Это была маленькая модель с цилиндром из латуни, диаметром 2 дюйма, поставленным на куполообразную крышу круглого котла, диаметром в 9 дюймов. Она была точной копией тех нескольких десятков «огненных» машин, которые вот уже больше полувека в разных местах Англии неуклюже, медлительно, тяжеловесно, пыхтя и пожирая несметное количество угля, откачивали воду из шахт и рудников и поднимали воду в резервуары водопроводов немногих передовых городов Англии.
Модель машины Ньюкомэна, над которой работал Уатт.
По мере того, как с каждым днем все редеют и без того не очень обширные леса Англии, вырубаемые на дрова для маленьких, но довольно многочисленных и прожорливых доменных печей, кузнечных горнов, для котлов пивоваров, для печей хлебопеков и для многочисленных обывательских кухонных очагов и каминов, — все больше и больше выступает на первый план другой вид топлива, которым так богата Англия — каменный уголь. Уже в XVII веке огромный Лондон отапливался почти исключительно каменным углем, «морским» углем, как его тогда называли, ибо он привозился по морю. Много угля уже тогда вывозилось за границу, например, в Нидерланды.
По общему мнению современников, в XVII и XVIII веках угольная промышленность Англии по своему значению занимала второе место сейчас же за шерстяной промышленностью, которая уже тогда могла насчитать не один век своего первенства в английском ремесле.
Один из важнейших угольных районов был расположен на севере Англии — это район Ньюкэстля на Тайне. Кто владел Ньюкэстлем, тот мог заставить зябнуть английскую столицу, ибо именно из Ньюкэстля шел весь уголь в Лондон. Это понимали уже в середине XVII века, и когда в 1640 году начались волнения в Шотландии — прелюдия Великой английской революции, — то очень опасались, что шотландцы захватят Ньюкэстль, чтобы сделать лондонское правительство более уступчивым. Позже, в 1715 году, во время попытки реставрации Стюартов, их сторонники также рассчитывали захватом Ньюкэстля вынудить Лондон высказаться за эту династию.
«Тридцать тысяч человек, — писал про этот район Дефо в тридцатых годах XVIII века, — постоянно заняты под землей добычей угля, а на перевозке его работает около тысячи кораблей, или, может быть, немного меньше, и десять тысяч матросов, и грузчиков».
Угольная шахта считалась золотым дном для предпринимателя, но там же, под землей, углепромышленника, будь то дворянин, эксплоатирующий недра своего родового поместья, или купец — арендатор копей, или артель углекопов, подстерегал очень опасный враг, который каждую минуту грозил разорить предпринимателя и борьба с которым становилась все труднее и труднее по мере того, как шахты уходили все глубже и глубже, — врагом этим были подземные воды.
«Много хороших угольных копей, — читаем мы в одном из описаний XVII века, — теперь не имеют никакой цены или потому, что поблизости не имеется сланцевого камня для укрепления подземных ходов, или же вследствие больших количеств воды, которая обыкновенно находится в пустотах земли и выкачка которой чрезвычайно дорога, так что много людей нередко терпело крушение на этих предприятиях… Все технические усовершенствования для выкачки воды в конце-концов выкачивали только их карманы».
Откачка воды из шахт, особенно глубоких, была действительно очень трудной задачей. Конечно, можно было загнать людей, иногда даже не один десяток, в ступальное колесо, можно было устроить конный привод, но лучшей силой все же считалось водяное колесо. Беда только в том, что далеко не всюду имелась вода, чтобы вращать его, или ее было слишком мало.
«В большинстве копей на севере применяются цепные помпы, которые приводятся в движение или лошадьми, или ступальными колесами, или водяными колесами, и этот последний способ считается самым верным для откачки воды, но расход на эти колеса очень велик».
С водой приходилось бороться не одним углепромышленникам.
Аналогичную картину можно было наблюдать и на крайнем западе Англии, на богатейших оловянных и медных рудниках Корнуэлса. И там водяное колесо считалось самым мощным приспособлением для откачки воды, которое «выполняет в пять раз больше работы, чем конный привод, но и стоит гораздо дороже».
С горной промышленностью по своему значению соперничала металлургия: выплавка чугуна, передел его в железо, отливка чугунных изделий. Иные современники, греша некоторым преувеличением, именно ее ставили даже на второе место после шерстяной промышленности. Вода как источник энергии играет в металлургии очень большую роль, такую, что наличие ее при выборе места для постройки доменной печи или кузницы является таким же важным моментом, как наличие топлива.
Железозаводчик нередко являлся рабом водяного потока, который раздувал мехи его домен и горнов, двигал его молоты. Сила этого потока нередко определяла и размеры производства, и даже его расписание, план. В среднем считалось в году около сорока рабочих недель: в сухое время нередко воды нехватало и приходилось останавливать производство, а в засушливые годы эти простои были гораздо более длительны.
«Я знаю, — писал Яррантон в конце XVII века, — что вы, владельцы железных рудников, и вы, железные мастера, часто испытываете нужду в больших суммах денег для того, чтобы заплатить за дрова и выплатить жалование рабочим, а причина этого следующая: когда воды много в зимнее время и вы вырабатываете большое количество железа и складываете его у себя на складах, то вы не можете вывезти его для продажи вследствие непогоды и негодности дорог, а поэтому вы вынуждены входить в большие долги, и кредит ваш падает, ваше дело сокращается».
Любопытно, что даже Уатт, почти сто лет спустя, испытывал подобное же затруднение. «Я не знаю, — писал он своему компаньону Болтону 8 апреля 1786 года, — где мне получить листы, так как завод Парсона не имеет в настоящее время воды, и мы должны будем прождать долгое время, пока не получим их от него».
Да и сам Болтон, как мы увидим ниже, заинтересовался изобретением Уатта именно потому, что для его Бирмингамского завода нехватало водной энергии.
Регулярность производства, правильность обращения капитала нарушались в степени, невыносимой для капиталистического производства даже в его зачаточной форме. Борьба с водой, подземные потоки которой грозили залить английские (да и не только английские) рудники и шахты, замена воды, которая приводила бы в действие механизмы каким-нибудь новым источником энергии, являлась настоятельнейшей технической задачей для горного дела и металлургии. Только этот новый источник энергии мог бы устранить препятствия, лежащие на пути развития этих отраслей производства, которые одними из первых приняли капиталистические формы.
На способы откачки воды из шахт в течение XVII века была взята масса патентов.
В Англии первый патент на «подъем воды из шахт при помощи огня» был выдан в 1630 году некоему Давиду Рамзею, но о практическом осуществлении этого проекта ничего не известно.
Горное дело вызвало к жизни первую практически применимую паровую машину, но построена она была не горным механиком специалистом, а военным инженером, «траншейных дел мастером» Томасом Сэвэри.
Биографические сведения о нем очень скудны. Он родился около 1650 года в западной части Англии, в графстве Дэвон. Что он увлекался механикой и что в нем была довольно сильна изобретательская жилка, на это указывают его любовь к часовому мастерству и постройка им машины для полировки зеркал и лодки, приводимой в движение гребным колесом. Какие обстоятельства побудили его заняться способами применения пара к подъему воды — неизвестно; но вокруг его изобретения вскоре возникли всевозможные слухи. Сэвэри, наверное, хорошо знал о тех трудностях, с которыми приходилось сталкиваться горнякам в их борьбе с водой в шахтах и рудниках, потому что графство Дэвонское, откуда он происходил, граничит с запада с богатым оловом и медной рудой Корнуэлсом. Первые машины Сэвэри приходилось строить самому, почти без всякой посторонней помощи. Он встретил тут то же затруднение, с которым пришлось столкнуться впоследствии и Джемсу Уатту, — с крайним недостатком в искусных рабочих руках.
