Всякое рассуждение опирается на исходные предположения. Их в свою очередь требуется обосновать, и цепочка обоснований не может быть бесконечной. На каком-то этапе приходится выбрать исходные положения, принимаемые без доказательств.
Идея опоры на недоказанные предположения впервые отчетливо сформулирована древними греками. Поэтому их до сих пор во всем мире называют греческим словом «аксиома» — ценная, достойная. А следствия, логически выводимые из них, зовутся опять же греческим словом «теорема» — сказанная богом.
Выбор системы аксиом непрост. Если какие-то теоремы, выведенные из них, явно противоречат опыту, то приходится решать: то ли аксиомы неверны, то ли опыт интерпретирован неточно. Правда, можно развивать аксиоматику без проверки опытом — в надежде на то, что в какой-то новой сфере знаний для нее найдется приложение: так обычно действует чистая математика. Но опыт зачастую указывает нетривиальные направления работы — так развивается прикладная математика — и поэтому желательно сверяться с ним почаще.
Вдобавок какие-то аксиомы взаимозаменяемы: если выбрать одну из них, то другую можно доказать на ее основе. И надо решать, какой набор аксиом удобнее для доказывания. Евклид, в чьих трудах идея аксиоматики впервые проведена достаточно строго, одну из своих аксиом — постулат о параллельных прямых — сформулировал подчеркнуто неуклюже: похоже, он подозревал, что ее на самом деле можно доказать, и такой формулировкой нацелил на нее позднейших исследований. Правда, дело оказалось еще интереснее: как выяснилось уже в XIX веке, это действительно аксиома, и отказ от нее порождает другие геометрии, причем в рамках евклидовой аксиоматики можно построить модели этих геометрий — а значит, все они равно надежны.
Вопрос о надежности аксиоматики возникает и вне связи с опытом. Если в ней можно одновременно вывести и какое-то утверждение, и его отрицание, то такая противоречивая система явно бесполезна: уже доказанное можно сразу же опровергнуть. Если в системе можно построить утверждение, в ее же рамках недоказуемое, но и неопровержимое, то такая — неполная — система лишь ограниченно пригодна: для выяснения судьбы такого утверждения придется вводить в систему новые аксиомы.
Естественно, в числе целей математиков долгое время была проверка непротиворечивости системы аксиом, которой они пользовались. Желательна и полнота системы: не хочется каждый раз натыкаться, подобно Евклиду, на утверждения, с которыми заведомо невозможно справиться.
Доказательство непротиворечивости и полноты математической аксиоматики искали долго, упорно и весьма изобретательно. Но в 1931-м немецкий математик Курт Гёдель доказал две теоремы, радикально отличные от всех предшествовавших представлений об основаниях математики как логической структуры.
По первой теореме, любая теория, достаточно обширная, чтобы включать арифметику, либо неполна, либо противоречива. По второй теореме, если теория, включающая арифметику, непротиворечива, то ее средствами это недоказуемо.
Арифметика здесь весьма важна. И не только по техническим причинам: Гёдель построил конкретные примеры недоказуемых и неопровержимых утверждений, пользуясь именно арифметическими инструментами. Куда важнее содержательная сторона дела — связь с реальностью. Так, формальная логика не подчиняется теоремам Гёделя. Любое утверждение, сформулированное в ее рамках, можно ее же средствами однозначно доказать или столь же однозначно опровергнуть. В частности, утверждение об ее непротиворечивости строго доказано самой же логикой. Зато и средства логики столь бедны, что даже арифметические действия этими средствами невозможно определить — а значит, для описания реального мира формальная логика недостаточна.