ПЕРИОДИЧЕСКИЙ ЗАКОН

Напомним читателю о наиболее крупном событии в жизни Менделеева и одном из крупнейших событий в истории науки. В 1869 году Менделеев, расположив известные в то время химические элементы в определенном порядке (в общем соответственно возрастанию атомного веса), обнаружил периодичность химических и некоторых физических свойств простых тел и соединений элементов. Ученый пришел к периодической системе химических элементов. Он составил таблицу элементов, написав их названия один за другим в порядке возрастания атомного веса и расположив элементы со сходными химическими свойствами один под другим. При этом в столбцах таблицы — группах — оказались элементы со сходными свойствами. Эта таблица известна читателю: ее изучают во всех школах мира, ее подробно излагают во всех учебниках химии, и мы остановимся лишь на некоторых вопросах и сторонах периодической системы Менделеева, чтобы дать представление об историческом значении научного подвига великого русского ученого.

Открытие Менделеева — важная веха в истории представлений о природе. Уже великие мыслители древности Левкип, Демокрит и Эпикур говорили о мельчайших невидимых частицах вещества, из которых состоят все тела природы. Древняя атомистика возродилась, когда естествознание начало свою историческую борьбу против средневековой схоластики. В XVII–XVIII веках все корифеи естествознания размышляли о неделимых частицах, движение которых должно объяснить всю совокупность физических и химических явлений. Напомним о трудах Ломоносова, который, рисуя картину движущихся невидимых частиц, искал в ней ответа на вопросы о природе теплоты, упругости газов, химических реакций и множества других процессов.

В XIX веке картина движущихся и сталкивающихся молекул превратилась в стройное, детально разработанное, подтвержденное множеством экспериментов и практических применений учение — молекулярную физику. Одновременно химия получила множество достоверных знаний о составе различных молекул. Но внутрь атома наука еще не проникла, до этого было далеко. Объяснить различия атомов и, следовательно, различия между химическими элементами структурой атомов, числом и расположением входящих в них частиц можно было после того, как ряд крупных открытий, прежде всего открытие периодической системы, продемонстрировали известный порядок в свойствах атомов. Теперь каждое предположение о внутренней структуре атома должно было объяснить, почему при возрастании атомного веса периодически повторяются свойства элементов. Тем самым наука получила прочную опору и вместе с тем мощный стимул для дальнейшего движения. Большое значение при этом имела широта открытого Менделеевым периодического закона.

У Менделеева были предшественники, заметившие повторение свойств элементов. Но никто из этих предшественников, говоривших о сходстве между некоторыми свойствами различных элементов, не создал единой системы, объясняющей всю совокупность химических явлений.

Такую систему создал Менделеев. Он рассказывал, как в течение долгого времени происходили поиски, приведшие к открытию. На картонных карточках Менделеев писал названия элементов, атомные веса и отмечал формулы важнейших соединений. Особенное внимание он обращал при этом на валентность, т. е. на способность атома данного элемента соединяться с определенным числом атомов другого элемента. Менделеев раскладывал эти карточки в разных сочетаниях, руководствуясь мыслью о связи между элементами, о сходстве свойств различных элементов. Следует подчеркнуть, что Менделеев искал связь не только между элементами, сравнительно близкими друг к другу по своим химическим свойствам, но и между элементами несходными. Он находил такую связь, несходные элементы оказывались близкими друг к другу по атомному весу, и в свою очередь элементы со сходными свойствами отстояли друг от друга сравнительно далеко по атомному весу, причем расстояние между сходными элементами повторялось.

Менделеев рассматривал, например, литий, легкий металл, принадлежащий к числу так называемых щелочных металлов. По некоторым свойствам литий напоминает натрий — другой легкий щелочной металл. Менделеев отметил, что если расположить элементы по их атомному весу, то между литием и натрием находится шесть элементов, непохожих ни на тот, ни на другой. Следовательно, по атомному весу рядом с литием находится металл, непохожий на него по своим свойствам, а сходный с литием натрий встречается лишь на седьмом месте после лития. Вслед за натрием идет следующий промежуток, заполненный шестью элементами, непохожими на литий и натрий, и далее вновь стоит легкий щелочной металл калий. Менделеев видел, что подобные повторения появляются и в других случаях.

Обнаружив периодическое повторение химических свойств в ряду элементов, расположенных по возрастающему атомному весу, обнаружив, что между сходными элементами стоит одно и то же число других элементов, Менделеев составил таблицу элементов, написав названия сходных элементов одно под другим. Если включить в эту таблицу также все элементы, открытые позднее, то все клетки в таблице будут заполнены, таблица будет иметь вид, изображенный на рис. 2. В каждой клетке таблицы мы видим символ элемента (первые буквы латинского названия), порядковый номер и число, обозначающее атомный вес (округленно). Из клеток составляются вертикальные столбцы (группы элементов) и горизонтальные строки (периоды). В периодической системе первоначально было восемь групп элементов, т. е. между элементами со сходными свойствами находился промежуток, заполненный шестью элементами. Впоследствии Менделеев обнаружил, что свойства элементов повторяются иногда не через семь номеров (после интервала из шести элементов), а через семнадцать номеров. Таким образом, появилось представление о малых и больших периодах. Периодическая система развивалась и дополнялась.

