Всякая экономия в конечном счете сводится к экономии времени.
Наше время характеризуется все ускоряющимся темпом технического прогресса. Стремительно растут скорости передвижения, объем и быстрота передачи информации, сокращаются промежутки между крупными научными открытиями, ускоряется бег времени, цена времени растет, потерявший время — проигрывает. Одна из форм потери времени — это омертвление средств.
Поэтому далеко не безразлично знать, сколько же полезного времени может положить подводное судно на алтарь науки, чему равен его «коэффициент полезного действия». Иными словами, как подойти к оценке эффективности применения исследовательских подводных лодок. При этом под эффективностью будем понимать степень достижения определенной цели, а под показателем эффективности — меру, количественно выражающую эту степень.
Если подходить строго, вопрос о «прибыли», приносимой исследовательскими подводными лодками, или о быстрой окупаемости затрачиваемых на них средств, отнесем сегодня к разряду беспредметных. Тогда остается говорить о расходах на это предприятие (банальная истина: тратить тоже надо с умом). При этом свяжем расходы с характеристиками подводных судов, с гидрометеорологической обстановкой и, в какой-то степени, с организационными факторами. Вот, например, как можно учесть влияние гидрометеорологических факторов.
Малая подводная лодка практически защищена от влияния волнения, пока она под водой. Но ее плавание по поверхности моря, а особенно спуск на воду с плавбазы и затем обратный подъем, зависят от силы ветра и волнения моря. Главным образом от высоты волн (не свыше двух-трех, в редких случаях для отдельных типов лодок — до четырех баллов). Высота волны — главный гидрометеорологический фактор, по которому можно судить о применимости малой подводной подлодки в географическом районе.
Взять, к примеру, акваторию, примыкающую к Британским островам. Эти воды — прилегающая часть Атлантики, Северное и Ирландское моря и Па-де-Кале (Английский канал) — являются типично шельфовыми и изучены достаточно хорошо. Кроме того, Северное море — это традиционное место рыболовного промысла, а сейчас и район добычи нефти и газа. В этих районах в среднем при волнении моря 2 балла преобладающая высота волны равна 0,9 метра, максимальная — 1,1 метра; при 3 баллах соответственно 1,4 и 1,8 метра; при 4 баллах — 2,0 и 2,7 метра; 5 баллов дают высоту волны 3,7 и 4,9 метра.
Оказывается, деятельность малых подводных лодок даже при волнении в 2 балла в южной части Северного моря очень ограниченна. В летнее полугодие (апрель — сентябрь) такие лодки можно использовать только два с половиной месяца (73,5 дня), а в зимнее — месяц с небольшим (38 дней). А всего не более четырех месяцев в году. Теперь можно рассчитать показатель эффективности малой подводной лодки в зависимости от условий погоды в данном районе, то есть определить вероятность ее применения в зависимости от погоды.
В южной части Северного моря в зимнее полугодие система «подлодка — плавбаза» способна функционировать 38 дней из 182, стало быть, показатель эффективности для зимы составит всего 0,2. Для вод, омывающих северную часть Британских островов, на те же 182 зимних дня выпадает всего 17 благоприятных, и показатель для этого сезона составит примерно 0,09. Это значит, что свыше 90 процентов времени и подлодка, и плавбаза в этом районе «будут ждать у моря погоды».
Если же используется подводная лодка другого типа, рассчитанная на работу при волнении до 4 баллов, то для этого же района и этого сезона показатель эффективности по погоде возрастет до 0,49.
Рассуждая подобным образом, мы сможем рассчитать эффективность лодки в зависимости от погоды и в денежном выражении. Зная, например, сумму ежегодных расходов на содержание подлодки и обслуживающих ее средств и разделив их на число пригодных для работы дней, можно получить величину суточных расходов (арендной платы). Ясно, что суточные расходы будут выше, чем меньше дней в году подлодка способна работать.
Лучше всего применять малые лодки в озерах, во внутренних морях и заливах. И бесспорно — при хорошем гидрометеорологическом прогнозе. Но прогноз есть прогноз, а как поется в одной песне, «и все-таки море останется морем». Мне удалось познакомиться с графиком развития ветра в таком «сугубо внутреннем» море, как Белое. График весьма впечатляет и наглядно иллюстрирует «взрывной» характер морского ветра. В один из дней сезона всего за 16 минут скорость ветра возросла на 11 метров в секунду, а волнение моря увеличилось с 2 до 5 баллов за каких-то 14 минут.
