Энергетические реки текут вспять

Куда исчезает энергия?

В реках энергетических течение обратное рекам земным. Мощные потоки газа, угля, нефти, воды и ядерного топлива разделяются по перерабатывающим заводам и фабрикам; попадают на электростанции. Потом энергия мелкими речками растекается по предприятиям и городам. Ручейки ответвляются к цехам, домам, бензоколонкам. И уже струйки ее попадают в печи, электромоторы, квартиры.

Энергия рассеивается и исчезает.

Исчезает? Где? Насколько полезно мы ее использовали?

За всеми ручейками, текущими вспять, не проследишь. И невозможно выявить все щели и поры, по которым происходит утечка, пропадает добро. Еще труднее рассказать о всех способах борьбы с ненужными потерями. И все же попытаемся пройти по некоторым энергетическим руслам.

Прежде всего около половины всех энергетических ресурсов поступает на выработку электроэнергии, а также нагревание воды и пара как теплоносителей. Все остальное топливо непосредственно сжигается в печах, двигателях. Четверть ресурсов тратится в промышленности, а еще одна четверть — на транспорте, в сельском хозяйстве и коммунально-бытовой сфере.

Такой срез не дает полного представления о том, сколько же в целом какая-либо отрасль потребляет энергии. Например, транспорт или сельское хозяйство не только используют топливо непосредственно, но получают также электроэнергию, горячую воду, пар.

Если учесть и эти поступления, то основным потребителем энергии окажется промышленность — около миллиарда тонн условного топлива в год. Из них около четверти потребляют черная и цветная металлургия, примерно столько же — нефтехимическая и химическая промышленность, включая нефтепереработку, а машиностроение и металлообработка — одну шестую часть.

У энергетиков есть такое понятие — «конечная энергия», то есть энергия на выходе с последней ступени ее преобразования. Она и поступает народному хозяйству. Она может иметь вид электроэнергии, тепла различного потенциала, механической энергии. Доля конечной энергии от первичной, содержащейся в добываемых энергетических ресурсах, составляет всего две пятых. Шестьдесят процентов энергии исчезает на пути к потребителю. Что же происходит дальше?

Рассмотрим пример — сколько энергии нужно для обработки детали на токарном станке. Предположим, из шахты или скважины добыто 100 единиц энергии. Вот ее дальнейшая судьба:

Поступило / Потеряно

100 / 10 истрачено на собственные нужды: при транспортировке на электростанцию

90 — на электростанцию / 5 с отходящими дымовыми газами

85 — для генерации пара / 53 с охлаждающей водой в конденсаторе

32 — механическая энергия ротора турбогенератора / 2 в электрогенераторе

30 — в трансформаторы линии электропередачи / 2 на собственные нужды электростанции

28 — в линии электропередачи / 3 при передаче электроэнергии

25 — на электропривод станка / 6 в электроприводе станка

19 — на вращающийся вал станка / 17,5 на преодоление сил трения и отдано охлаждающей воде

1,5 — для обточки детали — необходимая энергия преодоления межмолекулярных сил

Читателю легко подсчитать — всего одна шестьдесят пятая часть энергии пошла на дело, остальная бесполезно рассеялась в пространстве.

Рассмотренная цепочка со столь обескураживающим результатом отнюдь не единственная. Примечательно, что очень часто мы прямо-таки разбрасываемся энергией на последних этапах ее утилизации. Так, в электрических лампах накаливания всего несколько процентов подводимой к ним энергии превращается в свет, остальная же уходит на обогрев атмосферы. При производстве минеральных удобрений лишь около половины энергии идет на получение полезного аммиака, а из них на последнем этапе растениям достается не более двух пятых.

В итоге используется лишь малая часть добытой первичной энергии.

Чем же вызываются такие потери и нельзя ли их уменьшить?

Вернемся к рассмотренному примеру. Для резания металла нужно преодолеть силы межмолекулярного сцепления. Но резец выполняет не только эту работу. Скорее, почти совсем не эту. Резец сминает металл, крошит его, тратит энергию на трение. Хотя исследовательско-конструкторская мысль всячески стремится улучшить процессы резания, они еще очень далеки от совершенства. Поэтому там, где это возможно, применяются и другие методы обработки металла — электроискровой, штамповка деталей из порошков, прокатка.

А потери в электроприводе станка можно уменьшить путем создания более эффективных электродвигателей, шестеренчатых пар, подшипников, смазочных материалов.

Теперь обратимся к самому главному источнику потерь — конденсатору турбины. Более шестидесяти процентов тепла, содержащегося в перегретом паре, не переводится в энергию вращающегося ротора турбины, а выбрасывается здесь в виде тепла при температуре 30–35 градусов. Такое большое рассеяние энергии в пространстве обусловлено основными законами термодинамики.

Более четырех с половиной веков прошло с тех пор, как гениальный мыслитель, художник, инженер Леонардо да Винчи, по сути дела, сформулировал первое начало термодинамики — закон сохранения энергии. Некоторое время тому назад в национальной библиотеке Мадрида были обнаружены две его неизвестные ранее рукописи. Одна из них начинается с вывода о бессмысленности вечного двигателя: «Стремление создать вечное колесо — источник вечного движения — можно назвать одним из бесполезных заблуждений человека. На протяжении многих столетий все, кто занимался вопросами гидравлики, военными машинами и прочим, тратили много времени и денег на поиски вечного двигателя. Но с ними происходило то же, что и с алхимиками: всегда находилась какая-нибудь мелочь, которая якобы мешала успеху опыта. Моя небольшая работа принесет им пользу: им не придется больше спасаться бегством от королей и правителей, не выполнив своих обещаний».

Но не хотели изобретатели внять смыслу слов Леонардо да Винчи. Ведь все на земле вечно: моря, океаны, ветры, реки. Почему бы не быть и вечному двигателю? И появлялись новые и новые проекты.

Через сто лет голландец Симон Стевин написал трактат «Начало равновесия», где высказывалась мысль о невозможности вечного движения. И опять — глас вопиющего в пустыне. Лишь в 1770 году Парижская академия наук постановила не рассматривать проекты вечных двигателей.

Атаки на первый закон термодинамики продолжались еще почти два столетия. Пожалуй, они сошли на нет в основном потому, что внимание неуемных ниспровергателей переключилось на второй закон термодинамики. А ведь и он был сформулирован довольно давно.

В 1824 году лейтенант французского генерального штаба Сади Карно, сын математика Лазаря Карно, издал труд под названием «Размышление о движущей силе огня и о машинах, способных развивать эту силу».

В этой работе С. Карно доказывал: «Движущая сила тепла не зависит от агентов, взятых для ее развития, ее количество исключительно определяется температурами тел, между которыми в конечном счете и происходит перенос теплорода».

Согласно второму закону термодинамики теплота — это особая форма энергии, и самопроизвольное превращение ее в другие формы невозможно, для этого обязательно нужны какие-либо рабочие тела.

Давайте рассмотрим любой цикл превращения тепла в механическую энергию. В качестве рабочего тела возьмем аммиак, который в теплообменнике разогревается до 127 градусов. Пар направляется в турбину и вращает ее. Затем отработанный пар с температурой 27 градусов переводится в жидкое состояние, отдавая тепло в конденсаторе в окружающую среду. Жидкий аммиак насосом перекачивается в теплообменник-нагреватель. Цикл повторяется снова. Каков же его КПД?

Еще С. Карно определил: в идеальном цикле доля потерянного тепла равна отношению минимальной температуры цикла (выраженной в градусах Кельвина, которые отсчитываются от абсолютного нуля, то есть от минус 273 градуса по шкале Цельсия) к максимальной. В нашем случае это отношение (273+27)/(273+127)=400/300=0,75. Если доля потерянного тепла равна 0,75, то оставшаяся четверть перешла в механическую работу. Это и есть максимальный теоретический КПД такого цикла. Реальный же из-за дополнительных потерь еще ниже и составляет не больше 15 процентов.

Единственный путь увеличения КПД — это повышение максимальной температуры. Если она будет 527 градусов, то доля потерь составит всего 300/800=0,38. Значит, идеальный КПД: 1–0,38=0,62, а реальный поднимется до 35–38 процентов. Примерно таков КПД в современных конденсационных станциях, использующих в качестве рабочего тела воду.

Конечно, можно добиваться и более высокого КПД. Однако рост его с дальнейшим повышением температуры замедляется. Подъем температурного максимума еще на 100 градусов даст повышение КПД только на 3 процента. К тому же установка сильно усложнится, придется применять дорогостоящие материалы. По сути дела, 35–38 процентов — это предельный КПД для электростанций с паровыми турбинами.

Столь суровое ограничение побуждает некоторых «изобретателей» как-то обойти второй закон термодинамики.

Известны многочисленные прожекты вечного двигателя второго рода. В отличие от «старых» вечных двигателей для их работы нужна энергия. Но черпать ее предлагают просто из окружающей среды, не производя механическую работу, не организуя потоки тепла от более нагретого тела к холодному. Соответственно никуда не сбрасывается тепло.

Второй закон термодинамики отвергает возможность создания такого двигателя. Как уже отмечалось, доля теряющегося тепла в цикле Карно равна отношению минимальной температуры цикла к максимальной. Но если мы хотим черпать энергию из окружающей среды, не сбрасывая ее, то максимальная температура становится равной минимальной. Следовательно, налицо нулевой КПД.