25 июля 1698 года он получил первый патент, сроком на четырнадцать лет, на новое изобретение «для подъема воды и для приведения в движение разного рода мельниц силою огня, которое послужит к великой пользе и выгоде для откачки шахт, снабжения городов водой и работы всяких мельниц там, где нет возможности воспользоваться водой или постоянными ветрами».
Срок патента был в следующем году продлен до 1733 года, «принимая во внимание большие расходы, понесенные Сэвэри при постройке машины». Надо сказать, что шахтовладельцы довольно скептически отнеслись к изобретению Сэвэри. Идея огневой машины была уже к тому времени скомпрометирована фантастическими «прожектами» всевозможных шарлатанов, и Сэвэри пришлось приложить некоторые усилия, чтобы разрекламировать свое изобретение. Он читал доклад о нем в Королевском обществе в 1699 году и выпустил описание машины, а затем через три года вышла эта книга «Друг горняка, или описание машины для подъема воды при помощи огня». Помимо подробного описания своего изобретения, Сэвэри в этой книге указывал и на различные применения машины. Машина могла накачивать воду в резервуар для приведения в движение водяное колесо. Она могла подавать воду в резервуар для домашнего водопровода, ее можно было установить на водокачках для снабжения водой города, при помощи ее можно было осушать болота, но главным ее назначением было применение в горном деле.
Принцип действия машины заключался в использовании и давления атмосферы, и давления пара. В этом отношении она представляла собой шаг вперед по сравнению с прибором Папэна. Другим важным этапом в развитии применения пара было то, что рабочий сосуд был отделен от котла. Таким образом достигалось непрерывное парообразование. Разрежение в сосуде, куда засасывалась вода, достигалось путем наружного охлаждения его струей воды. Сэвэри первый применил для выпуска пара из котла в рабочий сосуд вращающуюся на оси с внутренней стороны котла заслонку, закрывающую вход в паропровод. Заслонка передвигалась при помощи рычага от руки. Это приспособление надолго вошло в практику постройки атмосферных и паровых машин.
От Сэвэри можно вести начало понятия лошадиной силы как единицы измерения работы машины. Собственно, Сэвэри приложил к своей машине способ измерения, который уже до него был широко распространен в практике горного дела. При расчетах насосов и подъемных приспособлений горные механики считали, сколько лошадей понадобится для приведения в действие того или иного механизма. Впрочем, надо иметь в виду, что Сэвэри при этом рассчитывал — не сколько лошадей приводит в действие данный механизм, а сколько нужно иметь лошадей для непрерывного выполнения данной работы.
«Вода при ее падении с определенной высоты, — пишет он, — имеет силу, соответствующую и равную той, которая нужна для того, чтобы поднять ее. Таким образом, если машина поднимет столько воды, сколько могут это сделать на данном механизме две лошади, работающие одновременно, для чего нужно иметь все время десять или двенадцать лошадей для выполнения этой работы, то я говорю, что моя машина выполняет работу в десять или двенадцать лошадей».
Машина Сэвэри.
Два котла АА и В вмазаны в печь и соединены трубой С. Когда вода в котле АА доведена до кипения, то передвижением влево рукоятки регулятора D открывается доступ пара из котла в резервуар E. Пар вытесняет оттуда воздух в трубу L через клапан F, открывающийся наружу, и заполняет резервуар. Передвижением D в обратную сторону сообщение Е с котлом закрывается и открывается доступ пара из котла в G (воздух, вытесняемый при наполнении G паром, выходит в L через клапан Н). Струей воды из крана I производится охлаждение Е и конденсация содержащегося в ием пара, вследствие чего происходит засасывание в него по засасывающей трубе J воды, подлежащей выкачке. Клапан К, открывающийся внутрь, мешает обратному вытеканию ее. При вторичном пуске пара в E вода под давлением его вытесняется из £ через клапан F в трубу L и подымается по ней. Затем пар впускается в резервуар G и вода таким же образом вытесняется и из него в трубу L.
Машина Сэвэри не нашла себе широкого применения. Она была установлена на некоторых рудниках Корнуэлса и на двух-трех угольных шахтах. Кроме того, в Лондоне установили водокачку. Одним из недостатков машины была медленность работы: в небольшие рабочие сосуды ее можно было засосать лишь очень малое количество воды. Поэтому она была не пригодна, когда нужно было откачивать большие массы воды, как это имело место в рудниках и шахтах. Далее, она не могла подымать воду на очень большую высоту, так как для этого нужно было значительно увеличивать давление пара. Можно думать, что Сэвэри пользовался давлением около трех атмосфер, но крупнейшая его машина на лондонской водокачке работала под давлением 8—10 атмосфер. Повышение давления представляло собой большую опасность, вызывая взрывы котлов. Нужно принять во внимание чрезвычайно примитивную технику постройки машины и недоброкачественность материалов. Трубопроводы, рабочие сосуды и котлы делались из медных листов, спаянных оловом; некоторые трубы делались из свинца.
В шахтах и рудниках приходилось устанавливать по нескольку машин, а если шахты были глубоки, — в несколько ярусов. От этого, помимо опасности взрывов котлов, возникала и опасность воспламенения взрывчатых газов в шахтах. Наконец, очень крупным недостатком машины был чрезвычайно большой расход топлива, хотя Сэвэри и уверял, что откачка воды при помощи его машины обходится в три раза дешевле, нежели другими способами.
Машина получила некоторое распространение для подъема воды в отдельных домах — резиденциях английской знати, и для приведения в действие фонтанов в парках. Между прочим, для этой цели в 1718 году была отправлена такая машина московскому царю Петру I. Но в горном деле машина Сэвэри вскоре была вытеснена другой машиной, также изобретенной на западе Англии в рудных районах, огневой машиной Томаса Ньюкомэна.
Биографические сведения об этом замечательном самородке чрезвычайно скудны.
Ньюкомэн был земляком Сэвэри. Он родился в 1663 году в Дартмуте, в Дэвонском графстве. Умер он в 1729 году. Могила его не найдена. Поклонники Ньюкомэна утверждают, что Уатт добился славы, поднявшись на плечах Ньюкомэна. По некоторым данным Ньюкомэн занимался паровой машиной еще до Сэвэри, но не успел запатентовать своего изобретения: патент Сэвэри создал монополию на паровую машину и закрыл пути всем другим изобретателям. Неизвестны точно обстоятельства, когда и как этот деревенский кузнец вступил в переписку с секретарем Королевского общества, Робертом Гуком, и обсуждал с ним прибор Папэна. Это происходило до 1 702 года. Гук, между прочим, советовал ему не применять для своей машины принципа Папэна, указывая на невозможность точного изготовления поршня и цилиндра, чтобы добиться плотного прилегания поршня к цилиндру.
В 1712 году Ньюкомэн устанавливает свою первую машину — результат многолетней работы — на угольной шахте, недалеко от города Дэдлэй (недавно удалось довольно точно определить место установки машины).
Толчком к работе над машиной явились, как и у Сэвэри, наблюдения над затруднениями с откачкой воды в Корнуэлских рудниках.
Отдельные элементы машины Ньюкомэна не представляли собой ничего нового, но гениально остроумна была комбинация их. Ньюкомэн присоединил к одному из плеч коромысла насоса папэнов цилиндр.
На Корнуэлских рудниках он, наверное, видел, как водяное колесо было соединено при помощи кривошипа и шатуна с одним концом коромысла, к другому концу которого был присоединен шток поршня насоса, опущенного в шахту. Вместо водяного колеса Ньюкомэн поставил цилиндр Папэна. Принцип действия машины Ньюкомэна был тот же самый, что и у Папэна: действующей силой было атмосферное давление, которое вдавливало поршень, поднятый до верхнего края цилиндра, обратно в цилиндр, когда там получалось разрежение вследствие конденсации пара. Но было очень существенное различие между цилиндром Папэна и машиной Ньюкомэна. У Папэна цилиндр служил и котлом для парообразования, и рабочим цилиндром, и конденсатором. Ньюкомэн устроил отдельный котел, подобно как в машине Сэвэри, достигая этим так же, как и там, непрерывного парообразования. Цилиндр был расположен на крышке котла и соединен с ним трубкой с краном.
