Первая гипотеза, в которой для объяснения смены фаун привлечены факторы внеземного происхождения, принадлежит О. Шиндевольфу. На протяжении всего жизненного пути Шиндевольф занимался исключительно разработкой проблем макроэволюции и на всех этапах творчества сохранял принципиально негативное отношение к дарвинизму.
Знаменитая теория типострофизма, изложенная Шиндевольфом в двух монографиях (Schindewolf, 1950а, 1950b), была построена преимущественно на автогенической основе. Шиндевольф считал, что типострофы, т. е. акты возникновения новых типов организации, осуществляются исключительно под действием внутренних причин, заложенных в живой материи. Однако в начале 1950-х годов в его представлениях о причинах эволюции произошел резкий перелом. Он испытывает разочарование в своей автогенической концепции и начинает настойчиво развивать гипотезу о ведущей роли в биологической эволюции космических факторов.
Здесь ради исторической справедливости мы должны сделать отступление и напомнить, что идея о тесной зависимости живой природы от космической радиации принадлежит замечательному русскому и украинскому ученому, основателю гелиобиологии А. Л. Чижевскому (Tchijevsky, 1929, 1936–1937)[22]. Чижевский посвятил свои исследования главным образом выяснению зависимости массовых эпидемических заболеваний («эпидемических катастроф») и смертности от периодичности солнечной активности.
Согласно новой концепции Шиндевольфа (Schindewolf, 1954а, 1954b, 1963), резкое увеличение частоты макромутаций, приводившее к ускорению темпов макроэволюции, вызывалось периодическими катастрофическими изменениями в уровне жесткой космической и солнечной радиации. Такие изменения должны были оказывать на все живое самое радикальное воздействие — вызывать угасание одних форм и появление на основе удачных макромутаций других, как правило более прогрессивных и высокоорганизованных. При этом падающий на Землю радиационный поток, естественно, охватывал всю биосферу в целом.
Шиндевольф рассматривал не только прямое мутагенное действие проникающей радиации. Он учитывал также и возможный биологический эффект образующихся под ее влиянием радиоактивных изотопов. Последние способны проникать в живое органическое вещество, входить в состав его макромолекул, в том числе и тех, из которых построены хромосомы.
По мнению Шиндевольфа, губительное воздействие радиации должно было сильнее всего сказываться на животных, поздно достигающих репродуктивного возраста. Таковы в основном крупные формы. Поэтому неудивительно, что, например, в конце мелового периода в первую очередь вымерли гигантские динозавры и птерозавры.
Еще до перехода на позиции эктогенеза Шиндевольф решительно отвергал все теллурические гипотезы, доказывавшие обусловленность макроэволюции орогенезом, изменениями климата или трансгрессиями (Schindewolf, 1950а). Во-первых, опираясь на палеонтологический материал, он доказывал, что «великие фаунистические разрывы» хронологически далеко не всегда совпадают с этими событиями, и был в этом отношении абсолютно прав. Во-вторых, Шиндевольф также справедливо считал, что геологические катаклизмы никогда не охватывали одновременно всего земного шара, а тем более всех сред и биотопов. В период геологических эволюций на Земле всегда оставались зоны, не затронутые катастрофами и служившие прибежищем для многочисленных представителей прежних фаун и флор.
Зато при объяснении коренных переломов в составе морской и наземной фаун на рубежах геологических эр выявляется явное преимущество «космической» гипотезы. Состоит оно в том, что космическое излучение было глобальным фактором, радиация одновременно охватывала животный мир во всех средах жизни — в морях, на суше, в воздушном пространстве (Schindewolf, 1954b).
Шиндевольф — яркий представитель того направления в неокатастрофизме, которое отстаивает периодичность явлений массового вымирания крупных таксонов и возникновения новых типов организации. Доказательство существования таких переломных моментов в истории органического мира и прежде всего обнаружение великих фаунистических разрывов на границах эр сам Шиндевольф считал главным в своей теории (Schindewolf, 1958). Каждый из таких переломных моментов знаменуется появлением новых филогенетических стволов животных. Что касается вымирания, то его может и не быть, как, например, при переходе от кембрия к ордовику. Проанализировав фаунистический разрыв на рубеже между пермью и триасом, Шиндевольф пришел к заключению, что на этом рубеже состав фауны полностью обновляется: вымирают 22 отряда и возникают 20 новых. На границе мела и третичного периода также имеет место полное обновление фауны: вымирают 14 и нарождаются 24 отряда.
Многие палеонтологи, рассматривавшие фактическую сторону работ Шиндевольфа, справедливо обратили внимание на неполноту охвата палеонтологических данных, сознательный или бессознательный недоучет таксонов, переходящих из одной эры в другую.
Так, М. А. Шишкин (1964) показал, что стереоспондильные амфибии жили в перми и триасе. Л. Ш. Давиташвили (1969) писал, что в «подборе» групп, характеризующих разрыв между мелом и кайнозоем, нет важнейших групп, геохронология которых совершенно не соответствует концепции Шиндевольфа. Это относится, в частности, к костистым рыбам и таким их подразделениям, как Subholostei, Hoiostei и Teleostei. Представители трех отрядов насекомых (термитов, блох, веерокрылых), внесенные Шиндевольфом в таблицу как третичные, в более ранних отложениях просто не найдены. Отсутствие их находок в дотретичное время, как полагает Давиташвили, нельзя считать доказательством того, что они тогда еще не существовали. К сказанному надо добавить, что между специалистами существуют немалые разногласия в оценке объема и в характеристиках многих крупных таксонов как беспозвоночных, так и позвоночных животных. Соответственно, и момент первоначального обнаружения представителей таких таксонов в палеонтологической летописи фиксируется по-разному.
Шиндевольф признавал, что предложенная им гипотеза сильно упрощает реальный механизм эволюции и что она совершенно недостаточно обоснована. Но после многолетних размышлений над причинами макроэволюции он останавливает на ней свой выбор за неимением лучшего объяснения той «гигантски сложной» загадки, какую представляют собой великие перевороты в органическом мире.
О. Шиндевольф ясно видел и те затруднения, с которыми сталкивается его гипотеза (Schindewolf, 1954b). Одно из них — несовпадение во времени фаунистических разрывов с разры вам ц в растительном мире. Прежде всего Шиндевольф пытается найти объяснение несоответствию рубежа палеофита и мезофита, приходящегося на середину перми, границе в развитии фаун, разделяющей пермь и триас. Но это оказывается практически невозможно, если не вступать в противоречие с фактами. Чтобы выйти из затруднительного положения, Шиндевольф стремится показать, что разрывы между флорами не были столь резкими, как разрывы между фаунами, поскольку основные группы растений никогда не испытывали такого массового вымирания, как животные. Шиндевольф допускает, что в исторические моменты, переломные для животного мира, мир растений мог вовсе не реагировать на повышение уровня радиации.
«Космическая» гипотеза, имевшая дело с универсальными общепланетарными агентами, охватывавшими все среды жизни, казалось, снимала трудности, стоявшие перед многими теллурическими (относящимися к земным факторам) гипотезами. Однако она не учитывала экранизирующий и поглотительный эффекты водной среды, практически избавлявшие водных обитателей от воздействия жесткой радиации. А между тем многие группы морских животных вымирали синхронно с наземными группами, и, например, «солевая» гипотеза Личкова лучше объясняла Данный феномен.
Признавал Шиндевольф и несоответствие своей гипотезы данным экспериментальной генетики, свидетельствовавшим о полной летальности или пониженной жизнеспособности мутантов, возникающих под действием ионизирующего облучения. И тем не менее он остался верен идее макроэволюции в силу космических причин до конца своих дней.
В последующих работах (Schindewolf, 1958, 1960, 1963) Шиндельвольф выступает в защиту «космической» гипотезы более решительно и категорично, но никакой дополнительной аргументации не приводит. Он окончательно утверждается в мысли, что неокатастрофизм, «космические взрывы» — это простое выражение фактов, а не что-то надуманное, идущее от философии или мировоззрения. Шиндевольф (1963) ссылается теперь и на своих русских единомышленников — Н. П. Дубинина, Е. А. Иванову, В. И. Красовского и И. С. Шкловского.