Хотелось бы сделать небольшое отступление и рассеять одно ложное впечатление, если оно нечаянно возникло. Автор совсем не хотел сказать, что все сложившееся в понимании природы нужно принимать на веру и ни в чем не сомневаться. В сомнениях, неведении есть и хорошая сторона — они дарят неизменную радость открытия. Нельзя терять ощущение своего невежества и менять радость поиска на догму. Сократ слыл мудрецом не потому, что знал все, а потому, что и в самом зрелом возрасте знал, что ничего не знает. И все же, изобретая или шагая к открытию, нужно уважать законы природы.

Значит, нельзя черпать энергию из воздуха, воды, земли вокруг нас? Нет, закон не так суров. Тепло окружающей среды можно утилизовать, но не даром. Для этого нужно произвести работу.

Например, что изменится, если рассмотренный выше цикл с аммиаком провести наоборот? Вот как он тогда будет выглядеть.

Если ранее в теплообменнике-нагревателе мы разогревали аммиак, то теперь подадим в него аммиак, уже разогретый до температуры 65 градусов, и охладим, передав тепло, например, воздуху помещения. Охлажденный до 20 градусов аммиак пропустим через расширитель-дроссель (ранее это был насос). Давление снизится, аммиак охладится до 2 градусов и перейдет в полужидкое состояние. Затем в испарителе (в прямой схеме это был конденсатор) подведем тепло извне из окружающей среды и испарим жидкость. Полученный газ сожмем в компрессоре (ранее это была турбина). Подогретый при сжатии до 65 градусов газ снова направим в теплообменник и тем самым замкнем цикл.

Что же дало нам обращение обычного термодинамического цикла, широко используемого в энергетике? В испарителе мы забрали тепло у окружающей среды при температуре около двух градусов, соответствующей холодному времени года. С помощью другого теплообменника при 65 градусах подогревался воздух в помещении. Значит, можно обогревать жилые дома теплом окружающей среды, которого много, очень много и в воздухе, и в воде рек, озер, морей? Весь вопрос в том, дорого ли это обойдется. Не дешевле ли обогреваться привычным способом, сжигая органическое или ядерное топливо?

Чтобы ответить на этот вопрос, придется проделать нужные вычисления. Цикл у нас обратный, значит, и считать нужно наоборот. Раньше отношение температур было равно отношению потерянной энергии, отданной окружающей среде, к подведенной. Теперь же отношение максимальной температуры к минимальной выражает отношение тепла, подведенного в жилое помещение и забранного у окружающей среды. Для температур 65 градусов и 2 градуса оно равно (273+65)/(273+2)=338/275=1,25. Тепла для обогрева помещения получилось на четверть более, чем мы его забрали от окружающей среды. Эта разница и есть та работа, которую мы должны были проделать, чтобы передать тепловую энергию от тела с меньшей температурой к нагреваемому воздуху жилых помещений. В реальных условиях данную работу совершает электромотор, вращающий вал компрессора.

Подобный тепловой насос, перекачивающий тепло окружающей среды на более высокий уровень, использует для обогрева помещений в конечном счете электроэнергию. Не лучше ли обогревать помещения непосредственно с помощью электрокаминов? Оказывается, нет. Тепловые насосы при тех же результатах расходуют электричества вдвое меньше.

В наше время тепловые насосы получили очень широкое распространение. Сейчас их миллионы. Несколько лет назад в мире был настоящий «насосный бум». Особенно выгодны они там, где для отопления использовалась электроэнергия или ценное жидкое топливо, — в США, Великобритании.

В нашей стране, отличающейся широкоразвитой сетью централизованного теплоснабжения, конкурентоспособность тепловых насосов ниже. Ведь во многих городах и микрорайонах больших городов для отопления используется пар, отбираемый из последних ступеней турбогенераторов. Он отдал уже почти всю энергию на вращение ротора турбины, и его все равно предстоит выбросить в конденсатор, где он отдаст тепло окружающей среде. Поэтому гораздо выгоднее термодинамически отобрать его у турбины и использовать для обогрева жилищ.

Но в нашей стране много районов, где нет централизованного теплоснабжения от ТЭЦ и могут оказаться эффективными тепловые насосы — например, если вблизи жилищ есть теплые сбросные воды заводов, фабрик, коммунально-бытовых предприятий. Температурный потенциал сбрасываемого тепла может оказаться недостаточным для жилищ, но тепловому насосу гораздо легче «перекачать» теплую воду на уровень, необходимый для отопления. Слово «легче» здесь означает, что для такой «перекачки» тепла потребуется меньше электроэнергии, чем на нагрев воды до температуры, необходимой в отопительной системе жилья.

Или возьмем ситуацию, когда есть дешевая электроэнергия. Такой она бывает, например, ночью. Тепловой насос в это время может «накачать» в аккумуляторные баки массу горячей воды, достаточную для отопления в течение дня. С помощью дешевой ночной (подпиковой) электроэнергии уже отапливают сельскохозяйственные объекты в Прибалтийских республиках, правда, в небольших количествах. Применение тепловых насосов позволит расширить масштабы применения подпиковой электроэнергии в том регионе, где органическое топливо очень дорого.

Нестандартно, гибко, с учетом всех местных условий должна определяться энергетическая тактика и стратегия для разных районов страны. У меня перед глазами — Якутия и Магаданская область, где совсем недавно я побывал в служебной командировке. Пришлось как раз разбираться с одним из вопросов энергоснабжения.

В этом регионе много полезных ископаемых. По всей территории рассеяны горнодобывающие предприятия. Наиболее интенсивная работа у них летом, когда легче справиться с вечной мерзлотой. Такие районы часто имеют вывернутый график нагрузок: летом электроэнергии потребляется больше, чем зимой.

Сотни мелких котельных дымят всю долгую зиму, обеспечивая отопление жилых домов. Котельные невелики по размерам, и обслуживающего персонала требуется предостаточно — ведь в качестве топлива используется уголь, смерзающийся зимой в твердые глыбы. Более того, уголь нужно доставлять автомашинами по горным трактам иногда за многие сотни километров. И снова нужны автоводители и служащие автопредприятий, а обустройство каждого нового человека на Севере стоит очень дорого и влечет, в свою очередь, дополнительные затраты энергии. Кроме того, автотранспорт нуждается в дизельном топливе, а он здесь особенно дорог. Видите, какая длинная энергодорогостоящая цепочка вытянулась для спасения от зимней стужи. Нет ли способа дешевле?

Ответ напрашивается сам собой — тепловые насосы. И здесь мы сталкиваемся с парадоксальной ситуацией. Руководители, отвечающие за электроснабжение, почти ритуально и с негодованием твердят о «термодинамическом безобразии» использования электроэнергии для отопления.

Но обратите внимание, ведь электроэнергия в этом случае нужна для обогрева ночью, когда она в избытке, а не днем; зимой, а не летом, когда ее потребление возрастает. И дальше: ведь можно будет отказаться при таком (электрическом) способе отопления от части автотранспорта, расхода дизельного топлива, уменьшить количество обслуживающего персонала.

Бернард Шоу сделал правильное наблюдение: «Как только захочется поверить во что-нибудь, сразу видишь все аргументы за и становишься слеп ко всем аргументам против». Не хотелось бы выглядеть слишком увлеченным. Но пусть и оппоненты проявят объективность. Наверное, если бы они ведали не только электроэнергией, но отвечали бы и за тепло, их точка зрения не страдала бы ведомственной ограниченностью.

Как же обстоят дела с тепловыми насосами в нашей стране?

В сущности, они есть сейчас почти в каждой квартире — ведь это наши домашние холодильники. Они перекачивают тепло из одной среды в другую за счет электроэнергии, оплачиваемой по 4 копейки за 1 киловатт-час. Они поднимают температуру в комнатах и понижают в морозильной и холодильной камерах. Отбор тепла из холодильника происходит через теплообменники, расположенные на его задней стенке, поэтому их не всегда и замечают.

Если эти теплообменники холодильника вынести из квартиры и разместить за стеной дома, а через холодильную камеру прокачивать воздух, то получим кондиционер. На изготовлении тепловых насосов подобного типа специализируется Бакинский завод кондиционеров. Их часто можно видеть в окнах домов, особенно в южных районах страны.

Теперь сделаем еще одну операцию — развернем кондиционер наоборот. Тогда охлажденный в камере воздух будет нагреваться не в квартире, а за стенами дома. Наш кондиционер будет отбирать тепло у атмосферы и направлять его в комнату. Конечно, охладить воздух за окнами кондиционеру не удастся — его слишком много.

Что же, мы получили тепловой насос? Не совсем. Настоящий экономичный насос должен быть совершеннее.

Бытовой холодильник не обязан иметь высокий КПД — его мощность относительно невелика. Но кондиционеры и тем более тепловые насосы должны поддерживать температурный режим не в маленьких холодильных камерах, а в просторных квартирах и производственных помещениях. Им надо больше мощности, выше КПД. Установки теряют простоту холодильников, становятся дороже и сложнее в эксплуатации. Это несколько приостанавливает нашествие тепловых насосов.

У нас в стране теплонасосные установки начали распространяться в наиболее выигрышном для них районе. В крымско-кавказской курортной зоне даже в осенне-зимние месяцы имеется безграничный источник тепла — восьмиградусная вода Черного моря. Благодаря тепловым насосам жители Черноморского побережья могут пользоваться дешевой горячей водой.

