Культура, если она развивается стихийно, а не направляется сознательно... оставляет поело себя пустыню...
Есть такое твердое правило: утром встал, умылся, привел себя в порядок — и сразу же приведи в порядок свою планету.
Первое серьезное воздействие человека на окружающую среду непосредственно связано с его «энергетическими достижениями»: с овладением огнем и выработкой простых, но эффективных орудий охоты и лова. Уже более 250 тыс. лет назад первой серьезной жертвой человека стали крупные млекопитающие. Наиболее вероятно, что именно человек истребил мамонтов, гигантских оленей и других крупных травоядных животных во времена верхнего палеолита.
Особенно резко возросло воздействие человека на природу с последующим развитием технологий во времена неолита, с переходом вначале к скотоводству, а затем к земледелию. Выжигание растительного покрова производилось и для увеличения пастбищ, и для повышения плодородия земель. Широко развилось так называемое подсечно-огневое земледелие, сохранившееся в некоторых тропических странах до сих пор! По этому методу вырубали участки леса, сжигали деревья, а почва обогащалась биогенными элементами и давала высокие урожаи даже при плохой обработке. Но все это длилось год-другой, а затем требовалась новая территория. Правда, заброшенная площадь потом зарастала лесом, по это либо происходило за десятки-сотни лет, либо не происходило никогда вследствие иссушения территории. Особенно уязвимыми оказались тропические леса из-за их хорошо сбалансированного круговорота, а следовательно, и из-за слабых почвенных покровов.
К последнему времени накапливается все больше сведений о том, что судьба первых цивилизаций в истории человеческого общества во многом определялась их неразумной экологической политикой. Раньше в каждом учебнике говорилось о благоприятном географическом положении каждой из древних цивилизаций, связанных с обширными лесами, плодородными землями, полноводными реками. И это способствовало развитию и процветанию данной цивилизации. Теперь все чаще говорится, что и конец некоторых цивилизаций был связан с окружающей средой, вернее, с ее резким ухудшением в результате развития самой цивилизации: культура в буквальном смысле оставляла после себя пустыню.
Нельзя сказать, что древние люди не пытались бороться с изменением среды; мы восхищаемся великолепными ирригационными сооружениями Азии и Америки. Но что-то не удавалось, возможно, слишком поздно принимались меры, и потому, например, «козы съели Грецию», а там, где Ганнибал разводил слонов, остались только раскаленные зыбучие пески.
Резкий скачок в развитии техники и особенно энергетики в средние века нашего тысячелетия, переход к использованию машин привели к еще более резкому воздействию на природу. Ощутимые результаты этого давления человека на биологическое окружение появились в Европе, самой густонаселенной и технически передовой. (В гл. 9 мы говорили об Англии, имевшей самые развитые технологии и уже в XVII в. лишившейся почти всех лесов.)
Интересны меры по охране природных ресурсов, предпринятые в России Петром I. Жестокость этих мер определялась не только русским деспотизмом, но и их насущностью. От сельскохозяйственных палов и вырубки лесов страдала оборонная мощь государства. Изданный в 1703 г. указ об охране лесов под угрозой физической расправы запрещал рубки на расстоянии до 50 верст от берегов крупных рек и до 20 верст от малых. Сбросы нечистот в Неву создавали опасность для северной столицы, и Петр издал указ об их запрещении. Виновные в нарушениях солдаты присуждались к порке и ссылке, а офицеры — к разжалованию в рядовые. Было даже запрещено обрабатывать на льду бревна и доски, чтобы не загрязнять воду. Меры давали эффект: так в Москве были очищены старые пруды, служившие местом свалок, и после того они превратились из Поганых в Чистые, что соответствовало истине не только на словах. К сожалению, преемники Петра но были столь дальновидными по отношению к природе: один из результатов—превращение части Черноземья в Нечерноземье из-за эрозии почв в средней полосе России.
С 1600 г. на Земле вымерло 74 вида (1,23%) птиц и 63 вида (1,43%) млекопитающих. Еще больше погибло подвидов птиц и зверей, из них не менее 80% погублено человеком. Пока еще ни один другой вид в биосфере не был столь смертоносным для других: ведь многие виды не были на стадии вымирания, наоборот, целый ряд из них находился на стадии биологического прогресса, т. е. был крайне многочисленным, а необходимости в истреблении этого вида не было.
Особенно трагичной с этой точки зрения выглядит история с истреблением странствующего голубя в Северной Америке, ярко демонстрирующая всю неграмотность и жестокость человека как хищника. В 1810 г. американскими орнитологами наблюдалась огромная стая странствующих голубей в долине р. Огайо (описание дано по [Риклефс, 1979]). В течение нескольких дней колонна птиц шириной значительно больше километра пролетала над головой, закрывая небо. По подсчетам орнитологов, число птиц в этой стае превышало 2 млрд особей. А примерно через 100 лет, в 1914 г., умер последний странствующий голубь в мире — это была старая голубка, долго жившая в Цинциннатском зоопарке. Последний голубь на свободе был убит в 1899 г. И единственной причиной его истребления стал человек. Его стреляли, ловили сетями, сшибали на землю шестами, рубили деревья с гнездами, выпускали свиней, поедавших птенцов. На всех рынках мира за бесценок продавалось огромное количество голубей. Но уже через 10 лет странствующие голуби стали редкостью и вскоре были полностью истреблены. В одном из парков Висконсина осталась бронзовая мемориальная доска в память последней убитой птицы с печальным добавлением: «Этот вид вымер из-за алчности и легкомыслия человека». И после таких деяний мы называем себя Homo sapiens!
