ПУТЬ КЕНТАВРА, Или 6 вступлений к дарвинизму завтрашнего дня

Близится конец книги об эволюции наших предков. Стараясь показать читателю, что все в развитии взглядов на этот предмет было непросто, автор, может быть, и несколько перегнул палку. Да, на каждом этапе многие ученые чувствовали, что вопросов перед ними открывается больше, чем закрывается позади «белых пятен». Дарвин разрабатывал свое учение, еще ничего не зная о механизме наследственности. Даже опыты его современника Грегора Менделя на горохе, пролившие свет на законы расщепления признаков в потомстве, были ему неизвестны. Но несмотря на все ошибки, «белые пятна», еще усеивающие полотно нашего знания, успехи науки о живом поразительны. Ты прочел в других главах этой книги, как уточнялась и совершенствовалась теория эволюции после Дарвина. Были открыты различные виды естественного отбора, законы изменчивости оказались неизмеримо более сложными, чем простые мелкие, случайные отклонения от типового набора признаков…

Сейчас наука оказалась лицом к лицу с основой всего живого: химически синтезирован ген, чудесная первооснова каждого признака или свойства организма. На схемах длинных нитей ДНК самых разных организмов — все больше участков с опознанными генами или группами генов.

Самый передний край этого наступления науки на тайны живого — пожалуй, генная инженерия, научное направление, развивающееся в разных странах.

ВСТУПЛЕНИЕ ПЕРВОЕ: «ОТ АДАМА»

Во многих открытиях, у истоков многих научных направлений какую-то роль играет элемент случайной находки. Но к генной инженерии это не относится. Мне кажется, я не погрешу против истины, сказав, что к этому этапу биология была направлена издавна, еще с мифов о химерах и кентаврах, с алхимических и натурфилософских фантазий об искусственных живых существах, искусственных человечках, гомункулусах.

Дарвинист Э. Геккель, обращаясь к химикам-органикам прошлого века, воскликнул: «Если вы создадите правильный белок, он закопошится!.» Можно сказать так: даже не говоря об этом прямо, даже чисто подсознательно, биологи всегда имели и имеют перед собой эту цель — лабораторный синтез живого существа, пусть самого простого. Только в этом случае можно будет надеяться, что ученые по верному пути шли к решению «мировых загадок» наследственности и зарождения живого. Хотя, конечно, полной уверенности, что лабораторная модель повторяет тот процесс, который совершался естественным путем четыре миллиарда лет назад, может не быть и тогда.

Простейшее размножение — это деление. Клетка делится, делится надвое — вдоль — и ее генный набор, образуя две одинаковые копии. В этом простейшем акте воспроизведения творчества не больше, чем в миллионном обороте печатной машины, воспроизводящей набранный текст. На этом уровне организмы-братья, будучи абсолютно одинаковыми, тем не менее глубоко, трагично разобщены — между их генами нет и не будет никакой связи. Общее между ними только в прошлом. И значит, даже если в результате генной «опечатки» и появится что-то новое — мутация в генном «фундаменте» и, соответственно, в признаковой «надстройке» организма, — то это новшество будет иметь значение только для прямых потомков мутанта и не окажет никакого влияния на его современников-собратьев, на общество подобных (популяцию, как говорят биологи), на вид животного, растения, микроорганизма. Такой линейный способ эволюции, развития жизни — примитивен, он не может дать высоких результатов. Правда, теперь уже весьма вероятно, что даже и при размножении делением, природа находит способы «горизонтального переноса» генной информации — и не только на уровне организмов одного вида…

Близко к самому началу своего развития живая природа изобрела половое размножение. При половом размножении потомок получается глубоко оригинальным среди собратьев по виду, ибо сочетание генов, которое он получает в наследство от двух предков, неповторимо. С другой стороны, сообщество, популяция глубоко индивидуальных организмов спаяно при половом размножении поразительным единством. Мутация в одном организме потенциально принадлежит всем. Популяция развивается как целое. С помощью естественного отбора закрепляются или отбрасываются те или иные признаки вида. Соответственно отбрасываются (как вариант: переходят в разряд скрытых, «спящих») одни гены общего генофонда или распространяются, закрепляясь, новые мутантные гены (вариант: выходят на поверхность гены, до того скрытые).

Не просто разные сочетания хромосом — этих надъединиц наследственности — определяют лицо потомка, есть и более тонкие механизмы, изученные классической генетикой. Число хромосом может удвоиться против нормы — это полиплоидия, она может дать дать крупных, жизнестойких мутантов-потомков. Одна хромосома может распасться на части и заменить участок другой хромосомы. Два организма разных видов или даже родов могут иногда «сложить» свои генные наборы. Тогда образуется редкость — гибрид-кентавр с наследуемой новой смешанной организацией. Таковы были знаменитый капустно-редечный гибрид Г. Д. Карпеченко, пшенично-ржаной гибрид тритикале, культурная слива. Подобные ухищрения селекционеров и классической генетики можно было, считает молекулярный биолог С. И. Алиханян, назвать генетической инженерией. Генетическая инженерия целиком еще ограничена естественными рамками полового размножения, скрещиваемости, которая еще изредка возможна между видами и родами растений, но становится неодолимым препятствием на пути более смелых попыток создания кентавров, соединения разнородных генных наборов — скажем, при скрещивании животных с растениями, позвоночных с беспозвоночными, млекопитающих с лягушками, хищных с травоядными или хотя бы парнокопытных с непарнокопытными.

