интересные выводы. Он, правда, наблюдал, как выделяются пузырьки при кипении жидкости, но это немногим отличается от кругов, расходящихся по воде. Однако все дело в том, что жидкость эта — гексан (углеводород C6H14) — была не простая. Это был гексан, подвергавшийся многолетней осушке.

Сверхсухой и сверхчистый гексан кипел при температуре 82°; «обычный» же гексан имеет температуру кипения 69°. Но не различие в температурах кипения является удивительным — это вещь уже известная. Удивительным был сам процесс кипения и перегонки.

Кипение и перегонка обычных жидкостей протекает очень просто и понятно: сначала температура всего объема жидкости медленно повышается и затем при какой-то определенной температуре, называемой температурой кипения, жидкость начинает перегоняться, причем перегонка идет строго при температуре кипения до тех пор, пока не исчезнет последняя капля вещества.

Со сверхчистыми же веществами все обстояло иначе. Взять хотя бы тот же гексан. Первые признаки кипения появились при 79°. Но, несмотря на то что жидкость кипела, температура ее продолжала медленно подниматься до тех пор, пока не достигла 82°. При этой температуре и перегонялась бóльшая часть гексана.



Такое кипение — в более или менее широком интервале температур — наблюдается тогда, когда нагревается смесь жидкостей. Значит… перегоняемый гексан тоже состоит из смеси жидкостей? Но ведь это же абсурд! Ведь совершенно очевидно, что в колбе для перегонки находится чрезвычайно чистый гексан, настолько чистый, какой еще никогда не приходилось получать химикам!

Однако все сверхчистые жидкости вели себя подобным образом. Они кипели не в одной точке, а в довольно широких пределах температур. Получалось так, что сверхчистый гексан состоит из нескольких гексанов. Снова тупик! Какой по счету?

Попутно выяснились еще любопытные факты. Оказалось, что вещества, подвергнувшиеся тщательной очистке и длительному высушиванию, изменяют не только температуру кипения и плавления, но и почти все свои физические свойства: показатель преломления, поверхностное натяжение, теплоту смешения и др.

Стоит ли говорить, что новые факты прибавили немало вопросительных знаков к той отменной коллекции их, которая уже окружала эту проблему?!

Вздохнуть химикам с некоторым облегчением (но не полной грудью!) позволило очередное исследование в области «эффекта высушивания».

Была определена плотность пара веществ, подвергнувшихся длительной осушке. А зная плотность пара, каждый девятиклассник может в две минуты вычислить молекулярный вес вещества в парообразном состоянии. Эти измерения показали, что молекулярные веса сверхчистых жидкостей во всех случаях превышают рассчитанные. Так, молекулярный вес диэтилового эфира (C2H5)2O оказался равным 170. Если же сложить атомные веса всех атомов, входящих в молекулу диэтилового эфира, то получится величина 12 · 4 + 10 +16 = 74. Выходит, что молекулы эфира собираются в какие-то агрегаты, состоящие из двух-трех молекул.



Похожие результаты получились и для других веществ: молекулярный вес метилового спирта превышал рассчитанный почти втрое, молекулярные веса брома, бензола и четыреххлористого углерода были завышены в полтора раза, гексана — вдвое, сероуглерода — в 2,7 раза и т. д.

Итак, все высушенные и очень чистые вещества находятся в парах в виде агрегатов молекул, или, как говорят, в ассоциированном[4] состоянии. В жидком состоянии, естественно, величина этих агрегатов должна быть еще больше.

Стало понятно, почему температура кипения этих жидкостей так отличается от температуры кипения жидкостей обыкновенных. Естественно, что энергия, необходимая для отрыва молекулы с малым молекулярным весом, должна быть меньше, чем для молекулы с большим молекулярным весом. А отсюда — и повышение температуры кипения.

Казалось бы, все стало на свои места; вот он, ключ ко всем вопросительным знакам: молекулы очень чистых веществ собираются в агрегаты и это единственное, что отличает их от веществ просто чистых. Всё остальное — следствие этого.

Но на самом деле только сейчас и начались непонятные вещи. Явление ассоциации весьма распространено. Химикам известно громадное количество веществ, которые в жидком и газообразном состоянии находятся в ассоциированном виде. Если мы определим молекулярный вес паров уксусной кислоты, например, то найдем, что он равен 120, в то время как теоретический молекулярный вес этого вещества — CH3COOH — равен 60. Следовательно, в парах молекулы уксусной кислоты находятся попарно.



Все вещества, способные к ассоциации, обладают одним общим свойством: положительный заряд их молекулы сосредоточен в одной части, а отрицательный — в другой. Стоит только посмотреть на рисунок, и сразу станет понятно, почему молекулы уксусной кислоты стремятся объединиться друг с другом. Положительный полюс одной молекулы притягивает отрицательный полюс другой. В жидком состоянии, когда расстояния между молекулами значительно сокращаются по сравнению с парообразным состоянием, агрегаты молекул могут быть значительно больше: они объединяются по четверо, по шестеро, а зачастую и больше.

Насколько ясна причина ассоциации веществ, молекулы которых имеют разделенный электрический заряд, или, как говорят ученые, молекулы которых обладают дипольным моментом[5], настолько же должно быть очевидно, что вещества, не обладающие дипольным моментом, не могут ассоциироваться.