Первоначально охлаждение цилиндра для конденсации пара достигалось путем обливания цилиндра холодной водой, как в машине Сэвэри, но вскоре было сделано первое усовершенствование машины, а именно — впрыскивание струи холодной воды внутрь цилиндра. По недостоверным данным, это важное усовершенствование было открыто случайно. На поршень обыкновенно наливалась вода для того, чтобы воспрепятствовать воздуху проникнуть внутрь цилиндра через щели от неплотного прилегания к стенкам цилиндра. Случайно как-то немного воды попало внутрь цилиндра и произвело быстрое осаждение пара. Это обстоятельство будто бы и послужило толчком к применению вспрыскивания воды.
Во время рабочего цикла машины нужно было, таким образом, открыть паровпускной кран (предполается, что поршень находится внизу). Затем, после поднятия поршня до верхнего края цилиндра, под влиянием веса штока и поршня насоса, висящего на другом конце коромысла, и наполнения цилиндра паром, нужно было закрыть сообщение с котлом и открыть кран для впрыскивания воды, закрыть его во время опускания поршня, затем, когда поршень дошел до дна, выпустить образовавшуюся воду и начать снова повторение этих операций.
Первоначально все они производились от руки, но, некоторое время спустя Ньюкомэн придумал механизм, автоматически открывающий и закрывающий в нужный момент соответствующие краны. Суть механизма заключалась в том, что к коромыслу со стороны цилиндра был подвешен длинный брус с выступами, который при движении коромысла вверх и вниз задевал ими за систему рычажков с противовесами, соединенных с соответствующими кранами. Повидимому, все эти усовершенствования были внесены самим Ньюкомэном, как это видно из ряда современных ему изображений машины.
Одним из крупнейших достоинств этой атмосферной машины Ньюкомэна являлось то, что она была вполне по силам технике той эпохи, хотя постройка ее все же представляла собой большие трудности. Сначала цилиндры ньюкомэновской машины делались из меди, трубы — из свинца, коромысло было деревянным (оно представляло собой огромное бревно, а впоследствии даже несколько бревен, соединенных болтами). Мелкие части делались из ковкого железа. Более поздние машины Ньюкомэна, примерно после 1718 года, имели уже чугунный цилинр. Они отливались обыкновенно на литейном заводе Абрагама Дэрби в Колбрукдэле, упорно работавшего тогда над применением кокса к выплавке чугуна. Дэрби ввел усовершенствования и в литейную технику, и только тогда и стало возможным получать цилиндры достаточно хорошего качества. Завод Дэрби в течение многих лет являлся единственным поставщиком цилиндров Ньюкомэна на всю Англию. Впоследствии их стали изготовлять на шотландском заводе Каррон и затем на двух заводах бр. Вилькинсон. Фирмы эти в 1762 году даже заключили соглашение о поставках цилиндров по одинаковым ценам.
Машина Ньюкомэна.
R — котел; d — паровпускная заслонка; DD — цилиндр (в разрезе; изображен момент впрыскивания воды); h — цепь, на которой подвешен поршень; а, Ь — балансир, или коромысло; S — шток поршня насоса.
Очень трудной задачей являлось получение более или менее правильной и гладкой поверхности с внутренней стороны цилиндра.
Уже в 1734 году для этого на заводе Дэрби был установлен специальный станок, представляющий собой несколько измененный станок для высверливания дула орудий.
Этот станок является первой рабочей машиной в машиностроительной технике, в производстве машин. Его усовершенствования сыграли очень большую, можно сказать, решающую роль и в истории паровой машины, но они были внесены значительно позже: в 1769 году инженером Смитоном на Карроновском заводе и в 1774 году Вилькинсоном, ставшим вскоре после этого постоянным и единственным поставщиком цилиндров для машины Уатта.
Ньюкомэновская машина хорошо удовлетворяла потребность в двигателе для насоса, ни для какой другой работы она не употреблялась и носила название «огненный насос», или «огненная машина». Однако, на первых порах ее распространение шло очень медленно. В общем, насчитывают, что Ньюкомэн соорудил сам около шести-семи машин. Постройка ее была делом очень трудным и дорогим. Машина особенно привилась на угольных шахтах, там, где было дешево топливо.
Около 1775 года во всей Англии насчитывалось сто тридцать действующих машин. Из них шестьдесят приходилось на район Ньюкэстль; много было установлено и на Корнуэлских рудниках, несколько машин работало на городских водокачках. Одним из оригинальных применений машины было применение ее на заводе Дэрби, где она накачивала отработавшую на водяном колесе воду снова в верхний резервуар.
Значение ее для горной промышленности было очень велико: она открыла доступ к глубоким пластам руды и угля. Вместе с тем она произвела и большие экономические сдвиги в горном деле, способствовала развитию в нем капиталистических предприятий. Установка машины и эксплоатация глубоких рудников и шахт требовала больших капиталов и была совершенно недоступна для местных артелей рабочих горняков.
Машина Ньюкомэна (верх котла и цилиндр).
XY — брус, подвешенный к коромыслу и приводящий в движение систему рычагов к клапанам и кранам; А и В — рычаги, передвигающие заслонку, закрывающую паровпускное отверстие с внутренней стороны котла; L— паровпускная труба в цилиндр.
Маленькая модель атмосферной машины Ньюкомэна, починить которую Андерсон поручил Уатту, была сделана точь-в-точь как большая настоящая машина и должна была работать, «как большая». Неизвестно, кто сделал ее, но в глазгоуском университете она стояла уже несколько лет. Она была неисправна и работала плохо; ее возили в Лондон к знаменитому оптику и механику Сиссону, но напрасно университет заплатил Сиссону 2 фунта стерлингов: после того, как ее взяли от него в 1760 году, она продолжала «выполнять свою работу» так же неисправно, как и раньше. После этого она простояла на одной из полок кабинета естественных наук еще года три без всякого употребления, пока профессор Андерсон не предложил Уатту посмотреть, нельзя ли все же что-нибудь сделать с этим любопытным, но капризным прибором.
Это было, по собственному свидетельству Уатта, зимой 1763–1764 года. Едва ли до этого Уатт интересовался судьбой этой маленькой модели, едва ли вернули ее из Лондона от Сиссона именно по его просьбе Для того, чтобы дать ему возможность изучить на ней Действие ньюкомэновских машин. Иначе ведь он уж гораздо раньше принялся бы за ее ремонт и гораздо раньше открыл бы ее недостатки. Повидимому, модель ньюкомэновской машины интересовала механика глазгоуского университета не больше, чем другой прибор кабинета естественных наук, и за ее починку он взялся, как за очередную работу, не задаваясь какими-нибудь исследовательскими целями.
Но это не значит, что Уатт до этого времени совершенно не интересовался способами практического применения пара, только не ньюкомэновская машина была предметом его внимания, и, вероятно, мысль об усовершенствовании ее совсем не приходила ему в голову. Любопытно, что даже не от него cамого исходила инициатива заняться изучением действия пара. Впервые к этому, еще в 1759 году, побудил его приятель Робисон, который носился тогда с мыслью «о применении силы паровой машины для приведения в движение повозок, а также и для других целей».
Друзей занимало изобретение чего-нибудь совершенно нового, а не усовершенствование старого. Изобретательство это продолжалось недолго, так как в том же году Робисон уехал воевать в Северную Америку, а Уатт и без этого был завален делами. Но мысль не заглохла, и Уатт возвратился к ней года два спустя.