Для обогрева и получения горячей воды можно приспособить также громадное количество холодильных установок, работающих на фермах, овощехранилищах, хладокомбинатах, в столовых, магазинах. Как же не выбрасывать, а использовать тепло, вырабатываемое в этих тепловых насосах? Требуется лишь некоторая реконструкция. Над ее оптимальными вариантами сейчас и бьются специалисты ГДР, Франции, нашей страны.


Для себя или для внуков?

Мало изобрести и создать устройства для эффективного использования различных видов энергии в промышленности, транспорте, сельском хозяйстве. Нужно еще оценить, а выгодны ли они обществу? На помощь приходит экономический анализ. Именно он позволяет определить целесообразность создания той или иной машины, масштабы внедрения новой техники, развития какого-либо направления энергетики.

Известен афоризм, приписываемый Б. Франклину: «Я не так богат, чтобы покупать дешевые вещи». В быту мы часто руководствуемся этим принципом. Иногда предпочтем дорогую вещь, ибо она, как правило, служит дольше. Правда, приобретаем мы и дешевые вещи наподобие рабочей одежды или чего-нибудь модного. Так или иначе, интуитивно или по определенным правилам мы распределяем свой бюджет. Однако, если речь идет об очень дорогостоящей покупке, которая и служить тоже должна очень долго, решение принять непросто. Вот одна из задач с «энергетическим» уклоном.

Вам предлагают для обогрева индивидуального дома два типа отопительных установок: одна стоит 1000 рублей, а ежегодная эксплуатация будет обходиться в 50 рублей, у другой эти показатели равны соответственно 500 и 100 рублям. Какую выбрать?

Ответить сразу трудно. Учтем затраты за первые пять лет эксплуатации.

Для первой установки они составят:

1000 рублей + 50 рублей в год × 5 лет = 1250 рублей.

Для второй:

500 рублей + 100 рублей в год × 5 лет = 1000 рублей.

Значит, выбираем вторую? Не будем спешить. Выясним, а как будут выглядеть затраты через 15 лет?

Оказывается, что для первой установки полные затраты — 1750, а для второй — 2000 рублей. В этом случае нужно было бы выбрать первую, а не вторую установку. Выбирая более дешевую, мы экономим в первоначальных затратах, но затем в будущем нашим детям и внукам придется нести больше расходов на ее эксплуатацию. Для дорогой установки ситуация обратная. Вот откуда появилось название этого раздела: «Для себя или для внуков?»

Нет одинакового рецепта для разных экономических проблем, возникающих в нашем быту. Каждый решает эти вопросы по-своему.

В энергетике же без таких рецептов не обойтись. Всю важность выбора наиболее выгодного варианта осознала еще комиссия по разработке плана ГОЭЛРО. Вот что записано в одном из ее протоколов: «Очень важно для будущей работы ГОЭЛРО раз и навсегда определить, что нам выгоднее: большие первоначальные затраты и дешевая эксплуатация станции или меньшие капиталовложения и дорогая эксплуатация».

Многочисленные исследования, проведенные энергетиками и экономистами, позволили выработать такую рекомендацию: капиталовложения нужно соизмерять с ежегодными эксплуатационными затратами с помощью специального коэффициента эффективности капиталовложений. Используя его, мы получим так называемые приведенные затраты.

Для новой техники коэффициент эффективности равен 0,15. Тогда задача, поставленная нами в начале этого раздела, решается следующим образом.

Приведенные затраты для первой установки составят:

1000 × 0,15 + 50 = 200 рублей.

Для второй — меньше:

500 × 0,15 + 100 = 175 рублей.

Значит, вторую и нужно выбирать.

Вроде бы просто и понятно, но откуда мы взяли 0,15 — коэффициент эффективности капиталовложений?

Теоретически он должен вытекать из оптимального плана развития народного хозяйства на длительный период. Однако на самом деле его приходится определять экспериментальным путем на основе опыта создания, эксплуатации и проектирования энергетических объектов и оценки той роли, которую они играют в народном хозяйстве.

Нагляднее обратная величина этого коэффициента — срок окупаемости капиталовложений. Значение 0,15 — соответствует примерно 6 годам. Пока еще нет единой точки зрения, каковы должны быть сроки окупаемости для разных отраслей. По мнению одних экономистов, он один и тот же для всех отраслей, другие же допускают разброс от 4 до 12 лет. Сравнение экономической эффективности различных вариантов энергетических установок и стратегий страдает и от других недостатков, и поэтому привлекаются сопоставления также по величине трудовых затрат, по воздействию на окружающую среду, по необходимым масштабам развития производства в смежных областях и т. п.

В последние годы развивается еще один метод сравнения, который получил название энергетический нетто-анализ. Он позволяет определить, сколько энергии должно быть затрачено на создание вещей, оборудования, домов. Подсчитывая энергетические затраты при возведении, например, энергетической станции, мы выявляем с помощью нетто-анализа, сколько чистой энергии будет в результате направлено в народное хозяйство. Для этого из всей затраченной энергии вычитаются энергетические расходы на строительство станции, изготовление оборудования и материалов, последующую эксплуатацию станции.

Вот мы и начали выяснять, куда исчезает или где используется энергия, производимая различными энергетическими установками.

Очень часто в научно-технической литературе по экономике встречаются такие фразы: «Доля энергетических затрат составляет 20 процентов». А что входит в оставшуюся энергетическую долю? Это — сырье, материалы и оборудование, поступившее на предприятие со стороны. Это и труд людей.

Например, при изготовлении автомобиля тратится электроэнергия на привод станков и транспортеров, на сварку, электронагрев и компрессоры, вырабатывающие сжатый воздух. Тепло разного потенциала расходуется в кузнечных термических цехах, при отоплении и вентиляции. Все остальное прибывает со стороны. Так, тонколистовой металл привозят с металлургического завода, и потому в энергетических затратах на создание автомобиля он не учитывается.

А ведь на самом деле и этот лист металла — «сплошная» энергия. Проследим путь его создания. На прокатном стане из толстолистового металла был получен тонкий лист, а еще раньше на другом стане стальную заготовку прокатали в толстый лист. При этом тратилась энергия на двигатели прокатного стана, подогрев заготовок, общецеховое освещение, вентиляцию. Стальная заготовка пришла из мартеновского цеха, где в печи расходовалась электроэнергия, кислород для переплавки чугуна. Энергия тратилась и на этапах, предшествовавших загрузке руды в доменную печь, начиная с добычи исходного сырья, которая тоже не обошлась без энергоемких взрывных и экскаваторных работ.

А ведь мы пренебрегли такими боковыми ответвлениями энергетической цепочки, как прокатные станы, транспорт для перевозки, мартеновские и доменные печи, шахты, экскаваторы, которые внесли свой «вклад» в создание тонкого металлического листа для автомобиля.

Проследим, как создавалось любое оборудование от экскаватора до мартена и доменной печи, и убедимся, аналогично случаю с тонколистовым материалом, что источником всего является энергия.

Значит, любой изготовленный нами предмет — это как бы «материализованная» энергия. Конечно, для создания вещи нужен также физический труд человека и, главное, его интеллект. Но поскольку доля физического труда в настоящее время очень мала, то любые созданные людьми вещи и материалы можно измерять в энергетических единицах, потраченных на их производство.

По-видимому, именно этот факт дал основание экологу Говарду Одуму дать своей книге название «Энергетический базис человека и природы». Во введении к ней он пишет: «Энергия — всеобщая основа, источник и средство управления всеми природными ресурсами, базис культуры и всей деятельности человека… Тема этой книги — роль энергии в управлении нашей жизни, экономикой, международными отношениями, нормами жизни и ценностями культуры». Согласно Одуму даже эмоции и эстетические ценности во многом связаны с характером энергетических процессов, с наличием или отсутствием энергии.

Не впадая в крайности, к которым склонен иногда Г. Одум, нельзя не признать, что ценность каждой вещи можно измерять не только в денежных, но и в энергетических единицах. Во многих случаях такой «энергетический» счет оказывается очень полезным.

В среднем энергетическая ценность продукции промышленности СССР равна около 10 тысяч килокалорий на рубль. Понятно, что для разных отраслей эта величина может отличаться в десятки раз: в легкой промышленности она всего 1500 килокалорий на рубль товаров, а в черной металлургии — до 30–40 тысяч килокалорий. Да и внутри отрасли для каждого вида продукции величина энергетической ценности может быть совсем разной. Существуют обширные таблицы, в которых приводится энергетическая ценность различных продуктов.

Знакомясь с этими таблицами, наглядно осознаешь, что для сбережения энергии необходимо в равной степени экономить как тепло, электроэнергию, бензин, дрова, так и металлы, пластмассы, удобрения или просто струйку воды, текущей из крана. Ведь часто всего один потерянный килограмм какого-либо вещества означает потерю не одного, а нескольких килограммов топлива. Так, на производство килограмма химических волокон или пластмасс нужно истратить 5–10 килограммов топлива.

Умение сопоставить каждой единице оборудования, винтику, кубометру бетона, метру кабеля свою величину энергетической ценности помогает совершенствовать проектируемую энергетическую или технологическую установку и выбирать наилучший вариант.