Итак, само по себе явление ассоциации не является чем-нибудь удивительным и очень легко объяснимо. Обращаю только внимание на то, что способностью ассоциироваться обладают лишь те молекулы, которые имеют разделенный электрический заряд — дипольный момент.

Но то, что было понятным в отношении к «обычным» веществам, в области сверхчистых жидкостей только запутало и без того неясные перспективы решения загадки. Дело в том, что большинство из изученных на «эффект высушивания» жидкостей (мы помним, что всего их было 11) не имеет дипольного момента. Но даже те два соединения, молекулы которых имеют дипольный момент, — спирт и эфир — в «обычно» чистом состоянии имеют обычную плотность паров, соответствующую нормальному молекулярному весу.

Так на место одного решенного вопроса пришли по крайней мере два. Первый: почему именно вода обладает такими свойствами, что исчезающе малое количество ее способно оказывать громадное влияние на свойства веществ? Второй: что заставляет молекулы веществ, не обладающих дипольным моментом, ассоциироваться вопреки всем известным законам физики и химии?

Такова уж судьба ученых. Никогда не достигнуть им той точки, после которой можно было бы сказать: «Все, больше в этой области изучать нечего». Один решенный вопрос влечет за собой десятки других, которые еще требуют своих решений.


Почему вода?

Этот вопрос, в то время когда впервые исследовались свойства сверхчистых жидкостей, действовал на исследователей удручающе. Пугала полная неизвестность: с какой стороны следует «прицепиться» к воде, с тем чтобы нащупать разгадку.

Очевидно, что в чем-то, в каком-то свойстве вода резко отличается от других жидкостей. Но какое это свойство? Тут уже приходилось гадать. Иногда, за неимением других способов решить ту или иную научную проблему, гадание тоже может послужить методом исследования.

Итак, какое же свойство? Быть может, вязкость или плотность? Нет, сотни веществ имеют величины этих свойств такие же или почти такие же, как и вода. Поверхностное натяжение? Показатель преломления? Температура кипения? Температура плавления? Нет, и эти свойства у воды ничем не примечательны в сравнении со свойствами других жидкостей. Может быть, электропроводность? Нет. Дипольный момент? Нет. Теплота плавления? Тоже нет! Диэлектрическая постоянная? Стоп! Кажется, нашли!

Действительно, диэлектрическая постоянная[6] воды сильно отличается от диэлектрической постоянной других жидкостей. Для бензола, например, диэлектрическая постоянная равна 2,3. для гексана 1,9, для эфира 4,4, и так для многих других жидкостей. Для воды же эта величина равна 79. Ни одно вещество не может в этом отношении сравниться с водой. Ближе всего к воде подходит муравьиная кислота, но у нее диэлектрическая постоянная раза в полтора меньше, чем у «рекордсмена» — воды.

Но указать на диэлектрическую постоянную — это еще не значит объяснить наблюдаемые явления. И это объяснение не замедлило появиться.

Предположим, рассуждали исследователи, что молекулы всех веществ, даже тех, молекулы которых имеют дипольный момент, равный нулю, притягиваются друг к другу какими-то силами, природа которых нам еще неизвестна. Впрочем, каковы бы ни были эти силы, они, конечно, должны быть электрическими и, следовательно, должны подчиняться законам электростатического притяжения.

Если имеется какое-то чистое вещество, то что находится между какими-либо двумя молекулами этого вещества? Ничто, пустота. Следовательно, силы электрического притяжения в данном случае, в пустоте, будут наибольшими. Что же произойдет, если между двумя этими молекулами внедряется молекула какого-либо постороннего вещества? Конечно, сила взаимодействия между молекулами основного вещества значительно ослабеет. А если эта посторонняя молекула к тому же — молекула такого вещества, как вода, которая имеет наибольшую диэлектрическую постоянную, то есть в среде которой силы электростатического взаимодействия ослабляются больше всего, то легко представить, что никакого притяжения между молекулами основного вещества уже не будет.

Однако даже самые пространные рассуждения останутся рассуждениями, если не будут подкреплены экспериментами. И снова, в который раз, теоретические положения стали воплощаться в лабораторных установках.

Чистый бензол, высушенный обычным для лабораторной практики методом, поместили в специальный сосуд, в котором жидкость оказалась заключенной между двумя платиновыми электродами. Сосуд начали медленно нагревать до тех пор, пока не началось кипение бензола. Термометр показывал 80°. Иными словами, бензол вел себя так, как и полагается вести «нормальному» бензолу. Но вот к электродам подвели очень высокое напряжение. На первый взгляд, это было бессмысленной затеей: ведь бензол все равно не проводит ток. Но как только включили рубильник, кипение бензола сразу прекратилось. Пришлось нагреть жидкость еще на 8°, чтобы снова началось кипение. Бензол, помещенный между электродами, вел себя точно так, как сверхчистый бензол, подвергнутый многолетней сушке! Как только напряжение сняли, сразу температура кипения упала до нормальной. Снова подвели напряжение — снова 88°.

Почему же этот опыт подтверждает влияние воды на ассоциацию молекул бензола? В «обычном» бензоле находится сравнительно много воды: одну из 50–60 молекул его можно считать окруженной тончайшим слоем — в одну молекулу — воды. Эти молекулы воды очень похожи на магнитики.