Почти столь же трагична история с американским бизоном. Сходна история и его близкого родственника — европейского зубра. Он был широко распространен почти по всей Европе, Кавказу, Закавказью. Но в 1920 г. даже в Беловежской пуще, где он охранялся, а в 1927 г. и на Кавказе в естественном состоянии он перестал существовать. Международное общество по спасению зубров провело инвентаризацию животных, содержавшихся в зоопарках, и получило печальный итог — 56 особей. Интенсивные меры по восстановлению популяции зубра привели к тому, что численность чистокровных зубров в мире достигла 2000. Это уже неплохо. Но трагедийной ситуации здесь могло и не быть.
Отметим очень важное обстоятельство: к настоящему времени заработал глобальный «бумеранг-эффект» в наших отношениях с природой. За свое неправильное отношение к ней, за наше незнание законов природы мы начинаем получать ответы во все возрастающих масштабах. Как правило, они негативны, а мы к этому не готовы.
Рост воздействия человека на биосферу непосредственно связан с ростом его численности. Разговоры о демографическом взрыве не просто красивые фразы. Увеличение числа людей на планете за последнее столетие носит именно взрывообразный характер (рис. 17). Еще более быстрыми темпами растет загрязнение окружающей среды, связанное с деятельностью человека. Есть данные, что около 80% всех видов загрязнения биосферы обусловлено энергетическими процессами, включая добычу, переработку и использование топлива. Резко возрастает с развитием разнообразных химических технологий количество трудноокисляемого органического мусора, производимого человеком. Уже к началу 70-х годов оно превысило астрономическую цифру — 2 · 1010 т/год [Ковда, 1975]. Этот показатель удваивается раз в 6—8 лет и к середине 80-х годов уже должен оцениваться величиной около 1011 т/год. Если принять среднее время распада этого трудно разложимого в природных условиях мусора за 10 лет, что явно превышает возможности биосферы, не «умеющей» разлагать незнакомые ей соединения типа пластмасс, то количество имеющегося мусора антропогенного происхождения составит 1012 т. А эта цифра уже приближается к общей массе живых организмов биосферы, уступая ей лишь в 2 раза, но зато в 5 раз превышает производство этой биомассы в год. Это первые данные, по которым активность человечества сравнялась с активностью биосферы. (В то время как биомасса человечества не превышает 0,01% от биомассы биосферы, а поток энергии, им используемый, достигает десятых долей процента.) Жаль, что глобальная активность человечества является лишь мусоропроизводящей, но таково состояние дел.
Рис. 17. Демографический взрыв [Агесс, 1982].
1 — Северная Америка; 2 — Латинская Америка; 3 — Австралия и Океания; 4 — Африка; 5 — СССР; 6 — Индия; 7 — Китай; 8 — остальная часть Азии.
Если нарисовать рост производства грязи человеком во времени, по аналогии с рис. 17, то «гриб» взрыва будет гораздо шире, да еще и с тлетворным душком.
Если говорить о воздействии человека на первичную продуктивность биосферы, то по ряду оценок в результате отчуждения земель для непроизводительных нужд (производство, города, дороги и замены лесных экосистем на сельскохозяйственные монокультуры, менее продуктивные по первичной продукции) уменьшение составляет 15—20% [Титлянова, 1979].
Рассмотрим подробнее влияние человека на основные резервуары и аккумуляторы веществ в биосфере: атмосферу, гидросферу и литосферу (точнее, ее верхнюю часть на суше — почву).
Состояние атмосферы. Что же происходит в атмосфере, а проще говоря, с тем самым воздухом, без которого нам не обойтись и пары минут? К сожалению, точный анализ этой сложной задачи невозможен. Поскольку наш подход связан с изучением потоков энергии, то большее внимание мы будем уделять влиянию энергетики на состояние и динамику процессов в атмосфере.
Из-за высокого уровня развития промышленности в Северном полушарии около 93% всех газовых выбросов в атмосферу сосредоточено именно здесь. Более того, около 90% этих выбросов приходится на 8— 10% поверхности суши, включающей часть Европы, Северной Америки и Японии. Следовательно, основная часть продуктов сгорания всех видов топлив выбрасывается в атмосферу на площади лишь около 3% от всей поверхности планеты. И на этой территории темными шлейфами дымов выделяются крупные города.
Одними из наиболее токсичных соединений, поступающих в атмосферу из технических источников, являются оксиды серы и азота. Согласно различным оценкам, техногенный выброс в атмосферу оксидов серы к началу 80-х годов достигал 70—100 млн т, а оксидов азота — около 20 млн т. Эти показатели примерно равны величине естественных выбросов этих элементов в атмосферу [Курьер ЮНЕСКО, 1985, № 5, с. 21]. Наиболее токсичным из газообразных оксидов является сернистый ангидрид. (По некоторым оценкам, если бы его не перерабатывали высшие растения, то за 20 лет все высшие животные погибли бы.) К сожалению, он составляет до 99% от выбросов сернистых соединений энергоустановками. Время жизни его в атмосфере может достигать нескольких десятков суток при сухом воздухе или уменьшаться до нескольких часов в присутствии воды. Он участвует в различных каталитических, фотохимических реакциях, переходит в сульфаты и, растворяясь в парах воды, образует серную кислоту. Сходным образом оксиды азота дают азотную кислоту. Получающиеся из-за этого кислотные дожди стали бичом Северного полушария.