На уровне полового размножения генофонд популяции, и, в конечном счете, вида, почти во всех случаях отгорожен от генофондов других видов и родов животных. Получается нечто похожее на то, что было на уровне неполового размножения: вид с видом может взаимодействовать только «экологически» — либо борясь за существование, либо еще проще — поедая один другой. Виды-братья при половом размножении генетически так же глубоко, трагически разобщены, как особи при неполовом. Общее у видов, а тем более родов, классов и т. д. — только в прошлом, ни в настоящем, ни в будущем им — так думали еще недавно — не обогатить друг друга полезными генными приобретениями…

И вот новый этап на пути развития как экспериментальной, так и теоретической биологии — рождение уже не генетической, а генной инженерии, когда направленное, точное вмешательство переносится вглубь, на более первичный уровень организации живого вещества. Генная инженерия занимается операциями по пересадке небольших групп генов и даже отдельных конкретных генов. Цель генной инженерии — создание совершенно новых организмов с заранее заданными свойствами!

ВСТУПЛЕНИЕ ВТОРОЕ: ОТ ИЗВЕСТНОГО

В 1973 году группа американских ученых обратилась в Национальную академию наук США по поводу потенциальной биологической опасности опытов по сшиванию новых молекул ДНК. Отдельными участками нитей этого биополимера — дезоксирибонуклеиновой кислоты — и являются гены.

Специальная комиссия академии во главе с одним из ведущих «генных инженеров» П. Бергом в июле 1974 года обратилась к ученым всех стран с призывом наложить добровольный мораторий (временный запрет) на целый ряд экспериментов, чреватых страшной опасностью для человечества.

24-27 февраля 1975 года международная конференция ученых в Асиломаре (США) сняла мораторий, но разработала целый ряд правил в области генной инженерии.

В январе 1977 года, на подобной же конференции в Майами генные инженеры углубили и дополнили строгие правила своих экспериментов.

С 1996 года в России действует закон «О государственном регулировании в области генно-инженерной деятельности»

Генная инженерия действительно может быть опасной в беспечных или преступных руках. Она в принципе может создать новых болезнетворных микробов, с которыми организм человека бороться не умеет и на которых не действуют никакие лекарства. С другой стороны, генная инженерия — это поистине «горячая точка» современной науки. Благодаря ей, как писал академик А. А. Баев, «экспериментальная биология вступила в новую фазу своего развития, которую можно было бы назвать творческой, так как человек здесь скорее выступает в роли созидателя, чем робкого наблюдателя природы».

ВСТУПЛЕНИЕ ТРЕТЬЕ: СУТЬ ДЕЛА

Первый этап работы генного инженера обычно состоит в том, чтобы подобрать хорошего переносчика генетической информации. Переносчиком, иначе, вектором, могут быть фаг, вирус и еще плазмида — крошечное тельце, состоящее из ДНК. Дело в том, что в природе именно фаги, вирусы и плазмиды часто переходят из клетки в клетку, то встраиваясь в генный набор хозяина, то отсоединяясь от него снова. И если вирус и фаг, в основном, это враги и паразиты клеток, то роль плазмиды изначально другая. Она добавляет в клетку ту генетическую информацию, которой там не хватает, например, у бактерий некоторые плазмиды вызывают что-то похожее на половое размножение, рекомбинацию, обмен генами между бактериями.

Второй этап работы генного инженера состоит в том, чтобы подобрать, выделить (или синтезировать) тот — донорный — ген, который нужно перенести с помощью «вектора».

Потом этот ген (или фрагмент ДНК, включающий нужный ген) нужно соединить, сшить с вектором и отправить этот гибрид в клетку-реципиент. Там, в клетке, вектор присоединится к хромосоме хозяина, встроится в наследственность клетки. Клетка, делясь, уже передает по наследству новую генную запись, и она и ее потомки обладают свойством, определяемым встроенным геном…

Так и сделали, еще двадцать лет назад, например, Л. Тихомирова, А. Солонин и Л. Петровская вместе со своим руководителем Н. Матвиенко. Сделали дважды. Сначала разрезали пополам ДНК фага «лямбда», вшили туда плазмиду и этот гибрид ввели в бактерию — кишечную палочку. Потом они поступили «наоборот». Вектором-переносчиком стала плазмида. Ее кольцевую молекулу ДНК разрезали в одном месте. В разрез «вставили» один из фрагментов фага «лямбда».

Плазмида, или фаг, вооруженные несвойственным и ненужным им самим геном, впускаются в культуру кишечных палочек. В обоих случаях часть кишечных палочек приобретает новые гены, а значит, и новые свойства. Чистую культуру бактерии с новой наследственностью получают, используя принцип отбора. Чашечку с бактериями подвергают испытаниям, которые могут выдержать только те бактерии, которые усвоили новые гены… И вот перед исследователем чистая культура кишечной палочки с новым, невиданным в природе сочетанием наследуемых свойств. Эти свойства можно проверить, выявить на любом этапе эстафеты поколений быстро размножающейся бактерии. Новый организм, сконструированный методами генной инженерии!

ВСТУПЛЕНИЕ ЧЕТВЕРТОЕ: СКВОЗЬ ТЕРНИИ…

Но такая, бегло рассказанная суть работы генных инженеров не отражает, конечно, и доли истинного содержания всех этих понятий: «взял» (как взять-то молекулу, что за пинцет такой?), «разрезал», «сшил». На каждой из этих операций — масса мучений, кропотливой работы, неудач.

