7. Молекулярная артиллерия

Газы и пары играют важную роль в различных машинах. Водяной пар толкает поршень в цилиндрах паровых машин, приводит в быстрое движение колёса турбин. Газы, образующиеся при сгорании топлива, заставляют работать различные двигатели внутреннего сгорания, приводя в движение автомобили, тракторы, самолёты. Вылетающие из реактивного двигателя газы сообщают большие скорости реактивным самолётам. Газы, получающиеся при взрыве пороха, придают огромные скорости снарядам различных орудий.

Для увеличения промышленной мощи нашей родины, для того чтобы строить хорошие турбины, паровозы, тракторы, для укрепления обороны страны, для постройки мощных пушек, для создания самолётов — всюду необходимо знание свойств газов.

Понять и объяснить свойства газов позволяет движение молекул. Знание законов этого движения даёт возможность предвидеть поведение газов в различных условиях.

Разберёмся в этом.

Если уменьшать объём, занимаемый каким-либо Газом, газ сопротивляется этому. Совершенно отчётливо это можно ощущать, когда накачивают воздухом велосипедную шину.

Сопротивление газа сжатию называют упругостью. Упругость — одно из основных свойств всех газов.

Как объяснить упругость, в чём её причина?

Попробуем ответить на этот вопрос, пользуясь нашими знаниями о строении газов. Представим себе такой опыт. У обычных весов, на которых взвешивают хлеб, одна чашка плоская, а другая в виде тарелки. Выставим весы на дождь и над вогнутой чашкой устроим навес так, чтобы дождевые капли на неё не попадали (рис. 13). Дождевые капли будут ударяться об открытую плоскую чашку весов и стекать с неё. Удары отдельных капель будут складываться и как бы давить на чашку, которая при этом опустится. Чтобы привести весы в равновесие, надо положить на вторую чашку гири. Уравновесив весы и подсчитав вес положенных гирь, мы определим силу, с которой дождь давит на открытую чашку весов.

Если теперь заменить плоскую чашку чашкой того же веса, но больших размеров, то для уравновешивания весов понадобится и больше гирь. Следовательно, один и тот же дождь давит на большую чашку весов с большей силой. Поэтому если мы хотим указанным способом охарактеризовать силу, с которой давят падающие капли дождя, то необходимо условиться, каких размеров мы будем брать плоскую чашку. Проще всего принять поверхность такой условной чашки равной одному квадратному сантиметру.

Если для поддержания весов в равновесии в описанном опыте пришлось положить на закрытую чашку 400 граммов, а поверхность открытой чашки была 20 X X 20 = 400 квадратных сантиметров, то, значит, дождь давил на чашку с силой, равной 400 г/400 см2, то-есть с силой в 1 грамм на каждый квадратный сантиметр поверхности чашки.

Силу, приходящуюся на единицу поверхности, называют давлением, и мы можем сказать, что давление дождя в описанном опыте равнялось одному грамму на квадратный сантиметр поверхности.

Какое же отношение имеет сказанное к свойствам газов? Самое непосредственное!


Рис. 13. Падающий дождь давит на открытую чашку весов с силой, которую можно измерить.


Мы знаем, что молекулы газов беспорядочно движутся со скоростями, близкими к скорости полёта пули. При своём движении молекулы соударяются со своими соседями и сталкиваются со стенками сосуда, в который заключён газ. Если наполнить бутылку обычным, не сжатым воздухом, то число ударов, которое испытывает каждый квадратный сантиметр поверхности бутылки в 1 секунду, выражается цифрой с 22 нулями! Это — очень большое число. Если бы такое число просяных зёрен положить рядышком одно к другому, то можно было бы сто раз протянуть эту дорожку из зёрнышек до одной из ближайших звёзд и обратно.

Таким образом, на стенки бутылки непрерывно падает чрезвычайно частый дождь мельчайших "капелек" вещества — молекул. Частицы газа как бы бомбардируют стенки сосуда.

Удары отдельных молекул так слабы, что не отмечаются ни приборами, ни нашими органами чувств, по так часто следуют друг за другом, что, сливаясь вместе, производят давление, которое уже нетрудно измерить приборами или ощутить непосредственно.

От чего зависит давление газа?

Очевидно, что чем больше молекул ударится в единицу времени о поверхность, тем большее давление будет она испытывать. Кроме того, давление зависит от скорости, с которой ударяются о поверхность молекулы газа. Чем быстрее движутся молекулы, тем сильнее они ударяются о стенку и тем больше будет производимое ими давление.

А что же происходит при сжатии газа?

Уменьшив объём, занимаемый газом, в два раза, мы тем самым в два раза увеличим число молекул в каждом кубическом сантиметре, а значит, в два раза увеличим число ударов о стенки сосуда в каждую секунду.

Если сжимать газ при постоянной температуре, то скорость молекул не изменяется; они будут ударять о стенки с прежней силой, только чаще. Так, в нашем примере молекулы будут ударять о стенки в два раза чаще, и значит, в два раза возрастёт давление газа.

При очень быстром сжатии газ может сильно нагреваться. Кто знаком с работой дизельного мотора, тот знает, что в цилиндрах этой машины нет никаких "свечей" или других средств зажигания. Поршень, двигаясь внутрь цилиндра, заполненного горючей смесью, сообщает её молекулам такую скорость, что смесь разогревается до температуры вспышки. Воспламенившись, смесь быстро сгорает. Температура продуктов горения поднимается при этом ещё выше, давление в цилиндре увеличивается, и поршень отбрасывается назад.

Вспомните, что, накачивая велосипедную шину, вы ощущаете, как нагревается насос. Многие скажут, что он нагревается благодаря трению поршня о стенки насоса. Это не совсем верно. Качайте этим же насосом воздух не в шину, а просто в атмосферу. Если насос при этом и нагреется, то слабее, чем в первый раз. Вторая причина нагревания насоса заключается опять-таки в том, что, быстро сжимая газ, вы увеличиваете среднюю скорость его молекул, или, другими словами, повышаете его температуру.

При расширении сжатых газов наблюдается обратная картина — они охлаждаются.

Давление быстро растёт при нагревании газов. Как это объяснить?

Вы уже знаете, что при нагревании газа скорости молекул увеличиваются. Быстрее двигаясь, молекулы чаще ударяются о стенки, и каждый удар их сильнее, чем при низкой температуре. Понятно, что возникающее от сложения ударов отдельных [молекул давление газа в этом случае будет значительно больше.

Такова причина упругости газов. Впервые указал её М. В. Ломоносов.

"Мы считаем излишним, — писал Ломоносов, — призывать на помощь для отыскания причины упругости воздуха ту своеобразную блуждающую жидкость, которую очень многие — по обычаю века, изобилующего тонкими материями, — применяют обыкновенно для объяснения природных явлений; мы довольствуемся тонкостью и подвижностью самого воздуха и ищем причину упругости в самой материи его".

Загрузка...