Еще большую опасность представляет техногенный выброс в атмосферу металлов, особенно тяжелых. В естественных условиях поступление металлов в атмосферу — это ветровые переносы с поверхности и выбросы вулканов. Но все эти потоки отступают перед техногенными. Антропогенные источники приносят в атмосферу почти в 20 раз больше свинца, почти в 10 раз больше кадмия, более чем в 7 раз — цинка. По величине выбросов цинка, меди, кадмия всем вулканам Земли далеко до мусоросжигательных печей. Особую тревогу вызывает свинцовое загрязнение планеты. Связано оно также с энергетикой, но с малой, точнее, с выхлопами автомобильных двигателей.
Концентрация свинца растет во льдах не только Гренландии, но и Антарктики, в иле рек, морей, в теле животных, не исключая человека. Если в скелете первобытного человека было лишь 2 мг свинца, то в наших скелетах его в 50—100 раз больше. А ведь избыток свинца в организме очень опасен для здоровья.
Примеры накопления ядовитых веществ в атмосфере и из нее попадания в другие сферы можно, к сожалению, множить почти беспредельно. Достаточно вспомнить об авиационных методах применения различных химикатов в сельском и лесном хозяйстве. Неудивительно, что ДДТ был обнаружен в заметных количествах в снегах Антарктиды, где он никогда не применялся. Известно, что многие пестициды способны концентрироваться в пищевых цепях. Так, в цепях питания от морской воды через планктон, рачков и рыб смытые в воду химикаты (тот же ДДТ) в яйцах морских птиц могут аккумулироваться в миллион (!) раз.
Приведенных примеров вполне достаточно, чтобы видеть, что загрязнение атмосферы приняло угрожающие масштабы, и угрожают они прежде всего самому человеку. Чтобы избежать уже упоминавшегося бумеранг-эффекта, необходимо принимать серьезные меры по очистке газовых выбросов. По оценочным расчетам, снижение выбросов серы вдвое на обычных тепловых электростанциях в Европе стоило бы не менее 10% издержек на производство самой электроэнергии. Может показаться дорого, но что может быть дороже здоровья человека и биосферы?
Хорошим обнадеживающим примером того, что человечество в состоянии справиться с глобальным загрязнением, служит снижение радиоактивности на поверхности Земли. В начале 60-х годов, к моменту запрещения испытаний ядерного оружия в атмосфере, космосе и под водой, содержание радиоактивных стронция-90 и цезия-137 в продуктах питания возросло по сравнению с естественным фоном в несколько, вплоть до десятков, раз. Концентрация этих элементов в мышечной и костной тканях человека и высших животных тоже возросла и в некоторых регионах даже более чем в 100 раз. После прекращения испытаний, примерно в течение десятилетия, радиоактивный фон и содержание радиоактивных соединений в живых организмах вернулись к обычному естественному уровню, кроме отдельных мест, связанных с повышенной техногенной радиоактивностью.
Загрязнение гидросферы. Вода составляет основу жизни, и мы неоднократно обсуждали на страницах этой книги, что и в циклах вещества, и в энергетике всех живых существ она занимает ведущее место. Она пронизывает нашу жизнь на всех ее уровнях. И вдруг неожиданно для человечества оказалось, что мы практически не имеем чистой воды на планете. Недаром 80-е годы объявлены ООН десятилетием борьбы за чистую воду. Громадный Мировой океан на пути превращения в бессточную мусорную яму. Особенно загрязнен Атлантический океан.
С ростом энергетики, промышленных и сельскохозяйственных технологий резко возрастает потребность в чистой воде. Если ежегодно мировое потребление энергетических ресурсов составляет около 10 млрд т, то человек расходует около 10 млрд т воды ежедневно. И это не удивительно. Каждая тысяча киловатт мощности, выработанной тепловыми электростанциями, требует миллионы кубических метров воды в год. Для производства 1 т стали нужно более 100 т воды, 1 т произведенной соды «потребляет» 300 т воды, искусственного шелка — 400, бумаги — более тысячи, резины — 4000.
Одним из основных потребителей воды является сельское хозяйство. Например, чтобы вырастить 1 т пшеницы, требуется за вегетационный период 1500 т воды, 1 т риса — более 7 тыс. т, 1 т хлопка — около 10 тыс. т воды. С ростом технологий к 2000 г. без их качественного изменения может понадобиться практически весь речной сток. И здесь сельское хозяйство является одним из главных поставщиков различных ядовитых соединений типа пестицидов: гербицидов, инсектицидов, фунгицидов и пр.
Ухудшение качества воды уже теперь резко отрицательно сказывается на здоровье человека. По оценкам ВОЗ, 80% всех болезней в мире связано с неудовлетворительным качеством воды и нарушением санитарно-гигиенических норм из-за ее нехватки.
То самое «самоочищение» биосферы, которое выручало человека с незапамятных времен, начинает давать опасные сбои и именно в глобальном масштабе. Как бы ни казался велик наш «мокрый шарик», он не справляется с потоком загрязнения.