«Космическая» гипотеза Шиндевольфа получила известный резонанс на Западе. В ее поддержку выступили некоторые палеонтологи (Liniger, 1961; Henshaw, 1963; Hatfield, Camp, 1970; Boureau, 1972), однако гораздо большее число специалистов подвергли ее критике. Н. Ньюэлл (Newell, 1956) обратил внимание на абсолютную спекулятивность гипотезы Шиндевольфа, на то, что она основана на произвольных и труднопроверяемых допущениях. Доза облучения, достаточная, чтобы вызвать летальный исход у наземных животных, вероятнее всего, оказалась бы совершенно неэффективной в отношении водных обитателей, живущих на глубине хотя бы нескольких метров. Поэтому, окажись данная гипотеза правильной, эффект воздействия космической радиации сказался бы на наземных организмах гораздо сильнее, чем на водных. Сходные соображения высказал и К. Бойрлен (Beurlen, 1956), отмечавший невозможность проверки гипотезы существующими методами исследования. Он указывал также, что факт повышения мутабельности под действием радиации еще не дает основания для вывода об ускорении эволюционного процесса.
В Советском Союзе одним из первых концепцию Шиндевольфа подверг разбору и критике Д. Л. Степанов, называвший ее автора «наиболее… последовательным выразителем идей катастрофизма в современной палеонтологии» (Степанов, 1959. С. 11). На ее умозрительный характер и несоответствие фактам обратили внимание также Л. Ш. Давиташвили (1969), К. М. Завадский и Э. И. Колчинский (1977), В. И. Назаров (1984). «Коренной недостаток построений Шиндевольфа, — пишут Завадский и Колчинский, — недооценка актуалистического метода, что открыло ему возможность построить концепцию преимущественно на догадках… Вместо того чтобы осторожно дополнять наши знания о каузальных основах эволюции, полученные путем экспериментального анализа современных процессов, и вносить поправки на специфические условия прошлых геологических эпох, Шиндевольф отверг эти знания и пытался заменить их целой системой догадок» (Завадский, Колчинский, 1977. С. 155). Приведенную характеристику правомерно отнести ко всему неокатастрофизму.
В 1957 г. советские астрономы В. И. Красовский и И. С. Шкловский опубликовали короткую статью, в которой независимо от Шиндевольфа высказали гипотезу, близкую к его концепции. По их мнению (Красовский, Шкловский, 1957), Земля, двигаясь в Галактике вместе с Солнцем и окружающими ее планетами, периодически попадает в такие области межзвездного пространства, где вследствие вспышек сверхновых звезд плотность космических лучей оказывается на несколько порядков выше по сравнению с нормой и ее современной величиной. Ближайшие к Солнцу звезды, по данным этих авторов, вспыхивали как сверхновые за время существования Земли около десяти раз. В статье со ссылкой на А; Тэкерея (1956) приводятся даже годы вспышек сверхновых нашей Галактики за последнюю тысячу лет, а в отдельной книге И. С. Шкловского (1973) говорится, что история сохранила довольно значительное число хрюник и научных трактатов с описаниями самих вспышек.
Эпохи, когда поток жесткого излучения от сверхновых превышал на Земле средний уровень космической радиации в десятки раз, продолжались до нескольких тысяч лет. В пределах этих эпох могли быть и относительно короткие периоды, длившиеся сотни лет, когда поток первичных космических лучей, достигавших Земли, превышал современный в сотни раз. Этот важнейший фактор, по мнению авторов, до настоящего времени никогда не учитывался, а на некоторых этапах эволюции он мог иметь важное, если не решающее значение, так как влек за собой серьезные биологические и прежде всего генетические последствия (Красовский, Шкловский, 1957. С. 198). Усиление радиации вызвало увеличение частоты мутаций. Если для видов с коротким циклом размножения для удвоения частоты мутаций требуется увеличение интенсивности космической радиации в сотни и тысячи раз, то для долгоживущих форм удвоение частоты мутирования достигается при увеличении дозы облучения всего в 3—10 раз. Отсюда авторы сделали заключение, что длительное, продолжающееся тысячи лет воздействие в десятки раз увеличенной радиации могло оказаться губительным для специализированных видов животных с ограниченной численностью популяций, как это было в случае с крупными рептилиями, вымершими в конце мела.
С другой стороны, значительное повышение уровня космического излучения могло оказаться фактором, благоприятным для дальнейшей прогрессивной эволюции других видов животных и растений. Высокая радиоактивность, обусловленная попаданием Солнечной системы в радиотуманность, могла явиться причиной, стимулировавшей возникновение самой жизни из неживой материи (Шкловский, 1962), На Западе идеи Красовского и Шкловского поддержал Д. Рассел.
Критикуя взгляды Красовского и Шкловского, Давиташвили (1969) указывал, что, даже по представлениям типичных сторонников неокатастрофизма, великие переломы в истории жизни (например, мезозойское вымирание) растягивались на миллионы лет. Утверждать, что они совершались всего за какие-нибудь несколько тысяч лет, могут лишь исследователи, мало искушенные в сложных проблемах геологической истории и палеонтологии, которым их решение потому и кажется «очень легким делом».
С начала 60-х годов XX в. объем работ в области космической биологии стремительно возрастает, происходит и расширение общего фронта исследований, который охватывает всю совокупность проблем — от астрофизики до радиационной генетики. Появился и ряд обобщающих работ (Henshaw, 1963; Terry, Tucker, 1968; Бернал, 1969; и др.), в которых для объяснения причин революционных событий в истории биоса использовались сведения по космическому радиационному метагенезу.
Данные о качественной характеристике космических излучений и радиационной устойчивости организмов все более обрастали количественными показателями. Так, было приблизительно подсчитано, что сверхновые звезды, которые создают на поверхности Земли летальную для многих животных дозу облучения в 500 Р, вспыхивают каждые 50 млн лет, а звезды, создающие облучения 25 ООО Р, — один раз в 600 млн лет. Последняя доза, по-видимому, никогда не достигала земной поверхности, поскольку в противном случае жизнь на нашей планете была бы уничтожена или прервана (Terry, Tucker, 1968). Если для млекопитающих летальная доза при облучении в течение 30 суток составляет от 250 до 600 Р, то для амеб она оказывается порядка 100 000 Р, а для инфузорий — 300 000 Р (Современные проблемы радиационной генетики, 1969). Сине-зеленые водоросли способны существовать чуть ли не в условиях атомных реакторов.
В 1974 г. в Москве состоялось совещание по теме «Космические факторы и эволюция органического мира». В ряде выступлений его участников было подтверждено, что спорадическое увеличение интенсивности жесткой радиации вызывает резкое усиление генных и хромосомных мутаций и что оно ответственно за периодические биологические революции, охватывающие почти все группы биоса (см.: Космос и эволюция организмов, 1974). Подобная позиция была четко представлена в обзорном докладе Л. И. Салопа, который еще в 1964 г. на примере биологического взрыва в начале кембрия высказал гипотезу, аналогичную гипотезе Красовского и Шкловского (Салоп, 1964. С. 23).
Л. И. Салоп (1977) рассматривает «животворное» действие космических лучей в плане важнейших биологических революций.
Первая и самая важная биологическая революция — появление жизни на Земле в начале архейской эры — была всецело обязана жесткой радиации, приведшей к возникновению абиогенным путем простейших живых органических молекул, как это следует из теорий Опарина, Бернала, Мюллера и Кальвина. Поданным бостонской школы биохимиков и микробиологов во главе с М. Нассом, прародителями всех существующих организмов были синезеленые водоросли и бактерии, которые и сейчас очень скоро после атомных взрывов, производившихся на атоллах Тихого океана, первыми заселяют освободившиеся экологические ниши. Переходя к биологической революции в начале кембрия, Салоп отмечает, что одновременное появление скелетных организмов, их быстрая филогенетическая дивергенция, приведшая к появлению высокоспециализированных форм, могла быть только следствием интенсивного мутагенеза под действием радиации.
Изменения в уровне радиации явились, по Салопу, причиной и массовых вымираний, как это было, например, показано на планктонных фораминиферах, подвергшихся кризису в конце перми (Loeblich, Таррап, 1964), или на известковых нанофоссилиях Алабамы позднего мела (Mayers, Worsley, 1973).
Самое важное подтверждение гипотеза космического мутагенеза находит, по мнению Салопа, в исследованиях причин вымирания динозавров.
Литература, затрагивающая эту проблему, огромна. Десятки, а возможно, даже сотни различных гипотез проникли на страницы многочисленных популярных изданий. Ограниченный объем данной книги не позволяет нам касаться этого специального и к тому же более частного вопроса. Поэтому приведем лишь одну оригинальную гипотезу.