«Около 1761–1762 гг., — пишет он, — я проделал несколько опытов над силой пара в папэновом котле и сделал нечто вроде паровой машины, укрепив на нем спринцовку, диаметром около 1/8 дюйма, с прочным поршнем, снабженную краном для впуска пара из котла, а также для выпуска его из спринцовки на воздух». Когда открывался кран из котла в цилиндр, то пар, поступая в цилиндр и действуя на поршень, поднимал значительный груз (15 фунтов), которым был нагружен поршень. Когда груз был поднят до нужной высоты, то сообщение с котлом закрывалось и открывался кран для выпуска пара в атмосферу. Пар выходил, и груз опускался. Эта операция повторялась несколько раз, и хотя в данном приборе кран поворачивался от руки, однако, не трудно было придумать приспособление, чтобы поворачивать его автоматически. Машину такой системы, вероятно, и представлял себе Робисон для движения повозки. Характерно, что Уатт уже значительно позже, в патенте 1784 года, описал ее применение именно для этой цели.
Оригинальна ли эта идея? Дело в том, что в трактате Лейпольда «Обозрение гидравлических машин», вышедшем еще в 1724 году, имеется чертеж паровой машины, действующей при помощи давления пара на поршень. Что Уатт изучал Лейпольда, это мы узнаем из показания Робисона, по словам которого желание ознакомиться с этим трактатом побудило Уатта изучить немецкий язык, но сам Уатт нигде о Лейпольде почему-то не говорит и, может быть, умышленно. Вопрос заключается в том, когда попался Лейпольд в руки Уатта — в 1761 году или позже. Знал ли Уатт уже тогда немецкий язык или нет — в сущности, не важно, ведь несложный чертеж можно было понять с первого взгляда, даже и не зная немецкого языка.
Любопытно, почему Уатт перестал тогда работать над своей маленькой моделью, представляющей, в сущности, зародыш машины высокого давления: низкий уровень техники исключал возможность ее осуществления.
«Я скоро оставил мысль построить машину по этому принципу, — говорит Уатт, — так как понимал, что против нее будут сделаны одни из тех возражений, которые делались против машины Сэвэри, а именно: опасность от взрыва котла, трудность плотно сделать соединение и, наконец, укажут на то, что большая часть силы пара будет теряться, ибо не будет образовываться вакуума, содействующего опусканию поршня».
Из данных, приводимых Уаттом, видно, что давление пара в цилиндре достигало почти трех атмосфер.
Ни одной строчки из современных записей о первых шагах Уатта по тому пути, который привел его к усовершенствованию паровой машины, о той предварительной работе, которую он проделал до момента своего изобретения отдельного конденсатора, не сохранилось. И самому Уатту, и его друзьям вспоминать и рассказывать об этом пришлось лет через тридцать после описываемых событий и в обстановке, требующей далеко не беспристрастного, но умелого подбора фактов и суждений и тщательного взвешивания каждой фразы. Одним словом, старину вспоминали на заседании суда «Общих Тяжб» в Лондоне, 16 декабря 1796 года, по иску Уатта и Болтона против Горнблоуэра и Маберлея, по обвинению последних в плагиате. Рассказ Уатта — это объяснение истца, а рассказ Робисона и Блэка — это свидетельские показания в судебном процессе, сделанные в пользу Уатта. Можно ли им придавать так много веры? И сам истец, и его свидетели далеко не всегда точны в своих показаниях и иногда противоречат друг другу.
Рода два спустя после процесса друзья рассказали историю изобретения еще раз и притом обмолвились замечаниями, которые очень понравились Уатту.
Блэк в своем курсе химии приписал себе неподобающе большую роль в изобретении: по его словам, выходило, что Уатт сделал свое изобретение отдельного конденсатора только благодаря знакомству с его теорией скрытой теплоты, а Робисон, редактировавший этот курс, изданный им по смерти своего Друга Блэка, подтвердил это в своем введении к этому курсу и, кроме того, в своей статье о паровых машинах в Британской энциклопедии, и в своем курсе «Механической философии» он повторил те же «ошибки».
На оригинальность мыслей изобретателя была на брошена легкая тень. Уатт возражал против этого и рассказал еще раз историю своего изобретения. Обычно этот рассказ и кладется биографами Уатта в основу их изложения, но по самой своей цели этот рассказ не может не вызвать сомнений в его беспристрастии. История изобретения изложена Уаттом в большом примечании к курсу «Механической философии» Робисона. Уатт редактировал этот курс своего покойного друга и внес в него некоторые примечания, дополнения и поправки. Главная цель изложения Уатта — показать полную свою независимость от Блэка и то малое значение, которое имело для него, Уатта открытие этого замечательного физика, на чем, собственно, и настаивали и Блэк, и Робисон.
В письме к издателю курса Робисона, Брюстеру Уатт старается показать, что не следует особенно доверять Робисону. Надо вспомнить, что Робисона не было в то время в Глазгоу, когда он там работал над паровой машиной: Робисон в это время был занят военными подвигами у берегов Северной Америки. А затем, когда Робисон писал свою статью о паровой машине, то, по мнению Уатта, «он не имел правильных сведений и слишком доверился силе своей необыкновенной памяти уже в то время, когда она, вероятно, была ослаблена тяжелым, длительным болезненным состоянием и теми средствами, к которым он вынужден был прибегать для облегчения боли, а поэтому он впал в ошибки относительно фактов, а также и некоторые выводы оказались неправильными».
Очень жаль, что не дошли до нас, или до сих пор не открыты, современные деловые записи Уатта об его первых исследованиях, связанных с паровой машиной. Любопытно было бы проследить именно первые шаги его творческого пути; повидимому, какие-то записи были, по крайней мере Уатт ссылается на них в упомянутом письме к издателю Брюстеру, указывая на то, что на основании их сделал поправки к изложению Робисона.
По очень неясным рассказам Уатта, по нередко расходящемуся с ними изложению Робисона и Блэка почти невозможно во всех деталях восстановить действительный, исторический, так сказать, ход его работ и, описывая ту или иную стадию их, невозможно избегнуть ошибки, приписывая ему сведения, наблюдения и выводы, которые были сделаны лишь позже.
В письме Уатта к Брюстеру бросается в глаза, как много он знал, когда работал над ньюкомэновской машиной. Всех перечисленных там сведений и наблюдений было бы вполне достаточно, чтобы сделать то изобретение, которое он сделал, но дело в том, что эти сведения и выводы он приобрел, вероятно, в самом ходе работы, в борьбе с неудачами, в поисках их причин, в стремлении найти им объяснение. В конце-концов он и нашел эти объяснения и сделал из них практические выводы. Фактов было накоплено уже достаточно, а то, чего еще нехватало, было доделано им самим. Но биографа интересует другой вопрос: как эти сведения приходили к Уатту, в какой последовательности, какие из них и как им были применены, сразу ли, или мимо многого он проходил, первоначально не замечая. Сам Уатт своими воспоминаниями может оказать лишь незначительную помощь биографу, которому поневоле придется итти ощупью…
Уатт принялся за работу по ремонту машины Ньюкомэна со своей обычной тщательностью и аккуратностью, отделывая и проверяя каждую деталь и ее механическое действие. Через его руки прошло уже столько точных геодезических инструментов, что, казалось, не хитрое дело было исправить эту не такую уже с механической точки зрения сложную, но почему-то плохо работающую модель.
«Я принялся за ремонт машины просто как механик», — писал впоследствии Уатт. То же самое говорит и Робисон: «Эта модель была для него и для меня первоначально просто интересной игрушкой». А между тем «эта игрушка» готовила Уатту ряд самых неприятных сюрпризов. Маленькая капризная модель, когда он принялся за нее, стала загонять его из одного тупика в другой, как бы издеваясь над всем его искусством, наблюдательностью, аккуратностью.
Вероятно, приступая к работе, Уатт имел очень смутное представление о действительной работе ньюкомэновской машины. Прямо поразительно, как мало Уатт на первых порах интересовался работой этих машин на практике. Вообще говоря, в Шотландии в то время еще мало было развито горнозаводское дело и почти не было огневых машин, и, вероятно, Уатт вообще еще ни одной такой машины не видел. По крайней мере ни сам он, ни кто-либо из его друзей не указывают на это.
