Глава 9. Мы копируем японцев

Каталог, пришедший ко мне по почте из Японии, сделал идеи реальностью: впервые я смотрел на графики, показывающие, не как будут (или как должны) функционировать различные волноэнергетические устройства, а как они работают на самом деле. Я осознал, что имел в виду м-р Гудвин из министерства энергетики, когда говорил о своем знакомстве с «реализующимся правдоподобием», с тем, что генераторы волновой энергии уже работают. Речь идет о предметах, которые не больше моторчиков на ободе велосипеда. Но это живет.

Японское изобретение предложено профессором Иошио Масуда, в прошлом морским офицером. Это плавающая перевернутая, полностью открытая снизу канистра с двумя отверстиями наверху. Волны, двигаясь внутри канистры, попеременно всасывают и выталкивают заключенный в ней воздух; воздушный поток приводит в движение воздушную турбину, вращающую генератор электроэнергии. Любой инженер скажет вам, что трудно предвидеть проблемы, которые возникают при значительном увеличении размера устройств; но надавите на этого инженера, и он согласится с тем, что непредсказуемые проблемы оказываются разрешимыми. Месяцами я просматривал материалы, показывающие, чего можно ожидать от моделей в лабораторных условиях и на открытой воде; в них очень проницательно разбирались возможности реальной жизни волновых генераторов в открытом море. И вот — сделан шаг от теории к практике.

Какова эффективность устройства? Я отвечу: вряд ли это имеет значение. Если быть точнее, можно сказать, что для энергопитания навигационных буев устройство очень эффективно. Согласно м-ру Эрнсту Хэмфри, ответственному за инженерные исследования в Тринити-Хаус, три японских буя заряжают шесть двухвольтовых батарей, которые получают электричество почти непрерывно, а при их полной зарядке цепь питания размыкается. Батареи обычного размера дают суммарное напряжение 12 В, они похожи на автомобильную батарею, которая может запускать мотор, усиливать действие калорифера, очищать ветровое стекло и обеспечивать освещение. Буй Масуды, кроме 60-ваттной лампочки, может иметь регулирующее устройство, включающее огни лишь в отсутствие солнца.


Эволюция конструкции осциллирующего водного столба (проект Масуды).


Тринити-Хаус имеет образцы, работающие в Ирландском море уже 3 года, и около 300 штук, функционирующих в Тихом океане. Испытания показали, что срок жизни батареи обычно составляет около трех лет — на 50% больше, чем срок жизни автомобильных батарей. Чтобы повысить надежность, Тринити-Хаус планирует смену огней каждые 20 месяцев.

Буи, изготовленные в Англии, приспосабливаются под установку на них импортных генераторов. В Японии используется антикоррозийный алюминиевый сплав. Инженер-информатор службы средств навигации сказал мне: «Мы будем первыми, кто положит в основу конструкции пластмассы».

Разве не насмешка над нашей робостью, отсутствием уверенности в себе то, что наш вклад в техническую революцию, в создание нового источника энергии выражается в… применении пластмасс?

Японцев считают великими изобретателями. Они переняли все наши лучшие идеи, наладили массовое производство лучших образцов и на основе дешевого труда наводнили ими мировой рынок. Сейчас мы начинаем сознавать, что Япония вносит значительный вклад в волновую энергетику. Она больше, чем мы, нуждается в топливе, поскольку практически не имеет естественных ресурсов, а по причинам, восходящим к Хиросиме и Нагасаки, там не проявляют энтузиазма к ядерной энергии. Все же обстоятельства заставляют их развивать свою ядерную энергетику, и сегодня Япония является второй страной в мире в этом отношении, обойдя Британию, со своими 14 действующими ядерными электростанциями, еще 12, которые вступят в строй в ближайшие четыре года, и еще шестью, которые планируются. Япония вынуждена либо двигаться по этому пути, либо искать другой энергетический источник: она стоит перед необходимостью выбора.