В 1968 г. на территории Франции были обнаружены яйца девяти видов верхнемеловых динозавров. Исследование этих яиц показало, что они обладали очень толстой скорлупой, состоящей из нескольких слоев, подобно тому как это бывает в патологических случаях у яиц современных домашних птиц. Возникает это явление, названное «яйцом в яйце», оттого, что выношенное яйцо не откладывается, а возвращается (нередко многократно) из выводных путей назад в яйцевод птицы. При этом каждый раз нарастает новый слой скорлупы. Образование многослойной скорлупы закупоривает каналы, по которым в яйцо поступает кислород, и эмбрион погибает. Было высказано предположение, что единственной причиной подобного патологического явления могло быть резкое учащение мутаций под действием космических причин, вызвавших гормональные дефекты у древних рептилий (см.: Кириллов, 1970).
Пригодность «космической» гипотезы обнаруживается, по Салопу, и при анализе революционных этапов в развитии растений. Он опирается на версию М. И. Голенкина (1947), который в поисках причины быстрой экспансии покрытосеменных в конце мела, якобы совпавшей с усилением яркости света и сухости воздуха, склонялся в пользу космического излучения. Салоп полагает, что в силу гораздо большей радиочувствительности хвойных интенсивное облучение могло погубить хвойные леса или затормозить их развитие, но совершенно не сказаться на лиственных или даже благоприятствовать их эволюции. Аналогичным образом можно объяснить взрывное распространение трав в конце плиоцена — начале плейстоцена. Не исключено, добавляет Салоп, что и появление предков человека было также связано с космическим мутагенезом, вызвавшим ускоренное развитие человекообразных приматов.
Подобно Чижевскому, Салоп приходит к заключению, что Земля и жизнь на ней представляют собой не закрытые саморазвивающиеся системы, а являются частью космоса. «Не только солнечные, но и далекие межзвездные — галактические — космические лучи животворны; без них невозможно ни появление, ни существование, ни развитие» (Салоп, 1977. С. 30).
Со сходными идеями о видообразовательном значении радиации, действующей через изменение магнитного поля Земли, выступил на Западе С. Тсакас (Tsakas, 1984; Tsakas, David, 1986).
Возможное влияние на организмы взрывов сверхновых звезд на сравнительно близком расстоянии от Солнечной системы было специально подвергнуто проверке в ряде исследований по данным об изотопном составе ряда элементов для эпох массовых вымираний. Эти исследования дали отрицательные результаты (см., например: The quest for a catastrophe, 1980).
Интенсивная разработка космических гипотез этапности развития органического мира выдвинула на первый план старую проблему вымирания. Эта чрезвычайно сложная проблема оказалась в центре внимания даже далеких от биологии исследователей. Продолжали появляться все новые версии, касающиеся факторов вымирания разных групп организмов. Фундаментальную сводку о причинах вымирания, обобщившую существующие гипотезы и накопленный палеонтологией материал по основным группам животных и растений в разрезе геохронологической шкалы, опубликовал Л. Ш. Давиташвили (1969). Признавая участие в процессах вымирания внешних физических факторов, Давиташвили в основном развивал в качестве причины вымирания дарвиновскую идею о конкурентном вытеснении менее высокоорганизованных существ более высокоорганизованными и лучше приспособленными. Однако во второй половине XX в. эта идея все более утрачивала доверие ученых, включая и палеонтологов, большинство которых искали объяснение вымирания в катастрофических событиях, внешних по отношению к биосу. Параллельно крепло представление о вымирании как важнейшем факторе макроэволюции, освобождающем жизненное пространство для вновь возникающих форм. Подобный взгляд на вымирание стал существенным компонентом теории прерывистого равновесия.
Все чаще стали публиковаться новые сведения о периодичности массовых вымираний, основывающиеся на статистической обработке палеонтологических данных. Мы еще вернемся к этому вопросу и соответствующим ему трудностям в конце этой главы. Содержащиеся в ряде таких работ выводы о правильной периодичности этого феномена наводили на мысль о его астрономической (космической) природе. В начале 1980-х годов старые представления о вспышках сверхновых звезд получили неожиданное развитие. Некоторые американские и английские астрономы (Д. Уайтмор, Р. Меллер, А. Джексон) выдвинули гипотезу, по которой периодические массовые вымирания могли вызываться еще не открытой звездой — Немезидой. Гипотетическая звезда вращается вокруг Солнечной системы по сильно удлиненной эллиптической орбите, то удаляясь от Солнца, то приближаясь к нему. При сближении с Солнцем, происходящим каждые 26 млн лет, Немезида проходит через кометное облако и выбивает из него десятки астероидов, часть из которых падает на Землю. Далее разыгрывается цепь уже земных событий, завершающаяся массовым вымиранием.
Различные варианты этой гипотезы обсуждались на специальной конференции по причинам периодичности массовых вымираний, состоявшейся в 1984 г. в Калифорнийском университете (США). По свидетельству Л. П. Татаринова (19856), впервые на подобном форуме тон задавали не палеонтологи и геологи, а астрономы и физики.
В начале 1980-х годов самой популярной среди космических стала астероидная гипотеза. В этой связи вспомнили американского палеонтолога М. Делаубенфельса, высказавшего в 1956 г. предположение, что мезозойские ящеры были уничтожены мгновенным действием высоких температур, вызванных падением на Землю крупного метеорита, химика Г. Юри (Urey, 1973), объяснявшего массовые вымирания столкновением с Землей комет, и самого родоначальника идеи — П. Лапласа. Выходу старой гипотезы на передний край науки способствовало важное открытие. В 1979 г. в Италии в отложениях, пограничных между мелом и палеогеном, группой во главе с физиком из Калифорнийского университета Л. Альваресом был обнаружен тонкий глинистый слой, сильно обогащенный иридием — элементом, характерным для вещества астероидов и метеоритов. Резко повышенное содержание иридия между слоями той же эпохи вскоре было зафиксировано на территориях Дании, Испании, в Северной Америке, Новой Зеландии, на дне Тихого и Атлантического океанов и в других местах, что свидетельствовало о глобальном масштабе явления. Одновременно здесь было установлено присутствие других металлов платиновой группы, а также никеля и кобальта в концентрациях, превышающих норму на один-два порядка. Но наиболее показательным было обнаружение в иридиевом слое ударно-метаморфизированных зерен кварца, встречающихся только в породах ударных кратеров. Все это с большой степенью вероятности указывало на то, что приблизительно 65 млн лет назад произошло столкновение Земли с крупным космическим объектом — астероидом или кометой. Тогда же Альваресом была высказана гипотеза, что это столкновение и явилось причиной массовых вымираний на рубеже мезозоя и кайнозоя[23].
По данным содержания иридия были рассчитаны ориентировочные размеры упавшего небесного тела, которые оказались характерными для астероидов (диаметр 5—16 км, масса порядка n·1017 г). При гигантском взрыве от столкновения с Землей астероид превратился в мощное пылевое облако, распространившееся по всей атмосфере. Осаждение пыли и привело к равномерному распределению по Земле избыточного иридия.
Луис Уолтер Альварес (1911–1988).
По мнению одних авторов (Alvarez et al., 1980), сокращение количества солнечной радиации, достигавшей поверхности Земли, вызванное запылением атмосферы при взрыве астероида, должно было на несколько лет полностью приостановить фотосинтез, а следовательно, повлечь и массовое вымирание животных. Впоследствии Альварес (Alvarez et al., 1982) сократил трагическую паузу в фотосинтезе до нескольких месяцев. Другие авторы (Hsii et al., 1982) предполагали, что массовое вымирание было связано с нагреванием атмосферы, происходившим или сразу после падения астероида, или спустя тысячи лет после этого события в результате накопления в атмосфере углекислого газа. Поглощение последнего уменьшилось прежде всего в океанах ввиду гибели фитопланктона из-за остановки фотосинтеза.