Менделеев был настолько уверен в объективности открытого им закона, что счел возможным исправить на основании этого закона атомные веса, приписывавшиеся в то время некоторым элементам. Если бы он расположил элементы в порядке возрастания атомного веса, руководствуясь во всех случаях существовавшими тогда значениями атомных весов, то наблюдалось бы отступление от периодичности. При этом, например, под алюминием мы встретили бы титан, который отнюдь не повторяет свойства алюминия, под кремнием оказался бы ванадий, который непохож на кремний, фосфор оказался бы в одном ряду с непохожим на него хромом и т. д. Исходя из химических свойств элементов, Менделеев исправил атомные веса десяти элементов. Смелость ученого, твердое убеждение в универсальном характере открытого им закона заставили Менделеева исправить атомные веса урана, индия, платины, осмия, иридия, золота, титана, тория, церия и иттрия. Далее он с такой же смелостью отступил от правильного возрастания атомного веса и поставил кобальт, обладающий большим атомным весом, перед более легким никелем, теллур перед иодом.

Правильная периодичность наблюдалась только в том случае, когда после некоторых элементов оставалась свободная клетка. На эти свободные места своей таблицы Менделеев поставил элементы, которые тогда еще не были известны. Такие элементы следовали за алюминием (Менделеев назвал его «экаалюминием» — на санскритском языке «эка» значит «один», «экаалюминий» означает «алюминий плюс один»), кремнием («экакремний») и бором («экабор»). Менделеев предсказал даже свойства элементов, которым он заранее предоставил свободные места в своей таблице.

В 1875 году на заседании парижской Академии наук произошло чрезвычайно важное событие. Был вскрыт присланный за месяц до этого конверт. Там содержалась заметка с описанием открытия, которое сделал Лекок де Буабодран. Французский ученый пропускал через стеклянную призму свет, исходящий из различных раскаленных газов; при этом, как известно, можно видеть характерные для каждого элемента цветные линии в определенном месте спектра. Изучая цинковую обманку, добытую в Пиренейских горах, Лекок де Буабодран 25 августа 1875 года заметил новую яркую фиолетовую линию в спектре. Такая линия не принадлежала ни одному из известных тогда химических элементов. Лекок де Буабодран предположил, что в состав цинковой обманки входит до сих пор не известный новый химический элемент. Он решил получить таинственный элемент в чистом виде. При известных химических реакциях этот элемент действительно очищается от примесей, и фиолетовая линия в спектре становится более интенсивной.

В результате таких экспериментов Лекок де Буабодран получил новый элемент. В честь родины химика Галлии (Франции) этот новый элемент был назван галлием. Описание этого элемента было помещено в трудах парижской Академии наук. Менделеев прочел описание и сразу написал в Париж, что открытый Лекоком де Буабодраном галлий представляет собой описанный им ранее «экаалюминий» периодической системы. Менделеев указал при этом, что удельный вес галлия-экаалюминия должен быть не 4,7, как определил Лекок де Буабодран, а 5,9–6.

Лекок де Буабодран, ознакомившись с письмом Менделееву, продолжил свои опыты и нашел в конце концов для удельного веса галлия значение, предсказанное Менделеевым — 5,96. «Я думаю, — писал он, — нет необходимости настаивать на огромном значении подтверждения теоретических выводов Менделеева относительно плотности галлия».

Вскоре последовали новые замечательные открытия. Шведский химик Нильсен, обнаружив не известный до того элемент (названный в честь Скандинавии «скандием»), сразу понял, что перед ним менделеевский «экабор». «Следовательно, — заключил он описание свойств открытого вещества, — не остается никакого сомнения, что в скандии открыт экабор… так подтверждаются самым наглядным образом мысли русского химика, позволившие не только предвидеть существование названного простого тела, но и наперед указать его важнейшие свойства».

В 1886 году немецкий химик Винклер, открыв новый элемент, названный германием, сначала не понял, что перед ним экасилиций, описанный Менделеевым. Но сразу же после того, как открытие Винклера было помещено в печати, он получил письмо от Менделеева из Петербурга, от Рихтера из Бреславля и Лотара Майера из Тюбингена. Все трое ученых сообщили Винклеру, что он открыл именно «экасилиций» и что германий тождествен с экасилицием. В свое время Менделеев подробнее, чем для других элементов, указал свойства экасилиция и его соединений. Поэтому изучение германия было особенно убедительной демонстрацией торжества периодического закона. Винклер писал:

«Вряд ли может существовать более яркое доказательство справедливости учения о периодичности элементов, чем открытие до сих пор гипотетического экасилиция; оно составляет, конечно, более чем простое подтверждение смелой теории, — оно знаменует собой выдающееся расширение химического поля зрения, гигантский шаг в области познания».