Но в данном случае это имело, пожалуй, и свою хорошую сторону. Гораздо резче выступили перед ним многие явления, на практике прикрытые и предупрежденные сложившейся в течение многих лет рутиной ухода за машиной. Вероятно, он, мастер точной механики, не имеющий ни малейшего представления об этом уходе за огненной машиной, со своей моделью наделал множество таких «глупостей», каких, наверное, не сделал бы с большой, порученной ему машиной ни один мало-мальски знающий машинист.
Но Уатту пришлось также столкнуться и с теми трудностями, с которыми сталкивались люди, работающие при машине; изъяны ее работы они считали, вероятно, вполне нормальным явлением или же имели, должно быть, во избежание и предупреждение их, целую систему приемов и навыков, может быть, составлявших профессиональную тайну опытного машиниста. Уатта же все ставило в тупик, а вместе с тем заставляло самостоятельно искать выход. Попади Уатт на шахту, да еще к опытному машинисту, ему, возможно, самому пришлось бы изыскивать те вопросы, которые тут плохо работающая модель сама как бы ставила ему.
В начале длинного пути долгой исследовательской работы, приведшей к изобретению, стояла неудача. Большой еще вопрос — стал бы Уатт заниматься изучением ньюкомэновской машины, а затем действием пара, если бы не встретил в самом начале затруднение при починке модели.
И Робисон, и Уатт в одних и тех же словах рассказали о постигшей их неудаче (в дальнейшем их рассказ несколько разнится друг от друга).
Весь механизм модели был тщательно проверен, но когда ее пустили в ход, то она продолжала работать так же плохо, как и раньше.
Котел не давал нужного количества пара, его хватало лишь на несколько ходов поршня. В топке усилили огонь, от этого дело пошло не лучше (а по словам Робисона, машина даже совсем остановилась).
Может быть, нужно усилить струю воды для лучшей конденсации пара? Подняли выше резервуар охлаждающей водой. По Робисону — это тоже не дало никакого результата. По словам Уатта, машина все же стала работать, но лишь при очень слабой нагрузке и потребляя огромное количество охлаждающей воды. Это Уатту сразу бросилось в глаза. Попробовали еще уменьшить нагрузку, уменьшили впрыскивание воды в цилиндр: пара стало хватать, но зато машина работала почти впустую.
В чем же было дело?
И Уатт, и помогавший ему, буквально по пятам шедший за ним Робисон находились в полном недоумении.
Друзья бросились к книгам. Стали просматривать трактаты, в которых можно было найти описание огненной машины. Просмотрели «Гидравлическую архитектуру» Белидора, надеясь найти в ней различные способы откачки и подъема воды, в том числе и при помощи огненной машины, так как эти машины только для этого и применялись. Просмотрели они курс «Экспериментальной физики» Дезагилье.
Но что они могли там найти? Занимался ли кто-нибудь до Уатта теоретически паровой машиной, исследовал ли с чисто научной точки зрения ее работу.
Робисон впоследствии в своем курсе «Механической философии» писал: «За шестьдесят лет своего существования ньюкомэновская машина — это любопытнейшее произведение человеческой изобретательности, которое когда-либо предлагалось наблюдению ученого, — находила с его стороны полное пренебрежение и была предоставлена заботам необразованного мастера».
Это не совсем верно. Техника, правда, в большой мере строилась руками мастеров-практиков, иногда на основании смутных догадок, часто вслепую; те или иные усовершенствования являлись плодом изобретательности, остроумия, наблюдательности, иногда большого опыта и искусства мастера. Но на ньюкомэновскую машину обращали внимание не одни только «необразованные мастера». Исследования ее работы все же не шли дальше чисто внешних наблюдений без попыток объяснения происходящих при этом явлений и точного их измерения и учета. Интересовались главным образом результатами ее работы и учитывали эти результаты, но не интересовались физическими явлениями, при этом происходящими.
Уатт нашел у Дезагилье подробнейшее описание механизма и действия ньюкомэновской машины. Он нашел детальные таблицы мощности ее. Все это было крайне важно для какого-нибудь шахтовладельца, намеревающегося поставить у себя на угольных копях огневую машину, или для строителя ее, но все это мало интересовало Уатта. Ему нужны были другие Данные.
Однако, у Дезагилье он мог прочитать несколько замечаний, которые могли и для него оказаться очень Ценными и могли даже направить его мысль на верный путь, — это замечание Дезагилье о тепловых явлениях в машине и прежде всего об условиях образования и конденсации пара. Замечания эти были, как мы увидим, не всегда правильны, но важна была уже самая постановка проблемы: попытка учесть парообразование и потребление пара во время работы машины Дезагилье приводит выдержки из описания опытов английского механика Бэйтона.
«Я нашел, — говорит Бейтон, — что около пяти пинт воды в минуту давали в котле столько пара, сколько расходуется на 16 ходов поршня в минуту. Цилиндр машины в Гриффе содержал 113 галлонов пара при каждом ходе поршня, что составляет на 16 ходов в минуту 1808 пивных галлонов. Таким образом, пять пинт воды производили 1808 галлонов пара. Считая в каждой пинте по 38,2 куб. дюйма, мы имеем 38,2 дюйма—1808 = 1 куб. дюйм:47,3 галлона. Откуда следует, что 1 куб. дюйм воды, находящейся в кипении, так что давление пара способно преодолеть около 1/15 атмосферы, должен дать 13338 куб. дюймов пара.
Я также нашел, что при каждом ходе поршня из выпускного крана цилиндра, диаметром 32 дюйма, выходил 1 галлон воды. Удивительно, что пар, образовавшийся всего только из 3 куб. дюймов воды, может нагреть целый галлон холодной воды так, что она выходит почти кипящей, а также, что цилиндр остается еще горячим во всей своей верхней части, когда уже поршень опустился книзу».
Конечно, здесь была сделана грубейшая арифметическая ошибка: Дезагилье в основу своих расчетов взял одну пинту, а не пять. Исходя из его же данных нужно, конечно, считать, что 1 куб. дюйм воды дает 2668 куб. дюймов, а не 13338 куб. дюймов пара[3].
Он ошибся и во втором расчете: и тут не 3 куб. дюйма, а около 12 куб. дюймов воды, превращенной в пар, нагревали конденсационную воду почти до кипения[4].
Но арифметические ошибки Дезагилье было нетрудно исправить, что и было немедленно сделано Уаттом. Гораздо важнее было то, что его расчеты оказались в резком несоответствии с тем, что получалось у Уатта. Это и натолкнуло Уатта на целый ряд исследований.
Перелистывая внимательно Дезагилье, Уатт мог еще в одном месте его трактата прочитать о высокой температуре конденсационной воды, выходящей из цилиндра. Этот факт был, повидимому, хорошо известен каждому кочегару. Его уже использовали на практике, беря эту воду для питания котла, но объяснение этого факта и теоретические выводы из него еще не были сделаны.
Вот что пишет Дезагилье: «Люди, которые интересовались машиной, заметили, что конденсационная вода, выходящая из выпускной трубки, была почти кипящей, тогда как вода, налитая поверх поршня, была только тепловатой, они поэтому сочли, что будет гораздо выгоднее питать котел конденсационной водой, и это, действительно, прибавило ходу машине на один или два удара в минуту».
Крайне любопытно было узнать у Дезагилье, что быстрота нагрева и охлаждения цилиндра влияет на работу машины. «Я не советую никому, — писал Дезагилье, — ставить цилиндры из чугуна, так как их нельзя отлить со стенками тоньше дюйма, а поэтому они не могут так быстро нагреваться и остывать, как другие, что может составить разницу в один или два хода в минуту. Был отлит цилиндр из меди со стенками толщиной в 1/3 дюйма. Это дало преимущество быстро его нагревать и остужать (что возместило разницу в первоначальных расходах, особенно если принять во внимание ценность самой меди)».