В последние годы как будто удалось остановить рост одного из наиболее опасных загрязнений Мирового океана — загрязнения нефтью. Нефть способна разливаться тонкой пленкой по поверхности воды, изолируя атмосферу от океана, образовывать комочки различных размеров, а наиболее тяжелые фракции могут опускаться на дно. Килограмм нефти может разлиться тонкой пленкой на площади до 1 га и тем самым погубить свыше 100 млн личинок рыб и многие виды зоопланктона. Тяжелое впечатление производят аварии супертанкеров при перевозках нефти. Но главный поток загрязнения связан со сбросами балластных и промывных вод танкеров. Этот поток был значительно уменьшен в связи с принятием международных постановлений и организацией контроля за их исполнением. В ряде больших портов построены специальные очистные станции для промывки танкеров, которые даже приносят прибыль. Однако угроза увеличения нефтяного загрязнения остается, так как в последние годы быстро увеличивается подводная добыча нефти и газа на шельфе.
Особую тревогу вызывает загрязнение внутренних водоемов, даже если они связаны непосредственно с океаном. Так, самым загрязненным из морей является Средиземное. Турецкие ученые пришли к выводу, что «Мраморное море гибнет». Вызывает обоснованную тревогу уровень загрязнения Балтийского и Северного морей. Без принятия эффективных мер результат может быть печальным. Медлить нельзя.
Определенный оптимизм внушают положительные примеры как в Европе, так и в Северной Америке, самых неблагополучных с этой точки зрения регионах. Достаточно вспомнить о том, что несколько чище стали Волга, Днепр, Великие озера, Темза. Разработка и использование специальных очистных систем, как показывает опыт, не только требуют затрат, но и могут самоокупаться и приносить прибыль.
Состояние литосферы (почвы). Верхний плодоносящий слой суши — почва — по площади, а по объему тем более существенно уступает гидросфере. Толщина слоя достигает всего лишь нескольких десятков сантиметров и только в черноземной зоне может возрастать до нескольких метров. Но именно этим слоем, его состоянием определяется жизнь человечества с самых ранних этапов развития.
В настоящее время практически все пригодные для земледелия места заняты человеком и переезжать просто некуда.
Действительно, площадь засеянных угодий составляет около 10% наземной части биосферы. А для сбора урожая и выпаса используется уже около 30% суши. Если учесть, что для хозяйственных нужд пригодно менее половины поверхности суши, а для интенсивного земледелия только около 25%, то и по этим оценкам человек практически занял всю пригодную территорию. Эра экстенсивного земледелия кончилась, оно постепенно переходит на рельсы интенсивного развития. Но этот путь требует другого подхода и другого типа мышления. Простая переэксплуатация земель быстро приводит к истощению почвы, ее эрозии, вплоть до полного уноса с пылевыми бурями. Хорошо известны пыльные бури на Великой американской равнине, в Средней Азии, на Северном Кавказе. В засушливых песчаных районах разрушение поверхностного слоя поразительно быстро приводит к появлению зыбучих песков и полному опустыниванию территорий. Идет «наступление» песков Сахары, растут пустыни Юго-Восточной Азии, Северной и Южной Америки. Ежегодно потери продуктивных земель по земному шару только вследствие опустынивания составляют 50—70 тыс. км2, а общая площадь «искусственных» пустынь, возникших в результате деятельности человека,— более 9 млн км2. (Эта величина уже сравнима с площадью нынешних посевных угодий.)
Может быть, еще большую опасность для решения продовольственных задач населения Земли представляет разрушение самых плодородных почв — черноземов в результате их переэксплуатации. Поскольку не менее половины всех черноземных земель расположено в Советском Союзе, то для нашей страны эта проблема приобретает самое злободневное звучание (из 300 млн га черноземных почв в Советском Союзе находится более 150 млн га). Если сопоставить со всей пахотной площадью (225—227 млн га), то черноземы составят около 70% ее. По разным оценкам, около 80% всей продовольственной продукции страны производится и выращивается на черноземах.
Учитывая большие запасы гумуса в черноземах, можно подсчитать, что количество энергии, запасенной в черноземах, в 20 раз и более выше, чем в суммарной биомассе высших и низших растений и животных этих ландшафтов. Впечатляющие данные. Можно провести некоторые аналогии с запасом в океане тепловой энергии, который тоже в 20 раз больше, чем ежегодный приход от Солнца. Следовательно, можно говорить о том, что, используя черноземы, и по энергетике, и по веществу мы живем за счет прошлых биосфер, как и при использовании органических ископаемых типа нефти и угля. Правда, в данном случае это не столь отдаленные времена — на образование чернозема требуется «всего лишь» сто-двести лет. Недаром великий русский почвовед В. В. Докучаев называл русский чернозем «главным основным богатством России, стоящим неизмеримо выше богатств Урала, Кавказа, богатств Сибири».
