Общие и эволюционные аспекты физиологии в этой книге будут рассмотрены как своеобразные естественные технологии живых систем. Эта точка зрения многим покажется странной, так как технология — одна из прикладных, утилитарных и искусственных наук, а физиология — одна из древнейших естественных наук, касающихся глубочайших тайн жизни. Для того чтобы понять, как могли сформироваться такие непривычные представления, как представления о естественных технологиях, следует кратко напомнить некоторые этапы развития науки о жизни.
Еще Томмазо Кампанелла в книге «Город солнца» полагал, что совершенное правление требует участия ученых, в том числе физиологов. Недавно физиология была едва ли не самой престижной естественной наукой. Вот как писал об этом на исходе XIX в. Макс Ферворн: «Седая греческая древность соединяла со словом "фюзис" понятие о всей живой природе, и это значение в самой чистой своей форме находит выражение еще в песнях Гомера. Но с тех пор понятие, связанное с этим словом, подверглось разнообразным переменам. Уже весьма рано первоначальное значение было сделано более общим, и уже во время расцвета греческого образования ионические философы, древнейшие естествоиспытатели Греции, назывались "физиологи", причем понятие "фюзис" было перенесено на всю природу. Позднее, с отделением физики в качестве особой науки в нынешнем смысле этого слова, понятие было снова сужено, но в другом смысле, так как оно было ограничено специально безжизненной природой, и таким образом в настоящее время оно имеет значение как раз противоположное первоначальному.
Если понимать слово "фюзис" в его собственном, первоначальном значении, то слово "физиология" вполне верно выражает сущность той науки, которую оно обозначает, и нет необходимости заменять его более новым словом — "биология", которое в том смысле, в каком оно теперь употребляется, соединено обыкновенно с более специальным представлением.
Таким образом, физиология есть учение о явлениях живой природы и ее задачею является исследование жизни» (с. 4—5).
Сегодня физиология представляет собой одну из многих биологических наук. Врачи и специалисты, занимающиеся различными областями прикладной биологии, предпочитают опираться на биоматематику, биофизику, молекулярную биологию и другие новые науки. Тем не менее они вынуждены постоянно обращаться и к важнейшим аспектам физиологии, которые звучат как физиологическое значение, физиологическая роль и физиологический смысл изучаемых явлений и свойств.
Во второй половине XIX в. И. М. Сеченов писал, что физиолог — это физико-химик живого организма. В настоящее время этот тезис, вряд ли можно использовать корректно, так как физика и химия живого организма стали предметом биофизики, биохимии, биоорганической химии, бионеорганической химии, молекулярной биологии и многих других наук. Если к ним прибавить цитологию, биоэнергетику, мембранологию и целый комплекс так называемых органных и системных наук (кардиологию, пульмонологию, нефрологию, гастроэнтерологию и др.), то становится ясно, что физиология не может быть охарактеризована фундаментальными признаками и критериями конца XIX—начала XX в., отличающими великую самостоятельную науку. Сейчас физиология занимает весьма неопределенное и меняющееся положение между биофизикой, биохимией и другими молодыми науками. Однако биология, образно выражаясь, живет в многомерном пространстве, в котором физиологические подходы при обсуждении многих проблем, связанных с познанием жизни и ее проявлений, по-прежнему незаменимы.
В 1967 г., анализируя особенности физиологических подходов к исследованиям закономерностей живых систем по сравнению, в частности, с биохимическими, биофизическими и другими специальными подходами, я пришел к заключению, что физиология занимается структурой биологических процессов независимо от природы их носителя — физического, химического или механического. Другими словами, предметом физиологии являются процессы жизни во всех их проявлениях. В этом смысле предмет и цель этой науки не совпадают с таковыми других биологических наук. Такие представления изложены мною в книге «Мембранное пищеварение. Полисубстратные процессы, организация и регуляция» (1972): «Одним из парадоксальных результатов бурного прогресса науки явилось разделение целостных физиологических процессов между разными науками — классическими и вновь возникающими. В результате такого разделения мы узнали многие фундаментальные закономерности протекания таких процессов, как пищеварение, кровообращение, дыхание, но в значительной степени потеряли возможность охарактеризовать процесс как систему хорошо скоординированных друг с другом последовательных и параллельных операций, отличающихся высокой степенью совершенства... С точки зрения технологической необходимо описать процесс, охарактеризовать отдельные его операции, оценить значение различных устройств, систем и блоков в осуществлении каждой из операций и процесса в целом... Я убедился, что технологический подход очень труден, так как он требует использования языка и метода различных наук... Однако не всегда трудный путь является неправильным. Кроме того, со временем он может стать легче и совершеннее...» (с. 302—303).