За это время вызвать с помощью гидроакустики малую подлодку с глубины на поверхность, сблизиться с ней и поднять на борт плавбазы вряд ли возможно даже в штилевую погоду. Мы не вправе считать, что такое стремительное изменение погоды на море явление слишком частое. Но недостаточная оправдываемость прогнозов всегда заставляет быть настороже, и при планировании операций малых подлодок заставляет ориентироваться не на оптимальные, а скорее на крайние, экстремальные условия.
Для больших подводных лодок показатель эффективности по погоде будет равен единице. «Северянка» может находиться в море в любой шторм, пребывая на глубине или на поверхности. Атомной подлодке вообще нет нужды всплывать во время шторма, поскольку ей не надо подзаряжать аккумуляторы.
К гидрометеорологическим факторам, от которых зависит эффективность применения малых подлодок, относятся также и течения.
Накопленные за два века знания внесли существенную поправку в суждение великого М. В. Ломоносова о том, «что вода морская… в известной глубине совсем спокойна, не чувствует действия от силы ветров или от светил небесных происходящего…». В тех же примыкающих к Британским островам водах скорость подводных течений колеблется от 1 до 1,5 узла в открытом море и до 3–4 узлов у некоторых мысов. В проливе Малл оф Кинтайр (Северо-Западная Шотландия) приливо-отливное течение может достигать 8 узлов. Отнесем эту максимальную цифру к разряду явлений исключительных, а будем ориентироваться на типичные 1–1,5 узла. Чтобы подлодка могла нормально маневрировать, в том числе двигаться и против течения, будем считать, что ее скорость как минимум должна превышать скорость течения хотя бы на пол-узла (цифра абсолютно произвольная и условная). А энергоресурсы лодки должны обеспечивать эту скорость в течение времени, необходимого для выполнения программы погружения. Говоря об этом, можно сослаться на опыт эксплуатации подлодки «Элвин» в прибрежных водах США. Ее владельцы отмечают, что в районах с сильным подводным течением (цифры не приводятся) достижение лодкой рабочей глубины даже при обычной скорости (2–2,5 узла) было затруднительно, а подчас просто невозможно. Вся электроэнергия уходила на «противостояние» течению. Но для лодок-малюток подводная скорость 1–2 узла — явление обычное. Следовательно, нормальное плавание таких лодок в районах, которые мы избрали для примера, — задача невыполнимая. Эффективность их применения в этих местах течение сводит к нулю. Кстати, эффективность малых лодок по этому показателю ничтожна во многих районах Мирового океана.
Не всегда помогают и дополнительные носовые, кормовые и вертикальные движители, которые ставят на лодках для удержания на месте. Ведь течения неустойчивы и по направлению и по скорости. Причем эти колебания могут происходить как в течение нескольких секунд, так и десятков лет. Очевидно, что эти изменения — следствие колебаний сложной и взаимозависимой энергетической системы, объединяющей океан (гидросферу), Землю, вернее, земную кору (литосферу), атмосферу и космос.
Конечно, можно попытаться нанести на карту зоны применимости малых подлодок с учетом сезонных и суточных течений на разных глубинах. Но сделать это совсем не просто. Чтобы иметь такие карты, нужно произвести гигантскую по объему работу, подробно измерять течения в многочисленных точках. Предположим, однако, что такая работа выполнена и карта составлена. Надежна ли она? Велика ли цена ее достоверности? Очевидно, нет — не велика, поскольку, как уже говорилось, течения коварно переменчивы, то есть, говоря ученым языком, лишены такой характеристики, как стабильность.
Кстати, примерно так же обстоит дело и с картами, отражающими условия видимости под водой, поскольку эти условия зависят от множества динамичных факторов. Между тем вряд ли нужно доказывать, насколько полезны были бы такие карты при выборе средств и методов подводного исследования. Какой смысл, например, использовать подлодку для визуального наблюдения в тех районах, где видимость не превышает одного — полутора метров? А именно такая видимость нередка в южной части Северного моря и в Па-де-Кале. Здесь будет больше пользы от гидролокаторов и эхолотов, хотя полученная с их помощью информация не дает полноты и наглядности.
Итак, можно говорить и о показателе эффективности по условиям видимости. Он будет равен отношению фактической дальности видимости под водой к дальности видимости, необходимой для выполнения лодкой заданной программы.