Японский каталог буев вводит в особый мир. Речь идет о выработке 30 Вт на волнах высотой 40 см и периодом 3 с. Это очень непродуктивное море по сравнению с Северным морем и Атлантикой, где пятнадцатиметровые волны — привычное явление. Дело в том, что буи, как правило, используются в защищенных водах, в частности, в узких проливах. К тому же японцы подчеркивают, что их буи могут функционировать в штилевом море. Буи качаются на волнах. Они крепятся длинной цепью и поэтому могут подниматься вместе с приливом.

Энергию, захватываемую буем Масуды, можно грубо оценить на основании различий в движении волн и буя. Представим открытую снизу канистру, прыгающую на волнах как поплавок, объем воздуха внутри ее меняется незначительно, и его поток будет слаб для вращения воздушной турбины. В другом предельном случае, когда канистра закреплена, относительное волновое движение будет максимальным. Давление на закрепленную канистру в бурном море будет огромным и волны либо расплющат ее, либо сорвут с якоря. Это схематичные крайние ситуации. Где-то между ними лежит оптимальный вариант[32].

Японцы не рассматривают эффективность навигационного устройства, ибо оно должно давать энергию лишь для лампочки 60 Вт. Но если волновая энергия претендует на видную роль в национальном масштабе, то эффективность приобретает значение. И здесь проявляется основное различие в подходе Японии и Англии. Япония напористо движется вперед, как делала это в последней войне, но на этот раз с лучшими намерениями, проявляя прагматический подход — то, что всегда воспринималось как британская прерогатива.

Японцы научились использовать волны для средств обеспечения навигации и наблюдений, а в настоящее время работают над 500-тонным кораблем, названным «Каймей», мощность которого будет от 1,3 до 2,2 МВт, т. е. в 100 раз больше, чем у наших самых честолюбивых проектов. На семилетнюю программу выделено 39,5 миллиона долларов (около 22 миллионов фунтов). Английское правительство ассигновало на четыре проекта 2,5 миллиона фунтов в апреле 1977 г. и 2,9 миллиона в июне 1978 г. — «капля» в море, как назвал это один комментатор, к тому же программа подлежит ежегодному обсуждению, поэтому долгосрочное планирование невозможно.

Длина «Каймея» 80 м, ширина 12 м. В корпусе его имеются 22 отверстия — по числу камер с воздушными турбинами. На каждые две камеры будет установлена одна турбина — деталь, свидетельствующая, что японцы стремятся упростить проект. Можно было бы с помощью устройства по типу самолетного пропеллера, улучшить турбину. Мы вполне могли бы изготовить конструкцию, совершеннее японской, но упустили лидерство.

В каком смысле совершеннее? В Англии принято считать высшей мерой эффективность. Центральное электроэнергетическое управление, Национальная инженерная лаборатория (которая развила и усовершенствовала японский проект), министерство энергетики, специалисты в области атомной энергии — все они одержимы идеей эффективности. Она стала инженерным термином и количественной оценкой. Для инженера это понятие заключает соотношение, с одной стороны, между стоимостью изготовления устройства, его содержания, эксплуатации, ремонта, стоимостью рабочей силы и запасных частей, а с другой — количеством вырабатываемой волновой энергии в киловаттах на метр с учетом потерь на переработку и передачу. Чтобы подбить итог, надо ввести всю эту информацию в знаменитое британское изобретение — вычислительную машину. Предполагается, что итог выражает мудрость. Единственное отсутствующее слагаемое — это здравый смысл.

В отношении буя Масуды эффективность не является главной характеристикой. Ее даже уменьшают, чтобы уберечь батареи от перегрузки. Но если энергопродукция призвана обеспечивать электросеть страны, вопрос эффективности, очевидно, важен. В этом случае желательно получить всю мощность, на которую способно соответствующее оборудование. Существует, однако, одно соображение, в свете которого надлежит усвоить совершенно новый взгляд на вещи. Количество энергии, которую можно получить вдоль берегов Великобритании, как в случае с буем Масуды, превышает наши потребности. Даже если 120 ГВт для «океанской линии» генераторов снизить до самой пессимистической оценки, 12 ГВт, останется независимая возможность устанавливать параллельные линии генераторов, отстоящие на 160 или 80 км. Впервые со времени свершения промышленной революции возникла ситуация, в которой заложен простор для движения.