Существуют, однако, чисто научные причины, по которым технологический подход был чужд стилю и духу естественных наук. Это вызвано тем, что технология обычно занята созданием процессов ради получения искусственных продуктов, тогда как естественные процессы являются следствием эволюции и реализуют выработку натуральных продуктов. Кроме того, технологический процесс целенаправлен, т.е. телеологичен, в то время как телеология не свойственна естественным наукам. Более того, естественные науки начинаются там, где кончается телеология. Однако человек — это творение природы; плоды его разума, которые часто кажутся фантастичными и искусственными, в действительности представляют собой один из вариантов того, что существует в природе. Технологии относятся именно к этому ряду феноменов.
Что касается целенаправленности производственных технологий и запретности телеологических проблем для естественных наук, то произвольные запреты, даже общепринятые, рано или поздно отвергаются. О телеологии живого можно говорить лишь применительно к системам с линейной детерминацией, где причина и следствие четко дифференцированы. Между тем процессы жизни цикличны. Их телеологичность не столь очевидна, ибо любой конечный эффект — не только цель, но и многократно повторенная причина. Таким образом, проблема телеологии в отношении динамической биологии с ее циклами не всегда уместна. Еще более важно формирование в ходе эволюции целесообразности функций и структур.
Широко распространено мнение, что естествознание занималось и занимается познанием природы и ее законов, а технология — использованием этих законов для практических целей. Такое разделение сфер влияния, например между химией и химической технологией, недавно обсуждалось в капитальных сводках акад. Н. М. Жаворонкова, акад. Б. М. Кедрова, П. Г. Кузнецова и др. Для технологии конечной и высшей целью является полезность процесса, т.е. телеологичность, которая на протяжении последних столетий разделяла истинное естествознание и сходные с ним области знаний. Однако развитие производственных технологий и естествознания, в наше время объединенное современной научно-технической революцией, привело к еще одному поразительному результату — возможности объединения технологических и естественно-научных подходов на основе естественных технологий. Причин такой интеграции несколько.
1. В течение XX в. физиология — наука о функциях и процессах в живых системах — постепенно трансформировалась из физико-химии живого организма в технологию биосистем.
2. Технология производственных процессов изменилась; сформировались новые общие науки, рассматривающие живые и искусственные системы, в связи с чем появилась возможность для выявления некоторых общих закономерностей.
3. Благодаря развитию эволюционной теории и пониманию функций живых систем критерий полезности утратил характер ненаучности и изменил даже терминологическую окраску.
4. Уровень активности человека достиг таких пределов, когда искусственные и естественные системы оказались тесно взаимодействующими. Возможность описания тех и других на общем языке технологий (индустриальных и естественных) позволяет лучше понять и полезные, и трагические последствия такого взаимодействия и, быть может, лучше управлять ими.
Если принять, что среди наук о жизни физиология занимает такое же положение, какое среди технических наук занимает технология, то такое сравнение может показаться не вполне правомерным, ибо технология является такой же утилитарной наукой, как физиология — естественной. Но прогресс знаний и их распространение из одной сферы в другую, казалось бы далекую, открывают новые возможности. Примером этому служит развитие бионики и кибернетики, которые, по выражению Л. Жерардена, стали всеобщими науками, хотя первая родилась из анализа биологических систем, а вторая — из рассмотрения технических систем. Он писал: «В этой области, где естественные науки сходятся с инженерно-техническими науками, бионика не единственная наука — перекресток. Еще раньше появилась кибернетика... Происхождение кибернетики известно так же точно, как и происхождение бионики. В 1949 г. появилась книга, которая называлась "Кибернетика, или управление и связь в животном и в машине"... Заслуга профессора Винера в том, что он уловил все неисчерпаемые возможности применения подобной аналогии, которая стала основой кибернетики. От формальной аналогии он пришел к уподоблению свойств: изучение функций машин объясняет функции живых существ. Таким образом, кибернетика и бионика предстают перед нами как две сто
(отсутствуют страницы 10 и 11)
эпизодическими и случайными? Это объясняется, по-видимому, тем, что процесс формирования естественных технологий начался миллиарды лет назад и продолжается до настоящего времени, в то время как век производственных технологий едва наступил. Поэтому многие аналогии между естественными и производственными технологиями были невозможны еще несколько десятилетий назад. Лишь отдельные аналогии становятся понятны сегодня, в то время как многое еще предстоит понять в будущем.