Существенное значение для укрепления астероидной гипотезы должны были иметь, с одной стороны, подсчеты вероятной частоты падения небесных тел на Землю, с другой — определение периодичности вымираний на протяжении фанерозоя и сопоставление полученных данных друг с другом. Исследователи и пошли по этому пути. На международном совещании, посвященном внезапным событиям в истории Земли (Западный Берлин, 1983), в ряде докладов была отмечена хорошая степень совпадения обоих показателей (см.: Будыко, 1984). Вместе с тем на нем прозвучала критика принципа униформизма, который в его узкой интерпретации мешает пониманию особых событий космического масштаба. Это второе соображение вызвало сочувствие и среди ряда исследователей бывшего СССР. М. И. Будыко предлагал, например, «уточнить формулировку актуалистического подхода» и основывать его «на использовании не только закономерностей процессов, непосредственно наблюдаемых человеком, но и закономерностей тех современных процессов, которые безусловно происходят, но по тем или иным причинам непосредственно наблюдаться не могут» (Будыко, 1984. С. 328). К. такого рода процессам Будыко относит те события внеземного происхождения, которые происходят с низкой частотой.
Астероидной гипотезе и глобальным катастрофам специальное внимание уделил Л. П. Татаринов (19856, 1987). По era мнению, периодическое падение на Землю астероидов диаметром 10 км и более можно считать доказанным, но хронологическое совпадение этих катастрофических событий с массовыми вымираниями весьма сомнительно. Во-первых, процессы вымирания в большинстве групп начались за сотни тысяч, а то и миллионы лет до момента предполагаемой катастрофы; во-вторых, смена биоты даже на рубеже мела и палеогена не была внезапной. Палеонтологический материал свидетельствует о том, что это был продолжительный и многоэтапный процесс, носивший характер избирательного замещения. Так, по мнению Татаринова (1987), динозавры скорее всего пали жертвой конкуренции со стороны молодой прогрессивной группы млекопитающих, появившихся еще в конце триаса за 130 млн лет до вымирания динозавров. Татаринов справедливо утверждает, что даже гигантская катастрофа, предположительно способная уничтожить жизнь на половине поверхности земного шара, привела бы к вымиранию незначительного числа семейств животных и растений. В случае катастрофы глобального масштаба вымирание оказалось бы неизбирательным. Отсюда закономерен вывод, что ни одна из «катастрофических» моделей не объясняет смысла биотических процессов, происходивших в критические моменты истории Земли, и что популярность самих моделей держится на чисто психологической склонности людей к новизне.
В связи с тем что мысль о внезапном ударном воздействии катастроф наталкивается на серьезные противоречия, в последующие годы все большее внимание обращалось на отдаленные последствия падения астероидов или их сочетание с другими факторами. Так появились различные гипотезы, промежуточные между чисто космическими и теллурическими. К ним принадлежат, например, радиоактивная, вулканическая и ледниковая.
Принимая, что появление радиоактивных изотопов на поверхности Земли обусловлено их постоянной миграцией из недр земного шара, современная наука не отрицает возможности их возникновения под воздействием космического излучения. Что касается действия изотопов на живые существа, то оно отличается высоким мутагенным эффектом и длительностью, соответствующей периоду их распада. Одна из первых гипотез, основанных на действии радиоактивности, была высказана еще Е. А. Ивановой (1955). Изучая ископаемую фауну морских беспозвоночных среднего и верхнего карбона русской платформы, она пришла к выводу, что смена их фаунистических комплексов предшествовала периодам диастроф и, по-видимому, вызывалась действием радиоактивных элементов. Впоследствии сходные гипотезы получили развитие как в нашей стране, так и за рубежом.
С начала 1980-х гг. все большее значение стали придавать катастрофическим последствиям вулканической деятельности, причем возобладала тенденция рассматривать ее как следствие падения на Землю небесных тел. Считается, что столкновение астероида с Землей вызывает серию вулканических извержений взрывного характера, продолжающихся сотни или даже тысячи лет.
По подсчетам О. Туна (Toon et al., 1982), вследствие падения крупного астероида температура воздуха над океанами снижалась на 2-3°C и держалась на этом уровне в течение более чем двух лет, а над континентами — на несколько десятков градусов и не поднималась до полугола. В пересчете на среднее для всей Земли получается снижение температуры на 9°C.
Зависимость вымирания от падения температуры в результате извержений, охватывающих чуть ли не весь земной шар, более тридцати лет изучал известный климатолог М. И. Будыко (1964, 1967, 1971 и позднее). По его данным, суммарная солнечная радиация, достигающая поверхности Земли, падает более чем на 50 %, и средняя температура у земной поверхности понижается на 5—10 % на срок в несколько десятков месяцев. Такого похолодания было, по его мнению, достаточно для быстрого вымирания большинства стенотермных животных, в том числе из состава мезозойской фауны (Будыко, 1984. С. 308, 309).
Итак, гипотезы, чисто теллурические по своей природе и происхождению, вступили в недавнее время в тесное взаимодействие с концепциям», имеющими своей отправной точкой идею о первенствующей роли космических или тех или иных внеземных факторов. Они светят теперь как бы их отраженным светом.
Убежденный сторонник идеи подчинения ритма жизни на Земле космическим причинам, академик Б. С. Соколов пишет: «Кажется, что только внешние по отношению к живым системам события могли синхронно и в одном направлении воздействовать на них. И трудно представить какой-либо другой источник такого эффективного воздействия на органический мир Земли, кроме изменений в солнечной радиации и других видов еще более мощного космического излучения, хотя и действующих постоянно, но подверженных резким колебаниям вплоть до «ударных». Они-то и могли быть источником крупных событий в развитии жизни…» (Соколов, 1981. С. 11). Он добавляет также, что в комплексном влиянии на ход развития органического мира космическая радиация была теснейшим образом связана с климатическими изменениями, состоянием физических полей Земли и геохимическими процессами на ее поверхности.
Следует сказать, что по мере успокоения страстей, вызванных сенсационным открытием группы Альвареса, популярность ударных космических гипотез стала падать. Их стали теснить представления, в которых биотические изменения планетарного масштаба связывались с цепочкой обычных и более длительных геологических событий, инициированных периодическими изменениями параметров орбиты и ротации Земли. По крайней мере, в странах бывшего Советского Союза они явно уступили место экосистемной теории эволюции.
Этому факту есть и объективное основание. Астероидную гипотезу, например, доказать невозможно. Во-первых, источником иридия служит не только космос, но и вещество мантии, причем, по мнению некоторых специалистов (Красилов, 1987, 2001), второй более вероятен. В недавнее время было обнаружено, что в ряде глубоководных скважин мощность иридиевых слоев доходит до 50–60 см, что совершенно исключает вероятность их космического происхождения. Во-вторых, разрешающая способность стратиграфического метода не превышает 300 тыс. лет, и, стало быть, менее продолжительные события просто не могут быть выявлены.
В заключение целесообразно остановиться на развитии статистических исследований массовых вымираний и оценке степени их достоверности в связи с неполнотой палеонтологической летописи. В течение последних 30 лет наблюдалась возраставшая тенденция к охвату статистическим анализом все большего числа таксономических групп и их низведению в идеале до видового уровня.
Г. П. Леонов (1973) по материалам капитальной отечественной сводки «Основы палеонтологии» построил значительное число графиков, отражающих развитие многих групп органического мира на рубеже мезозоя и кайнозоя на уровне семейств и отрядов. Он пришел к выводу, что изменения, особенно при сопоставлении фаун и флор, асинхронны и не обнаруживают четкой закономерности.
Противоположная картина резкого вымирания на указанном рубеже предстает в сводке Д. Рассела (Russell, 1977), сгруппировавшего исследуемые таксоны по экологическому признаку в планктонные, бентосные, нектонные, наземные и воздушные. Почти внезапно вымирают 28 отрядов и классов и возникают 8 новых групп. Появляются в мелу и продолжают существовать в кайнозое 5 групп.
При анализе изменений на родовом уровне (всего учтено 2868 родов) тот же автор установил величину вымирания около 50 %, наиболее сильного среди морских организмов (табл. 1).
Интересны также данные Рассела о сокращении числа видов во многих родах после вымирания. В итоге к началу третичного времени вымирает около 75 % видов, существовавших в конце мела. Столь грандиозный масштаб вымирания автор подтвердил и в более поздней сводке (Russel), 1979). К сожалению, эти данные не отражают конкретный ход событий, так как мел и третичный период рассматриваются Расселом без подразделений на века.
В 1982 г. американские палеонтологи Д. Рауп и Дж. Сепкоский (Raup, Sepkosky, 1982) произвели статистический анализ вымирания морских животных на протяжении фанерозоя на материале 3300 семейств. Они пришли к заключению, что за это время были по крайней мере четыре массовых вымирания — в конце ордовика, в конце перми, в конце триаса и в конце мела, и в общей сложности вымерло. 2400 семейств. Наиболее резкое вымирание приходилось на конец перми.