Посмотрите на рисунок: маленькие и поэтому обладающие сильным электроположительным полем атомы водорода сосредоточены в одном конце молекулы, атом кислорода с двумя отрицательными зарядами — в другом. А рядом изображена молекула бензола. Стоит только посмотреть на нее, и сразу станет понятным, почему бензол не обладает дипольным моментом: шесть симметрично расположенных атомов углерода и столько же атомов водорода уравновешивают заряды друг друга.

Так вот, при подведении высокого напряжения «магнитики» воды отрываются от молекул бензола, водная оболочка разрушается и молекулы бензола приобретают способность к ассоциации. Вот почему сразу подскакивает температура кипения жидкости.

Итак, на вопрос: «Почему вода?» — мы ответили. Но тут же автор со вздохом должен сообщить, что, по правде говоря, этот вопрос был самым легким.

Ответить на него, как говорят, ничего не стоило. Хуже другое, что этот вопрос сразу вызывает еще несколько других. Однако роптать здесь не приходится. Таково свойство настоящей науки.

А вопросы эти следующие (у внимательного читателя они, очевидно, уже вертятся на языке). Вопрос первый: о какой это водной оболочке может идти речь, когда даже в «просто» чистом бензоле одна молекула воды приходится на 100–200 молекул основного вещества? Если же бензол подвергают специальной осушке, тем более многолетней, то это соотношение резко изменяется, причем не в пользу воды. Там уже одна молекула ее приходится приблизительно на один миллион молекул бензола.

Вопрос второй мы так и не выяснили: что же все-таки заставляет собираться в агрегаты бездипольные молекулы веществ, находящихся в сверхчистом состоянии?

Интересные вопросы? Безусловно, интересные. Тем более, что неизвестно, как на них отвечать. Сегодня, в 1963 году, физика и химия пока еще не могут дать ответы на эти вопросы. Вот оно — поле деятельности для тебя, сегодняшний школьник. Оказывается, и в химии можно найти немало таких уголков, исследование которых не менее интересно, трудно и важно, чем достижение полюса недоступности или открытие нового архипелага.

Но мы еще далеко не полностью исчерпали круг вопросов, ради которых я завел речь о самых замечательных свойствах сверхчистых веществ. О тех событиях, которые, собственно говоря, и заставили ученый мир вспомнить о рассказанной только что истории, речь еще впереди. Итак…


Иголка в копне сена

Кто позавидует человеку, который темной безлунной ночью обязательно должен найти в копне сена затерявшуюся иголку? Тут любой остановится и сокрушенно покачает головой? Ошибаетесь! Я знаю немало таких химиков, которые сказали бы, что этот, конечно, вымышленный мной чудак занимается игрой в бирюльки. А в ответ на ваше недоуменное пожатие плечами немедленно доказали бы свое утверждение ясным языком арифметики.

Сколько может весить копна сена? Килограммов 400. А иголка? Ну, скажем, одну десятую грамма, или 10-4 килограмма. Если 400 килограммов принять за 100 %, то сколько будет составлять 0,1 грамма?

4·102 — 100%

10-4x

x = ((10-4·100)/(4·102))·0,25·10-4 = 0,000025 %

Итак, иголка составляет 25 миллионных долей процента от веса копны. Химик сказал бы, что упомянутый нами гражданин оперирует в пределах пятого десятичного знака. А для химии определение таких количеств примесей, которые скрываются за пятым десятичным знаком, является давно пройденным этапом. Вот, скажем, шестой или седьмой десятичный — тут надо поработать. А пятый доступен при желании почти каждому и при сравнительно небольшой затрате труда.

Но если бы химия ограничилась только шестым или седьмым знаками!

«Как! — скажет читатель. — Неужели потребовались еще более точные определения? Неужели нужно было пойти еще дальше?»

Да! Гораздо дальше. И если бы только это, то дело не представлялось бы таким сложным.

Когда мы говорили о продвижении химии по крутым ступенькам десятичных знаков, мы имели в виду аналитическое определение примесей. К середине 50-х годов техника потребовала от химии не только определять количества примесей, но и отделять эти примеси. А это далеко не одно и то же. Одно дело знать, сколько примешано к данному основному веществу того или иного элемента, а совсем другое — освободиться от этих примесей, выделить их, да так, чтобы еще не внести новых загрязнений. И эта вторая задача много сложнее первой.

Но, если техника, промышленность говорят «надо», химия должна, обязана сказать «есть».

И началась работа…

Но сначала о том, зачем понадобились технике вещества такой сверхъестественной чистоты.

Большинство полупроводниковых материалов проявляет свои свойства только в состоянии очень высокой чистоты. Вот, например, один из самых распространенных полупроводников — металл германий. Современная полупроводниковая техника в ряде случаев требует для германия чистоту 99,9999999999 %. Это значит, что на один атом примеси приходится тысяча миллиардов атомов германия. Два атома примесей на это количество — и полупроводник уже не «работает».

Итак, перед химиками всей своей громадой выросла вершина десятого десятичного знака. И вот на этот Эверест современной химии, предстояло взойти не отдельным ученым. На «вершину» должен был подняться весь громадный коллектив химиков, работающих в области промышленности полупроводниковых материалов. Перед ними стояла задача получения не каких-нибудь уникальных двух-трех граммов вещества сверхвысокой чистоты. Надо было создать заводы, где эти вещества производились бы сотнями и тысячами килограммов.



Читатель помнит, какими трудностями сопровождалось завоевание «вершин» шестого и седьмого десятичных знаков. Теперь же предстояло взять десятый. А ведь подобно тому, как каждый метр на большой высоте дается альпинистам труднее, чем километр пути, пройденный по равнине, каждая последующая девятка в числе, выражающем чистоту препарата, достается химику со все возрастающим трудом.