Начальные затраты на строительство могут рассматриваться и, на мой взгляд, должны рассматриваться как пункт программы финансирования общественных работ, обеспечивающих полезную занятость в кризисный период. Стоимость содержания генераторов при этом сравнительно со стоимостью содержания и эксплуатации угольных шахт будет невысокой.

Достоинства и недостатки устройств различного типа обсуждались на разных уровнях. Изготовление осциллирующего столба и Гис-выпрямителя потребует много бетона, тогда как на утку и плот уйдет много стали, производство которой обходится дороже. Один ведущий специалист указывает также на то, что осциллирующий столб будет заметнее реагировать на нерегулярность волнения, чем утка или плот. Он аргументирует это следующим образом: «К недостаткам плота и утки относится передача энергии с большими давлениями и невысокой скоростью потока жидкости в приводе. Но энергия волн может вращать воздушную турбину со скоростью 1200 об/мин. На сооружении любого типа скорость вращения турбины согласуется с параметрами набегающих волн. Если инерция устройства велика, то она будет меньше реагировать на нерегулярность волн. Зато, чем выше нагрузки и чем ниже скорость, тем большая турбина требуется и тем, следовательно, она будет дороже. Выгоднее будет сглаживать неравномерность выдачи энергии, вырабатываемой осциллирующим столбом».

Теперь посмотрим, как та же самая идея превращения энергии волн в механическую энергию воздушного потока реализуется в Англии.

Национальная инженерная лаборатория надеется установить летом 1979 г. модель своей самой последней конструкции в масштабе 1/10. Модель будет иметь размеры 12x3,5 м, и человек, желающий пройти из одного ее конца в другой, должен будет сделать 14 шагов — несколько больше, чем в тюремной камере. Полномасштабная установка будет больше японской: 120x35 м. Но в настоящее время нет никаких указаний на то, что изготовление такой конструкции хотя бы планируется.

Япония, обладающая программой на 1974-1983 гг., после двухлетнего изучения вопроса, в 1976 г., приняла решение ставить полномасштабную конструкцию. Японцы заякорили корабль на глубине 40 м в 2,5 км от берега и начали опытное производство энергии осенью 1978 г. Мы же собираемся начать производство на основе модели 1/10 в устье Клайда, близ Ардроссана, на девять месяцев позже. Я не сомневаюсь, что наша модель будет более эффективной. Но имеет ли это действительно значение, если обе страны прокладывают дорогу новой технике? Вспомним также, что, согласно политике, провозглашенной в Белой книге министерства энергетики в 1980-1981 гг., будет выбран единственный проект, на котором сконцентрируются усилия и средства. Отвергнутые специалисты будут оттеснены и займутся чем-нибудь другим.

К тому времени японцы будут уверенно стоять на ногах; их жизненная философия, говоря метафорично, заключается в том, чтобы перевернуть лодку и посмотреть, кто уцелеет. Мы стоим на берегу, пробуя ногой водичку. Пока мы анализируем данные на лентах компьютеров и ищем лучшие решения, начнут раздаваться стоны уныния, если Япония будет экспортировать свои установки и патенты, предоставляя возможность другим странам использовать и изготовлять «неэффективные» варианты собственных генераторов.

Замечательная группа инженеров из НИЛа, у которых я впервые приобретал познания по волновой энергии, безусловно, будет рассматривать такой взгляд как еретический. В феврале 1975 г. группа выполнила обширное теоретическое исследование по предмету. Мне кажется, оно остается полезным источником информации, и три года, которые сделали это сочинение почти архаическим в своей области, не дали ничего лучше. Оно демонстрирует уровень НИЛа как центра инженерного искусства Британии. Учреждение основано министерством промышленности и в настоящее время, имея штат 850 человек и 67 акров лабораторий, решает множество задач, стоящих перед промышленностью. НИЛ ведет работу и в частной и в национализированной промышленности, и любой предприниматель может обратиться туда за помощью. В случае неполадок в новой технике они вышлют на место специалистов, подсоединят диагностические приборы, связанные с мощной вычислительной машиной, проанализируют задачи и устранят дефект.