Интересные выводы можно сделать и из наблюдения Дезагилье над работой машины Сэвэри (это Уатт, впрочем, отметил и в своих показаниях). «Одним из недостатков этой машины является то обстоятельство, что происходит большая потеря пара вследствие непрерывного воздействия на резервуары. Пар становится полезен только после того, как он нагреет поверхность воды в резервуарах на известную глубину…
Поэтому пар для подъема воды на 90—100 футов должен быть сильнее воздуха не в три-четыре раза, но, может быть, в шесть раз. Пар, ударяясь о поверхность холодной воды, осаждается и вследствие этого становится бездеятельным до тех пор, пока поверхность воды на известную глубину не будет достаточно прогрета, чтобы его не осаждать, и только тогда, а не раньше, вода не будет препятствовать воздействию давления упругости пара на нее, чтобы ее поднять». Вот что мог прочитать Уатт у Дезагилье о тепловых явлениях, происходящих в машине Ньюкомэна, но это не давало объяснений наблюдаемых им явлений и тех затруднений, с которыми он встретился.
Другие книги, технические и отчасти физические трактаты, не дали ничего или почти ничего. Да они и не могли дать многого еще и потому, что, когда они писались, уровень научных знаний был недостаточен для объяснения целого ряда происходящих в машине явлений, объяснить которые можно было только в свете последующих открытий, сделанных незадолго до начала работы Уатта. Эти открытия оказались очень полезны Уатту, к тому же многие из них были сделаны в стенах глазгоуского университета.
Итак, трактаты по механике не разрешили недоумений молодого механика. Приходилось самому изыскивать ответ на ставший перед ним вопрос: в чем причина плохой работы машины? Этот ответ должна была дать сама машина в процессе своей работы, к которому нужно было присмотреться внимательнейшим образом и исследовать явления, с ним связанные.
Механик превращается в исследователя. В руках Уатта ньюкомэновская машина впервые становится предметом научного/ систематического исследования. Это одна из величайших заслуг Уатта и, во всяком случае, это первый и, может быть, важнейший шаг в его изобретательской работе, краеугольный камень воздвигнутого им здания. Вся сумма знаний была брошена на исследование данного конкретного случая, и именно не конечных результатов, а вызывающих их причин, выяснение самих процессов. В отношении общих законов Уатт ничего нового или почти ничего не открыл. Но он сумел применить и скомбинировать в нужной для данного случая форме то, что было открыто другими. Замечательное искусство экспериментатора позволило ему сделать это, получить при этом некоторые новые данные и заполнить кое-какие пробелы. Исследование привело к правильной и точной формулировке проблемы, практическое разрешение которой составило суть первого изобретения Уатта.
Проблема заключалась в следующем. Для наилучшей работы атмосферной машины Ньюкомэна необходимо было выполнять два условия: во-первых, для получения сильного разрежения под поршнем производить в цилиндре возможно более полную конденсацию пара, а для этого возможно сильнее охлаждать цилиндр; во-вторых, во избежание непроизводительных потерь пара впускать пар для последующего хода поршня из котла в неохлажденный, горячий цилиндр.
Эти два условия взаимно исключали друг друга.
Каким же способом достичь и конденсации пара и вместе с тем сохранить цилиндр в нагретом состоянии?
Производя конденсацию пара в отдельном от цилиндра, но сообщающемся с ним, резервуаре.
Отдельный от цилиндра конденсатор — вот в чем состояло изобретение Уатта, решившее проблему.
Путь Уатта к этому изобретению был путь исследования.
Может быть, были и другие пути. Может быть, какой-нибудь гениальный практик, исходя из чисто практических наблюдений и ставя чисто практические цели, перескочил бы через весь этот научно-исследовательский этап работы Уатта. Но в творческой работе Уатта исследование занимало большое место. Проследим же отдельные моменты этой работы.
Не вполне ясно, как мог Уатт притти к выводу, что расход пара в его модели значительно больше, нежели в настоящей большой машине. На это его, вероятно, натолкнул уже самый факт нехватки пара, хотя котел по своим размерам был вполне достаточен. Вероятно, также без каких-либо специальных исследований, можно было притти к выводу, в значительной мере правильному, что этот расход вызван более сильным охлаждением цилиндра в модели вследствие непропорционально большой поверхности маленького цилиндра по отношению к его объему. Это явление было недостатком модели. Другим ее недостатком было то обстоятельство, что «цилиндр модели, сделанный из латуни, проводил тепло гораздо лучше, нежели цилиндр больших машин, отлитый из чугуна (к тому же обычно изнутри покрытый накипью)». Эти наблюдения были сделаны, вероятно, на очень ранней стадии работы.
Характерно, что в начале своей работы Уатт как-будто вовсе не борется с этим непроизводительным расходом пара, он как бы мирится с ним и изыскивает средства, как бы его возместить. Надо придумать способ усилить образование пара. Робисон рассказал нам о попытках Уатта внести изменения в топку котла: «Он значительно улучшил котел, увеличив поверхность, охватываемую огнем. Он провел трубы через котел, он поместил топку в середине, окруженную со всех сторон водой».
Но, повидимому, и эти усовершенствования не дали хороших результатов. Задача оказывалась гораздо более сложной. Починка модели отступает на второй план, начинается работа исследователя.
Если в латунном цилиндре расходуется так много пара от быстрого охлаждения стенок, то нельзя ли сделать его из другого материала, «медленнее принимающего и отдающего тепло».
Уатт строит модель с деревянным цилиндром диаметром в 6 дюймов и ходом поршня в 12 дюймов, и производит с ней ряд опытов. «Но и в этом цилиндре тоже, оказывается, количество пара, конденсирующегося при наполнении его, все же пропорционально превосходило количество пара в больших машинах, если судить по данным Бэйтона».
Чтобы притти к этому выводу, Уатту, очевидно, пришлось до этого проделать ряд опытов и измерений. Вероятно, он начал с повторения исследования Бэйтона, т. е. измерил количество воды, выкипевшей из котла в течение определенного числа ходов поршня, или, может быть, просто точно вымерил объем воды, выпущенной за это время из цилиндра. Вероятно, несоответствие с цифрами Бэйтона, а также и арифметическая ошибка Бэйтона побудили Уатта проверить его цифры и по существу, т. е. постараться каким-либо иным способом, независимо от работы машины, определить объем пара, получаемый на единицу объема воды. Уатту действительно принадлежит заслуга этого первого, более или менее точного определения. Он подробно описывает опыт, при помощи которого ему пришлось разрешить эту задачу. Способ был довольно грубый, но результат, как это было проверено более поздними исследованиями, оказался достаточно точным: один куб. дюйм воды давал около 1800 куб. дюймов пара температуры 121° Фаренгейта (100°Ц) при атмосферном давлении.
Это определение является, пожалуй, одним из основных моментов в работе Уатта. Точный учет парообразования раскрыл гораздо отчетливее многие явления. Только теперь можно было точно учесть расход пара.
Что пар расходуется непроизводительно от несвоевременной и бесполезной конденсации — было очевидно. Но надо было выяснить причины и размеры эти) потерь и, по возможности, устранить их. И Бэйтон, и Дезагилье не могли не предполагать потерь пара от охлаждения внутри цилиндра ньюкомэновской машины. Но, вероятно, они считали их настолько незначительными, что даже, как мы видели, при расчете потребления пара совершенно ими пренебрегали.
Зная количество выкипевшей воды, нетрудно было определить объемное количество пара, израсходованного на один ход поршня. Цифра получилась совершенно ошеломляющая: объем израсходованного пара составлял трех или четырехкратный объем цилиндра, — и это в машине с деревянным цилиндром, где было устранено остывание его стенок от наружного воздуха. Это было совершенно непонятно!