Фаг лямбда… Один из простейших «атомов жизни», носителей собственной наследственности, предмет изучения целого поколения «лямбдологов» (термин, может быть, и не официальный, но уже вполне не шутливый).

Как и многие другие вирусы и фаги, «лямбда» может встроиться в генный набор клетки хозяина, не причиняя ей вреда. Потом отделиться, снова стать фагом. И оказывается, не всегда это повторное отделение происходит по месту первоначальной сшивки. Иногда фаг «забывает» часть своих генов в чужом геноме, иногда прихватывает чужие гены и переносит их в другую клетку. Этими природными свойствами фагов (а также вирусов и плазмид), как переносчиков генов, и воспользовались генные инженеры.

Но не нужно думать, что клетки бактерий или более высокоорганизованных существ безразлично относятся к вторжению чужеродной генной информации. На пути чужих нуклеиновых кислот встают вырабатываемые клеткой молекулы ферментов рестриктаз.

Рестриктазы — это скальпели на молекулярно-биологическом уровне. Они кромсают чужую ДНК, превращая ее в кучу обрезков. Но взоры генных инженеров остановились именно на рестриктазах, скальпель — это как раз то, что нужно на первом этапе генно-инженерного конструирования.

ДНК фага «лямбда» режется рестриктазой в пяти точках. Причем, режется очень своеобразно. Каждый отрезок ДНК (а ДНК, как известно, состоит из двух взаимно комплементарных, а значит, «липких» по отношению друг к другу нитей) режется «со сдвигом». Одна нить режется не точно против другой, а несколько сбоку. На концах отрезков оказываются небольшие куски «липкой» однонитевой ДНК. Представь себе, читатель, склеенные между собой на всю длину две липкие изоляционные ленты. Такая двойная лента с клейкими слоями, направленными внутрь, снаружи не липкая. Но если одна из этих лент короче другой, то у нелипкой двойной ленты будет липкий кончик… Такие отрезки ДНК, с «липкими кончиками», интересны генному инженеру одним: они потенциально готовы к новой склейке.

Пущинские генные инженеры взяли для своих опытов не «дикий» фаг «лямбда». Дикий не годится! У него жесткая белковая «головка», в которую ДНК этого фага просто упрется, если ее сильно удлинить. А ДНК нужно именно удлинить, «пришивая» чужие гены. Выведенный в США специальный лабораторный мутант фага содержал укороченную нить ДНК. Это расширяло возможности исследователей и к тому же выброшенный, несущественный для главных функций фага кусок ДНК содержал одну из точек разрезания. Это уменьшало на один количество фрагментов ДНК, полученных после обработки ее рестриктазой. Но для более точного конструирования на молекулярном уровне нужно было добиться, чтобы молекула фага-переносчика содержала только одну точку разрезания!

Это составило лабораторное содержание первой части работы молодых — тогда — ученых. Здесь пригодилось неиссякаемое терпение Лаймы Тихомировой.

Применяя уже знакомые нам методы «отбора в пробирке», пущинские экспериментаторы начали выделять из массы единиц лабораторного фага те, которые были наиболее устойчивы к действию рестриктаз. Сначала им удалось вывести мутант, разрезаемый рестриктазой не в четырех, а в трех точках. Затем из него тем же методом терпеливого культивирования — мутант, разрезаемый в двух точках, затем в одной… Этот выведенный в отделе А. А. Баева в лаборатории Матвиенко штамм и стал «вектором», переносчиком в первом эксперименте пущинских генных инженеров.

Плазмида, взятая в качестве донора новой генной информации, разрезалась рестриктазой в одной точке, но оставлялась целой — просто из кольцевой ее ДНК становилась нитевидной (с «липкими» тоже кончиками). И вот обрезки видоизмененного фага и нитевой плазмиды смешиваются в пробирке. «Липкие» концы обрезков слабо связываются друг с другом.

После этого в смесь добавляется фермент ДНК-полинуклеотидлигаза, действие которой — обратное действию рестриктаз. Лигаза окончательно сшивает отрезки ДНК и тщательно заделывает швы.

Эксперимент был закончен…

ВСТУПЛЕНИЕ ПЯТОЕ: ОШЕЛОМЛЯЮЩИЕ ПЕРСПЕКТИВЫ

В одной из лабораторий Франции ученые искали способ борьбы с одним из наследственных заболеваний человека. При этом заболевании в клетках человека врожденно покалечен ген, управляющий производством некоего фермента. Фермент очень нужный, его отсутствие сопровождается тяжелыми нарушениями обмена. Неожиданно этот самый ген нашли в некоторых вирусах… Появилась смелая идея — воспользоваться вирусом, чтобы излечить наследственное заболевание человека.

Для начала решили провести опыты на мышах. Есть такой чисто «мышиный» вирус папиломы. Он вызывает у мышей заболевание: образование на поверхности тела папилом, чего-то вроде бородавок. Этот вирус как раз из тех, содержащих нужный ген.

Мышей заразили вирусом, они заболели. Одновременно мышей исследовали на содержание в их тканях того самого фермента. Его стало больше, чем у незараженных!