В полной мере значение естественных технологий будет оценено впоследствии благодаря созданию принципиально новых технологических процессов в промышленности. Мы имеем в виду сходство многих принципов функционирования живых систем и гибких автоматических линий с участием роботов и стандартных устройств для реализации многих типов технологических процессов. Именно на основе мультипотентных функциональных блоков (см. гл. 7 и 8) с несколькими вариантами программ управления строятся различные, подчас противоположные но своему физиологическому значению, естественные технологии, такие, как всасывание и экскреция, секреция и внутриклеточная рецепция и т.д.
Сопоставление определений производственных технологий и естественных процессов позволяет заключить, что лишь первые имеют отношение к проблемам, рассматриваемым технологией. Действительно, в 1901 г. в статье «Технология», опубликованной в энциклопедическом словаре, Д. И. Менделеев характеризует технологию как науку о способах изготовления из природного сырья искусственных предметов, т.е. предметов, не существующих в природе. Д. И. Менделеев писал: «...возникновение Т. (технологии.—А.У.) или учения о выгодных (т.е. поглощающих наименее труда людского и энергии природы) приемах переработки природных продуктов в продукты потребные (необходимые или полезные или удобные) для применения в жизни людей. Хотя Т. по своему предмету глубоко отличается от социально-экономических учений, но в ней с ними много прямых и косвенных связей, так как экономия (сбережение) труда и материала (сырья), а чрез них времени и сил составляет первую задачу всякого производства и существо учения о фабрично-заводских производствах совершенно теряет почву, если утрачивается из виду выгодность (экономичность) производства. Дело, например, химии изучать получение железа из его руд или из иных веществ природы, где оно содержится, а дело Т. изучить выгоднейшие для того способы, выбрать из возможностей наиболее применимую по выгодности — к данным условиям времени и места, чтобы придать продукту наибольшую дешевизну при желаемых свойствах и формах. Такая задача Т. показывает, что в ней нет тех высших и абсолютных требований, какими отличаются абстрактные науки, касающиеся видимой или внутренней природы, что она содержит в себе приложение к жизни других более отвлеченных знаний и что ее содержание должно изменяться по обстоятельствам и условиям места и времени. Но эти, так сказать, отрицательные стороны Т. искупаются, во-первых, тем прямым и жизненным значением, какое имеют уже в наше время фабрики и заводы, и какое в будущем долженствует все более и более усиливаться, а, во-вторых, тем, что учение о способах, применяемых заводами и фабриками, освещает научными началами то, что вырабатывается практикою и чрез это не только усовершенствуется производство, но и расширяется область научного понимания вещей и явлений. В этом последнем отношении достаточно указать хотя бы на одно брожение, так как оно с незапамятных времен применяется при обработке сахаристых веществ и дало начало тому общему учению о микроорганизмах, которое составляет одну из блестящих и плодотворнейших частей современного естествознания, показывая вновь тесноту связи между абстрактною и прикладною частями знаний. И хотя многие приемы, применяемые на заводах и фабриках, ведут свое начало от опытом оправданных начал естествознания, тем не менее в практическом сочетании частности должны ждать своих обобщений, с которыми в будущем может выступить Т. как самостоятельная, прикладная наука. Но до сих пор Т. имеет предметом главным образом описание применяемых при отдельных производствах способов, орудий и сырья и изложение исследований, произведенных в отношении как к веществам, так и к процессам, применяемым на заводах и фабриках. При этом не должно забывать, что Т. принадлежит к числу наук очень молодых, возникших всего лишь в XIX столетии» (с. 132).