Предположим, нужно сконструировать газотурбинную установку с наиболее высоким энергетическим КПД. Обычно с помощью термодинамических расчетов выявляют, при каком сочетании параметров (температура, давление, степень сжатия газа) КПД принимает наибольшее значение.

КПД во многом зависит от площади поверхности регенеративного теплообменника — чем она больше, тем выше КПД. Где же остановиться? Ведь чем выше КПД, тем больше размер теплообменника, а значит, и его стоимость. Сейчас в большинстве таких случаев переходят от термодинамического анализа к денежному, стоимостному.

К сожалению, из-за многочисленных и порой серьезных недостатков в ценообразовании это не всегда приводит к выбору действительно лучшего варианта. Полный же энергетический анализ надежнее. Он служит хорошим дополнением к денежному. Зная энергетическую ценность оборудования, можно уточнить термодинамическую оценку КПД, которую нужно только дополнять по мере введения в схему нового оборудования или изменения его размеров.

Энергетическому анализу может быть подвергнута вся электростанция, включая здания, технические сооружения, дороги, теплотрассы, различные смазочные, химические материалы. Такой анализ сейчас проводится очень редко, но нет сомнения в его возможностях и широком распространении в будущем.

Прошли времена бездумного преклонения перед новой техникой. Она настолько глубоко и широко внедряется в нашу жизнь, что нужно каждый раз очень тщательно соизмерять приносимую ею пользу с возможным вредом. Правда, наносимый техникой вред почти всегда заметнее пользы. И именно этой стороне часто больше внимания уделяют общественность, медицина, санитария.

Значительная доля материальных затрат на развитие энергетики связана с обеспечением безопасности как профессиональных работников, так и населения. Новые системы защиты, многочисленные очистные и шумопоглощающие сооружения требуют все больше средств. Где предел?

Имеющийся опыт говорит о том, что очень во многих случаях невозможно обеспечить «абсолютную» безопасность. Нельзя исключить разного рода аварии в авиации, наземном транспорте, промышленности и в энергетике, где иногда происходят и взрывы котлов, и выбросы радиоактивных веществ, и т. п.

Каков же оптимум противоаварийных мер?

Проблема эта очень сложная, пути ее решения разнообразны, и пока среди специалистов нет единой точки зрения. Мне кажется логичным и разумным подход, развиваемый коллегами из Института атомной энергии имени И. В. Курчатова, доктором технических наук Я. Шевелевым и кандидатом физико-математических наук В. Деминым.

Надо ли стремиться установить уровень опасности техники настолько низким, насколько это возможно? Вроде бы заманчиво, но на самом деле иллюзорно. Более того, в конечном счете это приведет даже к возрастанию опасности, а не к ее уменьшению.

Дело в том, что, помимо прямого риска, создаваемого какой-либо установкой или технологией, существует еще и косвенный риск. Он обусловлен строительными работами, изготовлением оборудования для защитных систем и сооружений. С ростом расходов на безопасность прямой риск падает, а косвенный — постепенно возрастает. Начиная с некоторого уровня расходов, полный риск уже неизбежно увеличивается. Значит, существует оптимум в создании средств защиты!

Есть еще одна сторона вопроса. Практически при установлении уровня приемлемого риска исходят из одного критерия — добиться увеличения продолжительности жизни человека. Однако такой подход тоже не оптимален.

Благодаря цивилизации, в том числе и энергетике, человек стал жить дольше. Цивилизация сделала жизнь комфортнее и приятнее, облегчила ее и украсила. Недаром уровень жизни определяется не только здоровьем и долголетием, но и благосостоянием, качеством жизни. Люди соизмеряют комфорт, удовольствия, привычки с риском для здоровья и жизни. Ради скорости и удобства мы пользуемся более опасными видами транспорта. Многие занимаются туризмом, альпинизмом и другими небезопасными видами спорта. Некоторые избирают рискованные занятия, профессии, получая материальную компенсацию. Обе стороны уровня жизни связаны друг с другом самым непосредственным образом.

Наше общество обладает определенным количеством материальных средств — национальным доходом. Очевидно, затраты на защитные мероприятия отвлекают средства из других областей, в том числе обеспечивающих качество жизни и здоровье людей. Например, если выделить больше средств, чтобы очищать дымовые газы на электростанциях или повысить безопасность транспорта, то меньше материальных ресурсов останется на строительство новых больниц, также обеспечивающих здоровье людей, или на создание еще одной теплоэлектроцентрали, дающей тепло в наши жилища. Другими словами, к проблемам жизнеобеспечения человека нужно относиться комплексно. Методы же комплексной оптимизации еще не выработаны. Предстоит совместная работа экономистов, социологов, экологов, специалистов промышленности.

Учтем еще один «экономический срез». Как и во всем народном хозяйстве, в энергетике ускоренное движение вперед невозможно без разработки и быстрого освоения новой техники, а это процесс по природе своей вероятностный. Создание новейших установок в большинстве случаев связано с риском. Удастся ли обеспечить их работоспособность, получить лучшие характеристики — выяснится только после апробации новой технологии, на что уйдет несколько лет. А средства, материальные ресурсы нужны сейчас.

Неохотно идут на освоение новой техники многие администраторы, руководители промышленных предприятий, финансисты. Зачем рисковать, рассуждают они, ведь можно двигаться вперед и медленнее, но надежнее, увереннее. Действительно, можно, но тогда неизбежно научно-техническое отставание.

Где же выход?

Некоторые экономисты предлагают создать так называемый фонд риска и отчислять в него не менее одного процента национального дохода. Думаю, норму нужно увеличить вдвое, а то и втрое. Главное, чтобы новое успело победить старое прежде, чем устареет.


Поручение Совета Министров

В начале 1980 года по поручению Совета Министров Государственный комитет СССР по науке и технике постановил: «Организовать группы ученых и специалистов для обследования заводов и разработки конкретных мероприятий, направленных на сокращение расхода топливно-энергетических ресурсов».

Череповецкий металлургический завод, Новокраматорский машиностроительный завод имени В. И. Ленина, Полоцкий нефтеперерабатывающий завод, северодонецкое производственное объединение «Азот» — вот места, в которые отправились из Москвы специалисты. В составе группы, выехавшей на северодонецкое производственное объединение «Азот», был и автор этих строк.

Здесь зарождалась азотная промышленность страны. В начале века недалеко от Северодонецка, в Юзовке (теперь Донецк), был построен первый в России цех по производству азотной кислоты из аммиака с производительностью всего 8 тысяч тонн в год. Вся его продукция шла тогда на военные нужды.

Этот цех сейчас просто затерялся бы на территории объединения. Первое, что поражает на этом предприятии, — масштабы потребления. «Азот» забирает у народного хозяйства почти одну пятисотую всех производимых топливных ресурсов! Это даже трудно себе представить: всего пятьсот таких предприятий, как «Азот», могут поглотить всю энергию страны.

Объединение выпускает аммиак, метанол, азотную и уксусную кислоты, минеральные удобрения, а также десятки видов другой продукции, включая товары широкого потребления: чемоданы-«дипломаты», клей, стиральные порошки. Комиссии пришлось поработать, чтобы выявить причины потерь в разнообразных технологических цепочках, наметить возможные пути экономии энергии.

Главный потребитель энергии в объединении — аммиачное производство. Одна установка вырабатывает в год несколько сотен тысяч тонн аммиака и расходует сотни миллионов кубометров природного газа. Чем меньше газа тратится, тем экономичнее установка. Существуют агрегаты, потребляющие от 800 до 1200, а иногда даже до 1500 кубометров газа для производства одной тонны аммиака. Причин неоправданно высокого расхода достаточно много. Одна из них — недостаток электричества.

Мы уже говорили, что энергия потребляется неравномерно. Самый радостный и самый трудный день для энергетиков — 22 декабря. Это их профессиональный праздник. И в этот же самый короткий день в году расходуется максимальное количество энергии, что дает возможность оценить максимально необходимые мощности электроэнергетики. Резко меняется потребление и на протяжении недели — самая низкая нагрузка падает на воскресную ночь, самая высокая на утро и вечер рабочих дней недели.

Мощностей электростанции для покрытия пиковых потребностей пока не хватает. При перегрузках, а также при авариях диспетчеры вынуждены отключать часть потребителей, снижать нагрузку энергосистемы, иначе начинает падать частота тока, а допускать этого никак нельзя. При нестандартной частоте резко возрастают энергетические потери у ряда потребителей, отказывает автоматика, портится оборудование.

Ежегодные потери от несоблюдения стандарта по частоте оцениваются в 2 миллиарда рублей. Много это или мало? Себестоимость электроэнергии — примерно 1,5 копейки за киловатт-час. Электростанции страны вырабатывают 1400 миллиардов киловатт-часов, на сумму 20 миллиардов рублей. Значит, по крайней мере 10 процентов произведенного электричества пропадает впустую.

Перерыв в электроснабжении так называемых потребителей первой категории наподобие птицефабрик, животноводческих ферм, доменных печей, холодильников и ряда других технологических производств приводит к авариям, порче продукции и оборудования.