Можно расширить круг гидрометеорологических и океанологических показателей, связанных с эффективностью. Пока мы говорили о трех, выражающих вероятность применения лодки в зависимости от волнения моря, течения и видимости под водой. Путем перемножения они могут быть сведены в один показатель эффективности использования малой подводной лодки в зависимости от океанологических факторов. При благоприятном сочетании эксплуатационных характеристик подводного судна и океанологических условий этот показатель может быть близок или даже равен единице.
Создание исследовательских подводных лодок без учета океанологических факторов в районе их будущего действия приводит к неудаче. Деньги оказываются выброшенными на ветер, и, самое главное, пропадает вера в подводную лодку. Некоторые конструкторы забывают, что важна не сама подводная лодка с теми или иными техническими характеристиками, а то, какой эффект позволяют получить эти характеристики в районе плавания. Английским инженерам пришлось убедиться в этом на горьком опыте. В 1967 году ими была построена малая исследовательская подводная лодка «СЭРВ», кстати, единственная в то время в Англии. Лодка имела рабочую глубину 300 метров, экономическую скорость хода 0,5 узла, максимальную — 2,5 узла и предназначалась для работы в прилегающих водах. Нет ничего удивительного, что она уже в 1969 году была выведена из эксплуатации как недееспособная. Лодка стоила 40 тысяч фунтов стерлингов, а обеспечивающая плавбаза, заказанная в США, — 2,5 миллиона долларов.
О более ранней неудачной попытке применить подлодку для научных наблюдений мы уже упоминали, говоря о плавании «Наутилуса» в 1931 году. Идея плавания принадлежала Вильямуру Стефансону, который почему-то посчитал, что в Ледовитом океане летом на подводной лодке можно пройти куда угодно и произвести ценные наблюдения. Основанное на незнании технических возможностей подлодки тех лет заблуждение, помноженное на неукротимую энергию загоревшегося идеей организатора экспедиции Уилкинса, привело, как известно, к авантюре.
Рассмотренные выше показатели эффективности не исчерпывают, конечно, всей проблемы эффективного применения подлодок для исследовательских целей.
Таких показателей может быть гораздо больше — и не менее существенных. Очень важно, например, учитывать технические возможности системы «подлодка — плавбаза» и географические особенности района.
Например, можно ввести показатель, который связан с удаленностью точки погружения лодки от места якорной стоянки (или дрейфа) плавбазы. Обычно ночью плавбаза с подлодкой на борту отстаивается на якоре там, где глубина позволяет это сделать. Утром же плавбаза транспортирует лодку к месту работы. Если экспедиция проходит в открытом море, где не всегда можно найти якорную стоянку, плавбаза ночью может лечь в дрейф.
Потеря времени на непроизводительные переходы плавбазы налагается на рабочее время. Так, для подводной лодки «Элвин» и ее судна-носителя «Лулу», имеющего скорость 6 узлов, потеря времени на переходы составила 20 процентов от числа пригодных для работы дней.
И наконец, третья группа — это показатели эффективности технического, а иногда и организационного характера.
Сюда можно ввести показатель эффективности по энергоресурсам. Он связывает время, которое лодка может идти под водой с заданной скоростью, то есть автономность малой подлодки по движению с минимальным временем, необходимым для выполнения программы одного погружения.
Бюро промышленного рыболовства США арендовало канадскую исследовательскую подлодку «Пайсиз» для рекогносцировочных погружений у Пьюджет Саунд (западное побережье США). Одной из конкретных задач были подводные наблюдения за движением рыболовного трала в толще воды. Но провести их не удалось. Как показывает опыт «Северянки», здесь требовалось сложное и длительное маневрирование (повороты за постоянно ускользающим из поля зрения тралом, частое изменение хода при отставании или опережении), на которое «Пайсиз» оказалась неспособна. Застой картушки магнитного компаса во время поворотов не позволял контролировать правильность курса, а незначительная по емкости аккумуляторная батарея быстро разряжалась. Наш собственный опыт дает основание утверждать, что для подробного наблюдения и киносъемки трала с «Северянки» на одно погружение требовались не минуты или десятки минут, а долгие напряженные часы.