И тут произошло неожиданное. Сама жизнь закончила этот опыт намного раньше времени. У сотрудников лаборатории тоже обнаружилось увеличение производства фермента! В чем дело? Вирус ведь специфический, мышиный! Да, мышиный, и поэтому он в организме человека самостоятельно не размножается, не поражает клеток, не образует папилом. Но он проникает в геном человека, встраивается в него в виде дополнительного набора генов. А среди этих генов — ген, управляющий производством того самого фермента. Если бы среди сотрудников лаборатории оказался ребенок, страдающий наследственной болезнью, с которой они хотели бороться, он бы вылечился!

Могут сказать, что этот случай не имеет прямого отношения к генной инженерии. Да, над ДНК не производили никаких операций, нужный донорный ген встроился в геном нового хозяина естественно, в составе ДНК своего вируса. Но аналогия с перспективами и проблемами генной инженерии самая выразительная.

Да, приобретая власть над генами, человек вплотную подступает к решению многих, вчера казавшихся фантастикой задач. И при этом есть риск неуправляемого, побочного, неожиданного, результата. К счастью, некоторый избыток фермента, который вырабатывается теперь в организмах сотрудников французской лаборатории, безвреден. А если бы было не так?

Итак, какие практические выгоды сулит человечеству генная инженерия?

У человека есть масса наследственных болезней, полное излечение которых обычными методами медицины не удается. Случай, произошедший во французской лаборатории, — только случай. На случай нельзя ориентироваться. Американские «генные инженеры» К. Меррил и Х. Станбро попытались нащупать пути излечения еще одного наследственного заболевания — галактозной недостаточности. К счастью, есть способ, позволяющий производить опыты с клетками человека, не подвергая опасности человека. Клетки любого высшего животного можно заставить размножаться в лаборатории, в чашечках, размножаться массой, без образования тканей, органов. С культурой человеческих клеток, больных галактозной недостаточностью, ученые и производили свой опыт.

В качестве «вектора «-переносчика они использовали мутант того же фага «лямбда» со встроенным в него тем участком ДНК из кишечной палочки, где находится галактозный оперон — группа генов, способная «организовать» производство недостающего соединения. Гибридный фаг впустили в культуру больных клеток человека. В 1974 году Меррил и Станбро объявили, что клетки излечились!

Похожий опыт провела группа ученых США и в 1975 году, излечив клетки, больные так называемым бета-ганглиозидозом.

Не менее привлекательна «обратная задача»: встройка генов высших, скажем человека, в геномы низших, например бактерий. Для чего это надо?

Да для того, чтобы простыми, дешевыми, массовыми методами производить различные лечебные сыворотки, гормоны: ростовой гормон гипофиза, иммуноглобулины — вещества, побуждающие ослабленный детский организм сопротивляться всякой инфекции, белки, позволяющие подавить гемофилию — наследственную несвертываемость крови.

На этом пути есть успехи. Способом, похожим на примененный пущинцами — с помощью рестриктазилигаз, — сумели встроить в плазмиды гены из ДНК морского ежа, управляющие синтезом некоторых белков. Сумели встроить один из генов любимого лабораторного животного генетиков — мушки дрозофилы в геном столь же любимой микробиологами кишечной палочки-выручалочки.

Уже продается в аптеках и спасает жизни миллионов людей человеческий (а не животный, как прежде) инсулин, лекарство от «сахарной болезни» — диабета, полученный в культурах снабженных человеческим геном бактерий.

В сельском хозяйстве трансгены тоже уже работают и приносят прибыль. В 1986 году удалось пересадить один ген из бактерии «тюрингская бацилла» в геном табака. Это был ген, который управлял строительством белка — токсина, то есть яда для насекомых-вредителей этого растения. Ученые продолжают опыты, и уже почти в новом тысячелетии сумели пересадить этот же ген из той же бациллы в культуру риса. Рис — сам! — стал убивать своих двух злейших врагов, желтого и полосатого пилильщиков.

Одна из плазмид, Ti-плазмида перенесла в тот же табак ген, в 10 раз повысивший в растении содержание аспирина, салициловой кислоты и тем избавила его от трех заразных заболеваний и повысила устойчивость к ужасу табаководов — вирусу табачной мозаики. Но эти же чудо-фаги и плазмиды иногда по совершенно непонятным причинам, привнеся тот или иной ген в то или иное растение, не только ничего путного не совершают, но и действуют наперекор, не усиливая тот или иной нужный признак, а даже и подавляя его окончательно. Поиск во многом все еще идет вслепую…

«Золотая мечта» растениеводов — создание сельскохозяйственных растений со встроенным геном фиксации атмосферного азота (Nif-опероном) — пока относится к области фантазии», — писал когда-то академик А. А. Баев. Но добавлял, что этот чудо-оперон, сулящий человечеству революцию в области продуктивности сельского хозяйства (удвоение и утроение урожаев по всей планете!), уже умеют перебрасывать из бактерии в бактерию очень уверенно. Будем надеяться, что эта и другие «золотые мечты» растениеводов не останутся только мечтой.

Тот же случай с французскими учеными, нечаянно заразившимися вирусным геном, наводит и на другие размышления.

— Был такой случай, — рассказывал мне научный руководитель пущинской группы Николай Матвиенко. — Послали статью об очередном эксперименте по генной инженерии в известный международный журнал. Оттуда статью завернули: в статье не указаны гарантии биологической безопасности эксперимента.

— Как вы считаете, правильно завернули?

— Правильно. Опасность, конечно, есть. Вы знаете, как назвал один американец выведенные безопасные векторы-мутанты фаги «лямбда»? Аронфаги! Не догадываетесь, что это значит?