Получение вещества со степенью чистоты 99,99 %, или, как говорят, вещества «четыре девятки», не представляет в настоящее время трудностей для экспериментатора даже в скромно оснащенной лаборатории. Но давно ли это так?

Вот три статьи, помещенные в различных химических журналах. В первой из них читаем: «Нам удалось получить чрезвычайно чистое вещество чистотой 99,99 %». Во второй статье написано: «Содержание основного вещества в продукте — 99,999 %. Значит, полученный продукт можно считать относительно чистым». В третьей статье говорится следующее: «Полученный образец был весьма грязным: содержание основного металла в нем составляет всего 99,9999 %».

В чем тут дело? Ведь высказывания в этих статьях полностью исключают друг друга. Однако противоречия здесь никакого нет. Просто первая работа была написана в начале века, вторая — в 20-х годах, а третья появилась в наши дни. Читателю теперь уже ясно, что вещество, казавшееся лет шестьдесят назад чистым, теперь не может сохранить прежнюю «репутацию».

Очень интересно хотя бы вкратце рассмотреть, каким же образом удается сейчас химикам получать вещества такой чистоты.

Скажу сразу, что получение сверхчистых веществ в больших количествах стало возможным только в результате колоссальных успехов аналитической химии. Ведь когда очищаешь вещество от примесей, надо прежде всего знать, от каких примесей следует его очищать, и затем уже сколько этих примесей находится в основном веществе. На эти вопросы дает ответы аналитическая химия. И чем выше степень очистки вещества, тем изощреннее должны быть приемы этой науки: ведь чем меньше примесей должно оставаться, тем точнее должны быть аналитические определения.

Тут уже неприменимы даже те чувствительнейшие методы химического анализа, о которых мы рассказывали на первых страницах этой книги. Для анализа полупроводниковых материалов химикам пришлось полностью обновить свое исследовательское оружие.

Из всего арсенала «вооружения», которое стоит на службе аналитической химии, мы выберем для иллюстрации всего два, но и этого будет достаточно, чтобы показать точность прицела аналитического оружия.

Вот один из самых молодых методов анализа — радиоактивационный. Очищенный металл подвергается облучению нейтронами. При этом его атомы — не все, понятно, а только некоторая небольшая часть — становятся радиоактивными. Приобретают искусственную радиоактивность и атомы примесей. Однако характеристики излучения разных искусственных радиоактивных элементов резко отличаются друг от друга. Определяя количество каждого вида излучения, можно легко определить количество и характер примесей в металле. Этот метод дает возможность находить примеси посторонних элементов в количестве до 10-13 грамма.

В случае полупроводников применим один специфический метод анализа, основанный на том, что электропроводность полупроводниковых материалов сильно зависит от примесей — в этом, собственно говоря, и заключается причина требования исключительно высокой чистоты полупроводников. Очищая полупроводник, каждый раз испытывают его электропроводность. Чем чище вещество, тем меньше величина его проводимости. А электропроводность можно измерять с высокой степенью точности.



Рассказать о всех ухищрениях, к которым прибегают химики, чтобы получить сверхчистые вещества, невозможно, так же как невозможно, скажем, за один урок изучить географию нашей планеты. В основном, все эти методы очень походят на те, о которых мы вели речь при описании очистки воды. Но остановиться на очень уж интересных способах получения веществ «девять» или «десять девяток» просто необходимо.

Прежде всего, о лабораториях, в которых производятся такие работы. Народ в этих лабораториях особый. Они ужасно боятся сквозняков. Простуда им не страшна: это большей частью молодые, закаленные люди. Сквозняк может внести в помещение какие-нибудь твердые частички, которые попадут в очищаемое вещество. Мельчайшая пылинка, которую не заметит даже самая придирчивая домашняя хозяйка, приводит их в ужас. В этих лабораториях не принято быстро ходить, громко разговаривать: резкие движения могут способствовать выделению из одежды тех остатков пыли, которые не успел высосать стоящий на входе в лабораторию пылесос. Стены и потолки этих лабораторий совершенно гладкие и блестящие: ни одной соринке не зацепиться. Все манипуляции там производят с помощью особых приспособлений, напоминающих пинцеты с длинной ручкой, причем делают это опять-таки очень плавно, осторожно… Непросвещенного человека эта обстановка может, пожалуй, отпугнуть.

Но это впечатление сразу исчезает, как только мы подробнее познакомимся с тем, как люди в прозрачных пластмассовых халатах совершают восхождение на одну из высочайших вершин современной науки — вершину «девяти девяток». Вот один из самых новых приборов для получения сверхчистых веществ, установка, где осуществляется процесс, называемый зонной плавкой.

Медленно движется вдоль кварцевой трубки окружающая ее электрическая печь. В этой трубке лежит на особой подставке небольшой растянутый слиток германия — одного из наиболее распространенных полупроводников. Снаружи ничего примечательного нет. Мы видим, как расплавленная зона перемещается вдоль слитка германия. В том месте, где над металлом проходит печь, он расплавляется и превращается в вязкую жидкость. Печь проходит дальше, и металл медленно застывает.