Такая служба используется недостаточно широко, ибо инженерный персонал на местах возмущает самая идея, что кто-то со стороны может лучше их самих разобраться в их проблемах. Поэтому ведущие специалисты Национальной инженерной лаборатории не удивляются, встречая неприязнь. Вдохновляющим стимулом высококвалифицированных инженеров самой лаборатории является то, что им предоставляется возможность следовать собственным увлечениям без тягостной необходимости обеспечивать непосредственную практическую выгоду.

Такого рода обстановка привлекает в НИЛ лучших инженеров, но, с другой стороны, легко становится объектом критики. Начатые в НИЛ исследования по волновой энергии, мне кажется, не обрадовали кое-кого в министерстве энергетики, где предпочитают, чтобы занимались углем, ядерной энергией и особенно нефтью; понятно, там негодуют и на то, что чужаки вторгаются в их жизненные сферы.


Усовершенствованный проект осциллирующего водного столба, разработанный НИЛ.


В обзоре, сделанном в лаборатории в 1975 г., устройство Масуды характеризуется как «наиболее перспективная схема» на том основании, что конструкция не имеет значительных по размерам подвижных элементов, обладает достаточной эффективностью, использует воздушную турбину, доказавшую на малых установках свою продуктивность и надежность, что изготовление устройств может быть налажено на существующих верфях при существующей технологии и что принцип устройства внушает больше доверия сравнительно со всеми другими. Следует отметить, что приоритет отдавался эффективности.

Спустя год, когда министерство энергетики наконец приступило к распределению средств на дальнейшие исследования, НИЛ была предоставлена возможность работы над проектом Масуды — в направлении, которое она сама определила как самое перспективное. И сегодня лаборатория убедительно защищает преимущества этого проекта.

Он получил новое название — осциллирующий водный столб в силу того, что столб воды колеблется внутри бетонной трубы. Идея Масуды была развита и усовершенствована.

Прежде всего НИЛ опробовала эффективность устройства. Инженер Георг Муди, специализирующийся в данной области, сказал, что они сделали бетонную стенку со стороны набегания морских волн короче другой: в этом состоял первый шаг. Это помогало волнам «создавать столб» внутри конструкции и повышало ее эффективность с 30 до 70%. Затем нижнюю горизонтальную плиту они установили под прямым углом к более длинной тыловой стенке и увеличили эффективность конструкции еще на 20%. Найденная конфигурация напоминает старомодный двухпалубный дилижанс с отверстием с одной стороны для входа пассажиров (или волн). Это неоспоримое усовершенствование было достигнуто менее чем за два года и явилось результатом последовательных испытаний различных моделей с анализом результатов на компьютере. Итоговый вариант весьма отличается от японского.


Модель осциллирующего водного столба в масштабе 1/50 готовится к испытаниям.


Модель НИЛ имеет в верхней части две трубы: одну для всасывания воздуха, когда вода опускается, и другую для выталкивания воздуха при подъеме воды. Трубы имеют выпрямители, т.е. устройства, которые при помощи клапанов создают однонаправленный поток воздуха, подающийся на турбину. Инженеры Королевского университета в Белфасте, работавшие независимо над этим аспектом проблемы, предложили для турбины конструкцию, не нуждающуюся в выпрямителе. Они сравнивают ее с пропеллером такого типа, который не обеспечивает поступательного движения вперед.