— Нет.

— Подскажу. Это по-английски пишется так: haronphags.

Все ясно! Харон — мифический перевозчик душ усопших в царство мертвых через реку Стикс…

— Хорошо. Ну, а ваш фаг, переносчик генов, его можно отнести к аронфагам?

— Да! Мы много об этом думали. И в тексте работы есть об этом…

— В человеке, — продолжал Н. Матвиенко, — ежедневно продуцируются триллионы кишечных палочек. Это основная масса нашей «кишечной флоры», без которой мы, пожалуй, не смогли бы нормально питаться и переваривать пищу. Представляете, что будет, если на волю вырвется штамм кишечной палочки со встроенным в него опасным геном? Наши организмы не привыкли бороться с кишечной палочкой, она — союзник. И вдруг союзник становится врагом… Последняя конференция в Майами разработала подробную инструкцию о правилах работы генных инженеров. Трудно предположить, что кто-нибудь захочет нарушить эту инструкцию, подвергнуть окружающих страшной опасности. В то же время за рубежом есть частные фирмы, отнесшиеся скептически к инструкции. Что делается в лабораториях этих фирм, общественность часто не знает. Нужны еще, наверное, и какие-то юридические рамки…

Генные инженеры всего мира продолжают поиски новых методов разрезания и сшивания генов. Причем сейчас эти поиски ведутся в основном в направлениях заведомой безопасности самих методов.

Обычно работа идет с организмами, гены которых хорошо известны. Но опасность может подкрасться со стороны… Рестриктазы режут нити — ДНК фага заканчивается не геном, а какой-то его половинкой. Отрезок чужой ДНК, который нужно присоединить, тоже заканчивается обрывком какого-то другого гена. Чаще всего соединение этих двух половинок ничего нового не дает. Но в принципе не исключено, что две половинки разных генов смогут образовать новый ген с совершенно новыми, неизвестными свойствами!

Это значит, нынешний рестриктазно-лигазный метод генной «хирургии» нужно в будущем заменять каким-то более точным, прецизионным методом генного конструирования.

Среди нынешних методов генной инженерии есть и такой. ДНК не режут, а как бы зачищают с концов особым ферментом и «надставляют» другими реактивами. Зачищенные и надставленные концы приобретают свойство «липкости». Этим способом можно связывать почти полные генные наборы двух совершенно разных организмов, получать настоящие генные гибриды. Но и здесь на местах сшивки ДНК образуется до 25 надставленных нуклеотидных пар случайного характера и неизвестного действия! Тот же П. Берг, инициатор моратория, как-то проделал такой опыт: разрезал ДНК одного вируса пополам, а потом сшил обратно эти половинки с зачисткой и надставкой. В ДНК вируса появилось около 50 пар повторяющихся звеньев-нуклеотидов — своего рода грубый шов. И вот этот шов оказался не безразличен для свойств вируса. Он стал «новым геном».

Вирус размножался как ни в чем не бывало, но в нем появились новые свойства, которые заранее предвидеть было невозможно!

Одно из генеральных наступлений генных инженеров сейчас идет на млечную железу коровы. Предполагается, что это изумительное изобретение природы можно использовать в качестве биореактора, заставить вырабатывать, кроме масла и казеина, еще множество биологически активных продуктов и лекарств. Пока ученые нащупывают подходы — и неудачно. Совсем недавно, после многолетних и дорогих экспериментов уже почти, было, получилось, выделили четыре коровьих же гена в качестве переносчиков будущих дополнительных трансгенов, считая, что уж такой переносчик направится куда надо, в молочную железу и больше никуда. В молочную железу посланец, действительно, явился, внедрился, но — увы — не только туда. Еще и в легочную ткань. Брак — последствия такого вторжения, куда не надо, могут быть катастрофическими…

Ученые нередко вынуждены, обязаны отступать, отказываясь от искушения просто удовлетворить любопытство, понадеяться на авось. Уж очень велика опасность в случае неожиданности…

ВСТУПЛЕНИЕ ШЕСТОЕ: КЕНТАВРЫ ЭВОЛЮЦИИ

А что ждет это научное направление в близком и далеком будущем? Даже не в области практического применения, нет. Может быть, не менее важно другое: насколько генная инженерия изменит наши представления о мире, в котором мы живем? О жизни, о биологии как науке и, наконец, об эволюции, об истории наших предков?

Чарльз Дарвин наблюдал то, что до него наблюдали сотни биологов, селекционеров. Путем направленного отбора, подхватывания нужных свойств в веере случайной естественной изменчивости человек выводит за десятки, сотни, самое большее тысячи лет разновидности и породы домашних животных и растений, резко отличающихся от диких предков (и смешная болонка, и телкообразная московская сторожевая — это только породы, разновидности одного вида животного, дикий прототип которого — серый волк!). Все видели чудесную силу отбора, поражались, восхищались ею, но только Дарвину пришло в голову, что нечто подобное может происходить и в природе, где тоже идет отбор, естественный отбор самых жизнестойких, самых плодовитых. Только сроки естественных превращений другие. Так появилось эволюционное учение Дарвина — дарвинизм.

Что-то общее есть между только что обрисованной ситуацией и нынешним положением генной инженерии. Неверно думать, что генная инженерия — что-то совершенно отличное от природы, противопоставленное ей. Способы разрезания ДНК, вшивания генов, переноса их к новому хозяину — все взято из природы. Вирусы, фаги и плазмиды действительно переносят гены из бактерии в бактерию, в клетки многоклеточных «хозяев» и — вполне вероятно — осуществляют (хотя и более медленно) в естественных условиях все до сих пор разработанные и испытанные методы генной инженерии.