Итак, на деятельность исследовательских подводных лодок влияют различные факторы, и я попытался в какой-то мере проанализировать это влияние. Речь шла об элементах, воздействующих на лодку. Но, оказывается, и сама лодка вносит возмущения в окружающую ее среду. Природа некоторых из них изучена достаточно хорошо, другие требуют детального исследования (возможно, опять-таки с помощью подводных лодок). Мы не склонны преувеличивать или преуменьшать значение подводной лодки как возмущающего фактора. В каждом отдельном случае нужно подходить дифференцированно. Но это ее свойство может снизить эффективность применения во многих направлениях исследований. Поэтому остановимся на этом вопросе подробнее.
Исследовательское подводное судно представляет собой сложную систему. Ее деятельность сопровождается возникновением в окружающей среде целого ряда физических и химических полей или искажением существующих природных полей.
Я сознательно заостряю этот вопрос. И не только потому, что он изучен недостаточно, но и потому, что создатели исследовательских подводных лодок подчас вовсе и не задумываются над тем, какую дисгармонию может внести их детище в сбалансированное природой равновесие мира глубин.
Закономерны вопросы: на какое же расстояние от подводной лодки распространяется то или иное поле? Как они (поля) воспринимаются подводными объектами, особенно живыми, и как объекты реагируют на это?
Частичный ответ на первый вопрос дает таблица, составленная на основании анализа отечественных и иностранных данных.
Дальность распространения поля определялась наиболее чувствительными современными приборами. Может быть, в различных случаях рецепторы, то есть воспринимающие органы, морских животных улавливают возмущения внешней среды на больших расстояниях, а может быть, их степень восприятия ниже, чем у аппаратуры, созданной человеком. Все зависит от того, какой объект воспринимает, когда и в каких условиях.
Ориентировочные дальности распространения физических и химических полей движущейся подводной лодки
Вид создаваемого или искажаемого поля
Примерная дальность распространения
Подлодка как физическое тело
Непосредственные контакт
Изменение молекулярного состава (концентрационное поле) Изменение температуры Ультракоротковолновое электромагнитное поле
Несколько метров
Коротковолновое электромагнитное поле Средневолновое электромагнитное поле
Несколько десятков метров
Оптическое воздействие Радиоактивное излучение Сейсмические колебания грунта
-
Космические излучения Электрическое поле Гидродинамическое поле
От 60 до 100 метров
Эффект кильватерной струи Магнитное поле Пассивное ультразвуковое поле Акустическое поле звукового диапазона
Несколько сот метров
Инфразвуки Активные ультразвуковые поля (работающие гидроакустические приборы)
Несколько тысяч метров
Будем считать, что подводная лодка, перемещаясь, действует на окружающую среду всем комплексом перечисленных в таблице полей, а находясь на грунте, — какой-то частью этого комплекса. Хорошо бы знать, как это действие отражается на исследовании живой и неживой природы под водой. Еще лучше было бы совместить зону возмущений среды лодкой с зоной восприятия этих возмущений объектом изучения. Тогда можно было бы говорить о сфере применимости и об эффективности применения данной подводной лодки для какого-то определенного вида исследований. Несмотря на то что отечественные и зарубежные исследователи уделили немало внимания изучению зрительного, слухового и других видов восприятия у морских животных, этот вопрос можно считать только поставленным.
Фирма «Перри Кэбмарин», специализирующаяся на постройке малых подводных лодок, утверждает, что присутствие лодки не пугает рыб и других обитателей рифов. И в доказательство приводит снимок барракуды, спокойно плавающей рядом с одной из лодок. А вот Кусто и Эджертон сообщили, что в Средиземном море и в Индийском океане при опускании в воду кинокамер рыбы и другие морские животные пускались наутек. Кто прав? Видимо, обе стороны, поскольку утверждения каждой основаны на фактах, но эти факты не освещены другими. В частности, ни в первом, ни во втором случае не говорится о сезоне, времени дня, состоянии животного и окружающей среды. Может быть, эта же самая барракуда в другое время года или даже суток не подпустит к себе подводную лодку и на «пушечный выстрел».
16 декабря 1960 года наша «Северянка» двигалась в полной темноте в протянувшемся на две с половиной мили скоплении сельди со скоростью 2 узла. Эхолоты верхнего и нижнего обнаружения регистрировали рыбу. Когда мы включили прожектора, в первый момент нам показалось, что сельдь быстро уплывает от лодки. Спустя 15–20 секунд в передней части лодки отчетливо стали слышны удары сельди о корпус, а в лучах прожекторов появилась масса быстро и беспорядочно движущейся рыбы. Через 30–90 секунд рыба исчезала и даже не регистрировалась эхолотами. Но все повторялось, когда мы выключали прожектора и входили снова в косяк.