А делается все это вот для чего. Оказывается, что примеси, содержащиеся в германии, при расплавлении металла предпочитают оставаться в жидкой зоне. Почему? Да потому, что атомы расплавленного металла, соединяясь друг с другом при застывании, выталкивают «чужаков» из кристаллической решетки, и, таким образом, примеси «вынуждены» оставаться в жидкой зоне. Жидкая зона, перемещаясь вдоль слитка металла, увлекает с собой значительную часть примесей. Когда, наконец, жидкая зона доходит до конца слитка и застывает, ее отрезают — и перед нами германий, значительно более чистый в сравнении с тем, который мы имели в начале работы.

Метод зонной плавки наиболее универсален при получении сверхчистых веществ. Однако и он пригоден не всегда. Вот, например, другой полупроводник, сосед германия по Периодической системе Менделеева, — кремний. Сложность получения сверхчистого кремния заключается в том, что он плавится гораздо выше, чем германий, — при 1400°. При такой высокой температуре атомы почти всех окружающих посторонних веществ стремятся вступить с ним, кремнием, в химическое взаимодействие. Эти атомы берутся из воздуха, окружающего расплавляемый слиток кремния, и из того тигля, в котором плавится этот слиток. Ну, пусть воздух можно откачать, но чем заменить тигель где происходит плавление?

С другими элементами — металлами, которые подвергаются влиянию магнитного поля, — поступили при плавлении очень остроумно: плавили их вообще без всяких сосудов. Помещают кусок металла внутри круглого электромагнита, включают ток, и… кусок металла повисает в воздухе, а вернее, даже в пустоте, потому что воздух откачан. Там же, в пустоте, его расплавляют и проводят другие необходимые манипуляции.

Таким образом, металл проходит все стадии, ведущие к его очистке, и ни разу при этом не касается стенок сосуда. Забавный способ, не правда ли? Но как поступить с кремнием, который не подвержен действию магнитного поля?

На помощь тут пришел сам кремний. Оказывается, этот элемент, будучи расплавленным, обладает очень высоким поверхностным натяжением. Поэтому, если расплавлять слиток кремния, то расплавленная зона его сохранит форму твердого образца за счет того, что расплавленная масса сдерживается наружной пленкой жидкости. Получается, что кремний плавится в сосуде из собственного материала.

Каждый новый полупроводниковый материал выдвигает при его очистке новые проблемы, новые затруднения. Приведенные примеры достаточно ясно показали читателю, насколько сложна проблема получения сверхчистых веществ. Ведь степень чистоты, которая сейчас уже доступна промышленности, какой-нибудь десяток лет назад не могла пригрезиться ни одному, даже обладающему самым пылким воображением ученому.

Итак, как будто бы рассказано все: и зачем получают сверхчистые вещества, и как удается химикам добиться такой степени чистоты, и многое другое. Не ясно лишь одно: к чему привел автор те два рассказа о незадачливом коммерсанте Юджине О’Винстерне и киевском журналисте Николае Карлышеве, которые помещены в начале очерка?

Здесь надо сказать, что рассказчик самое интересное всегда оставляет под конец. Так сделал и я.


Новая химия

Я надеюсь, что читатель не посетует на меня, если я приведу несколько строк из школьного учебника химии. Только очень прошу (я обращаюсь к нетерпеливым читателям), не пропускайте эти строчки — они неинтересны и сухи только на первый взгляд:

«Цинк — очень ковкий и пластичный металл, с трудом растворимый в кислотах и только при значительном нагревании».

«Металлы титан, марганец и хром служат для изготовления самых различных изделий, так как хорошо куются и раскатываются».

«Железо — исключительно мягкий металл, который поддается коррозии с большим трудом».

Нет ничего удивительного, что у каждого, кто внимательно прочитал эти строки, возникает протест?

«Позвольте, — скажете вы, — не знаю, как там титан или марганец, но что касается взаимодействия с кислотами цинка — так ведь это первый опыт, с которого все из нас начинали изучение химии в школе. И мы отлично помним, как при внесении кусочка цинка в кислоту — соляную или серную — начиналось бурное выделение водорода, причем без всякого нагревания».

С этим возражением нельзя не согласиться — да и как будешь спорить, когда цинк действительно бурно взаимодействует с кислотами. И тем не менее приведенные выше цитаты совершенно верны. Дело только в том, что они взяты из школьного учебника химии… будущего. Оправданием этой невинной фальсификации может служить то, что это будущее настанет в самое ближайшее время.

Попробуем разобраться, в чем тут дело. Возьмем для примера хотя бы тот же цинк. Да, цинк действительно растворяется в кислотах. Но так ведет себя только цинк «три девятки»: 99,9 %. Впрочем, цинк «четыре девятки» — 99,99 % — тоже неплохо растворим в кислотах. Но стоит только цинку изменить свой квартет девяток на квинтет — 99,999, как свойства его изменяются так же внезапно и удивительно, как будто бы над ним помахал своей палочкой волшебник.

Цинк «пять девяток» нерастворим в кислотах даже при сильном нагревании (правильно, значит, пишется в «будущем» учебнике!). Этот цинк может растягиваться в тонкие нити — в отличие от своего «грязного» собрата, кусочки которого ломаются при малейшей попытке приложить к ним какое-нибудь усилие.



Не приходится сомневаться, что в самые ближайшие годы в каждом школьном химическом кабинете будет хотя бы один кусок цинка «пять девяток». И тогда, если эта книга попадет на глаза кому-нибудь из тогдашних девятиклассников или десятиклассников, они пожмут плечами и справедливо скажут: нашел чему удивляться. Действительно, тогда удивляться будет нечему. Но пусть они при этом учтут темпы развития нынешней науки.