Из этого описания очевидны существенные различия процессов, используемых в разных производственных технологиях, и процессов, наблюдаемых в живых системах. Однако по мере того как происходило совершенствование производственных технологий, сходство между эффективностью и управлением процессами на производстве и процессами, наблюдаемыми в живой природе, достигало подчас поражающих воображение масштабов. Так, работа тех и других систем контролируется обратными связями, обеспечивающими поддержание определенных скоростей процесса. Контролируется также ряд параметров среды, где протекают промышленные процессы, и жизнедеятельность рассматриваемой группы клеток, обозначаемая как гомеостаз. При этом механизмы контроля и процессы поддержания постоянства среды реализуются на основе общих принципов. Можно полагать, что дальнейшее совершенствование производственных технологий приведет к тому, что сходство между естественными и производственными технологиями станет еще больше.
Взаимоотношения между естественными науками и технологией в традиционном понимании последней удобно проанализировать на примере химии и химической технологии. Такой анализ может быть основан на фундаментальных обзорах, появившихся в 80-х гг. и принадлежащих авторитетным специалистам в области химии и химической технологии (акад. Н. Н. Семенов, акад. Н. М. Жаворонков), а также в области истории науки и техники (акад. Б. М. Кедров, В. И. Кузнецов и З. А. Зайцева). Они обращают внимание на неосновательность распространенного до недавнего времени представления, что между химией и химической технологией существуют лишь различия. Действительно, сейчас уже нельзя считать, что лишь химия как теоретическая наука исследует закономерности химических взаимодействий и создает методы получения новых соединений, тогда как химическая технология в качестве прикладной науки занимается их промышленным оформлением. Так, акад. Н. М. Жаворонков писал, что как химики, так и технологи исследуют новое и создают новое. Вместе с тем он отмечал, что химия познает главным образом новое, тогда как химическая технология создает новое.
Таким образом, объекты изучения химии и химической технологии различны и эти различия сохранятся в будущем. Различия, подчеркнутые рядом крупнейших химиков современности, подробно анализируются в капитальной монографии В. И. Кузнецова и
З. А. Зайцевой (1984). Авторы пишут: «Переход химической технологии с эмпирического уровня на принципиально новый уровень развития характеризуется появлением фундаментальных исследований и теорий высокой степени общности.
Но это, однако, не означает того, что химическая технология даже в тенденции может оказаться тем интегратором, который включает в себя все химические знания. Нет нужды доказывать, что собственно химические знания, хотя их развитие и стимулируется в основном требованиями производства, будут всегда богаче и фундаментальнее знаний, присущих химической технологии, ибо объектом химии является все неисчерпаемое богатство химизма природы, тогда как объект химической технологии представляет собой только искусственно создаваемые человеком материальные устройства, или, как говорят, вторую природу» (с. 256).
В этом описании особенно четко выявляются различия между традиционными взглядами и взглядами, развиваемыми в общей концепции естественных технологий. Понятно, что в рамках представлений о естественных технологиях меняется и понимание технологий. Действительно, технология — это в наиболее общем виде совокупность знаний об организованных процессах. Последние могут быть как естественными, так и искусственными. Ряд закономерностей тех и других, как будет показано ниже, во многом сходны. Вероятно, по мере углубления наших знаний о законах естественных технологий это сходство будет возрастать.
Интересно сопоставить поиски общности естественных и технологических наук на основе процессологических подходов со стремлением ряда крупных ученых рассматривать процесс как главный объект исследований в других областях и с другими целями. Так, акад. Н. Н. Семенов пришел к заключению, что современная химия из науки о составе и химической структуре вещества все больше и больше становится наукой о химических процессах и это открывает перед ней новые горизонты в области теории и в сфере производства.
Долгое время мне казалось, что не стоит науку о сложноорганизованных процессах связывать с получившим слишком утилитарное истолкование термином «технология». Представлялось, что более адекватными могут быть термины «процессология» или «эргология». Однако постепенно информация о фундаментальной общности законов построения организованных процессов в искусственных и естественных системах заставила думать, что термин «технология» не только приемлем, но плодотворен.