Непонятны были также и другие явления, хорошо известные на практике: высокая температура конденсационной воды и затем тот факт, что если впрыскивать в цилиндр слишком много воды, то машина работает с гораздо большей силой, может быть, несколько медленнее, но зато топлива пожирает массу; если впускать воды поменьше, то падает мощность машины, зато получается экономия на топливе. Практикам хорошо было известно это внутреннее противоречие, и они нашли выход из него. Практика пошла по среднему пути. «Старые инженеры, — говорит Уатт, — поступали разумно, довольствуясь нагрузкой только в 6 или 7 фунтов на кв. дюйм площади поршня», т. е. не производя полного вакуума. Но едва ли кто-нибудь отдавал себе ясный отчет — почему вто так происходит.
Очевидно, при большом количестве воды, впрыскиваемом в цилиндр, получается лучшее разрежение. Но почему? Недаром Уатт был механиком глазгоуского университета. Как-раз учеными этого университета и были произведены исследования, давшие объяснение этому. Ведь профессор Кэллен произвел ряд опытов над температурой кипения воды при различных давлениях, и не кто иной, как Робисон был как-раз занят в это время аналогичными исследованиями над температурой кипения жидкостей в разреженном пространстве. Робисон исследовал кипение воды, спирта, смеси спирта с водой, смеси воды с серной кислотой. Об этих опытах рассказывал Блэк на своих лекциях. Работа Уатта непосредствено примыкала к этим исследованиям, а именно: он старался выяснить зависимость между температурой кипения и давлением как-раз в промежутке от вакуума до атмосферного давления. Уатт говорит, что он пришел к своим выводам в этой области чисто аналитическим путем: построив кривую точек кипения при давлении большем атмосферного; он продолжил ее и для давлений ниже атмосферного и пришел к выводу, что если температура изменяется в арифметической прогрессии, то давление изменяется в геометрической, Отсюда становилось ясным, почему для лучшей работы машины требуется впрыскивание большего количества холодной воды в цилиндр. Чем больше остужался цилиндр, тем большее разрежение там получалось, и температура охлаждения при этом играла значительную роль.
Чем ниже температура смеси воды, получившейся от конденсации пара и холодной воды, впрыснутой в цилиндр, тем ниже давление паров этой смеси, тем меньше, следовательно, сопротивление их атмосферному давлению на поршень.
«При более высокой температуре вода в цилиндре производила бы пар, который оказывал бы некоторое сопротивление давлению атмосферы», — писал Уатт.
Уатт не говорит, как он пришел к выводу, что и стенки цилиндра должны быть сильно охлаждены для хорошего вакуума. Но этот вывод напрашивался сам собой, ведь иначе же нельзя было достичь низкой температуры смеси.
Итак, впрыскивание большого количества холодной воды в цилиндр действительно являлось одним из необходимых условий хорошей работы машины. С этим фактом приходилось считаться. Теперь он был доказан научно. «Всякое приближение к вакууму могло быть достигнуто только впрыскиванием большого количества воды», — говорит Уатт.
Но что было связано с такой усиленной инжекцией? «Эта сравнительно холодная вода оставалась на дне цилиндра, она должна была вытесняться паром. Поэтому нельзя было помешать пару приходить в соприкосновение с ней», — читаем мы в примечаниях Уатта.
Не трудно было догадаться, что от этого пар будет конденсироваться. В цилиндре ньюкомэновской машины как-раз получилось то, что еще Дезагилье считал одним из недостатков в машинах Сэвэри. Но этого мало.
«Так как самый цилиндр, — пишет Уатт, — охлаждался впрыснутой водой, то он должен был осаждать большое количество пара каждый раз, как он снова наполнялся им. Охлаждение увеличивало этот недостаток в четырехкратной или даже большей степени, так как проникновение тепла или холода в цилиндр происходило, как квадрат разностей температур между стенками сосуда и паром».
Высокая температура выходящей из цилиндра воды поражала Уатта. Это явление, впрочем, удивляло, как мы видели, не только его одного. Многим бросался в глаза столь высокий нагрев таким ничтожным, в сущности, количеством воды, превращенным в пар Уатт не мог себе объяснить этого явления, хотя про делал опыт для проверки его, и действительно «оказалось, что вода, превращенная в пар, может нагреть до 212° Фаренгейта (100° Ц) или до того, что он перестанет сгущать пар, колодезную воду в количестве шестикратного ее веса».
Профессор Блэк разъяснил его недоумение, рассказав ему об открытом им законе скрытой теплоты. Вероятно, сам Блэк был очень доволен опытом Уатта явившимся новым и очень ярким подтверждение) его теории.
Наблюдения над высокой температурой воды, выпускаемой из цилиндра, и исследование причин этого в сущности, не дали Уатту ничего нового для усовершенствования машины. Они только с особенной отчетливостью показали, какая ценная вещь пар, какое огромное количество тепла содержится в нем, а следовательно, и как много топлива уходит на его образование, как тщательно поэтому нужно беречь и экономить каждую его частицу.
В свете этих исследований, каким всепожирающим Молохом должна была представиться ему машина Ньюкомэна!
Недостатки машины были обусловлены не каким либо посторонним и более или менее легкоустранимым обстоятельством, но они оказались органически связанными с машиной, входящими как необходимый и неотъемлемый элемент ее работы, даже больше, почти как основной принцип ее работы.
Что же надо сделать, чтобы устранить эти недостатки? В результате всех своих наблюдений, исследований, опытов Уатт пришел к выводу, что «для наилучшего использования пара» нужно выполнить два, взаимно исключающих условия: «во-первых, чтобы цилиндр все время поддерживался столь же горячим, как и поступающий в него пар; во-вторых, когда пар был осажден, то чтобы вода, из которой он состоял, и впрыснутая для охлаждения вода были охлаждены до температуры 100° Фаренгейта (37°Ц) или ниже».
Вот что надо было делать. Уатту было теперь ясно, почему нужно было соблюдать эти два условия. Но итог был все же печальный: работа, в сущности, завела его в тупик. Как поддерживать цилиндр горячим и в то же время охлаждать в нем воду?
Уатт бесплодно бился над этим вопросом несколько месяцев.
Решение неразрешимой на первый взгляд задачи пришло в голову Уатта неожиданно во время небольшой послеобеденной воскресной прогулки, которую он совершал по окраинам Глазгоу в апреле 1765 года. Никаких современных или близких по времени записей об этом событии ни от самого Уатта, ни от близких его друзей не дошло. Но тот ясный апрельский воскресный день на всю жизнь твердо остался в памяти изобретателя; уже в глубокой старости, пятьдесят два года спустя после события, он мог вспоминать о нем со всеми подробностями. Он рассказал свои воспоминания своему приятелю, некоему Роберту Гарту, глазгоускому купцу, интересовавшемуся и науками. И тот записал рассказ Уатта.
Решение задачи оказалось очень простым, столь простым, что покажется даже странным, как оно раньше не пришло в голову. Все было основано на самых элементарных и общеизвестных физических явлениях.
Вот что рассказал Уатт Гарту на его вопрос, помнит ли он, как у него возникла первая идея его великого изобретения:
— О да, отлично, — ответил Уатт. — Однажды в воскресенье после обеда я вышел немного погулять. Я прошел на глазгоуский луг через калитку в начале Чарлотстрит. Я прошел мимо старой прачечной и все время думал тогда о машине, но не успел я дойти до хижины, где находились пастухи, как мне в голову вдруг пришла мысль: так как пар есть упругое тело, то он будет расширяться и устремится в разреженное пространство, и это именно будет иметь место, если в отдельном сосуде произвести разрежение а затем сообщить с ним цилиндр машины. В этом сосуде пар можно будет сгущать, не охлаждая цилиндра. Затем мне пришло в голову, что мне нужно будет удалять воду от сгущения пара, а также и впущенную для охлаждения, если я применю впрыскивание воды, как в ньюкомэновской машине. Мне представилось два способа: или воду можно было бы спускать по трубе вниз, если бы этот спуск можно было сделать на глубину 35–36 футов, а воздух выкачивать небольшим насосом, или же сделать насос достаточно большим для выкачки и воды, и воздуха. Я не дошел и до беседки Гольфа, как все это было уже построено у меня в уме».