На борту лодки в этом рейсе было установлено 6 глубоководных светильников с зеркальными лампами мощностью по 500 ватт, с углами рассеяния светового пучка в 60–70 градусов и силой света в осевом направлении около 5000 свечей. Четыре из них располагались у бортовых иллюминаторов, пятый — у верхнего иллюминатора и был направлен в зенит, шестой закреплен в носовой части и ориентирован вверх под углом 45 градусов к вертикали.
Почему же все-таки боящаяся света сельдь вначале бросалась к лодке? Сразу же возникала мысль, что сельдь принимает свет лодки за излучение светящихся форм планктона и устремляется к пище. Но это предположение не подтвердилось результатами наблюдений.
Если бы свет, излучаемый прожекторами, был похож на сияние светящегося планктона, то это можно было бы допустить.
Может быть, внезапное включение светильников вызывало у рыб, застигнутых в освещенной зоне, подобие шока? И ослепленная сельдь в поисках выхода бросалась в образовавшееся свободное пространство и попадала в поле зрения наблюдателей?
После «разрядки» уплотнения отдаленные сельди, замечая приближение света, уходили в сторону. И пока «Северянка» двигалась с включенными прожекторами, эхолоты показывали, что рыбы поблизости нет.
Безусловно, такое объяснение нуждается в дополнительной проверке. Но одно для нас тогда было бесспорным: искусственный свет отпугивал сельдь. Это подтверждается и тем, что появлявшиеся в освещенной зоне рыбы не скапливались у самих светильников, а беспорядочно ударялись о корпус подводной лодки, леерные стойки и тросы. Было видно, как на стекло верхнего иллюминатора падал дождь чешуи.
Сельдь обитает в верхней, доступной естественному свету зоне океана и имеет развитые органы зрения. А как реагируют на свет подводного судна глубоководные рыбы? Биб за время погружений на батисфере успел познакомиться с 115 747 экземплярами глубоководных рыб. Наблюдая без искусственного света, он пришел к выводу, что 66 процентов этих рыб имеют органы свечения. Если это так, то почему бы этим рыбам не иметь органов, воспринимающих свет?
Ведь уже известно, что рыбы, издающие звуки, хорошо их воспринимают; что так называемых неэлектрических рыб нет совсем, поскольку все рыбы в большей или меньшей степени способны генерировать и воспринимать электрические сигналы; что суммарный электрический сигнал стаи рыб многократно больше сигнала единичной особи и т. д.
Поэтому трудно предугадать, а тем более планировать, какие результаты даст электросвет при наблюдении за рыбами, Не всегда помогает и отсутствие света. Несколько раз исследователи пытались с помощью глубоководной лодки «Триест» посмотреть, из каких же организмов формируется так называемый глубинный рассеивающий слой, присутствие которого отчетливо фиксируется эхолотами. Однако надежды на то, что погружения «Триеста» помогут раскрыть эту тайну, не оправдались: на глубинах, где обычно происходит рассеивание звука, наблюдатели не обнаружили особых скоплений животных. Уильям Кроми, например, считает, что это произошло потому, что «чудище» величиной с кита неизбежно возмущает воду в своем свободном падении и, очевидно, разгоняет все живые существа. И Пикар говорит, что он никогда не мог разглядеть рыб во время быстрого спуска. Даже при медленном спуске «Триеста» редко приходилось наблюдать живые формы, кроме планктона или относительно примитивных видов.
Но и эти «примитивные» виды могут уходить от опасности, причем с изрядной скоростью. Американский конструктор подводной фотоаппаратуры Эджертон, которого мы уже упоминали, произвел любопытные вычисления. Зная длительность светового импульса осветительной лампы-вспышки (около 0,003 секунды) и расстояние до фотографируемого объекта (от 2,5 до 10 сантиметров), он по величине трасс на фотопленке, напоминающих хвосты комет, подсчитал скорость движения этих организмов. Она составила от 0,3 до 3,0 метра в секунду. Оказалось, что даже самые крошечные существа в океане были способны ускользать от нарушившего их покой объекта и, подобно юрким рыбам, держаться от него в стороне.
Рыбы имеют боковую линию, настолько чувствительную, что могут ощущать колебания воды, возникающие при движении, питании и даже дыхании других существ.