Из внимания специалистов не ускользает, что передняя стенка устройства, в полной мере предоставленного во власть волн, будет подвергаться сильнейшим ударам. Мой гид в НИЛ Колин Гривс, коренастый инженер-практик, говорит: «Размах колебаний частиц воды может достигать 20-30 м и установка будет вовлекаться в это движение. Требуется найти средства стабилизации, достаточные, чтобы столб мог противостоять движению волн. Здесь мы возвращаемся опять к трудной задаче выбора золотой середины между сооружением, неподвижно установленным на морском дне в 5-30 км от берега, и плавучим сооружением, свободно реагирующим на внешние воздействия. Понятно, что колебания самого сооружения не должны совпадать по фазе с волновым движением внутри него, дабы вода, перемещаясь относительно плавающего сооружения, могла производить работу. М-р Р.А. Меир из отдела энергетики НИЛ выполнил первое исследование в этом направлении. Он показал, что устройство, имеющее конфигурацию опрокинутого дилижанса, так же эффективно, как неподвижная конструкция, при условии, что волны, генерируемые самим устройством, будут несущественны.

М-р Муди говорит: «Если было бы возможно установить сооружение на дне, то это была бы замечательная штука. Но вспомните, что речь идет о строении, эквивалентном стене гавани протяженностью 120 м. Поэтому мы склонны считать, что плавающее устройство, даже менее эффективное, практически будет выгоднее. Оно не примет энергию самых могучих волн. Но при этом во всяком случае отпадут неприятности, связанные с возможностью аварий. Разрушительные силы будут исключены, но, невзирая на значительное снижение эффективности, выход останется высоким».

Заметим, что корабль Масуды имеет отверстия в днище и в «создание столба» вовлекается меньшая часть волновой энергии. В отличие от него, корабль НИЛ с входными отверстиями на борту устанавливается фронтально волнам и волны бьют в него с полной силой. Получая больше энергии, он будет, следовательно, более эффективным. Однако это пока модель в 1/10 натуральной величины и начнет действовать она, по-видимому, годом позже полномасштабного японского прототипа. Если начать продавать волновые генераторы в другие страны, то не возникнет сомнения, что предпочтительней: действующий полномасштабный корабль или небольшая модель, хоть и усовершенствованная. Если же мы решим строить полномасштабный водный столб, то трудно будет убедить перспективного заказчика в преимуществах нашей установки через три года после того, как Япония распределит свои патенты.

Вместе с тем перед НИЛ стоит серьезная проблема якорного закрепления устройства, и специалисты, имеющие уже большой опыт установки нефтяных платформ в Северном море, ее недооценивают. В отличие от утки и плота, в усовершенствованном водном столбе не требуются элементы, колеблющиеся на волнах. М-р Гривс настаивает на том, что необходима более широкая программа исследований по безопасной установке прототипа. Скоро мы увидим, как функционирует корабль Масуды, и вопрос эффективности всплывет опять. Если, как предполагают, он будет закреплен менее жестко, чем требует установка НИЛ, его эффективность окажется ниже, ибо часть волновой энергии будет растрачиваться на движения самого корабля. Похоже, что корабль Масуды длиной 80 м будет производить не более 20 кВт/м. За Гебридами продуктивность волн 70 кВт/м. В этих условиях эффективность устройства, за которой гоняется НИЛ, обеспечит в итоге огромное его превосходство над проектом Масуды.

Вопрос, отложить ли производство в поисках оптимальной конструкции или вернуться к старому британскому стилю, заимствованному у нас сейчас японцами, т.е. прагматическому подходу, имеет политический характер.

Мне кажется, трудно не понять, что нам бросили вызов в духе наших ранних экспериментов с паровой энергией. Мы производили установки вроде котла Уатта, которые были чудовищно неэффективны по сравнению с последующими моделями. Однако Британия, спотыкаясь, но решительно двигаясь вперед, возглавила 200 лет назад революционный переход от гидроэнергии к энергии пара, совершая ошибки, приносившие позднее выгоду другим странам. И пионерские усилия обеспечили нам ведущее место в промышленной революции.

Было бы печально, если бы мы продолжали сегодня осторожно применять научный подход, видя, как в лучшем британском стиле Япония бросилась вперед.

Загрузка...