Чудесным образом изменяют свои свойства и все другие элементы, которые удалось получить в очень чистом и сверхчистом виде. Оказалось, что многие металлы, которые раньше считались хрупкими, на самом деле являются пластичными. Так, пришлось пересмотреть «характеристики» марганцу, хрому и титану. Неожиданная пластичность последнего металла особенно отрадна, потому что благодаря этому стало возможным разработать способ получения из этого металла различных деталей. Раньше же титан считался — и вполне справедливо — хрупким металлом.

Здесь надо обратить внимание на одно обстоятельство. Каким образом получается, что образцы элемента чистотой 99,9; 99,99 и 99,999 % почти не отличаются друг от друга, но стоит лишь уменьшить содержание примесей в четвертом десятичном знаке — в 1000 раз меньше того, чем было при переходе от 99,0 к 99,9, — и свойства металлов внезапно изменяются?



Возьмем все тот же цинк. По мере увеличения числа девяток растворимость цинка в кислотах не изменяется, она остается постоянной. Но вот число девяток с четырех скакнуло до пяти — и перед нами словно совершенно другой элемент, который ни по физическим, ни по химическим, ни по механическим свойствам — ну, словом, абсолютно ничем не напоминает прежний цинк.

Итак, существует несколько цинков, несколько титанов, несколько марганцев, подобно тому как существовало несколько бензолов, гексанов, эфиров — и все это в зависимости от степени очистки. Вот когда пришлось вспомнить об опытах Бейкера!

Вот так и возникает на наших глазах новая химия. Это не значит, конечно, что прежние сведения о свойствах химических элементов потеряют значение и всем придется переучиваться. Нет, просто говоря о свойствах какого-либо элемента или соединения, надо будет всегда указывать, в каком состоянии чистоты находится это вещество.

«Старую» химию создавали десятки поколений химиков. Новая химия будет создана значительно быстрее. Немалая роль в оформлении этой науки принадлежит следующему поколению ученых — сегодняшним школьникам. Но, чтобы взять эту одну из очередных вершин современной науки, надо быть хорошо подготовленным. Альпинист, собирающийся покорить неизведанный горный пик, запасается самым разнообразным и добротным снаряжением. Для вас, будущие покорители вершины «Новая химия», таким снаряжением являются те сведения по химии, которые уже накопило человечество.


Мал золотник…

Рассказываю я о свойствах сверхчистых веществ уже довольно много, примеров привел порядком, даже несколько нравоучений успел прочесть, но вопрос, каким образом ничтожные примеси к основному веществу могут так разительно влиять на свойства этого вещества, остался вопросом.

Для ответа на него можно было бы привести немало соображений и догадок. Но самый правильный ответ пока будет все же такой: «Неизвестно». Оказывается, есть еще в современной химии такие вещи, о которых ничего не знают даже самые сведущие в этой области специалисты.

Впрочем, узкие тропинки, которые ведут пока еще к затерянному в лесу вопросов дворцу разгадки, могут осветить следующие соображения. По всей видимости, в химических и физических свойствах вещества громадную роль играет однородность или неоднородность химического состава.

Электроны при передаче тока через металлы бегут не как попало. Они передвигаются по цепочкам атомов, из которых состоит кристаллическая решетка металлов. Это представление еще не объясняет, каким образом один атом примеси на миллиарды атомов основного вещества способен изменить свойства металла, но позволяет догадываться. В самом деле, линия телефонной связи между Москвой и, скажем, Владивостоком имеет протяженность около десяти тысяч километров. Но достаточно где-то на протяжении этих десяти тысяч километров вырезать кусочек провода в один миллиметр, как связь тотчас же прекратится. Атомы посторонних элементов действуют подобно разрывам в линиях связи.



Представьте себе, что в метро в часы пик среди потока людей остановится какой-нибудь ротозей и станет рассматривать мозаичный потолок или читать книгу. Нормальное движение людей сразу нарушится. На беднягу посыплются замечания, и в конце концов его попросит пройти дежурный контролер. Но электроны не имеют голосов. Встретив на своем пути чужие атомы, которые не желают проводить электроны, они вынуждены сворачивать с пути. И тут в роли контролеров выступают химики. Очищая вещество, они освобождают его от атомов-чужаков и тем самым облегчают передвижение электронов. Вот почему сверхчистые металлы проводят электрический ток во много раз лучше, чем их «грязные» собратья.

Итак, худо ли, хорошо ли, но влияние ничтожных примесей на физические свойства металлов еще можно объяснить. Ну, а как в отношении химических свойств?

Когда мы кладем обычный — чистый 99,9–99,99 % — цинк в кислоту, то сейчас же начинается выделение водорода. Попробуем разобраться, как происходит растворение цинка в кислотах.

Увеличим мысленно поверхность растворяющегося цинка в миллиарды раз, так чтобы стали видны отдельные атомы, составляющие решетку цинка. Среди атомов цинка вы заметите сравнительно часто попадающиеся атомы примесей. Около них кристаллическая решетка деформирована, вздыблена. И тут же вы обратите внимание на то, что молекулы кислоты отрывают атомы цинка именно в тех местах, где произошло нарушение однородности кристаллической решетки из-за соседства с атомами примесей. Таким образом, присутствие примесей создает особенно благоприятные условия для протекания реакции.