Технологические подходы к изучению жизни связаны с влиянием технологий на естественные науки. Однако формирование естественных технологий в свою очередь не может не влиять на развитие производственных по крайней мере по двум причинам: 1) производственные технологии становятся частью более широкого комплекса, включающего как искусственные, так и естественные технологии и, следовательно, должны быть частью синтехнологий, т.е. синтетических технологий, сочетающих производственные и естественные технологии; 2) многие закономерности естественных технологий уже сейчас используются в производственных технологиях, и этот процесс будет усиливаться по мере нашего более глубокого понимания естественных технологий.
Итак, процессы в живых системах могут быть охарактеризованы как естественные технологии, т.е. как некоторая система операций, обеспечивающих определенный эффект. Выполнение операций в большинстве случаев реализуется на основе генетически заданного алгоритма, находящегося под контролем локальной управляющей системы или системы более высокого ранга, обеспеченной определенным источником энергии и характеризуемой дополнительными побочными эффектами.
В нашей стране Л.А. Орбели были сделаны попытки, развитые А.Г. Гинецинским, Е.М. Крепсом и другими учеными, на основе частных концепций эволюции функций (например, таких, как кровообращение, дыхание, пищеварение, выделение и др.) сформулировать общие закономерности, свойственные всем системам. Однако можно допустить, что возможен еще один путь, при котором предметом изучения становится физиологическая эволюция. На первый взгляд такое понятие кажется излишним. Тем не менее предшествующий опыт демонстрирует, что понятие физиологической эволюции или представления о биохимической эволюции плодотворны, так как позволяют указать на круг исследуемых закономерностей. Важно, что физиологическая эволюция включает в себя не только эволюцию функций, но и эволюцию тех механизмов, которые такие функции осуществляют. Физиологическая эволюция включает в себя также ряд закономерностей, относящихся исходно к сфере других наук — биохимии, математики, биофизики и т.д. в той мере, в какой они необходимы для описания физиологии. Именно в рамках физиологической эволюции могут быть доказаны или опровергнуты «функциональные» гипотезы, первоначально лишенные филогенетических корней. Следовательно, для эволюционной физиологии и физиологической эволюции необходимо технологическое направление, которое в свою очередь нуждается в них. Если учесть исключительную важность эволюционной физиологии и физиологической эволюции, то тем более удивительным кажется то малозаметное положение, которое они занимают в общебиологических концепциях живого.
Следует отметить, что при характеристике эволюции отдельных функций чрезвычайно важно то содержание, которое вкладывается исследователем в понимание функций. Последние становятся предметом изучения и рассматриваются как объект эволюционных перестроек. Именно на подходах к основным теоретическим обоснованиям возникает потребность в надежных представлениях, которых особенно не хватает. Технологические подходы к физиологии, где функции понимаются как некоторые процессы, состоящие из определенных операций и контролируемого алгоритма их выполнения, дают возможность внести наряду с уже известными некоторые новые и вместе с тем четкие элементы анализа. Анализируются определенные технологии и их эволюционные преобразования, операции и их составляющие, роль и характер операций, изменение этой роли в ходе эволюции, а не только изменения структур, реализующих каждую из операций. В связи с тем, что физиология рассматривается здесь как технологическая наука, физиологическая эволюция может быть охарактеризована как эволюция технологий. При этом рассматриваются как эволюция процессов, так и эволюция устройств, с помощью которых эти процессы реализуются.
Таким образом, физиология включает в себя изучение эволюции процессов, эволюции отдельных операций, эволюции устройств, выполняющих эти операции. Операции и устройства могут относиться как к процессам эффекторным, т.е. связанным с реализацией действия, так и к различным этапам управления. Развитие и понимание законов физиологической эволюции — проблема, ждущая своего решения.
В биологии решение даже наиболее важных и общих проблем часто зависит от счастливого выбора подходящих экспериментальных моделей, т.е. объектов исследования. Примерами могут служить гигантский аксон кальмара при изучении свойств нервных проводников, слюнная железа при изучении условных рефлексов, дрозофила при формировании генетики, кишечная палочка при решении многих вопросов молекулярной биологии и т.д.
