СЕРЕБРЯНЫЕ ОСТРОВКИ

Весьма полезным оказывается электронный микроскоп при изучении тонких металлических слоев, получаемых испарением в вакууме или катодным распылением.

При изготовлении фотоэлементов, этих чудесных электрических глаз, тончайший слой цезия или другого светочувствительного металла наносится на серебряную подкладку внутри стеклянной колбочки.

От правильного распределения этих тончайших слоев металла на поверхности стеклянной колбочки и от их структуры зависят физические свойства пленок и их долговечность.

На первый взгляд тонкий слой серебра, испаренного в вакууме, кажется сплошным и равномерно распределенным. Но электронный микроскоп нам показывает, что этот слой не сплошной и серебро лежит мельчайшими кусочками, расположенными в виде отдельных островков. Добиваясь измельчения этих кусочков металла, получают более равномерную пленку. Чем равномернее слой металла, из которого сделана пленка, тем он лучше в работе.

Быстро мчится товарный поезд, разрезая стальной грудью воздух. Ночь. Ритмично постукивают колеса вагонов на стыках рельсов. Все спокойно и тихо. Поездная бригада и не подозревает о грозной опасности, нависшей над железнодорожным составом.

Но вот большая станция. Осмотрщики с фонарями в руках проверяют исправность вагонов. Они простукивают колеса и оси вагонов, заглядывают в буксы. Их чуткий слух улавливает малейшую неисправность.

Вот уже проверено несколько вагонов. Еще немного — и поезду будет разрешено следовать дальше. Но что это? У одного вагона осмотрщики задержались. Оказалось, что лопнула шейка оси.

Не прояви осмотрщики достаточной бдительности, крушение поезда было бы неминуемо. Погибли бы, быть может, человеческие жизни и тысячи тонн ценных грузов.

Почему же лопнула ось? Этому виной был микроскопический мир кристаллов металла, из которого она была изготовлена. Правда, такие случаи редки. Но чтобы их не было совсем, необходимо тщательное изучение мельчайшего мира кристаллов, детально рассмотреть который мы можем кроме других методов, пользуясь и электронным микроскопом.

Перед нами гладкая поверхность кусочка металла, неподвижная плоскость. Этот металл будет использован для изготовления ответственного сооружения. Он должен быть прочен и способен противостоять разрушительной силе времени. Его нужно всесторонне исследовать.

Может быть, он не годится для изготовления важного сооружения и его лучше использовать в других, менее ответственных случаях?

Построят из такого металла железнодорожный мост, он постоит некоторое время, а потом рухнет! Нельзя пускать металл в работу, предварительно всесторонне его не исследовав.

Но как же испытать в электронном микроскопе этот кусок металла? Ведь для электронных лучей он непрозрачен. Можно вырезать из него тончайшую пластинку, но и она будет непроницаема для электронных лучей. Вначале казалось, что изучение под электронным микроскопом металлов — задача неразрешимая.

Физики и химики обошли это затруднение. Они накладывают на кусочек металла тонкую пленку прозрачного лака. Лак высыхает, и его пленка плотно прилипает к металлу. Образовавшуюся пленку осторожно снимают.

Для этого образец металла погружают в воду, где от него пленка лака легко отделяется. На стороне пленки, обращенной к металлу, запечатлеваются все тончайшие детали строения его поверхности.

Пленка — это слепок. Это крошечная маска, снятая с «лица» металла. В электронном микроскопе мы видим точное отображение поверхности металла.


Получение слепков. Слева — поверхность металла, в центре — поверхность с репликой, справа — снятая реплика.


Человеческому воображению трудно на первых порах представить, как мельчайшие частицы какого-либо металла, абсолютно невидимые, вдруг появляются в поле нашего зрения. Перед нашими глазами возникает дикий и живописный мир: глыбы, утесы, пропасти, снеговые вершины, извилистые трещины. Вот что видно на помещенной в микроскоп тончайшей пленке лака.

Электронный микроскоп рассказывает исследователю, насколько пригоден металл для постройки и что нужно с ним сделать, чтобы он был прочнее, крепче.

Может быть, прежде чем из этого металла изготовлять ответственные детали, его нужно дополнительно обработать: нагреть до определенной температуры, охладить с той или иной скоростью, вторично пропустить через прокатный стан и так далее.

У электронного микроскопа свой язык, который знают только люди, с ним работающие. Для остальных, непосвященных, этот язык непонятен. Исследователю же совершенно ясно, что означает вон та точка, вот эта трещинка или искрящийся в электронных лучах излом крошечного кусочка металла. Он один умеет разговаривать с электронным микроскопом на его языке.

Изучение металлов под электронным микроскопом дает возможность по-новому определять их строение, вскрывать секреты стойкости против окисления (коррозии) и многое другое.

В мир бесконечно малых величин вводит человека электронный микроскоп. Этот исключительный по своей сложности и тонкости аппарат открывает перед советской наукой широчайшие перспективы в области дальнейшего исследования тайн природы.

Загрузка...