Конечно, остановка аммиачного агрегата не приводит к аварии, но вызывает очень большие потери природного газа. Для вторичного запуска после остановки может понадобиться несколько суток. В течение всего этого срока химики вынуждены сжигать природный газ зря, так как технологический процесс требует точного соблюдения состава газовых потоков, их температуры, давления. А после остановки все параметры нарушаются, установка начинает расхолаживаться. При запуске же норма восстанавливается очень медленно, а пока этого не произошло, смесь газов не годится для получения аммиака и ее приходится выбрасывать «на ветер».

Казалось бы, какой можно дать рецепт химикам-производственникам при таком «пиковом положении»? Конечно, тут главную роль должны сыграть энергетики, создавая необходимые электрические мощности, в том числе и пиковые.

Такие пиковые станции работают от 500 до 1500 часов в году. Не предъявляя к ним очень высоких требований по КПД и ресурсу, нетрудно сделать их гораздо более дешевыми, чем несущие основную постоянную нагрузку базисные станции. Лучшей пиковой электроэнергетической установкой в настоящее время является газотурбинный генератор, похожий на газотурбинный авиадвигатель. Установку эту можно быстро запустить и остановить.

И технически и энергетически подобное решение является разумным. Однако более равномерное потребление энергии самим производством способно ослабить требования к энергетикам. К оптимальному нужно двигаться с двух сторон — так будет быстрее и выгоднее.

Действительно, стоимость пиковой электроэнергии составляет около 30 рублей за киловатт установленной мощности, в то время как на предприятиях для уменьшения потребления электроэнергии в периоды максимальной нагрузки нужно затратить всего 2–3 рубля на киловатт ликвидируемой мощности.

Иногда на предприятиях можно наблюдать такую картину: в разгар вечерней рабочей смены рабочие останавливают станки, убирают рабочие места. Цех пустеет, выключается свет. Это и есть плановая остановка из-за нехватки энергии. Подобных потерь можно иногда избежать, соответствующим образом планируя смены или организуя ночную работу.

Рабочие получат больше вознаграждения за работу в ночную смену, а предприятиям целесообразно предоставить пониженный тариф за пользование ночной электроэнергией. Необходимы соответствующие автоматизированные системы учета и контроля, которые уже сами по себе помогли бы выравнивать суточные графики электронагрузок.

Так и поступают специалисты объединения «Азот». Вместе с энергетиками Донбассэнерго они внимательно изучили характер графиков нагрузки в критические периоды, нашли технические и организационные возможности для отключения одних и более позднего включения других потребителей.

Каждая аварийная остановка необязательно связана только с отключением электроэнергии. К ней приводит отказ какого-либо измерительного или регулирующего прибора, и остановка насоса, и поломки вентилятора теплообменника. Другими словами, экономия энергии переплетается с соблюдением технической дисциплины, профилактики и различных видов ремонта, что подразумевает наличие хороших диагностических приборов или систем, а также просто запасных частей.

За две недели работы комиссии на объединении «Азот» пришлось еще раз убедиться, как важно тесное единство науки с производством.

Один из философов сказал: «Знания — это круг. За его границей — незнание. Расширение знания — площади круга — одновременно увеличивает границу с неизведанным».

Чем больше мы узнавали о деятельности объединения, тем лучше понимали его проблемы и способы их решения.

Важной оказалась еще одна причина повышенного расхода природного газа. Известно, что сера в угле, нефти, газе — одна из самых главных причин загрязнения атмосферы. Но из-за нее, оказывается, существенно растет также расход энергии. Сера портит катализаторы, широко используемые в технологических процессах. Чтобы удержать работу агрегатов в нужном режиме, приходится повышать температуру в зоне катализа и для регенерации катализатора увеличивать число продувок обратным ходом газа.

Рост серосодержания с предельно допустимых 80 миллиграммов на кубометр газа до 220 привел на объединении «Азот» к увеличению расхода газа с 1100 кубометров газа на тонну метанола до 1200 кубометров, то есть почти на 10 процентов! К тому же возросли расходы электроэнергии на 5 процентов, а кислорода — на 10.

Так стремление газодобытчиков дать стране больше газа ценой иногда некоторого ухудшения его качества в конечном счете приводит к противоположному результату. Газ тоже должен удовлетворять определенному стандарту. Соответственно наша комиссия записала в своих рекомендациях: «Госстандарту совместно с заинтересованными министерствами разработать и утвердить в 1982 году ГОСТ на природный газ, используемый в качестве сырья на промышленных предприятиях».

Перспективный путь в энергосбережении — оптимизация обмена энергией в течение технологического процесса. Химики одни из первых стали создавать эффективные энерготехнологические установки. Ведутся эти работы в Государственном институте азотной промышленности, созданном в 1931 году.

Упрощенно задача выглядит так. Процесс преобразования метана в водород — паровая конверсия — происходит при температуре 800–900 градусов. Газ охлаждается, и затем в другом реакторе при синтезе водорода и азота образуется аммиак. Ключевые слова здесь — «газ охлаждается». Куда же отдается тепло при охлаждении?

Раньше, в первых технологиях 30-х годов, оно практически выбрасывалось в атмосферу, поэтому затраты энергии были очень большие. Еще в 60-е годы расход электроэнергии на тонну аммиака составлял около 750 киловатт-часов. Сейчас в современных агрегатах он уменьшился в 8 раз благодаря энерготехнологической схеме, в которой тепло не выбрасывается, а используется последовательно на разных этапах технологического цикла для получения пара, вращения турбин, подогрева газа и воды.

На объединении «Азот» такие новые установки соседствуют со старыми. Нужно заменять старые новыми и еще более совершенными. Правда, эти «еще более совершенные» разрабатываются и осваиваются медленно, очень медленно. Судите сами хотя бы по такой детали. Предполагалось начать установку новой модели аммиачного агрегата АМ-85 в 1985 году. А теперь, оказывается, он будет испытываться лишь в 1990 году. В этой новой установке затраты энергии сократятся на 30–40 процентов.

Нужно сказать, что северодонецкое объединение «Азот» — передовое в отрасли по экономии топливно-энергетических ресурсов. Его коллектив не нужно убеждать в необходимости рационального расходования энергии. Движение за экономию охватывает на нем все производства, цехи и службы.

Немного найдется предприятий, на которых, как на «Азоте», ежедневно проводятся селекторные совещания с анализом расхода энергоресурсов. В одиннадцатой пятилетке экономия ресурсов составляла ежегодно несколько процентов.

На каждом предприятии существуют десятки и даже сотни способов экономии энергии. Некоторые могут дать существенный эффект. На «Азоте», кроме экономии энергии за счет повышения КПД основных технологических агрегатов, большую роль играет экономия вторичных ресурсов.

Очень часто над химическим или нефтехимическим заводом возвышается труба, из которой вырывается огненный факел. Благодаря такой «свече» обеспечивается безопасность производства. Ведь здесь кругом газы, которые при смешении с кислородом воздуха образуют взрывоопасную смесь. Их приходится сбрасывать из установок при запуске или аварии и сжигать. Вот почему постоянно горит «свеча».

Не всегда огонек «свечи» маленький. Иногда слышится даже рев пламени. Это означает, что предприятие сжигает вторичные энергетические ресурсы, прежде всего загрязненные ненужными примесями горючие газы, которые сбрасываются из различных точек технологических процессов. Из процесса выводятся также газы, не удовлетворяющие технологическому процессу по тем или иным параметрам. Чаще всего вторичные энергетические ресурсы — это горючие газообразные продукты сгорания, выходящие из различных печей. При охлаждении технологических потоков нагретых веществ сбрасывается в атмосферу большое количество физического тепла.

Еще хуже, когда горючие органические вещества выносятся сточными водами. Губятся реки и водоемы, пропадает топливо. До недавних пор не удавалось решить эту проблему — фильтры или очистные устройства оказывались малоэффективными или дорогостоящими. Но сейчас научились использовать такую воду для производства пара. Образовавшийся пар «поджигают», и в его пламени сгорают загрязняющие растворенные компоненты. При «сгорании» пар дополнительно перегревается, воспринимая энергию растворенных горючих веществ.

До проведения активных работ по энергосбережению потенциальные запасы вторичных ресурсов на объединении «Азот» составляли около десятой части от всего энергопотребления. Раньше обычно не принимали в расчет воды, нагретые на 50–60 градусов. Считалось, что на предприятии, где выбрасывается много тепла значительно более высокого потенциала, использовать их экономически и энергетически невыгодно.

А на «Азоте» сумели найти применение и этому теплу. Большинство технологических процессов проходит здесь при высоких давлениях. Значит, без компрессоров не обойтись. Затраты же энергии на сжатие газов в компрессорах меньше при более низкой температуре. Нагревающиеся при сжатии газы охлаждаются водой. Поэтому нагретой воды много. Заводчане нашли ей применение. Правда, только в зимнее время. Но ведь не хватает энергии именно зимой.

Рядом с «Азотом» расположен институт ГосНИИметанолпроект. Специалисты обеих организаций предложили подогревать с помощью этого тепла речную воду, направляемую на обработку. Температура ее должна быть не менее 25 градусов. Разработали проект, построили теплообменный блок. «Азот» стал экономить преимущественно зимой 30 тысяч тонн условного топлива в год. Кроме того, уменьшился расход электроэнергии на градирнях водооборотной системы.

Значительную экономию топлива на «Азоте» тоже получили, собрав сбросные горючие газы от нескольких действующих производств.