Применив усовершенствованную технику анализа, эти же авторы (Raup, Sepkosky, 1984) обнаружили на протяжении последних 250 млн лет геологической истории девять бесспорных пиков вымирания, следующих друг за другом с четкой периодичностью в 26 млн лет в мезозое и кайнозое и 34 млн лет — в палеозое. Следует, однако, заметить, что обе сводки не отличаются достаточной полнотой, поскольку не учитывают изменений в составе растительных и наземных животных организмов и не позволяют вести анализ на родовом уровне.
Примечательна работа «Рубеж мезозоя и кайнозоя в развитии органического мира» (Шиманский, Соловьев, 1982), вышедшая в СССР под редакцией академика Л. П. Татаринова и не имеющая аналогов в мировой литературе. В ней дан детальный анализ смены разных групп беспозвоночных, позвоночных и растений не только на семейственном, но и на родовом уровне. По некоторым же группам динамика прослежена на уровне видов.
В работе говорится, что картина смены органического мира в целом отличается исключительной сложностью. Несомненно значительное вымирание в самых различных классах. Наиболее впечатляющим оно было среди пресмыкающихся. Из 63 семейств, существовавших в конце мела, 39 не дожили до кайнозоя (63 %).
Сильнее всего вымирание сказалось на видах и родах, слабее — на семействах, и оно почти не отразилось на более высоких таксонах. Имелись классы, вымирание в которых не совпадало по времени с массовым вымиранием в других группах (таковы гастроподы и насекомые). В некоторых случаях вымирание видов и родов (последних в данной группе) в последнюю эпоху мела (Маастрихте) шло очень постепенно (аммоноидеи, иноцермы). В большинстве случаев значительное вымирание охватывало только часть крупных таксонов класса, в остальных же случаях оно было незначительным или даже не происходило вовсе (мшанки, головоногие). В итоге авторы сводки отмечают, что, хотя на описываемом рубеже и шло очень сильное изменение состава большинства групп, полная их перестройка растягивалась на многие миллионы лет, и кайнозойский облик фауна приобрела только к эоцену (Шиманский, Соловьев, 1982. С. 30).
Из содержания приведенных сводок напрашивается вывод о значительных трудностях, с которыми приходится сталкиваться как при изучении самих критических эпох в жизни биоты, так и при сопоставлении данных, полученных разными авторами. Прежде всего недостаточны надежность и точность сведений о стратиграфической привязке палеонтологического материала. Даже в такой капитальной отечественной сводке, как «Основы палеонтологии», в большинстве случаев указывается только эпоха существования таксона и редко — век. Отсюда невозможность судить о точном распределении таксона. Серьезное препятствие составляет также то обстоятельство, что палеонтологи пока не располагают возможностью рассматривать развитие органического мира в целом на видовом уровне. Осложняет дело и субъективность в подходе к систематике организмов.
Наконец, очень важным объективным фактором, снижающим достоверность получаемых результатов, является известная неполноценность фактических данных, связанная с неполнотой палеонтологической летописи, с переселением отдельных групп в новые экологические ниши, с плохими условиями захоронения и пр.
Действительно, заключение о существовании в ту или иную эпоху данного рода (или вида) обычно делается при наличии соответствующих находок. Если таких находок для указанного момента нет, резюмируют, что данный род (или вид) вымер. Однако подобное заключение по многим причинам может не соответствовать действительности. Ясно также, что если из-за ограниченности числа находок по данной группе они обнаруживаются не для каждого рассматриваемого интервала времени, то перед моментом массового вымирания неизбежно будут отмечаться исчезновения того или иного числа родов (или видов), которые в действительности вовсе не вымерли. Чем фрагментарнее палеонтологическая летопись, тем большее число таких «псевдовымираний» будет зафиксировано ранее срока действительного исчезновения соответствующих форм.
Общим недостатком статистических сводок по вымиранию является учет минимального числа достоверных массовых вымираний, тогда как их фактическое число может быть гораздо большим.
Не меньшие трудности стоят на пути доказательства периодичности крупномасштабных изменений абиотических факторов. Думается, что если даже будут доказаны реальность тех или иных событий катастрофического масштаба и их временная сопряженность с важнейшими биологическими революциями, это еще не будет означать, что тем самым доказана решающая роль этих событий в судьбах больших групп животных и растений.
Вот почему следует признать, что на современном уровне знаний решить проблему этапности и сопряженности макроэволюции не представляется возможным. Для этого потребуются огромные усилия многих специалистов разного профиля, и можно ожидать, что фронт соответствующих исследований будет расширяться.
Однако совершенно ясно, что предполагаемые случаи этапности в развитии биоты нельзя объяснить какой-либо одной, пусть самой могущественной причиной. Судя по всему, на каждую группу организмов действовал целый комплекс абиотических и биотических факторов (в их системном единстве), причем решающую роль должна была играть взаимозависимость групп в реальных экосистемах при контролирующей функции биосферы в целом. Радикальные изменения в состоянии этих высших уровней интеграции живого, нарушавшие их гомеостаз, вызывали сложнейшие цепные реакции на всех предшествующих уровнях.
Поэтому наиболее перспективной стратегией исследований можно считать изучение динамики биомассы в прошлые эпохи, как это настоятельно рекомендует Л. П. Татаринов (1983, 19856), и взаимодействия организмов с окружающей средой на уровне глобальной экологической системы.
До сих пор, рассматривая разные течения эволюционной мысли, мы имели дело в основном с дивергентной эволюцией, известной во времена Дарвина, — кладогенезом (собственно дивергентная эволюция), анагенезом (филетическая эволюция) и стасигенезом, или персистированием (термины Ренша и Хаксли).
В XX в. получил прочное обоснование альтернативный способ формообразования — путем слияния (или иных форм интеграции) геномов разных видов (или представителей более высоких таксонов), названный К. М. Завадским (1968) синтезогенезом, а Н. Н. Воронцовым (1980) — симгенезом. Наиболее распространенным его модусом является гибридогенез — образование новых форм путем гибридизации.
Гибридизация, в том числе отдаленная, известна с незапамятных времен. Ее практиковали уже древние народы Передней Азии со времен неолита. Так, систематически скрещивая осла с кобылой, они получали мулов, отличавшихся повышенной мускульной силой и выносливостью. Вместе с тем они хорошо знали, что мулы не дают потомства. В те же далекие времена в природе был обнаружен и введен в культуру спонтанно возникающий плодовитый аллополиплод сливы — гибрид алычи и терна.
Бесплодие подавляющего большинства гибридов или их реверсия к родительским формам на протяжении веков служили важнейшей опорой представления о постоянстве видов. Нестройные голоса первых инакомыслящих стали раздаваться только в XVIII в. Самый авторитетный принадлежал Карлу Линнею.
Хрестоматийный характер приобрело высказывание Линнея о том, что «существует столько видов, сколько их создало бесконечное существо». Оно переходило из одного учебника по эволюционной теории в другой, причем без указания источника. Одним из первых его привел в своем «Курсе дарвинизма» (1945) А. А. Парамонов (с. 29). Действительно, эта формула наглядно свидетельствовала о следовании Линнея господствовавшим креационистским взглядам на постоянство видов в начале творческого пути (первые издания «Системы природы», «Основании ботаники»), Однако впоследствии Линней изменил свои взгляды и под влиянием фактов счел возможным допустить возникновение новых видов путем гибридизации.
Толчком послужило обнаружение среди зигоморфных цветков обыкновенной льнянки (Unaria vulgaris) цветков с пелорическим венчиком (Линней, 1989. С. 352). Из этого факта Линней сделал предположение, что растение с правильным актиноморфным венчиком (пелория) — это новый вид, возникший в результате скрещивания видов льнянки с неправильными (зигоморфными) венчиками. Линней также пришел к выводу, что вид бодреца Pimpinella agrimmides мог произойти в результате скрещивания Pimpinella sBnguisorba minor laevis с репейником Agrimonia officinarum, а вид вероники Veronica spuria явиться продуктом гибридизации Veronica maritima и вербены Verbena officinalis. При этом Линней подметил любопытную общую закономерность: гибриды в строении цветка чаще походят на материнский вид, а в строении листвы — на отцовский.