А если вещество очень чистое и состав его можно считать однородным? Что происходит тогда?

Тут уместно привести одно сравнение. Впрочем, пользуясь сравнениями, надо всегда помнить хорошую немецкую поговорку: «Всякое сравнение хромает».

Знает ли читатель притчу о Буридановом осле? Выдумал этого осла французский схоласт Иоанн Буридан. Он утверждал, что если голодного осла поставить между двумя совершенно одинаковыми связками сена и на равном расстоянии от них, то осел в конце концов умрет с голоду, не зная, какую из связок ему предпочесть.



Я бы не вспоминал об этом малоудачном примере средневекового схоласта, если бы явление, происходящее при погружении сверхчистого цинка в кислоту, несколько не напоминало Буриданова осла. Имея перед собой совершенно однородную (в химическом смысле) поверхность, молекулы кислоты «не знают», с какого места начать разрушать кристаллическую решетку цинка. Так же альпинист, который намерен взобраться на совершенно отвесную скалу, должен сначала найти в ней какую-нибудь трещину или выступ, за которые бы он мог зацепиться. И вот такой-то трещины на поверхности сверхчистых веществ нет. Именно поэтому сверхчистые вещества являются очень инертными в химическом отношении.

По-видимому, идеально чистые вещества вообще не могут вступать во взаимодействие друг с другом. Хорошо известен следующий пример. Хлор и водород активно взаимодействуют друг с другом. Если смешать эти два газа при свете, то тотчас же происходит сильный взрыв. В темноте реакция идет несколько медленнее. Но если оба газа тщательно высушить (многократным пропусканием через фосфорный ангидрид), то после смешения никакой реакции не произойдет даже на ярком солнечном свету!

Вот уравнение реакции взаимодействия водорода и хлора:

H2 + Cl2 = 2HCl.

Скажите, пожалуйста: при чем здесь вода? Ее не видно ни справа, ни слева. Но тем не менее без воды реакция не идет. По всей видимости, и здесь играет значительную роль нарушение химической неоднородности.


Мир бесконечно малых

Не случайно так подробно было рассказано здесь о свойствах сверхчистых веществ. Эта проблема с каждым днем все настойчивее и настойчивее выходит на передний край науки и техники.

Более того, ничтожно малые примеси играют громадную роль не только в химии, но и во многих других науках.

И именно сейчас будет уместно вернуться к тем историям, которые я, на первый взгляд, вне всякой связи с последующим повествованием, рассказал в начале этого очерка. Это истории о монахе-целителе Ионе и киевском журналисте Николае Карлышеве.

Начать с того, что целебная вода была изобретением вовсе не монаха Ионы, который, кстати, на проверку оказался продувным мошенником. Под видом «святой воды» еще в древности монастыри продавали воду, настоенную на серебряных монетах или каких-нибудь других предметах, изготовленных из серебра.

При настаивании в воду переходит совершенно ничтожное количество серебра — одна миллиардная доля грамма на один литр воды. А это мало, очень мало! Миллиард литров такого раствора надо было бы взять, чтобы выделить один грамм серебра. Миллиард литров, миллион тонн воды!

Однако такого ничтожного количества серебра вполне достаточно, чтобы оказать губительное действие на многие бактерии. Это свойство серебра, кстати, несознательно использовалось людьми еще давно. Вот почему серебряная посуда так ценилась в древности: пища, приготовленная в ней, выгодно отличается от какой-либо другой. И вот почему монах Иона, изготовляя лекарство, хорошо известное сейчас фармацевтам под именем «серебряной воды», менее всего прибегал к поддержке «слова святого» и если уж уповал на что-нибудь, так это только на содержимое карманов своих легковерных пациентов.



Вот мы оперируем сейчас величинами: одна миллиардная, одна десятимиллиардная. Зная по собственному опыту, с каким трудом дается физическое, «вещественное» представление о таких ничтожных величинах, я еще раз позволю себе прибегнуть к сравнению. Итак, что такое миллиардная доля грамма?

Предположим, нам удалось один кусочек сахара-рафинада, который весит 10 граммов, распределить поровну между всеми жителями нашей планеты. Сколько тогда бы пришлось на долю каждого из нас? Некоторые из читателей, пожав плечами, заметят, что, возможно, пришлось бы по три-четыре молекулы на человека, а вернее всего, и того меньше. Впрочем, так, по всей видимости, скажут немногие. Потому что всем известно число людей на земном шаре: около трех миллиардов. Если поделить вес кусочка сахара на это число, то получается 4·10-9 — четыре миллиардных доли грамма. Это в четыре раза больше того количества серебра, которое содержится в литре серебряной воды.

Но тем не менее химики нашли способ обнаруживать и такие ничтожные количества серебра. На одном из совещаний демонстрировали такой опыт. Взяли стакан воды и несколько минут перемешивали воду серебряной ложечкой. Затем в эту воду капнули несколько капель специального органического реактива. Вода сразу стала заметно красной. Этот же реактив, прибавленный к воде, которая не соприкасалась с серебряными предметами, никакой окраски не вызывал.

В области сверхмалых количеств веществ еще более удивительные примеры доставляет нам биология.

Сейчас доказано, что в росте клеток растений деятельное участие принимает вещество ауксин. Если с помощью шприца ввести ауксин в стебель растения, то в этом месте начинается настолько интенсивный рост клеток, что стебель даже искривляется.