Пришлось решить ряд сложнейших технических вопросов, связанных с безопасностью и экономной транспортировкой влажных газов. Само это мероприятие проводилось с соблюдением мер экономии.

Например, были использованы нагнетатели, освободившиеся после закрытия старого производства аммиака.

Не забывают на «Азоте» и об обычных организационно-технических мерах, не требующих больших затрат материальных и трудовых ресурсов и длительных сроков. Речь идет о ликвидации простых потерь тепла, совершенствовании схем электроснабжения, разработке оптимальных режимов работ, улучшении работы сооружений водооборота.

Однако от всех недостатков в энергосбережении избавиться не удалось. Членам нашей группы, созданной по постановлению ГКНТ, не раз приходилось летать в гостеприимный Северодонецк, проверяя, а как же выполняется программа «Энергосбережение». Ныне опыт производственного объединения «Азот» широко распространяется в химической промышленности.

А опыт действительно драгоценный. Постоянный изобретательский поиск во имя сбережения энергии вознаграждается. «Азот» в течение долгого времени наращивает выпуск продукции при том же расходе топлива.

За разработку и внедрение комплекса мероприятий по экономии топливно-энергетических ресурсов группе работников объединения в 1984 году присуждена премия Совета Министров СССР.


Сборник отличных мыслей

В этой голубенькой книжечке 150 страниц. Называется она: «Сборник предложений по экономии электрической и тепловой энергии, премированных на тридцать пятом Всесоюзном конкурсе». На конкурс подано 1700 предложений, а в книжке рассказывается только о 200, отмеченных премией. Какова судьба остальных?

Наверное, многие дельные идеи так и не вышли за стены тех предприятий, где родились. Это обидно — очень уж расточительно ограничиться всего двумястами премированными находками. Смотрю тираж брошюры — всего 5000 экземпляров на сотни тысяч различных предприятий страны! Пожалуй, такие книги надо издавать миллионами и рассылать на предприятия даже в обязательном порядке.

Читателю, конечно, ясно: не то что рассказать обо всем этом бесконечном множестве идей, но даже перечислить наиболее важные в различных отраслях промышленности невозможно. Мы и не станем пытаться это делать. Резоннее будет лишь взглянуть на главные пути этой деятельности.

Улучшая организацию производства и использования энергии и применяя недорогие технические новшества, можно добиться около четверти всей экономии. Нестандартный подход способен принести ощутимые результаты. Вот пример из сборника «Отличных мыслей». Десятки тысяч промышленных холодильных установок разной мощности работают на хладокомбинатах, базах по хранению продуктов, столовых. Летом и зимой они потребляют громадное количество электроэнергии. Зимой?! Когда на улице мороз? И вот предлагается вентилировать хранилища зимним наружным воздухом. К сожалению, в большинстве случаев так делать нельзя, но можно ввести в схему холодильной установки специальный воздушный конденсатор-охладитель — предлагают авторы изобретения. В результате экономятся миллионы киловатт-часов электроэнергии.

Недавно прочитал, что в Финляндии такие холодильные установки уже работают.

Чтобы сберечь энергию, надо также, говорится в Энергетической программе СССР, совершенствовать эксплуатацию действующего оборудования, сокращать непроизводительные потери.

Около 60 процентов всех электродвигателей нашей страны используются для привода вентиляторов, компрессоров, насосов, воздуходувок. Они вращаются с постоянной скоростью. Но ведь требования потребителей меняются во времени. Значит, вращение выгодно регулировать с помощью, скажем, современных полупроводниковых регуляторов. Тогда в масштабах страны можно было бы сэкономить до 10 процентов (!) всей вырабатываемой электроэнергии.

Полупроводниковые регуляторы способны эффективно снизить напряжение при уменьшении нагрузки. При этом будет поддерживаться высокий уровень КПД. Дело пока дорогое, но во многих случаях окупается за счет экономии энергии.

Если же научиться разумно распоряжаться вторичными энергетическими ресурсами, то в принципе, как показывает опыт объединения «Азот», это может дать еще около 10 процентов всей сэкономленной энергии. Но сорок процентов всей ожидаемой экономии энергии можно получить благодаря, как сказано в Энергетической программе, «разработке и освоению энергосберегающих технологий».

Сначала ответим на вопрос: «Сколько энергии нужно теоретически для того, чтобы создавать различные вещества и материалы, используемые человеком?»

Теория и практика иногда значительно расходятся. Теоретически для производства одной тонны цемента нужно затратить 25 килограммов условного топлива, а практически — более чем в десять раз больше: 320 килограммов.

Приведу небольшую табличку, которая прямо-таки вопиет: «Люди, зачем вы транжирите энергию, столь нужную для повышения качества жизни?» Вот сколько тонн условного топлива расходуется на производство одной тонны продукта.

Как видим, современные расходы отличаются от теоретических в пять-десять раз, а при получении бумаги более чем в сто раз. Теоретические цифры определяются энергией, необходимой для разрыва связей между атомами в различных сырьевых материалах — окислах алюминия, железа, кальция, кремния. В действительности приходится затрачивать много энергии на отделение примесей, добычу сырья, производство оборудования, получение необходимой структуры.

А если в теплообменниках, машинах и другом оборудовании перейти на керамические материалы, те самые окислы, которые разлагают, извлекая из них металлы?

Увы, пока для получения керамик с требуемыми хорошими свойствами нужно потратить энергии больше, чем на выделение из них металлов.

Если нижняя строка таблицы — это цель далекого будущего, то во второй строчке отражен уровень энергетических расходов, достижимый в ближайшие годы. Так, при производстве стали и цемента энергопотребление можно снизить в полтора-два раза.

Сначала о цементе — хлебе строительства. Изобретен он был в 1824–1825 годах почти одновременно каменщиком из английского города Лидса Джозефом Эспдином и русским инженером Егором Герасимовичем Челиевым, одним из авторов проекта восстановления Москвы после пожара 1812 года. Когда смесь известняка и глины прокаливается при температуре 1400–1500 градусов, то образуются различные сплавы окислов кальция и двуокиси кремния, которые и есть цемент.

У нас в стране ежегодно производится 130 миллионов тонн цемента. Согласно таблице при этом расходуется 40 миллионов тонн условного топлива. А производство цемента должно еще наращиваться. Как снизить энергопотребление?

Со времени изобретения цемента прошло более 150 лет, а, по сути дела, способ его производства почти не изменился. Сами изобретатели применяли так называемый «сухой» способ. Потом в смесь известняка и глины стали добавлять воду, благодаря чему получалась более однородная сметанообразная масса и улучшалось качество цемента. Но резко возросли затраты энергии на выпаривание воды. На это долгое время не обращали внимания — ведь топливо было дешевым. Подавляющая часть цемента у нас в стране производится таким «мокрым» способом.

А во Франции, ФРГ, Японии почти все заводы уже перешли на «сухой» способ. В этом случае затраты энергии могут быть уменьшены в полтора-два раза. Некоторые заводы в нашей стране тоже работают по «сухому» методу. Однако он пока не получил массового распространения, хотя у 75 процентов заводов страны имеется подходящая для этого сырьевая база.

Для производства некоторых марок цемента можно использовать цементный клинкер — почти готовую цементную массу, требующую только размельчения и введения некоторых добавок. Применение клинкера — побочного продукта черной и цветной металлургии — также дает существенное уменьшение энергопотребления.

Несколько лет назад сотрудники Ташкентского института строительных материалов открыли новый способ получения цемента — холодный. Они изучали влияние различных добавок на скорость образования цементного клинкера. Наилучшие результаты дал хлористый кальций. Оказалось, в его присутствии можно обжигать цемент при температуре около 1000 градусов, то есть снизить ее на 400 градусов. Топлива экономится почти на треть. Кроме того, в полтора раза возрастает производительность печей — громадных 30-метровых вращающихся барабанов, в которых сжигается нефть или газ.

Как показали дальнейшие исследования, ташкентские ученые создали фактически новый вид цемента, названный алинитом. От обычного кристалла цемента алинит отличается тем, что в него вкраплен еще и атом хлора. Алинитовый цемент в полтора-два раза легче измельчается и значительно быстрее твердеет при замешивании с водой, песком и щебнем. Значит, и здесь экономятся время и энергия!

На VII Международном конгрессе по химии цемента в Париже в 1980 году сообщение советских специалистов вызвало необычайный интерес. В Ташкент зачастили гости из ФРГ, Финляндии, Индии и других государств.

Судя по всему, в ближайшие годы удастся заметно понизить уровень энергопотребления в производстве цемента, уменьшить потребность в энергии более чем вдвое.

В полтора раза можно также уменьшить потребление энергии на производстве стали, если комплексно использовать различные новые технологические процессы металлургического производства, совершенствовать все его многочисленные технологические цепочки. Чтобы снизить удельный расход кокса, этого самого дефицитного топлива металлургии, целесообразно применять в доменном производстве природный газ, обогащать доменное дутье кислородом или повышать температуру дутья. В домнах будет потребляться на пять-десять процентов энергии меньше, если их объем увеличить с 2000 до 5000 кубометров.

Применение непрерывной разливки стали на 20 процентов увеличивает выход годного металла и тем самым также снижает расход энергоресурсов. Если увеличить долю лома как первичного сырья, то опять-таки существенно экономится энергия — энергозатраты при производстве стали изменятся в десять, а алюминия даже в пятнадцать раз.