Уделив большое внимание гибридизации, Линней одним из первых получил путем опытного скрещивания в научных целях гибрид Tragopogon pratensis. Эти эксперименты он продолжал до конца своих дней. Линней поддерживал также аналогичные работы своих учеников, которые в период 50—70-х годов публиковались в сборниках < Допущение Линнеем возможности появления новых видов в пределах рода в результате гибридизации получило отражение в ряде его работ, в особенности в труде «О существовании пола у растений», представленном на конкурс Санкт-Петербургской академией наук, опубликованном в 1760 г. и удостоенном премии. Мы находим его также в «Родах растений» издания 1763 г. и в 13-м издании «Системы природы» (1774), где вместо прежнего принципа «nulla species nova» (никаких новых видов) Линней отметил, что «бесконечное существо создало в продвижении от простого к сложному, от малого к многому столько растений, сколько есть ныне отрядов. Затем в результате гибридизации возникли современные роды. Затем Природой были созданы виды» (цит. по: Воронцов, 1999. С. 184–185). Высоко оценивая заслуги Линнея как «провозвестника эволюционизма», Н. Н, Воронцов (там же, с. 190) пишет, что «Линнею были свойственны определенные элементы эволюционного подхода: он допускал возможность гибридогенного происхождения новых видов от старых». Во второй половине XVIII в. в связи с развитием селекционной практики фактическая база опытной гибридизации заметно расширилась. Среди последователей Линнея появились натуралисты с известными именами, такие, как А. Дюшен, Жорж Бюффон, А. Т. Болотов и Эразм Дарвин. Однако следующая важная веха в развитии проблемы приходится уже на начало XX в. и связана с именем голландского генетика Яна Лотси, сторонника постоянства видов. Первоначально Лотси изложил свою гипотезу «эволюции при постоянстве вида» в двух работах (Lotsy, 1914, 1916) и в дальнейшем пропагандировал ее до конца жизни (Lotsy, 1925а, 1925b). Нужно сказать, что с признанием ему не слишком повезло — и в основном из-за приверженности идее постоянства. В начале XX в. эта идея неоднократно возрождалась в разном одеянии и в разных странах — но, ввиду того что основная победа над ней уже была одержана дарвинистами и ламаркистами в XIX в., ее повторное явление на свет вызывало особое возмущение эволюционистов. В России и Советском Союзе гипотезу Лотси всегда подвергали и еще недавно продолжали подвергать уничтожающей критике (Филипченко, Четвериков, Комаров, отчасти Вавилов; Гайсинович, 1988. С. 229–230), зачастую приписывая ее автору несвойственные ему взгляды и не давая себе труда заглянуть в подлинники. Сейчас, когда страсти по постоянству видов давно улеглись и даже появление научного креационизма не вызывает активной реакции отторжения, можно спокойно и объективно оценить и Лотси. Вспомним в этой связи, что в свое время никто не сделал так много для грядущего торжества идеи эволюции, как два истых апологета фиксизма — Линней и Кювье. Ян Паулус Лотси (1367–1931). Свою главную книгу «Эволюция путем гибридизации» (Lotsy, 1916) Лотси посвящает памяти Чарлза Дарвина и, хотя развивает в ней отнюдь не дарвиновскую концепцию, цитирует его сочинения как самые авторитетные источники чуть ли не на каждой второй странице. Сведения же из Дарвина о плодовитых гибридах у растений и животных воспроизводит с особой полнотой. Лотси практиковал в своем саду широкомасштабные опыты по скрещиванию разных видов львиного зева (Antirrhinum), энотеры (Oenothera) и некоторых других растений и был в курсе аналогичных экспериментов Э. Баура и Г. де Фриза. Эти опыты, а также классическое исследование В. Иоганнсена (1903) убедили Лотси, что чистые виды, как всегда представленные гомозиготными формами, абсолютно постоянны. Утвердившись в этом представлении, он, естественно, не мог согласиться с теорией де Фриза (за исключением идеи о регрессивных мутациях, при которых, однако, полагал эволюцию немыслимой), решительно отрицал существование наследственной изменчивости и считал себя вправе заявить, что эволюция в дарвиновском понимании невозможна. При постоянстве видов их эволюционные преобразования возможны, по убеждению Лотси, только благодаря межвидовой гибридизации. Этому механизму Лотси придает значение единственного фактора эволюции и многократно повторяет это утверждение в своей книге, часто выделяя его курсивом. «Когда природа разрешает скрещивания, — пишет Лотси, — начинается эволюция; когда скрещивания становятся невозможными, она приостанавливается» (op. cit., р. 99). Соответственно, все живые диплоидных организмы видятся Лотси гибридными, их лишь ошибочно принимают за чистые формы. Вот почему, в частности, не представляется возможным доказать проявление мутационной изменчивости, если бы таковая и существовала. Тем самым Лотси все же признает видовую наследственную изменчивость, но только комбинативную. Он указывает на своего предшественника — австрийского ботаника А. Кернера (Kerner, 1863), который первым обосновал механизм гибридогенного видообразования. Опираясь на закон расщепления Менделя и производя простые математические расчеты, Лотси показывает, что с увеличением числа поколений гибридов, размножающихся в себе (инцухт), доля гомозиготных особей неуклонно возрастает и при миллионе потомков только две остаются гетерозиготными. В природе эта теоретически непреложная закономерность в силу разных обстоятельств часто нарушается, но, сколько бы гомозигот ни образовалось, они уже составляют новые константные виды. В принципе такое возможно уже со второго поколения. Как известно, такой способ видообразования подтвержден современной генетикой (Грант, 1991. С. 263). Подобно тому как каждый индивид имеет двух родителей, так и каждый вид должен иметь два предковых вида, но попытаться определить их — совершенно безнадежная задача ввиду беспорядочности происходящих в природе скрещиваний и частого вымирания родительских видов. Поэтому филогения представляется Лотси не наукой, а «продуктом фантастических спекуляций» (Lotsy, 1916. Р. 140). Именно Лотси положил начало широкой политипической концепции вида, предложив различать наряду с обычными линнеевскими видами — линнеонами — их более мелкие подразделения — элементарные виды, или чистые формы — жорданоны[24]. Только последние и представляют собой истинные виды, реально существующие в природе. Различия между ними субстанциональные: у каждого свой состав плазмы и, соответственно, особая конституция образуемых гамет. О том, каковы они конкретно, нам ничего не известно. Лотси допускает адаптацию линнеонов к среде и считает доказанным существование естественного отбора, но трактует эти механизмы вразрез с представлениями Дарвина. Приспособление, по его мнению, достигается исключительно изменением состава линнеона вследствие внутривидовых скрещиваний и вымирания менее приспособленных жорданонов. Что касается отбора, то его роль всегда негативная: он причина не появления, а вымирания форм. Вымирание начинается сразу после рождения нового линнеона. С течением времени в ходе борьбы за существование число составляющих его жорданонов неуклонно сокращается (этому сопутствует и уменьшение числа скрещиваний), пока в конце концов не остается один, сохранение которого в рамках чистого инцухта тоже не может быть гарантировано. Аналогичный механизм определяет и судьбу высоких таксонов вплоть до класса. Таким образом, все ныне существующие линнеевские виды, по Лотси, — это реликты более широких групп, некогда возникших путем скрещивания. В далекие эпохи отдаленные скрещивания время от времени давали исключительные результаты — возникали новые планы строения, появлялись новые классы. Лотси допускал, например, что позвоночные животные могли появиться в результате гибридизации двух представителей беспозвоночных (op. cit., р. 147). Из всего сказанного видно, что Лотси слишком «обделил» природу, оставив в ее распоряжении лишь один механизм самосохранения и развития — гибридизацию. Он также слишком переоценил креативные потенции гибридизации, так что собственно эволюция предстала как процесс деградации, перехода от сложного к более простому, заполняющий промежутки между двумя плодотворными актами гибридизации. По существу, его гипотеза напоминала концепцию В. Бэтсона, хотя возможность эволюции путем утраты генов Лотси решительно отрицал. В заключение этого анализа хотелось бы отметить, что при всех крупных ошибках Лотси, ясно выявившихся в ходе дальнейшего развития науки, созданная им концепция отличается цельностью, а также полнотой охвата эволюционной проблематики. В соответствии с ее логикой Лотси отрицал какую бы то ни было продуктивность понятия гомологии, развивал идею полифилетического и политопного