В настоящее время много энергии и вещества уносится с урожаями из черноземов. Например, чтобы компенсировать унос 30 ц зерна с 1 га или 100 ц картофеля, или 200 ц сахарной свеклы, нужно вносить эквивалентное количество органики, которое должно исчисляться тоже десятками центнеров на 1 га. При посевах монокультур необходимо именно внесение органики извне, но откуда ее столько взять? Для бездефицитного баланса гумуса по стране в целом требуется 1,5—3 млрд т органики в год, всего удобнее ее применять в форме твердого подстилочного навоза, а его «производство» в животноводстве достигает лишь 300—400 млн т в год, т. е. в 5—10 раз и меньше. Явное несоответствие потоков налицо. Поэтому необходимо иметь ориентацию на естественное возобновление плодородия почв, запасов гумуса «биологическим путем», а именно за счет сбалансированных севооборотов. Применение в них бобовых растений позволяет накапливать в почве столь дефицитный органический азот, другие компоненты питательных веществ пополняются корневой массой, которая остается в поле. Честь разработки севооборотов с использованием азотфиксирующих бобовых растений принадлежит нашей стране, достаточно вспомнить В.В.Докучаева, Б.Б.Полынова, В.Р.Вильямса. Однако практическое использование таких севооборотов явно недостаточно [Ковда, 1985]. Монокультуры имеют явное предпочтение. Однако не следует забывать грозного, но верного предостережения основоположника научного земледелия Ю. Либиха: «Нет более прямого пути к абсолютному обнищению народа, чем беспрерывная культура однолетних растений» (цит. по [Усольцев, 1985, с. 152]).
По-видимому, не меньше вещества, а с ним и энергии уносится из-за смывов черноземных почв в результате применения неправильных агротехнических приемов. Весенние смывы и изобильные поливы приводят к уносу с дождевой и поливной водой до 1,5— 1,6 млрд т почв ежегодно.
Избыточный полив или даже просто интенсивное орошение земель приводит к еще одному страшному «бичу» орошаемого земледелия — к засолению почв. (Проблема эта древняя, существовавшая еще у вавилонян.) Даже если вода, используемая для орошения, не очень соленая и относится к слабо минерализованной, все равно при большом ее расходе с орошением полей в почве накапливаются соли, и она быстро приходит в негодность, теряя плодородие. Образуемые человеком «вторичные» солончаки, к сожалению, широко распространены по всему миру.
С энергетической точки зрения интенсификация сельского хозяйства прежде всего означает привлечение дополнительных потоков энергии, повышение расхода энергии, затраченной на производство единицы продукции. Это дополнительные потоки энергии прежде всего от добываемого энергетического сырья. Так что при полной оценке по энергии производимой сельскохозяйственной продукции общие энергетические затраты возрастают многократно. «При интенсивном ведении сельского хозяйства большая часть энергии для производства картофеля, мяса и хлеба берется не от Солнца, а из ископаемого топлива. Широкая публика плохо себе это представляет. Например, многие думают, что большие успехи в сельском хозяйстве объясняются только умением человека создавать новые генетические варианты. Но использование этих вариантов рассчитано на большой расход дополнительной энергии. Деятели, пытающиеся помочь развивающимся странам поднять эффективность их сельского хозяйства, не обеспечив значительных дополнительных вложений энергии, просто не понимают положения дел. Основанные на опыте высокоразвитых стран рекомендации для развивающихся стран могут иметь успех только в том случае, если они сопровождаются подключением к богатым источникам дополнительной энергии...» [Odum H., 1967; цит. по Одум Ю., 1975, с. 64]. Эта довольно длинная цитата из работы известного американского эколога Г. Одума убедительно иллюстрирует необходимость правильного учета энергетических потоков при интенсификации процессов биосинтеза.
Одним из наиболее негативных явлений интенсификации сельского хозяйства является резкое ухудшение окружающей среды, и прежде всего ее загрязнение избыточными удобрениями и ядовитыми пестицидами. Чем больше вносится удобрений, тем меньшая доля их используется непосредственно растениями, тем большая часть уходит со смывами в водоемы, загрязняя реки, озера и даже моря и океаны.
Загрязнение внутренних водоемов материков биогенными соединениями типа нитратов и фосфатов, смываемыми с полей и культивируемых пастбищ, является одним из главных загрязнений гидросферы планеты, и об этом мы говорили в предыдущем разделе. Но еще большую опасность представляет загрязнение почвы и воды пестицидами, одним из главных источников которых также является сельское хозяйство. Обработка почвы за последние 100 лет становилась все более активной. Это означает, что мобилизовывалось естественное плодородие почвы и повышалась урожайность, по в то же время снижалось содержание почвенного гумуса и усиливались эрозионные процессы. Для восполнения потерь стали применяться искусственные удобрения, с помощью мощной сельскохозяйственной техники росли производительность труда, урожайность и эксплуатация земель. Но в целом индустриализация сельского хозяйства с очевидностью приводит к серьезным негативным последствиям. Возрастает энергетическая цена, которую надо платить, чтобы ликвидировать эти последствия: рекультивировать и восстанавливать эрозированные почвы, очищать водоемы, усложнять водозаборные и водораспределительные сооружения, совершенствовать системы очистки и т. д. Это и есть одна из важных причин снижения биоэнергетических показателей.
Для разрешения этих противоречий анализируются различные пути. Один из них связывается с созданием систем минимальной обработки почвы, чтобы не нарушать ее структуру и минимизировать кажущиеся энергетические траты (до 50% общих трат энергии при отвальной обработке почвы идет на вспашку и посев). Если, например, вносить гербициды в почти не обработанную почву (вариант нулевой обработки почвы), то затраты энергии уменьшаются в 3,5 раза. Но с одной стороны, количество гербицидов, необходимых для минимальной и нулевой обработки, столь велико, что увеличивает энергетическую цену продукции почти до тех же величин, что и при традиционных методах плужной обработки. А с другой — большое количество применяемых гербицидов представляет такую опасность для потребителей продукции сельского хозяйства, перед которой бледнеют все прочие. Гербициды, как и всякие другие «...циды», это убийцы живого. Их избирательность далеко не абсолютна, как у всех химических соединений; большинство из них имеют длительный срок жизни, канцерогенны, мутагенны и т. д. Достаточно напомнить о том же ДДТ, распространившемся по всей планете и накопленном в теле антарктических пингвинов. Сельское хозяйство имеет гораздо большие масштабы и распространенность на планете, чем другие виды деятельности человека, связанные с использованием биоцидов, поэтому приходится считаться с тем, что его «цидовая» политика представляет серьезную опасность в настоящее время. И прежде всего это относится к здоровью самого человека.