В некоторых газетных статьях иногда встречаются неточности, создающие неправильное представление о возможных масштабах экономии энергии в черной металлургии. Например, утверждается, будто «применение кислородно-конвертерного способа позволяет в десять раз уменьшить потребление топлива при производстве стали по сравнению с мартеновским». Слов нет, кислородно-конвертерный способ очень прогрессивен и позволяет сократить потребление природного газа раз в десять. Но только природного газа. Общее же потребление энергии в конвертере иногда выше, чем в мартене.

Уже сейчас кислородно-конвертерное производство в промышленно развитых капиталистических странах обеспечивает около двух третей выпуска металла. У нас — существенно меньше. Дело в том, что сохранение постоянных цен на жидкое и газообразное топливо в 70-х годах не стимулировало внедрение этого метода.

«Четверть всей экономии в ближайшие пятилетия можно получить за счет совершенствования внутриотраслевой и межотраслевой структур» — таковы сухие строчки Энергетической программы СССР. А это означает, что замена металлов менее энергоемкими конструкционными материалами приводит к энергетическим выигрышам в масштабах всего народного хозяйства. Здесь для конструкторов и производственников безграничный простор новаторского поиска.


Быстро или медленно?

Десять граммов условного топлива нужно израсходовать, чтобы перевезти по железной дороге одну тонну груза на расстояние в один километр. Много это или мало? С чем сравнить эту величину?

Теоретически вообще не нужно затрачивать никакой энергии для того, чтобы при равномерном движении без трения переместить груз по горизонтальной поверхности. Затраты необходимы при ускорении и торможении. Другая причина энергетических потерь — трение. Без него не смог бы существовать наш мир, но за использование сил трения нужно платить дорогой ценой. Рельсы, асфальт, вода, воздух препятствуют движению. Расход энергии зависит от типа двигателя, его КПД и, конечно, от вида транспортного средства, его размеров и формы.

Морской и речной транспорт расходует топлива в 10 раз меньше, чем железнодорожный, — всего 1 грамм на один тонно-километр. Это и понятно. Ведь и скорость у судов поменьше, и размер побольше. У автомобилей больше скорость, но гораздо меньше грузоподъемность. А отсюда и значительные затраты энергии — 200 граммов на тонно-километр.

Ради наглядности сведем эти показатели (расход-топлива в граммах на один тонно-километр) в таблицу:

Речные и морские суда — 1

Трубопроводный транспорт нефти — 1

Железная дорога — 10

Трубопроводный транспорт газа — 50

Автомобили — 200

Авиация — 1000

Человек — 100

Веломобиль — 10

Пчела — 2000

Пчела транспортирует свое тело самым неэкономичным образом, а вот человек передвигается гораздо эффективнее. Если бы конструктору предложили охарактеризовать человека как транспортное средство, он сказал бы: «Двигатель с автономным энергопитанием линейного типа. Весьма доступен и прост в обращении, надежен в работе. Конструкция усовершенствована опытами, проводившимися длительное время. Работает в широком диапазоне общедоступных топлив. Средний срок службы без капитального ремонта составляет 70–80 лет».

Вернемся к железным дорогам. Они обеспечивают половину всего грузооборота страны. Еще одна треть грузов передается по трубопроводам. Остальное перевозят морской транспорт, авиация и автомобили.

Но вот какая несообразность — на долю автомобилей приходится одна двадцатая грузооборота, а расходуют они 70 миллионов тонн условного топлива. Это почти треть транспортного энергопотребления. В то же время железные дороги, обеспечивающие 3,5 миллиарда тонно-километров грузовых перевозок, забирают всего 15 процентов топлива.

Почему бы не передать половину автомобильных перевозок железнодорожному транспорту? Тогда дефицитного жидкого топлива будет сэкономлено около тридцати миллионов тонн!

Однако столь кардинальное совершенствование внутриотраслевой транспортной структуры, неосуществимо по нескольким причинам. Во-первых, автомобили незаменимы при доставке грузов на малые и средние расстояния. Необходимо также перевозить грузы потребителям с железнодорожных станций. А ведь существуют еще карьеры, где не обойдешься без большегрузных автомобилей. Кроме того, в удаленные и труднодоступные места невыгодно пока прокладывать железные дороги, которые становятся экономичными только в том случае, когда грузопоток на них достаточно велик.

Совсем недавно завершилось строительство БАМа. Десятки тысяч молодых строителей не жалели сил, сооружая одну из самых трудных железных дорог страны. Им бросали вызов и местность, и климат, и отдаленность от человеческого жилья. Однако в ближайшие пятилетки на БАМе будет экономична только одна колея. Подойдет время, и проведут вторую нитку. И лишь потом встанет вопрос об электрификации. А почему не сделать этого сейчас?

Вопрос стоит так: «Что выгоднее — тепловоз или электровоз?» Затраты первичной энергии на электротягу (то есть топлива на электростанциях, вырабатывающих электроэнергию) меньше, чем на количество дизельного топлива, потребляемого тепловозами. Кроме того, электростанции вырабатывают электроэнергию из менее дефицитного угля, сланцев, ядерного горючего. Вроде бы электровоз выгоднее?

Однако электрифицировать железную дорогу — дело очень дорогое. Нужно затратить около 100 тысяч рублей на километр пути. Электрификация выгодна, если напряженность перевозок по железной дороге велика, так как в этом случае капиталовложения быстро окупятся. Если же железнодорожных эшелонов пропускается мало, лучше использовать тепловоз.

У нас в стране средняя грузонапряженность очень большая — около 25 миллионов тонн в год. Если состав весит 3 тысячи тонн, то железная дорога пропустит в год около восьми тысяч эшелонов, а с учетом пассажирских поездов — вдвое больше. Составы будут следовать друг за другом каждые полчаса. Такая высокая загрузка обусловливает и высокую экономичность железнодорожного транспорта нашей страны.

В Западной Европе и США картина совсем другая. Железных дорог там построено очень много. Например, в США — около 300 тысяч километров железнодорожных путей. Однако используются они весьма слабо, даже расточительно. Грузопоток достигает всего 1–1,5 миллиона тонн в год, то есть в пять-десять раз меньше, чем в СССР. Поэтому электровозы там невыгодны. В США доля электрифицированных железных дорог составляет всего один процент.

В СССР же электрифицировано более трети железных дорог, по которым проходит половина грузооборота страны.

Совершенствование железнодорожного транспорта идет по всем направлениям — создаются более мощные тепловозы, увеличиваются их скорости. Идут испытания поездов на магнитной подвеске, разрабатываются проекты экспрессов, «летящих» в тоннелях. Нужны разные поезда — быстрые для пассажиров и экономичные для грузов.

Разумеется, конструкторы железнодорожного транспорта, конечно, тоже думают о том, как уменьшить затраты энергии.

На кольцевой линии Московского метро появился новый поезд с серебристыми шестигранными бочкообразными вагонами, выполненными из высокопрочных алюминиевых сплавов. Весят эти вагоны почти вдвое меньше прежних, также сделанных на Мытищинском машиностроительном заводе. Уменьшенный вес — это первый выигрыш, позволивший увеличить полезную нагрузку. Кроме того, бочкообразная форма позволяет взять в каждый вагон на 30 пассажиров больше.

В поезде применена система возврата электроэнергия обратно в сеть в тот момент, когда он начинает тормозить. Двигатели при торможении переводятся в режим выработки электроэнергии, то есть работают как электрогенераторы. Только в результате этого усовершенствования энергозатраты уменьшаются на 12 процентов.

Из-за рельефа местности, ограничений при прохождении опасных участков, остановок на станциях скорость движения железнодорожных поездов неравномерна. Это значит, что можно выбирать оптимальную скорость, при которой расход топлива минимален. Делать это можно различными способами.

На станции Москва-Пассажирская — Курская машинисты депо пользуются методом «усредненных скоростей». Оптимальный режим работы двигателя выбирается в зависимости от характера пути, но на глазок. Лучше иметь перед глазами машиниста прибор-советчик, который связывал бы расход энергии со скоростью, профилем дороги.

На автомобилях такой прибор уже испытан. Когда шофер следит за расходом бензина на 100 километров пути по стрелке бортпроцессора, он становится бережливее. Изобретатель устройства Велло Лейто считает, что с его помощью можно сэкономить до 15 процентов бензина.

Самые опытные водители, садясь за руль «Жигулей», удивлялись: судя по показаниям прибора, они пользовались машиной крайне неэкономично. Привыкнув нажимать на педаль акселератора перед подъемом, они расходовали на испытательном участке до 15 литров бензина. Изобретатель же благодаря своему бортпроцессору при той же средней скорости укладывался в 11–12 литров. Освоив новый экономичный стиль езды, водитель приучается тратить минимально необходимое количество горючего.

Безусловно, подобный прибор пригодился бы и машинистам тепловозов.

Сейчас на железных дорогах страны уже не осталось паровозов. В 1955 году на стальное шестикилометровое кольцо подмосковной испытательной станции близ Щербинки вывели самый мощный (4800 лошадиных сил) последний экспериментальный паровоз отечественной конструкции. «Век паровоза навеки ушел в прошлое, ибо на смену им пришли более совершенные локомотивы», — писали в газетах.