происхождения видов, был одним из первых сторонников цикличности эволюции. Несомненная заслуга Лотси состоит в том, что он привлек внимание к симгенетическому формообразованию и в полной мере осознал огромное эволюционное значение возникновения раздельнополости, диплоидности и полового размножения. Лотси совершенно справедливо отмечал, что только с появлением атрибутов жизни возникла и комбинативная изменчивость, а вместе с ней стала возможной настоящая прогрессивная эволюция. Если на Западе не нашлось сколько-нибудь крупного ученого, который бы творчески развивал идеи Лотси, то, как это ни парадоксально, убежденный последователь его доктрины обнаружился в коммунистическом Советском Союзе. Им стал известный ботаник, один из основателей флорогенетики — науки о зарождении и развитии флоры земного шара — М. Г. Попов. Михаил Григорьевич Попов (1893-1955). Стержневая идея всего будущего научного творчества Попова о гибридизации как источнике всего неисчерпаемого разнообразия растительного мира зародилась у него в конце 1920-х гг., когда с помощью морфолого-географического метода он исследовал происхождение главных родов средиземноморской флоры (Попов, 1927, 1928). Уже тогда он пришел к выводу, что эта флора возникла в результате обширных гибридизационных процессов. В дальнейшем он (Попов, 1954, 1956, 1963) превратил гибридизацию в универсальный инструмент образования у растений новых видов, родов, семейств, порядков и даже целого типа покрытосеменных. Вкратце содержание его гипотезы заключается в следующем. Основным путем образования новых форм растений во все времена была гибридизация. Ее формообразовательная эффективность тем выше, чем дальше друг от друга морфологически отстоят скрещивающиеся родительские виды. В гибридном потомстве от взаимно далеких видов часто возникают резко отличные формы, вполне или частично константные, — так называемые нодэны (по имени французского ботаника Ш. Нодэна, изучавшего последствия экспериментальной межвидовой гибридизации). Вместе с тем частота таких «продуктивных» отдаленных скрещиваний в природе прямо пропорциональна близости скрещивающихся форм, и, стало быть, в случае гибридизации представителей высших таксонов она крайне низка и происходит раз в десятки и сотни тысяч лет, а то и на порядок реже. Этим не исчерпываются препятствия, стоящие на пути рождающегося нового вида. Из тысяч и десятков тысяч «странных новообразований» только один нодэн даст начало новому виду, и то если он найдет подходящую экологическую нишу и ему будет благоприятствовать отбор. Остальные погибнут или останутся в числе немногих особей в составе популяций старых видов. Нои они вскоре будут поглощены возвратным скрещиванием, если не окажутся изолированными физиологическими или пространственными барьерами. Отсюда, по мнению Попова, понятен медленный темп эволюции. Попов указывал также, что при гибридогенном видообразовании эволюция и, соответственно, систематика целых групп растений не могут изображаться в форме древа и принимают вид сети (Попов, 1954. С. 879–880). Отметим, что, игнорируя данные генетики, Попов полагал, что возникающие при гибридизации новые признаки и свойства оказываются следствием взаимодействия разных комплексов аминокислот, комбинации которых безграничны. Развивая свою гипотезу, Попов пришел к категорическому выводу о возникновении покрытосеменных единцтвенным путем — скрещиванием древних групп голосеменных гнетовых с беннеттитовыми (цикадовыми). К такому же заключению много раньше Попова пришел американский ботаник Э. Андерсон (Anderson, 1934) — и его приоритет Попов специально отмечает — а вслед за ним и другой американский ботаник — Д. Стеббинс (Stebbins, 1950). Именно такое статистически «крайне невероятное», по словам Попова, скрещивание привело к появлению Angiospermae, Вскрывая существо вопроса, Попов писал: «Величайшее событие, рождение покрытосеменных, т. е. скрещивание Гнетовых с Беннеттитовыми, подготовлялось миллионы лет, прежде чем совершилось <...> “чисто случайно”, по-видимому только в одном месте Земли и только однажды» (Попов, 1956. С. 769). Гипотезу Попова часто подвергали критике как за претензию на универсальность, так и за слепое следование «реакционным» идеям Лотси, но автор продолжал упорно ее отстаивать. Конечно, как это станет ясно читателю из последующих разделов книги, представления Попова о случайности и частоте-редкости описываемых феноменов не соответствуют новейшим представлениям, но сама идея об отдаленном гибридогенезе как источнике видообразования обрела прочный статус одного из распространенных путей эволюции. Решающим доказательством реальности гибридогенного видообразования в природе послужили работы по экспериментальному синтезу новых видовых форм и по ресинтезу существующих. Они положили начало экспериментальному моделированию тех механизмов эволюционного процесса, которые осуществляются посредством полиплоидии и гибридизации. Вместе с тем эти работы открыли совершенно новые перспективы перед селекционной практикой. Мировую известность приобрели эксперименты Г. Д. Карпеченко по синтезу межродового гибрида между редькой (Raphanus sativus) и капустой (Brassica oleracea), опубликованные в 1924–1927 гг. и описанные затем в огромном количестве книг, как отечественных, так и зарубежных (рис. 10). Цитологический анализ полученного плодовитого гибрида, названного рафанобрассикой, показал, что он имел в своем хромосомном наборе сумму диплоидных наборов родительских форм (2n = 18), т. е. был тетраплоидом. Тем самым впервые в истории была преодолена гибридная стерильность, неизменно возникающая вследствие нарушения конъюгации хромосом в мейозе из-за не гомологичности хромосом гаплоидных гамет. В данном же успешном эксперименте Карпеченко имел дело с нередуцированными диплоидными гаметами. Григорий Дмитриевич Карпеченко (1899-19941). Трудно сказать, знал ли Карпеченко работу датского генетика О. Винге (Winge, 1917), который первым высказал предположение, что восстановление нормального мейоза и плодовитости у межвидовых гибридов может быть достигнуто только в случае удвоения числа хромосом. Однако Карпеченко поступил именно так, как если бы ему было известно это указание. В дальнейшем удвоение хромосомного набора у родительських видов для получения автополиплоидов стали осуществлять, применяя искусственные агенты — высокие и низкие температуры, химические и радиационные мутагены. Оценивая экспериментальный синтез нового вида, осуществленный Карпеченко, Н. Н. Воронцов отмечает, что это был первый случай конструирования нового генома, т. е. применения той технологии, которая через пол века получила название генетической инженерии (Воронцов, 1999. С. 479–480). Экспериментальные работы, связанные с преодолением генетических трудностей на пути к созданию новых аллополиплоидов, послужили отправной точкой для разработки Карпеченко (1935) строго научной теории отдаленной гибридизации, которая не утратила своей ценности до сегодняшнего дня. Рис. 10. Схема экспериментов Г. Д. Карпеченко (из: Воронцов, 1980). В этом же ряду стоят опытные работы по межвидовой и межродовой гибридизации (за исключением мнимой «вегетативной») плодово-ягодных культур, на протяжении длительного времени проводившиеся И. В. Мичуриным. Наука требует объективности: пора освободить имя этого выдающегося селекционера-самоучки от довлеюшего над ним груза тех трагических ассоциаций, в которых он неповинен! Среди многочисленных гибридов, полученных Мичуриным, особый теоретический интерес представляет синтез принципиально нового растения — церападуса, полученного от скрещивания вишни Primus chamaecerasus и черемухи Padus padus maakii. Мичурин считал церападус новым зарождающимся видом (см.: Мичурин, 1939. Т. 1). В дальнейшем опытным путем было получено огромное число новых амфидипломных форм, большая часть которых не встречается в природе. В этом направлении особенно успешной была деятельность сотрудников Н. И. Вавилова и шведского генетика А. Мюнтцинга. Простое перечисление всех этих форм заняло бы несколько страниц, и в этом нет никакой необходимости. Обратим лишь внимание на хозяйственно наиболее значимые. Многолетние работы по совершенствованию ржано-пшеничных гибридов, начатые Г. К. Мейстером в 1918 г. и продолженные целой плеядой известных селекционеров, увенчались созданием октоплоидного сорта тритикале (Мюнтцинг, 1977), обладающего рядом ценных свойств. Много новых хозяйственнозначимых форм принесли опытные скрещивания культурных злаков с дикими, например твердой и мягкой пшеницы с разными видами пырея, осуществлявшиеся под руководством Н. В. Цицина (1960). В частности, полученная им октоплоидная многолетняя пшеница Triticum agropyrotriticum