И тогда действительно неверны недавние еще представления о трагической генетической разобщенности организмов, размножающихся не половым путем, и даже о генетической разобщенности между собой разных видов и родов животных. Все больше говорят и пишут о неизбежности и торжестве «самых еретических гипотез», о «генной инженерии в природе». Что это значит? Это значит, что, помимо давно известных движущих сил эволюции всего живого, мутаций, изменчивости и отбора, существует еще одна — прямой или косвенный «обмен генами по горизонтали». Генами, кодирующими те или иные признаки, обмен — между даже очень отдаленно родственными видами животных, растений, бактерий.

Ученых давно уже поражало единство, однообразие строения всех живых существ — от микроорганизмов до человека на биохимическом, генетическом уровнях. Например, белки всех живых существ состоят из 20 аминокислот (биохимикам известно в десять раз больше!). Соответственно однообразно устроены и все генные механизмы в строительстве этих белков.

Мы уже говорили об этом: некоторые ученые все еще объясняют все эти свидетельства самого близкого родства всего живого тем, что земная жизнь не самозародилась, а развилась из сравнительно развитых одноклеточных организмов, занесенных на Землю из космоса. Эта мысль содержится, например, в трудах знаменитого английского физика Ф. Крика, того самого, разгадавшего вместе с Дж. Уотсоном тайну двойной спирали ДНК, ожерелья из генов… В начале что-то одно — и это единство продержалось миллиарды лет…

Но, может, быть, были механизм, непрерывно поддерживавший все эти миллиарды лет единство всего живого?

«Шла ли эволюция только путем «предок-потомок», как это предполагал Дарвин, или возможны и другие механизмы, такие, как горизонтальный перенос генов?», — ставит вопрос ребром один из современных российских молекулярных биологов…

Палеонтологи обнаруживали в слоях земных свидетельства странных, с точки зрения старого дарвинизма, вещей. О некоторых странностях мы говорили. Похоже, самые разные группы зверозубых ящеров одновременно и независимо друг от друга приобретали признаки млекопитающих животных — шерсть, теплокровность, млекопитание. А до них на уровень рептильности выходили также одновременно и независимо самые разные древние амфибии. А еще раньше приобретали схожие амфибийные признаки древние кистеперые из разных родов. Самые разные голосемянные растения 120 миллионов лет назад приобретать покрытое семя и цветок. На путь очеловечивания встали в конце третичного времени самые разные существа, потомки афропитека, — человекообразной обезьяны, жившей около 10 миллионов лет назад. В предыдущей главе шел разговор и о чрезвычайно запутанном вопросе с неандертальцами. Были ли они нашими предками? А может быть, многие черты сходства между ними и нами — от долгой жизни по соседству, от общих болезней — и тоже горизонтального обмена генами?

Короче говоря, среди предков нынешних животных и растений время от времени появлялось что-то вроде «моды» на те или иные признаки. Некоторым ученым кажется, что одного генетического дальнего родства и действия внешних условий недостаточно, чтобы объяснить явления «моды» в живом мире. А что если это не мода была, а своеобразная эпидемия?

Заражение генами! Великий круговорот генов в природе, обмен генами на самых разных уровнях организации, «естественная генная инженерия», осуществляемая с помощью тех же вирусов, очень хорошо объясняют эти и многие другие загадочные факты, главный из которых — глубокое единство живого мира. Правда, клетки наших тел содержат ядра, до ДНК которых добраться непросто. Но они, клетки наших тел, содержат и давнюю историю живого мира, как мы уже говорили. В клетках есть тельца, органел-лы. Некоторые из органелл, например, митохондрии в гетеротрофах и хлоропласты в зеленых растениях, занятые добыванием и преобразованием энергии для всех сложных клеточных биохимических, генетических процессов, очень похожи на самостоятельные одноклеточные организмы и даже конкретно — на определенные разновидности бактерий, и сейчас существующие в природе. «Предшественниками митохондрий были протеобактерии, а предшественниками хлоропластов — цианобактерии», — пишет, как о деле решенном, современный исследователь В. Г. Дебабов. Сходство это велико! Вплоть до того, что у митохондрии есть свой генетический механизм, своя — кольцевая, как и у протеобактерии, — ДНК, они могут самостоятельно, независимо от клетки размножаться.

А широчайший обмен генами между бактериями с помощью вирусов, фагов и плазмид — это реальность. Плазмиды (одна из них — это как раз наша героиня, кольцевая ДНК той же митохондрии) даже, похоже, для того и существуют. Значит, митохондрия, наша «ручная» бактерия, может стать своеобразным посредником, принимая чужие гены в свою ДНК. Но ведь это уже в наших клетках! Путь от митохондриальной ДНК высших животных до ядерной, «тотальной» ДНК недалек…