Однако в последние годы в печати мелькают сообщения о попытках опять вернуться к паровозу. «Паровозная ностальгия» — не просто от любви к старине. Изобретатели-конструкторы надеются создать «новые» паровозы с высоким КПД.

Первый русский паровоз, построенный Черепановыми на Нижне-Тагильском заводе, перевозил 3,3 тонны груза со скоростью 15 километров в час. КПД последнего паровоза мощностью 4800 лошадиных сил был всего около 9 процентов. В проектах «неопаровозов» эту величину удалось поднять почти в три раза благодаря сжиганию в топках угольной пыли, уменьшению выброса в атмосферу вредных веществ.

Если КПД составит двадцать пять процентов, такой локомотив становится выгодным. У нас в стране есть много регионов с большими запасами каменного угля, где электрификация железных дорог еще нецелесообразна. Это, в частности, и район БАМа.

Уголь рассматривается как возможное топливо не только в паровозах, но и автомобилях. Конструкторы фирмы «Дженерал моторс» создали двигатель, работающий на угольной пыли с величиной частиц меньше трех микрон. Золу и серу удаляют мокрым рафинированием — уголь смешивают с жидким растворителем и очищают. Угольная пыль вдувается из карбюратора в камеру сгорания сжатым воздухом. Для запуска такого турбинного двигателя необходимо жидкое топливо. Есть и другие неудобства. Мелкодисперсный уголь склонен к слеживанию, поэтому бак необходимо подвергать постоянной вибрации. Главная нерешенная проблема — очень высокое содержание в выхлопных газах окислов азота.

Фирма «Дженерал моторс» не оригинальна. В начале XIX века француз Жозеф Ньепс, считающийся одним из первооткрывателей фотографии, изобрел и двигатель внутреннего сгорания. В качестве топлива в нем использовалась угольная пыль, смешанная со смолой. На реке Сене лодка с мотором Ньепса демонстрировалась перед французским императором Наполеоном I, не сумевшим оценить изобретение. Оно было забыто, но созданный почти сто лет спустя первый двигатель Дизеля также работал на угольном порошке.

Сейчас получили широкое распространение дизельные двигатели. Расход топлива в них на 30–40 процентов меньше, чем в двигателях внутреннего сгорания карбюраторного типа. В карбюраторных двигателях процесс горения инициируется при пропускании искры через сжатую смесь паров бензина и воздуха. В дизельных же двигателях воспламенение происходит от сжатия. Сначала воздух в цилиндрах сильно сжимается и при этом разогревается до 500–600 градусов, а затем под давлением в цилиндр впрыскивается горючее, которое загорается и медленно сгорает. Слово «медленно» говорит о том, что скорость горения топлива в дизельном двигателе меньше, чем в карбюраторном. В карбюраторных моторах применяются высокооктановые недетонирующие бензины, а для дизельных нужно другое топливо с высоким цетановым числом, характеризующим склонность топлива к самовозгоранию.

Перевод автомобильного транспорта на дизельные двигатели — одно из главных направлений экономии энергии. Возможности здесь еще далеко не исчерпаны. Так, конструкторы надеются, что с помощью топливных насосов прямого впрыска, отказавшись от существующей сейчас форкамеры, можно уменьшить расход топлива еще на 15 процентов.

Самый главный и дешевый путь снижения расхода горючего — это борьба с перерасходом, уменьшение не проектных, а эксплуатационных его расходов за счет организации правильной эксплуатации автомобиля. Что для этого нужно сделать?

Надо оснастить автопарки, пункты технического сервисного обслуживания современными средствами диагностики и регулировки топливной аппаратуры. Большую помощь может оказать и описанный выше бортпроцессор. В комплекте со стрелочным прибором выпускается также и цифровой, дающий информацию о некоторых параметрах работы двигателя.

Много ли могут дать такие меры? Когда я, автолюбитель с 25-летним стажем, увидел в одной из книг данные по перерасходу топлива из-за различных неисправностей, то был поражен. Судите сами. Расход топлива увеличивается (в процентах):

не работает одна свеча — 20–30

нарушен контакт прерывателя — 10

неправильно отрегулирована система питания топлива — 20–30

неисправна система зажигания — 2–3

та же неисправность при интенсивном движении в городе — 10

А насколько можно в перспективе сократить потребление горючего при передвижении на автомобиле?

Фирма «Мерседес» создала автомобиль, который при скорости в 21 километр проезжает на 1 литре бензина 1028 километров. Мировой рекорд установлен в Швейцарии — 1284,13 километра на одном литре бензина. Однако этот рекорд был показан при меньшей скорости и более благоприятных дорожных условиях. Машина весит 55 килограммов, у нее пластмассовый корпус, мощность равна 0,736 киловатта.

Достижения автомобилестроителей на первый взгляд поражают. «Жигули» расходуют на 1200 километров 100 литров. Однако учтем, что скорость и вес у автомобиля-рекордсмена гораздо меньше. Скорость «Жигулей», при которой определен расход топлива, в четыре раза больше (80 километров в час). Если принять усредненную квадратичную зависимость от скорости, то показатель расхода автомобиля-рекордсмена увеличился бы в 16 раз. А ведь «Жигули» к тому же вдесятеро тяжелее.

Конечно, рекорды наглядно показывают, что облегчение автомобиля за счет применения пластмасс даст существенную экономию в расходе бензина. Эти рекорды заставляют также задуматься о том, какая скорость оптимальна в том или ином случае. Между тем наши автомобилестроители, сообщая о создании новых моделей, почему-то не всегда считают нужным говорить о важнейшем показателе — затратах горючего, а делают упор на скорость, приемистость. Впрочем, сейчас конструкторы стремятся уменьшить расход топлива по всем направлениям. Они совершенствуют аэродинамику автомобиля, снижают потери на трение, всячески облегчают конструкцию и, конечно, повышают КПД двигателя.

Многие слышали про автомобиль японской фирмы «Исудзу» с двигателем из керамики. Достоинства его отнюдь не исчерпываются уменьшением расхода металла. Главное — существенное повышение КПД.

В двигателях внутреннего сгорания можно превратить в полезную работу около 70 процентов энергии израсходованного топлива, однако на практике эффективный КПД равен всего 28–38 процентам, то есть вдвое меньше. Большая часть тепла теряется с охлаждающей водой, маслом, выхлопными газами. Эффективность термодинамического цикла существенно возрастает при повышении температуры газов в цилиндрах двигателя. Однако при перегреве стенок цилиндров двигателя падает их прочность и стойкость. Можно охлаждать стенки, усилив наружное охлаждение, но тогда опять возрастут потери. Идеален так называемый адиабатный двигатель, от цилиндров которого не нужно отводить тепло. Применение керамических материалов и позволяет приблизиться к идеалу.

Дело в том, что керамические материалы наподобие соединений кремния с углеродом или азотом (карбиды и нитриды кремния) способны выдерживать температуры до 1500 градусов. Ныне уже научились изготовлять детали требуемой формы путем спекания и прессования керамических порошков.

Остается еще добавить, что при температуре в камере сгорания 1200 градусов двигатель становится многотопливным. В нем можно использовать также керосин, различные спирты, синтетические соединения из угля и даже некоторые сорта мазута.

КПД керамического двигателя удается поднять до 45–50 процентов, а при использовании тепла отходящих газов и полном устранении потерь на охлаждающую жидкость — даже до 55–60 процентов. Всем хорош этот двигатель, кроме одного, но очень важного показателя — ресурса работы. Пока он еще очень мал. Разные модели выдерживают всего от 50 до 500 часов.

Привлекательно уменьшить расход бензина и дизельного топлива, заменив их другими энергоносителями — дровами, водородом, различными синтетическими веществами, природным газом, электроэнергией.

Даже солнечные автомобили уже перекочевали со страниц научных журналов на гоночные трассы. Не так давно в Швейцарии состоялась 365-километровая гонка. Победу одержал «гелиомобиль» с поэтическим именем «Солнечная серебряная стрела». Вес его — 180 килограммов. Серебряно-цинковые аккумуляторы заряжаются от 432 солнечных элементов, размещенных на его крыльях. Скорость — до 70 километров в час.

«Гелиомобили» — это возможное будущее, а сейчас неплохо зарекомендовали себя двигатели на природном газе. Если в металлических баллонах сжать газ до 200 атмосфер, то на одной заправке такси проедет 200, а грузовой автомобиль 300 километров.

Применение природного газа высокого давления связано с рядом недостатков и трудностей. Нужно создать широкую сеть специальных газозаправочных станций, а это требует больших капиталовложений.

Еще один недостаток — понижение грузоподъемности автомобиля из-за большого веса баллонов. Однако и тут возможны усовершенствования. Так, баллоны из низколегированной стали весят в 1,5, а из композитных материалов — даже в 6–7 раз меньше. В таких баллонах давление можно существенно повысить.

Природный газ обладает важными достоинствами, которые также должны приниматься в расчет. У него высокие антидетонационные свойства. Поскольку газ не смывает смазку в двигателе, межремонтный пробег увеличивается в 1,3–1,5 раза.

Мы рассмотрели два вида транспорта средней скорости — железнодорожный и автомобильный. Народному хозяйству необходимы также как медленные (морские и речные), так и более быстрые (авиационные) виды перевозок. Но везде важнейшей задачей остается изыскание наиболее эффективных путей сбережения горючего, экономии энергии.

Загрузка...