Итак, резюмируя современное состояние всех сфер (атмо-, гидро- и лито-) биосферы, мы можем еще раз подчеркнуть, что оно вызывает серьезную тревогу, так как загрязнение приняло глобальный характер. Работа по старым технологиям становится невозможной. Основные антропогенные загрязнители: энергетика, промышленность, индустриализованное сельское хозяйство — должны быть в корне перестроены с учетом сохранения окружающей среды.
Известный французский эколог Франсуа Рамад заключает свой обстоятельный труд «Основы прикладной экологии» [Л., 1981] весьма примечательными словами: «Сейчас, в конце 20-го столетия, никто не станет отрицать, что только радикальное изменение взаимоотношений между человеком и природой позволит нам избежать судьбы динозавров» (с. 514).
Идея о том, что биосфера, в которой развивается разумная деятельность человека, превращается в ноосферу (сферу разума), наиболее глубоко развита в трудах В. И. Вернадского. Одним из условий ноосферы как единого организованного целого является гармоничная связь всех частей на разных уровнях и их согласованное взаимодействие. Что касается современной биосферы, то она пока только частично охвачена преднамеренными и целенаправленными воздействиями носителя разума — человечества. Поэтому в настоящее время можно говорить лишь о начальных этапах, о самом возникновении или рождении ноосферы, а до полного становления ее еще далеко [Будыко, 1984]. И увы, как все новое, рождается ноосфера в муках, и, по-видимому, мы сейчас переживаем один из наиболее тяжелых периодов ее рождения (см. материал предыдущего раздела).
Вселяет определенный оптимизм разработка международными организациями Всемирной стратегии охраны природы (в Советском Союзе она оглашена 5–6 марта 1980 г.). Она предназначена для правительственных, неправительственных, общественных и международных организаций в качестве руководства к мероприятиям по охране природы. На ее основе рекомендуется разработка национальных стратегий охраны природы в каждой стране. Особое место должно отводиться охране типичных для данного региона экосистем, центров эндемизма и эндемичных видов, существование которых находится под угрозой.
Так как главной причиной ухудшения окружающей среды и загрязнения биосферы являются технологии, то мы и рассмотрим перспективы их изменения в будущем по трем основным типам: энергетика, промышленность, сельское хозяйство. Сделаем попытку оценить, какие направления развития технологий являются наиболее экологичными, способными гармонично вписываться в окружающую среду.
Как всегда начнем с энергетики. В предыдущей главе мы достаточно подробно описали общие перспективы развития энергетики на ближайшие 20–100 лет. Предпочтение отдавалось «большой» энергетике термоядерного синтеза как самой экологичной, не дающей ни радиоактивного, ни химического загрязнения и не выделяющей CO2, приводящего к дополнительному тепловому загрязнению. Дело за «немногим»: нужно научиться управлять термоядерной редакцией. Однако, по имеющимся оценкам, стоимость решения этой задачи в десятки раз ниже расходов на вооружение; не будем забывать, что мы входим в ноосферу, т. е. сферу разума. «Малая» энергетика должна активно использовать энергию солнечного излучения, абсолютно экологичную.
Промышленное производство, включая разнообразнейшие химические синтезы, является одним из самых сильных загрязнителей. Эффективность современного производства, с точки зрения использования сырья остается крайне низкой: в готовом продукте содержится всего 2—10% от сырья по весу. Таким образом, до 98% от исходного сырья промышленность выбрасывает в окружающую среду, отсюда и понятно: чем интенсивнее хозяйство, тем больше рассеивается вредных веществ и тем выше их концентрация в среде обитания. Так, в начале 70-х годов развитые страны с населением, составляющим около половины человечества, имели долю в мировом загрязнении свыше 85%, т. е. почти в 7 раз более активно (на человеческую душу) загрязняли окружающую среду, чем развивающиеся страны. Семидесятые годы можно назвать годами упорядочивания отношений промышленности с биосферой. Если раньше отходы, не особенно беспокоясь, выбрасывали «за ворота» предприятия, то теперь часть их, особенно наиболее токсичная, перерабатывается, остальное тщательно рассеивается в окружающей среде. (Мы знаем из предыдущего, что грязь растет по всей биосфере.) Мечты о безотходных технологиях становятся все более настоятельными, идет лихорадочный поиск повышения степени замыкания производств. На этом пути имеется ряд метаморфоз, которые образно названы «мифом о безотходной технологии», или «псевдобезотходностью».
Рассмотрим один из примеров. Шлаки и шламы цветной металлургии, а их накапливается несколько сот миллионов тонн ежегодно, могут повышать качество стройматериалов. Казалось бы, выход найден: отходы одного производства стали ценным сырьем для другого. Но увы, опасность вредного биологического действия отходов цветной металлургии отнюдь не уменьшается от того, что они входят в состав строительных блоков. Просто опасность появляется в другом месте. Канцерогенность и аллергенность кадмия, никеля и других тяжелых металлов остается, и стройматериалы, особенно в жилищном строительстве, с повышенным содержанием тяжелых элементов просто недопустимы.