Сотрудники Полярного научно-исследовательского института рыбного хозяйства и океанографии много раз спускались под воду в гидростате «Север-1». При погружении гидростата в стаю трески, находящуюся в толще воды, рыбы уходят глубже. Войти в верхнюю часть стаи и видеть треску удавалось лишь на короткое время только при быстром погружении. Исследователи утверждают, что стайное поведение отличается от поведения одиночной рыбы повышенной чуткостью восприятия, быстротой реакции и маневренностью. Наблюдения «Северянки» и другие данные подтвердили это утверждение.
Но неужели подводная лодка, обладая высокой скоростью, все-таки не может догнать и увидеть уходящих от нее рыб или китов? Да, неплохо было бы обладать такой возможностью. Но, во-первых, увеличение скорости лодки будет сопровождаться возрастанием ее физического поля. А во-вторых, лучшие пловцы среди рыб и китов способны двигаться с недостижимой для исследовательских лодок стремительностью. Максимально зафиксированная скорость желтоперого тунца на рывке составляет 16 метров в секунду (около 32 узлов). Американцы, сопоставляя скорость своей подводной лодки «Алюминаут» со скоростью кашалотов и синих китов, пришли к заключению, что преимущество остается за этими животными. Любое из них может уйти от лодки, наибольшая скорость которой не превышает 3,8 узла. Обычная же скорость кашалота около 4 узлов, но в случае опасности он сможет дать и 12 узлов.
Средняя скорость синего кита 10 узлов, при необходимости он может развивать 22 узла.
Как это ни огорчительно, но надо признать, что наблюдатели в подводной лодке никогда не смогут подойти близко и встретиться «лицом к лицу» со многими представителями морской фауны, разве только на экранах гидроакустических приборов. Конечно, не исключено, что обитатели моря сами почему-либо захотят познакомиться с подлодками поближе.
Лодка под водой может светиться и без прожекторов. Вот что удалось выяснить по этому поводу через иллюминаторы «Северянки» во время ее восьмой экспедиции. Лодка находилась на грунте неподвижно. Выключались все светильники и освещение в отсеках. Там, где находился конец стрелы[13] с выключенным светильником, можно было наблюдать очень редкие вспышки с интервалом в 5-10 минут. Стоило лодке начать всплывать, рефлектор светильника и конец стрелы озарялись многочисленными вспышками. Их производили гребневики, медузы и другие более мелкие формы планктона. С увеличением хода лодки свечение усиливалось. Оно сопровождало лодку от грунта до поверхности (это происходило в Мотовском заливе Баренцева моря). Прямо у борта лодки светились организмы, вспышки которых вызывались завихрениями воды либо ударами о борт судна. И в открытом море через верхний иллюминатор можно было видеть прямо-таки движущееся «звездное небо» — так много гребневиков светилось, проносясь над палубой лодки. Тросы, которые поддерживали и ориентировали стрелу, а также натянутый вдоль палубы леер, антенны и другие выступающие части палубы, вызывали завихрения. Поэтому свечение организмов перед верхним иллюминатором было интенсивнее, чем перед бортовыми. Порой оно было настолько сильным, что вспышки у иллюминаторов наблюдались даже при включенных наружных светильниках.
Несомненно, что лодка на грунте, когда часть механизмов выключена, обладает меньшим спектром физических полей, чем на ходу. Но «засиживаться» ей нельзя. Долгое пребывание на одном месте может вызвать экологические нарушения в значительном радиусе. Как полагают биологи, применявшие подводный дом «Черномор» в 1968 году, зона влияния дома на животный мир лежала в пределах 20 метров. Чтобы этого не случилось, лодка, по-видимому, через какой-то промежуток времени должна менять место пребывания на грунте.
Проблема «взаимоотношения» подводного исследовательского аппарата со средой и объектом исследования очень сложная и интересная. Здесь она затронута лишь с одной целью — показать ее значимость при оценке эффективности действий исследовательской подводной лодки и необходимость дальнейшей разработки. Примеры брались, главным образом, из практики наблюдений за рыбами, хотя физическое поле лодки влияет не только на них. Причем степень влияния поля и его составляющих зависит не только от восприимчивости окружающей среды, но и от характеристики самой подводной лодки.
Очевидно, обзор всех «за» и «против» применения подводных аппаратов для океанологических и других исследований будет не полным, если не коснуться самого главного критерия эффективности, который сводится в конечном счете к сопоставлению затрат с научной отдачей. Это важно сделать прежде всего потому, что и смысл книги, пожалуй, в том, чтобы представить подводные суда как богатейший и еще, по сути дела, слабо затронутый резерв технических средств исследования Мирового океана, как весьма перспективное дополнение к надводным судам.