За единицу ауксина принимают такое его количество, которое дает отклонение стебля овса на десять градусов. В граммах эта единица составляет 2·10-11, или две стомиллиардных доли грамма. Это уже предельно малая величина…

Впрочем, нет необходимости обращаться к ауксину. Примеры регистрации ничтожных количеств веществ дает нам наше собственное обоняние.

Многие, очевидно, слышали запах газа, который теперь проведен в квартиры десятков городов нашей страны. Это газ метан. Но любой химик скажет вам, что метан не обладает никаким запахом. Тот запах, который мы ощущаем, если открыть горелку газовой плиты, принадлежит другому газу — меркаптану. Меркаптан специально примешивают к метану, с тем чтобы люди могли замечать утечку газа. Так вот, человек может обнаружить наличие меркаптана в воздухе, даже если одна часть его приходится на пять миллиардов частей воздуха. Иными словами, если бы кто-нибудь, скажем, в Киеве случайно выпустил в воздух сто кубических метров меркаптана, то через несколько часов в Москве на всех улицах ходили бы недоумевающие люди: откуда, мол, утекает газ и почему бездействуют аварийные газовые команды?

Если же перевести эти числа в граммы, то выйдет, что человеческое обоняние может регистрировать 2·10-12 грамма. Это две тысячных доли одной миллиардной доли грамма. Гораздо чувствительнее любого реактива!

Эти примеры ясно показывают, что мир ничтожно малых количеств веществ играет громадную роль в определении свойств больших масс вещества. Мы привели много случаев того, как несколько атомов примеси на миллиарды атомов основного вещества совершенно изменяют его свойства. Лилипут побеждает Гулливера!

Наш разговор о сверхчистых веществах не был бы завершен, если бы мы не остановились подробнее на практической важности этой проблемы.


Большие дела малых примесей

А сейчас настал момент, когда снова придется вспомнить читателю об истории «негоцианта» Юджина О’Винстерна.

Собственно говоря, после всего изложенного читателю уже понятно, почему колонна в Дели в течение тысячелетий стоит в жарком и влажном климате и совершенно не подверглась коррозии. Анализы профессора Голла оказались совершенно верными: колонна в Дели состоит из абсолютно чистого железа, А такое железо, как мы помним, не подвергается коррозии.

Загадкой здесь является другое: каким образом смогли люди много сот лет назад получить такое большое количество сверхчистого железа, добыча грамма которого и сейчас в лабораториях считается делом великой трудности? Имеются все основания считать, что железо делийской колонны метеорного происхождения. По всей видимости, упал на Землю когда-то метеорит, который состоял из абсолютно чистого железа.

Впрочем, здесь нас должна интересовать совсем другая сторона этой проблемы.

Как известно, коррозия является страшным злом. Люди трудятся над добычей руды, выплавкой из нее металла, отливкой его в формы, изготовлением различных деталей. Но как только машина или станок готовы, к ним сразу начинает подбираться коварный и беспощадный враг — коррозия. Стоит только зазеваться — и железное изделие пропало!

Около 30 миллионов тонн железа ежегодно превращается в бурую ржавчину, и это несмотря на то, что с коррозией ведется непрерывная и небезуспешная борьба. Но все же потери пока слишком велики.

Оказывается, что одним из наиболее действенных методов борьбы с коррозией может являться изготовление предметов и деталей из сверхчистых металлов. Уже сейчас изготовляют сосуды из химически чистого железа, чтобы осуществлять там химические реакции, при которых выделяются чрезвычайно едкие вещества. Уже сейчас цинк используется для изготовления автомобильных деталей. Зная темпы развития народного хозяйства нашей страны, читатель может быть уверен, что не за горами то время, когда с явлением коррозии будут знакомиться только по книгам.

Еще одна очень важная область применения сверхчистых металлов: передача электроэнергии на большие расстояния. Как известно, самым важным обстоятельством из числа тех, которые заставляют пока отказываться от проектирования линий дальней электропередачи, является значительная потеря электроэнергии при прохождении по проводам. Причина этой потери — электросопротивление металлов, из которых изготовлены провода.

Удельное сопротивление серебра всего на шесть процентов ниже, чем у меди. И все же правительства ряда стран пошли на то, чтобы линии некоторых, наиболее ответственных электропередач делать из этого драгоценного металла.



Сверхчистые металлы обладают во много раз меньшим электросопротивлением, чем металлы «обычной» степени чистоты. Нередки случаи, когда прибавление одной девятки к числу, выражающему чистоту металла, понижает его электросопротивление в десятки раз. Чистые металлы станут мощным источником увеличения ресурсов электроэнергии.

Бесполезно пытаться предугадать все возможные области применения сверхчистых веществ. Например, совсем недавно было установлено, что лампы накаливания, нити которых сделаны из сверхчистого вольфрама, служат в десятки раз дольше обычных. Такие известия приходят каждый месяц, с каждой новой книгой, с каждым новым номером научного журнала.

…Такова история восхождения на одну из высочайших вершин современной химии — вершину сверхчистых веществ. Правда, в этом «районе» химии есть пока очень много неизведанных областей с еще более высокими и недоступными пока вершинами. Но уже сейчас готовятся штурмовые группы. Уже сейчас создаются теории — научное снаряжение химика. Уже сейчас исследуются подступы к решению всех тех вопросов, которые в таком изобилии встречались в этой главе.


Загрузка...