Для анализа технологических аспектов физиологии модельная система также должна обладать определенным сочетанием важных свойств. Алиментарная система является именно такой системой, а процессы, осуществляемые ею, удобны для того, чтобы совершить первые шаги на пути к созданию технологической физиологии и технологической концепции эволюции. Рассмотрим эту аргументацию более подробно.
1. Функция, или система, избираемая в качестве модели, должна обладать большим филогенетическим возрастом, так как суждения о природе и в особенности об эволюции процесса должны иметь возможно более общий характер. Ясно, что функция дыхания не подходит, так как она достаточно молода и ее формирование связано с образованием кислородсодержащей атмосферы, являющейся продуктом жизнедеятельности фотосинтезирующих аутотрофов. Другие функции, например кровообращение, еще более молоды. Напротив, экзотрофия, т.е. усвоение пищевых веществ, поступающих из внешней среды, — это такой же древний процесс, как и сама жизнь.
2. Функция, служащая моделью, должна быть достаточно общей, т.е. присущей всем живым системам. С этой точки зрения экзотрофия также служит подходящим объектом, так как она характерна для всех бионтов.
3. Модельная функция должна наблюдаться на всех уровнях организации живых систем. В этом смысле процессы трофики особенно привлекательны. На всех уровнях организации — от клеточного до планетарного — они относятся к проблемам первостепенной важности и подчиняются общим законам, которые рассматриваются в быстро развивающейся науке трофологии, основные положения которой сформулированы мною в 1980 г. (см. гл. 3).
4. Система, используемая как модель, должна обладать ярко выраженными характеристиками. Процессы, протекающие в алиментарной системе, т.е. пищеварение и всасывание, имеют выраженную технологичность и сходство с производственными технологиями, что послужило причиной сопоставления пищеварения с работой химического завода.
5. Модель должна отражать некоторый круг явлений. Поскольку нас интересует применимость технологических подходов к различным высокоспециализированным функциям, возникает вопрос: подходит ли для этой цели пищеварительная система? Весь предшествующий опыт физиологии свидетельствует, что пищеварительная система как модель чрезвычайно удобна. Именно ее изучение стимулировало развитие общих концепций в области физиологии К. Людвигом и Р.-П.-Г. Гейденгайном в Германии и К. Бернаром во Франции, которые оказали решающее влияние на физиологию и экспериментальную биологию XIX в. Работы в области пищеварения явились источником формирования идей И. П. Павлова относительно высшей нервной деятельности и У. Кеннона относительно физиологии эмоций. Работы в области физиологии пищеварительной системы сыграли большую роль в формировании многих важных представлений, касающихся активного транспорта и других вопросов мембранологии, в представлениях о системных эффектах желудочно-кишечных гормонов и т.д. Наконец, автор должен иметь в какой-то области свой собственный опыт. Этот опыт относится к пищеварительной системе и связан с работой по разным проблемам пищеварения.
Итак, на примере систем, обеспечивающих ассимиляцию пищевых веществ, постараемся проанализировать возможности и границы технологических подходов для понимания процессов жизнедеятельности и путей эволюции живых систем.
Процессы ассимиляции пищи сопоставлялись с технологическими процессами не только в античном естествознании, но и в развитом естествознании конца XIX в. И.П. Павловым.
В следующих главах будут рассмотрены некоторые наиболее характерные стороны ассимиляции пищевых веществ пищеварительной системой высших организмов и человека. Перед нами пройдет поражающая своей логичностью и эффективностью программа операций, в результате которых из пищевого продукта извлекаются всевозможные компоненты, необходимые организму-ассимилятору. Бесчисленные и лишь отчасти успешные попытки искусственно воспроизвести естественную технологию этого процесса позволяют оценить достижения и масштабы эволюции.
Вслед за этим в сжатой форме будет нарисована далеко не завершенная картина пищеварительного процесса, будут охарактеризованы некоторые отдельные операции, их взаимодействие и ряд общих принципов построения ассимиляторных процессов у организмов различных типов па разных уровнях организации (клетка, орган, организм, экосистема, биосфера).