Лет десять назад ученые нашли еще один «вектор» — переносчик чужой генной информации. Им оказались… мужские половые клетки, сперматозоиды самых разных животных, вплоть до млекопитающих. В определенных условиях сперматозоид способен, оказывается, по пути прихватить, например, тот же фаг лямбда, вместе с его геномом и встроить его гены в оплодотворяемую яйцеклетку! Лет пять назад у нас в стране начались опыты по подсадке чужих генов вьюнку — есть такая небольшая рыбка. Наилучшие результаты получились при ударе искусственной молнии — 1500-вольтовом разряде тока на льду. Молоки-сперматозоиды от разряда не погибли, а прихватили подсунутую им плазмиду и трансплантировали ее гены в яйцеклетку. Эмбрионы вьюнка получили новые гены, это точно установлено, но пока дальше этого дело не пошло. Но в принципе и такой путь, оказывается, возможен. Когда-то в эволюционной истории подобный эксперимент могла ставить и природа…

Мы говорили об этом, когда шла речь о том, с чего, с какой молекулярной структуры могла начаться жизнь на Земле (или в космосе вообще). Так называемая центральная догма молекулярной биологи гласит: в основе жизни лежит двойная спираль ДНК. Только на ней, над каким-то ее участком может образоваться информационная, она же матричная РНК, с которой, в свою очередь, в рибосоме списывается последовательность аминокислот в белке:

ДНК → РНК → белок

Ученые давно заподозрили, что догма могла и не работать в самом начале жизни, а потом и просто открыли обратные процессы. И белок может синтезироваться в ряде случаев без нуклеиновых кислот, и РНК может стать матрицей для синтеза гена, то есть участка ДНК.

Это крупнейшее открытие было сделано американскими учеными Теминым и Балтимором при исследовании свойств ретровирусов, самых опасных и загадочных то ли существ, то ли веществ, носителей таких болезней, как рак и СПИД человека, болезни крови у человека, птиц, грызунов. «Ретро» в названии — именно из-за свойства ретровирусов поворачивать вспять стрелку в «догме»:

РНК → ДНК

Ретровирус предельно прост, в нем нет своего механизма воспроизведения, он не умеет сам размножаться. Зато он может двигаться, проникать. Для своего размножения он использует клетку хозяина, куда проникает, как всякий вирус. Там он с помощью специального фермента обратной транскриптазы реплицирует на нити хозяйской ДНК своих несколько генов. Обманутая ДНК начинает штамповать чуждые ей РНК и белки пришельца, то есть, размножать его (нередко на погибель организму хозяина).

Исследования ретровирусов сейчас идут широким фронтом во всем мире. Стало ясно, почему так трудно найти вакцину против рака и СПИДа. Ретровирусы — это природные «генные инженеры», они проникают в гены, они сами — гены. Более того, оказалось, что во многих случаях встроенные гены (их называют провирусами) остаются в геноме хозяина навсегда. Они наследуются. И иногда готовы через много поколений снова начать «вредительский образ жизни», порождая инфекцию как бы ниоткуда. Возможно, так можно объяснить внезапное появление и стремительное распространение в мире вируса иммунодефицита человека, СПИДа лет двадцать назад.

В геноме человека последовательностей, явно происходящих от вмешательства ретровирусов на тех или иных стадиях развития наших предков, немало, около одного процента и около 70 разновидностей давно уже обладают статусом «своих».

Сначала открытие этих генов (их называют эндоретровирусами) в геномах человека и животных повергло ученых в ужас — шутка ли, в наших генах сидят готовые — по неведомому нам сигналу — наброситься и уничтожить нас полчища врагов, от которых не уйти. Но постепенно все успокоилось — было ясно, что просто так в эволюции ничего не бывает, гены-вирусы исполняют какую-то работу, иначе бы им вряд ли нашлось место в организме. Больше того, вероятно, эта работа исключительно важна, опасные пришлые гены в конечном счете приносили организмам-предкам больше пользы, чем вреда — иначе естественный отбор не оставил бы о них и воспоминания…

Стали разбираться с белками, которые вырабатываются генами ретровирусов. Чем они интересны, чем отличаются?

Про один из них было, например, известно, что именно он подавляет иммунитет клетки-хозяина, обеспечивая беспрепятственное вторжение вируса и его «неопознание». Во встроенном в геном варианте это свойство сохраняется — и используется — но уже совсем с другой целью. Оказывается это средство подавления иммунитета нужно… эмбриону, ну, например, человека во время беременности матери. Когда-то перед живородящими плацентарными млекопитающими встала эта проблема — как выключить иммунную защиту материнского организма, чтобы она не отторгла, не уничтожила зародыш, приняв его, скажем, за возбудителя болезни. Эволюция решила проблему быстро и точно, методом «генной инженерии» — привлекла для этой работы давно на ней специализированный ген пришлого ретровируса, с которым пришлось на этот случай поладить. Другое дело, что постоянное присутствие соответствующего гена в клетках потенциально небезопасно: то, что нужно эмбриону, вовсе не нужно взрослому организму, и в какой-то момент не во время включившийся механизм подавления иммунитета может отправить в небытие до этого вполне здоровое существо.