Впоследствии был сделан ряд новых фундаментальных открытий, подтвердивших периодический закон. В 1894 году английские ученые Рэлей и Рамзай открыли новый элемент — аргон, так называемый благородный, или инертный, газ, не вступающий в химические соединения, составляющий около одного процента атмосферного воздуха.

Вскоре Рамзай открыл другой инертный газ и послал его физику Круксу для исследования спектра. Крукс увидел, что спектральная линия новооткрытого газа совпадает со спектральной линией, наблюдавшейся еще раньше в солнечном спектре. Одна из линий солнечного спектра свидетельствовала о наличии в солнечной атмосфере некоего газа, который на Земле не был еще обнаружен. Этот газ был назван гелием (по-гречески Солнце — «гелиос»), а газ, присланный Рамзаем Круксу, давал ту же характерную спектральную линию. Крукс ответил Рамзаю короткой телеграммой: «Это гелий». Атомный вес гелия оказался равным приблизительно четырем.

Гелий должен быть поставлен в периодической таблице непосредственно после водорода. Но после водорода стоял литий, для гелия, казалось, не было места. Не было места и для других инертных газов. Рамзай предположил тогда, что гелий и аргон начинают собой новую группу в периодической системе и что через определенное число следующих за аргоном клеток таблицы в этой группе должны стоять другие инертные газы. Руководствуясь периодической таблицей Менделеева, Рамзай и его ученики нашли и другие инертные газы: неон, криптон и ксенон. Менделеев после этого дополнил свою таблицу еще одной группой — нулевой группой. Теперь в таблице, во второй и в третьей горизонтальных строках, помещается по восемь элементов (затем по 18 и далее по 32), и свойства элементов повторяются в начале таблицы через каждые восемь номеров, затем через 18 и далее через 32. Но первый период состоит всего из двух элементов — водорода и гелия.

Первым в таблице стоит водород (Н) с атомным весом, примерно равным единице. Далее в тот же период входит гелий (Не), которым и заканчивается самый короткий, первый, период. Затем начинается второй период, включающий восемь элементов: литий (Li), бериллий (Be), бор (В), углерод (С), азот (N), кислород (О), фтор (F) и неон (Ne). Следующий, третий, период также включает восемь элементов. Это три так называемых малых периода.

Вслед за ними идут большие периоды, каждый из которых включает по 18 элементов (четвертый и пятый периоды). Сначала считалось, что и в следующих периодах содержится также по 18 элементов. Впоследствии оказалось, что при этом большое число открытых позже элементов (так называемые редкоземельные металлы, или лантаниды; от элемента 57 до элемента 71) приходится все включать в одну клетку таблицы. Таким образом, следующий период включает на 18+14=32 элемента. Все эти сложные дополнительные обстоятельства были не только обнаружены, но и получили впоследствии исчерпывающее объяснение. Такое объяснение было дано уже в нашем столетии, в основном после смерти Менделеева. Периодический закон, как и ряд других великих открытий XIX века, не только обобщил и объяснил множество ранее известных фактов, но и поставил перед следующим столетием новые коренные вопросы. В самом конце XIX столетия периодическая система после триумфальных открытий 70–80-х годов (Лекок де Буабодран, Нильсен, Винклер) выдержала серьезное испытание. Как уже говорилось, к открытому в 1894 году не вмещавшемуся в таблицу Менделеева аргону в последующие годы прибавились другие инертные газы — гелий, неон, криптон и ксенон, образовавшие новую, нулевую, группу элементов. Теперь таблица состояла из девяти групп (0, I, II, III, IV, V, VI, VII, VIII). Менделеев придал ей сравнительно простой вид, разделив каждый длинный период на два коротких. Это было сделано еще в 1871 году; после же открытия инертных газов «короткая» таблица получила несколько новый вид (см. таблицу на стр. 49).

Что же оставалось неясным в этой таблице? Какие вопросы ставила она перед дальнейшим развитием науки?

Прежде всего в таблице оставались свободные клетки. С другой стороны, ряд различных элементов (лантаниды) помещался в одной клетке. Но главный вопрос состоял в самой периодичности. Почему свойства элементов периодически повторяются, если элементы расположить в порядке возрастания их атомного веса. Отвечая на этот вопрос, физика XX века ответила и на многие другие столь же важные вопросы, поставленные перед ней периодической системой.

Загрузка...