Можно привести примеры «революционных» идей этого типа и в других областях, в частности попытки использовать почвы под видом орошения как место утилизации неочищенных промышленных и бытовых стоков. Емкость почвы гораздо выше емкости воды, но и ее очистка и восстановление тоже гораздо сложнее. Недаром академик ВАСХНИЛ В.В.Егоров [1985] назвал такие предложения «дичайшими». Такие примеры, к сожалению, можно приводить еще и еще. Главное — не перебрасывать отходы с места на место, а организовать их глубокую переработку до соединений, безвредных для человека и биосферы. Может быть, самый главный вред от «псевдобезотходности» в том, что она тормозит сам технологический прогресс. В самом деле, отрасль, которая наработала горы отходов и сумела их «сбагрить в чужие руки», выступает уже не в качестве отравителя природы, а в достойной и благородной роли производителя и поставщика ценного сырья и даже получает за это экономические блага. Потребители отходов заинтересованы в бесперебойной поставке этого сырья, без изменения его свойств. «Так создается порочный круг, в основе которого лежит неверно понятый принцип безотходности... Безотходная технология необходима человеку. Но к ней ведет крутая лестница научных, технических и промышленных решений, которую нам ступень за ступенью еще предстоит одолеть»,— пишут Н.Ф.Реймерс и И.А.Роздин [1981, с. 15]. Очень верные слова! Мы не должны обольщаться безотходностью, она пока недостижима, и точнее говорить сейчас о «малоотходных» технологиях или об «экологически безвредных».
Ближайшей непосредственной задачей, стоящей перед человечеством, является интенсификация имеющихся и разработка новых путей и методов борьбы с загрязнением среды, включая активное очищение.
Наиболее существенным способом борьбы с загрязнением промышленного и индустриализованного сельского хозяйства является разработка специально создаваемых очистных сооружений, так называемых систем интенсивной очистки. Основную нагрузку в этих системах, особенно при очистке водных стоков, несут ассоциации микроорганизмов, способные утилизировать широкий спектр активных загрязнителей различного рода. При этом степень очистки особо ядовитых специализированных промышленных стоков с небольшим количеством ингибиторов сильного действия заметно возрастает, если используются специально отселекционированные штаммы микроорганизмов, способные инактивировать сильно ядовитые соединения. Однако, несмотря на высокие скорости метаболических процессов и широкие возможности регулирования обмена у микроорганизмов, практически невозможно организовать абсолютно полную очистку загрязнений в выходящих потоках жидкости, газов даже с учетом повышения степени замкнутости технологий. С приближением к полному очищению стоимость процесса очистки возрастает экспоненциально. Дополнительную доочистку, таким образом, приходится перекладывать на естественные, т. е. экстенсивные, процессы самоочищения в биосфере. Как уже неоднократно отмечалось, биосфера не справляется с ростом загрязнения и по ряду параметров происходит довольно быстрая его аккумуляция.
Эмпирически к настоящему времени нащупывается выход из очень сложной ситуации с растущим загрязнением среды. Он заключается в разработке промежуточных систем, играющих роль буфера между выходом интенсивной системы очистки и «входом» биосферы. Обычно это выделенный участок ранее существовавшей экосистемы, довольно большой по размерам, с ярко выраженной модификацией, произведенной человеком (например, в нашей стране мелиорированные лиманы на Черном море, рукава Волги, Дона, старицы Оби, Енисея с примыкающей территорией и т. д.). Увеличенный размер и уменьшенные скорости деструкции загрязнителей отличают такую сложную систему от интенсивных специализированных систем. Кроме того, такие буферные системы характеризуются разветвлением потоков, наличием циклов по ряду веществ и организацией биотического круговорота в гидро- и педосфере. Это сближает их с природными экосистемами, однако заданные функции самоочищения в них более специализированы и более интенсифицированы, чем в природе. Такие системы можно отнести к управляемым экологическим системам (УЭС), функционирование которых направлено на выполнение определенных функций, задаваемых человеком.
Сельское хозяйство, являясь одним из наиболее опасных загрязнителей окружающей среды, видимо, еще долго будет оставаться в этой неприглядной роли. Помимо эрозии почв почти по всей планете сельскохозяйственное производство широким потоком «распыляет» в биосфере специальные ядовитые соединения типа гербицидов и пестицидов. Увы, пока без таких соединений не обойтись, а химизация сельского хозяйства приносит большую выгоду. Выгода несомненна и сиюминутна, вред от применения пестицидов не столь очевиден, но, к сожалению, он долговременен. Мы знаем, как пестициды накапливаются в цепях питания, концентрируясь в организме человека в сотни тысяч и миллионы раз. Есть ли выход из создавшегося положения? Конечно, он связан с использованием биологических методов борьбы с вредителями. Эти методы имеют неоспоримые преимущества перед химическими. Вот главные: высокая избирательность действия, а следовательно, и безвредность для человека; возможность длительного существования действующего агента (например, растущей популяции организмов, паразитирующей на вредителе); меньшая вероятность появления устойчивых форм вредителя к патогенным организмам, чем к химикатам. Это последнее свойство особенно интересно в эволюционном плане, так как паразитирующая на вредителе и тем самым работающая на человека популяция быстро адаптируется к новым устойчивым вариантам хозяина. Это позволяет надолго сохранять вирулентность патогена [Печуркин, 1978].