Можно предположить, например, такую гипотезу, объясняющую внезапное появление СПИДа, неведомого многим поколениям людей до 70-х годов XX века. Возможно, это был опасный ретровирус, отправивший в небытие несколько видов приматов много миллионов лет назад… Или нашего кузена неандертальца 40 тысяч лет назад. Выжили те роды и виды приматов (в том числе наши прямые предки), которые «сумели» сделать добро из зла — встроив в свой организм гены этого вируса в качестве провируса, помогающего улаживать какие-нибудь проблемы, связанные тоже с эмбриональным развитием, с беременностью. Что случилось четверть века назад, мы не знаем, всяких экологических пакостей в наше время стало очень много, но в каком-то из видов современных обезьян природная генная инженерия сделала ход назад, эндогенный, «свой» ретровирус вновь стал экзогенным, «чужим», вырвался на свободу и начал уничтожать род приматов, до этого, видимо, совершенно незнакомый с этой заразой — род человека разумного… Это, кстати, наглядная иллюстрация того, что может случиться с каким-нибудь достижением научной генной инженерии, если оно не будет как следует проверено и проконтролировано…

Другой ретровирусный ген отвечает за производство белка, помогающего вирусу проделать брешь в стенке клетки, для ее последующего завоевания и заражения. Возможно, именно этот ген и, соответственно, белок, когда они работают в организме, например, беременной женщины, помогают быстро удалить, переработать, деспециализировать клетки плаценты, все сложные временные конструкции по питанию и хранению плода по окончании беременности.

Похоже, что одни и те же белки в одних случаях помогают быстрому росту эмбриона на самых первых стадиях его роста, а в других, как бы ошибаясь, вдруг вспоминают старую вредительскую вирусную выучку и включаются не ко времени и не там, где надо, в организме хозяина, прокладывая путь страшным метастазам рака. Возможно, раковые неспециализированные, недифференцированные клетки вообще напоминают этим генам неспециализированные клетки эмбриона, и иногда именно эти гены — это уже установлено во многих случаях — действительно деятельно участвуют если не в зарождении (это было бы не так уж и опасно), то в самом страшном — в неостановимом росте злокачественной опухоли. Так или иначе, «горизонтальный перенос» некоторых генов (у них еще есть название «мобильные гены») в мире живого — это реальность, природная генная инженерия — это факт, который, возможно, многое перекроит в наших представлениях об эволюции наших предков. Мы — кентавры эволюции, и осознав себя кентаврами, снова должны отчасти возвратиться к отброшенным было воззрениям натурфилософов о микрокосме человека, в котором помещена вся история живого мира. Кентавр эволюции действительно носит в себе все свои проблемы и всю свою историю…

По-новому заставляют взглянуть успехи генной инженерии и на место каждого существа в природе, на проблему охраны исчезающих животных и растений. Всеобщее единство живого оказывается гораздо более монолитным, чем мы думали еще недавно. Каждая ветка на древе жизни тысячью «горизонтальных» нитей связана с другими современными, казалось бы, давно ответвившимися братьями по эволюции. Никто из нас не может сказать, какие гены из чьего генетического кода понадобятся нам завтра. Проблема охраны братьев наших меньших превращается в проблему охраны генофонда нашей планеты в целом.

Человек во все большей степени освобождается от законов естественной эволюции. Во всяком случае, власть естественного отбора над видом гомо сапиенс сильно поколеблена и будет уменьшаться и дальше. Производить искусственный отбор в нашем виде нам не позволяют наши этические нормы: нельзя навязывать человечеству какие бы то ни было планы улучшения или сохранения человеческого рода, если эти планы требуют человеческих жертвоприношений.

Поэтому, мне кажется, любые, планы «улучшения» человеческой природы на основе отбора «лучших» экземпляров не будут приняты приняты никогда.

С другой стороны, ни один вид в истории жизни на Земле не мог существовать сколько-нибудь долго без «генетического контроля», осуществляемого отбором. В ряде стран ученые с тревогой отмечают некоторое увеличение случаев наследственных заболеваний, генного брака в нарождающихся поколениях людей. Это месть со стороны природы существу, посягнувшему на основу основ дарвиновской эволюции — отбор. Отбор — это действенный редактор, убирающий ошибки, регулярно появляющиеся в генетической программе поколений. Это жестокий редактор, который вместе с незначительной ошибкой выбрасывает целое произведение — человека! Успехи медицины почти убрали этого редактора, но поставили вопрос: чем его заменить?

Да! Новым редактором, редактором щадящим, редактором вдумчивым могут стать методы хромосомной и генной инженерии. Начав с борьбы против наследственных генетических заболеваний, то есть с обороны, генная инженерия, примененная к человеку, станет в этом случае основой его дальнейшего эволюционного прогресса. Человеческий род может стать здоровей, красивей, долговечней, гениальней, человечней — и все это без страшной платы, требуемой отбором.

Вот в чем, может быть, главное значение генного конструирования, осуществляемого в разных лабораториях мира, в том числе и в нашей стране, несмотря на все невзгоды нашего последнего десятилетия. Не только обещание новых способов лечения, не только перспектива революций в промышленной микробиологии и сельском хозяйстве, но и прояснение общей истории живого мира, нашей биологической истории, прогноз нашего будущего.

Правда, где-то на горизонте маячит поистине фантастическая перспектива искусственного синтеза новых генов с заранее заданными свойствами, не существующими в природе. Как такой поворот событий отразится на нашем мировоззрении, а значит, и на повседневной жизни, сейчас трудно себе представить. Но ведь и в природе время от времени в результате мутаций появляются новые гены, до того не существовавшие. Так что, можно надеяться, и этот будущий фантастический этап в развитии науки не противопоставит человека Природе, а наоборот, сблизит нас с ней, как никогда, сорвав последние завесы с самой главной тайны жизни.

…Вот так, шестью вступлениями можно начать рассказ о новом этапе в развитии учения об эволюции. Кульминация и самые эффектные достижения этой науки — впереди. Впереди и книга об искусственной эволюции.

Загрузка...