Этот критерий, по-видимому, должен выражаться дробным числом, в знаменатель которого выносятся затраты (например, суточные расходы), а в числитель — достигнутый научный эффект. Действительно, чем выше эффект и меньше затраты — тем выше и критерий и эффективность в целом. Поскольку назначением всякого исследовательского средства, в том числе и подводного, является получение научной информации, то результатом его суточной деятельности, то есть эффектом, должна быть какая-то сумма замеров (наблюдений). Но специфика подводных методов исследований состоит в том, что трудность получения информации возрастает с глубиной. Судите сами: исследовать дно на глубине 10 метров легче, чем на 10 километрах. Да и подлодка для такой глубины всего пока одна. Поэтому в числитель нужно добавить сомножитель, выражающий зависимость критерия эффективности от глубины. Он показывает, что ценность информации, полученной с глубины, будет выше и определяется особо.
Но такой критерий справедлив только для неподвижных исследовательских средств. Его можно применить к опущенному на тросе со стоящего на якоре судна прибору; гидростату (не дрейфующему с кораблем); к аппаратуре, устанавливаемой на дне или на якоре; к подводной лодке, совершившей посадку на грунт; даже к неподвижному водолазу — наблюдателю.
Но наблюдения в одной точке или станции не всегда позволяют составить нужную картину, то есть не обладают достаточной информативностью. Выход из этого — или умножение числа станций или использование подвижных носителей аппаратуры и наблюдателей, к которым относятся исследовательские подводные лодки. Тогда в числитель критерия эффективности войдет еще один сомножитель — дальность подводного плавания.
Это один подход к оценке эффективности, о котором мы рассказали упрощенно. Назовем его статистическим, поскольку здесь предлагается путь подсчета единиц информации, то есть числа замеров[14].
Деятельность лодки можно планировать заранее. Можно, исходя из производительности установленных приборов, прикинуть число замеров. Но ведь под водой множество неизвестного, незапланированного, ради чего большинство исследователей и стремятся под воду. Они готовы за открытие какого-либо нового явления или живого объекта отдать тысячи замеров, выполненных по программе.
Стало быть, кроме статистического критерия, основанного на оценке стоимости единицы информации, можно говорить о критерии логическом, когда единицы информации несоизмеримы по своему научному значению.
На «Северянке» нам во второй экспедиции на фоне будничной работы удалось пережить волнение от встречи с неизведанным. Обращусь к своему дневнику.
«Около четырех часов утра мы увидели такое, что, наверное, долго не будет давать мне покоя… Опершись лбом о кожаную подушечку, укрепленную над стеклом иллюминатора, я вглядывался в освещенное пространство и считал сельдей. Ихтиолог Борис Соловьев занимался тем же у другого иллюминатора. Тишина нарушалась четкими ударами самописцев эхолотов и дыханием спящих. В этот момент я и увидел «лиру». Иначе и нельзя было назвать медленно проплывающее перед глазами незнакомое животное.
Представьте себе часто изображаемую легендарную лиру — эмблему поэзии, высотой сантиметров в тридцать, перевернутую основанием вверх. Собственно «лира» — это две симметрично согнутые тонкие лапы-щупальца, отливающие изумрудом и покрытые поперечными полосами, наподобие железнодорожного шлагбаума. Лапы беспомощно свисали из небольшого, напоминающего цветок лилии прозрачного студенистого тела с оранжевыми и ярко-синими точками. «Лира» была наполнена каким-то пульсирующим светом. Этот свет, напоминающий горение газовой горелки, пробегал от тела по щупальцам.
Почти одновременно со мной двух «лир» обнаружил и Борис. Бесполезно щелкнув несколько раз фотоаппаратом, заранее зная, что снимки не получатся, — так, для очистки совести, — мы взяли «лир» на карандаш и сделали несколько зарисовок. Всего до начала дня нам встретилось девять экземпляров».
Ни в море, ни впоследствии на берегу нам не удалось установить, что же это было. В определителях и справочниках сведения об этом подводном жителе пока отсутствуют, и мы не знаем, как его классифицировать. Возможно, когда эта книга увидит свет, о таинственной «лире» будет известно больше, потому что размах морских исследований растет.