Биологические методы пока намного дороже, чем химические, и не столь эффективны, производство биологических препаратов не налажено в больших масштабах, но и эти затруднения не принципиальны. Как мы говорили, эти сложности имеют технологическую природу, а значит, преодолимы. В наше время наиболее перспективно использование комбинированных способов борьбы: химия + биология с постепенным и неотвратимым наращиванием вклада биологии.
Очень сходна ситуация с использованием гербицидов: и здесь возникают сложности с химическим загрязнением среды. Хотя применение гербицидов для безотвальной обработки почвы позволяет избегать эрозии (но энергетически недешево!), их накопление в окружающей среде грозит большими неприятностями. Эффект аккумуляции более опасен, так как гербицидов для полного уничтожения целых армий сорняков требуется во много раз больше, чем пестицидов против вредителей. И здесь выход — в переходе к биологической системе земледелия (это мы обсуждали в предыдущем разделе). Потребуются более высокая культура земледелия, строгое выполнение правил агротехники и другие очевидные вещи.
Большой интерес для будущего представляет нетрадиционная форма ведения сельского хозяйства. Современное сельское хозяйство потому и неэффективно и громоздко, что оно рассеяно по поверхности планеты, «размазано» по большим площадям. К настоящему времени разработано несколько схем гигантских биофабрик (биотронов) с почти замкнутыми экологическими системами и с практически безотходным производством.
Другой вариант развития нетрадиционных вариантов сельского хозяйства связан с заменой дефицитного животного белка на белок одноклеточных или соевых растений. Производство дрожжевого белка вышло на рубеж 1 млн т/год в 80-е годы и продолжает нарастать. Перспективы его производства высоки из-за чрезвычайно больших скоростей прироста биомассы, которые в тысячи раз выше, чем скорости прироста животного белка. И в то же время аминокислотный состав, особенно по квоте незаменимых аминокислот, может быть аналогичен составу животного белка. Но пожалуй, одно из главных преимуществ — возможность его наработки на непищевом сырье: это сопутствующие парафины нефти; отходы древесины и сельскохозяйственных растений; низкокалорийные для сжигания бурые угли, торфы и др. Одна из проблем, связанных с очищением микробного белка от избыточных нуклеиновых кислот, тоже может быть отнесена к разряду технологических, т. е. решаемых. Энергетическая стоимость готового продукта на основе белков микроорганизмов, пока еще довольно высокая, может быть снижена в несколько раз по сравнению со стоимостью белков говядины, производимой традиционными путями. То же относится и к выработке белка из бобовых растений. Поэтому в 90-е годы в ряде развитых стран планируется заменить 10–25% мясо-молочных продуктов растительными и микробными белками, по виду, вкусу и качеству близкими к изделиям, сейчас выпускаемым из молока и мяса.
Со второй половины нашего столетия возросла активность математического прогнозирования глобального развития эколого-экономических процессов на нашей планете. И это не удивительно. Очень резко поднялись темпы изменения лика биосферы в наше время. Каждый год конца нашего века в этом смысле стоит десятилетия его начала, столетия средних веков и тысячелетий палеолита. Поэтому необходимость количественных прогнозов очевидна. Быстрое развитие вычислительной техники позволило осуществлять расчеты динамики развития биосоциальных систем в глобальных масштабах. До сих пор мы могли изучать закономерности биосферы как уникального объекта главным образом в ретроспекции. Экспериментировать с биосферой мы не можем и не имеем права. Имитационные эксперименты на ЭВМ являются единственной возможностью системных исследований биосферы.
Первые попытки формализовать глобальное описание экологических процессов предприняты по инициативе «Римского клуба» — неофициальной организации, одним из создателей которой стал известный итальянский предприниматель Аурелио Печчеи. В первых докладах «Римскому клубу» были проанализированы модели развития общества и среды в многомерном фазовом пространстве, компонентами которого были производственные, социальные и экологические процессы (модели Форрестера и Медоузов). Если результаты расчетов по первым моделям показались обескураживающими, типа полной остановки роста экономики и снижения числа людей на планете, то в дальнейшем удалось выявить условия сбалансированного развития экологии и экономики. При этом совершенно необходимым требованием было существенное увеличение трат на охрану окружающей среды во всех вариантах положительных прогнозов (модель «ГЕЯ», СССР).
Не имея возможности проанализировать детально результаты прогнозов развития человечества в биосфере, коротко остановимся на одном из них, самом ужасном — глобальном термоядерном конфликте. С точки зрения действия энергетических принципов этот вариант не биологичен, т. е. противоречит тенденции постоянного роста энергетики и умощнения круговорота в живой природе, так как связан с глобальными разрушениями и уничтожением большого числа живых и промышленных объектов. Однако законы социального развития могут иметь свое, в том числе и трагическое для человечества, обоснование.
И по радиоактивному, и по химическому загрязнению, и по изменению климатических условий (резкое похолодание) глобальный ядерный конфликт окажется гибельным для человека и ряда высших животных и растений если не в первом, то в последующих поколениях (см. [Природа, 1985, № 6, ряд статей советских ученых]). Сама жизнь на планете не будет уничтожена, но ей придется отступить на уже пройденные позиции. Хочется верить, что вступление в ноосферу состоится в ближайшем будущем и что оно будет связано с видом Homo sapiens.