Поистине знаменательный воскресный апрельский день! Подобно прорвавшему плотину потоку, хлынули новые мысли и все новые и новые изменения в ньюкомэновской машине.
Они явились как необходимое следствие этого нового, только-что открытого принципа производить конденсацию пара не в рабочем цилиндре, а в oтдельном резервуаре.
«В ньюкомэновской машине, — говорит Уатт, — непроницаемость поршня достигается наливанием поверх него слоя воды. Теперь этот способ был неприменим, так как если бы часть воды проникла в разреженный, но горячий цилиндр, то она закипела бы и этим самым воспрепятствовала образованию вакуума, а также она охладила бы цилиндр вследствие своего испарения при опускании поршня. В качестве средства против этого я предполагал применить воск, сало или какой-нибудь другой жир для смазки и прочного прилегания поршня. Далее мне пришло в голову, что так как один конец цилиндра открыт, то воздух, входящий в него и действующий на поршень, будет охлаждать цилиндр и при вторичном наполнении цилиндра паром конденсировать часть его. Я поэтому решил закрыть цилиндр плотной крышкой с отверстием в ней и сальником, через который скользил бы шток поршня, и пускать пар над поршнем, чтобы действовать на него вместо атмосферного воздуха. Пропускание штока поршня через сальник было новым в паровой машине, так как оно было не нужно в ньюкомэновской машине, ибо нерабочий конец цилиндра был открыт, а шток поршня имел квадратное сечение и очень неуклюж. Оставался еще источник расхода пара, а именно: охлаждение стенок цилиндра наружным воздухом, что вызывало бы внутреннюю конденсацию всякий раз, как пар входил в цилиндр, и эта конденсация повторялась бы при каждом ходе поршня. Этого я думал избегнуть при помощи наружного цилиндра, содержащего пар и окруженного Другим из дерева или какого-нибудь другого материала, который медленно пропускает тепло».
Все это пришло в голову «в несколько часов» в тот же день или, может быть, на другой день. Эти новые мысли совершенно захватили Уатта, он страшно торопился проверить их. Первая модель, даже не модель, а просто прибор для проверки их был сделан наскоро, в один или два дня, из материалов, которые попались под руку. Цилиндром послужила позаимствованная у приятеля (может быть, у Блэка) большая медная спринцовка, около 2 дюймов диаметром и около фута в длину. «Оба конца ее были закрыты оловянными пластинками, приделана трубка для подвода пара из котла к ее обеим концам, а, кроме того, от верхнего конца пар по трубке отводился в конденсатор. (Для простоты конструкции у Уатта в приборе рабочим движением поршня было движение вверх — М. Л.). Шток поршня был просверлен вдоль, и в нижнем конце устроен кран для выпуска воды, образовавшейся при первом впуске пара. Конденсатор состоял из двух трубок из тонкой жести, длиной в 10 или 12 дюймов и диаметром около 1/6 дюйма. Они были вставлены перпендикулярно и сообщались внизу с короткой горизонтальной трубкой большего диаметра, имеющей на верхней стороне отверстие, закрывающееся клапаном, который открывался наверх Эти трубки сверху также соединялись с другой трубкой, диаметром примерно в дюйм, которая служила для воздушного и водяного насосов. И эти трубки, и насос были помещены в небольшой сосуд, наполненный холодной водой. Эта конструкция конденсатора была применена из того соображения, что теплота проникает очень быстро через тонкие металлические пластинки и, полагая, что так как в него не будет впрыскиваться вода, то придется выкачивать только ту воду, которая образовалась от конденсации пара, и воздух, вошедший вместе с паром или просочившийся сквозь щели. Паропровод был соединен с небольшим котлом. Когда образовался пар, то он был пущен в цилиндр и скоро начал выходить через отверстие в штоке поршня и через клапан конденсатора. Когда можно было думать, что весь воздух вытеснен, то паровой кран был закрыт и шток поршня воздушного насоса вытянут, что вызвало разрежение в маленьких трубках конденсатора. Пар поступил в него и сконденсировался. Тотчас же поршень цилиндра поднялся и поднял груз около 18 фунтов, который был подвешен к нижнему концу штока. Выпускной кран был закрыт, пар снова пущен в цилиндр, и вся операция снова повторена. Количество израсходованного пара и груз, который он мог поднять, были записаны».
Одна из первых моделей Уатта, хранящаяся в Кенсингстонском музее в Лондоне (фотография и схема).
А — цилиндр; В — поршень; С — шток с крюком для подвешивания груза; D — наружный цилиндр (кожух); Е и G — паровпускные отверстия; F — трубка, соединяющая цилиндр с конденсатором; К — конденсатор; Р — насос; R — резервуар; V — клапан для выхода воздуха, вытесняемого паром; К, Р, R — заполнены водой. Пар впускается через G в пространство между А и D и через Е в цилиндр А. При небольшом подъеме поршня в цилиндре насоса Р (поршень не изображен на рисунке) уровень воды в К понижается и пар из А переходит в К и тут осаждается. В А получается разрежение, и пар, находящийся между А и D, давит на поршень В и поднимает его вместе с подвешенным к нему грузом.
Все это, по словам Уатта, было сделано в один-два дня, и уже 29 апреля Уатт писал своему приятелю, доктору Джемсу Линду, в Эдинбург.
«Я определил следующие данные: количество получаемого пара, наибольшую мощность рычажной машины, количество пара, поглощаемое холодом ее цилиндра, количество пара, конденсирующегося в моей машине, и полагаю, что, если тут нет какой-нибудь ловушки, то моя машина должна подымать воду на 44 фута с тем же количеством пара, с каким их машина (т. е. обыкновенная машина Ньюкомэна. — М. Л.) поднимает на 32 фута, это я смогу вполне показать».
Вся эта работа была произведена действительно очень быстро, за время случайной двухнедельной отлучки Робисона. Когда весной 1765 года он уезжал на каникулы в деревню, Уатт еще бился над решением проблемы, а когда через две недели Робисон вернулся в город и зашел поговорить со своим приятелем Джеми о пришедших ему в голову соображениях насчет паровой машины, Уатт встретил его очень сурово; «Не путайся, парень, не в свое дело», — вот что услышал Робисон от своего друга, который вообще держал себя очень странно и, как это заметил Робисон, подтолкнул под стол какой-то жестяной предмет, как-будто желая его скрыть от любопытствующих взглядов непрошенного гостя.
Бедный Робисон! Он все время до сих пор помогал Уатту, разыскивая для него литературу, может быть, помогал ему и в подсчетах, а теперь он оказался за флагом: его даже не посвятили в тайну только-что сделанного открытия. О нем Робисон узнал из третьих рук, от одного общего знакомого, который рассказал о новой выдумке Джеми. Только из его слов Робисон понял, что Уатт придумал отдельный резервуар для осаждения пара, погруженный в холодную воду с насосом для откачки, что он никак не может добиться плотного прилегания поршня и что вместо атмосферного давления в его приборе действует пар.
Робисон увидел Уатта только в середине зимы, и тот подробно рассказал ему тогда о своем изобретении, правда, как сознается Робисон, не показав ему при этом ни одного прибора. Впрочем, это обстоятельство не помешало их дальнейшей дружбе.
Новая идея теперь всецело захватила Уатта. «Я не могу думать ни о чем другом», — писал он.
Но сейчас только начинался долгий и тяжелый путь практического осуществления идеи. Изобретателя ожидали трудности, перед которыми все предыдущие затруднения были сущими пустяками. Преодолеет ли их Уатт? Хватит ли у него сил для этого?
Он встретит людей талантливых и сильных, более сильных и более верящих в его звезду, чем он сам, а главное, ясно увидевших великое будущее его изобретения и жадно схватившихся за это будущее.