Cicin содержит 2п = 56 хромосом, из которых 42 от пшеницы и 14 от пырея. Ресинтез ряда культурных и диких растений неопровержимо свидетельствовал об их гибридогенном происхождении. Так, сотрудник Вавилова В. А. Рыбин скрещиванием терна (Prunus spinosa) и алычи (P. divaricata) воссоздал культурную сливу (P. domestica); болгарский генетик Д. Костов, временно работавший в СССР, объединением двух диплоидных дикорастущих видов табака (Nicotiana silvestris и N. tomentosus) ресинтезировал культурный табак (N. tabacum); А. Мюнтцинг получил дикорастущий вид пикульника (Galeopsis tetrahit) путем гибридизации двух видов (G. speciosa и G. pubescens). Продолжая развивать работы учеников Мюнтцинга и Вавилова, американский генетик Д. Л. Стеббинс в 1940-1950-е годы экспериментально получил такие аллополиплоиды, которые содержали в своем геноме хромосомные наборы как минимум четырех биологических видов (Stebbins, 1950). Впоследствии он доказал, что подобные гибридные виды, имеющие не менее четырех предков, распространены и в природе (Stebbins, 1974, 1982). Гибридные формы, происходящие от четырех видов, образуются поэтапно. Сначала возникают аллотетраплоиды (по числу сочетаний из 4 их может быть 6 вариантов) — продукты слияния гамет с нередуцированными наборами хромосом. На следующем этапе в случае повторного нарушения редукции в мейозе слияние тетраплоидных гамет может дать ряд вариантов аллооктоплоидов, т. е. форм с вторично дуплицированным числом хромосом. Если гибридизационный процесс продолжится, то возможно и возникновение таких форм, предками которых будут, например, четыре диплоидных и два аллотетраплоидных вида. В любом случае нескрещиваемость разнохромосомных видов преодолевается сохранением в гаметах диплоидного числа хромосом. Такие сложные формы Стеббинс предложил называть полиплоидными комплексами (compilospecies). В 1970-е годы американский генетик и ботаник В. Грант (1980, 1991) выделил отдельный способ гибридного видообразования с участием внешних преград, обеспечивающих изоляцию нарождающихся видов от других. К этим преградам он относит экологическую и сезонную изоляцию, а также особенности строения цветка. Различия между видами, ведущие к возникновению таких преград, находятся под контролем определенных генов. У потомков естественных межвидовых гибридов происходит расщепление по этим генным различиям, и у новых продуктов этого расщепления возникает новая комбинация признаков, создающая основу для появления новых изолированных субпопуляций. Если изоляция последних сохранится и далее, то из них разовьются новые виды. Примеры такого способа гибридогенного видообразования пока единичны, и они не обладают полной достоверностью. Подводя итог рассмотрению гибридогенного способа видообразования у растений, подчеркнем его чрезвычайно широкое распространение в природе. По данным Стеббинса и Айалы (1985) 47 % покрытосеменных представляют собой полиплоиды, среди которых подавляющее большинство относится к аллополиплоидам. М. Д. Голубовский (2000) в своей новой книге поднимает эту цифру даже до 52–58 %. К этому огромному числу гибридных видов следует добавить формы культурных растений, синтезированных методами экспериментальной полиплоидии. Во второй половине XX в. полиплоидное и гибридогенное формообразование было обнаружено и в мире животных. Оно зафиксировано преимущественно в группах, размножающихся партено-генетически или бесполым путем. Ю. И. Полянский (1960, 1971 и позднее) не только установил сами факты регулярности полиплоидных процессов среди радиолярий, инфузорий, амеб и других простейших, но и показал, что полиплоидия у них служила основой прогрессивной эволюции. Б. Л. Астауров еще в 1930-е годы выдвинул гипотезу о существовании естественной полиплоидии у бисексуальных животных, а в дальнейшем подтвердил ее в своих экспериментах по получению межвидовых гибридов тутового шелкопряда — Bombyx mori х В. mandarina (Астауров, Острякова-Варшавер, 1957). Фактически Астауров, добиваясь 100-процентного выхода однополого потомства с нужными свойствами, получил целую серию форм разного уровня плоидности. С этой целью он использовал не только сложные схемы скрещиваний, но и промежуточную стадию искусственно вызванного партеногенетического размножения. Конечным этапом этих процедур оказались аллополиплоидные бисексуальные насекомые, способные к самостоятельному размножению. Многолетние эксперименты дали основание Астаурову (1969) заявить, что он рассматривает их как модель эволюционных процессов в естественных популяциях некоторых групп животных. Одна из первых догадрк о существовании полиплоидии и гибридизации у позвоночных принадлежит шведскому зоологу Г. Свердсону (Svardson, 1945). По его мнению, таким путем могло возникнуть семейство лососевых рыб. Кариологические исследования и данные электрофореза, полученные в 1970-е годы B. C. Кирпичниковым (1979) и Ю. П. Алтуховым (1989), подтвердили это предположение и выявили другие группы рыб, в эволюции которых гибридизационные процессы играли важную роль. Полная сводка всех известных фактов этого рода содержится в книге В. П. Васильева (1985). Л. Я. Боркин и И. С. Даревский (1980) описали неординарный тип гибридргеиного видообразования у ряда амфибий (роды Ambystoma и Rana) и рептилий (роды Lacerta и Chemidophorus). Они, в частности, указали, ссылаясь на работы Л. Бергера (Berger) и других исследователей, что обычная прудовая лягушка Rana esculenta представляет собой гибридную форму от скрещивания R. lessonae и R. ridibunda. Эти авторы изложили концепцию последовательной гибридизации с обязательной промежуточной фазой образования диплоидной гибридной клональной и, как правило, однополой формы. Эту концепцию ныне разделяют большинство специалистов. Она предполагает существование как минимум трех основных генетических этапов гибридогенного видообразования, ведущих к аллотетраплоидии у позвоночных. На первом этапе в результате гибридизации на уровне бисексуальных нарождающихся диплоидных видов может образоваться диплоидная форма, переходящая к клональному размножению путем гиногенеза (рыбы), «одалживания» отцовского генома на одно поколение (рыбы, бесхвостые амфибии) или партеногенеза (хвостатые амфибии, рептилии). На втором этапе вледствие возвратной гибридизации этой диплоидной однополой формы с одним из родительских видов может возникнуть триплоидная однополая форма, размножающая с помощью гино- или партеногенеза. Наконец, на третьем этапе в результате скрещивания этой последней с одним из близких бисексуальных диплоидных видов может появиться тетраплоидная форма, способная вернуться к нормальному бисексуальному размножению (рис. 11). Рис. 11. Схема гибридизации (Боркин, Даревский, 1980). Авторы отмечают, что эта схема (второй и третий этапы) хорошо согласуется с экспериментально подтвержденной гипотезой Б. Л. Астаурова (1969) о непрямом развитии естественной полиплоидии у шелковичного червя. Для биолога должен составить особый интерес феномен «одалживания» генома самцов: он сливается с геномом гибридных самок в процессе оплодотворения, но элиминируется у их потомков в ходе мейоза. В последнее время этот феномен стали обнаруживать также в развитии некоторых гибридных беспозвоночных. В ходе дальнейшего изучения мировой фауны ящериц общее число видов гибридогенного происхождения из разных семейств увеличилось до 40 (Даревский, 1995). Обнаружены они в самых различных частях земного шара. Таковы 14 видов североамериканского рода Cnemidophorus, комплекс видов западноавстралийских гекконов Heteronotia binoei, гекконы сборного вида Lepidodactylus lugubris с тихоокеанских островов, 5 кавказских партеногенетических видов скальных ящериц рода Lacerta, а также вьетнамская триплоидная ящерица Leiolepis guntherpetersi. Все они появились сравнительно недавно — в голоцене или плейстоцене. Достаточно подробно изучены скальные ящерицы горного Кавказа (Даревский, 1967; Даревский, Гречко, Куприянова, 2000). Из 18 обитающих здесь видовых форм 7 представлены партеногенетическими самками, предположительно образовавшимися в результате серии актов естественной межвидовой гибридизации. Самки этих видов, имеющие диплоидный набор хромосом (2n = 38), легко спариваются с самцами бисексуальных видов, включая в свой геном мужской гаплоидный набор хромосом. В результате их потомство становится триплоидным (3n = 57), и в нем сочетаются признаки материнского и отцовского видов (с преобладанием материнских). Триплоидные формы размножаются исключительно партеногенетически, В смешанных гибридных популяциях на их долю приходится иногда до 10–12 % от общей численности особей. Как и все нечетно-полиплоидные организмы, они лишены эволюционной перспективы. Автор (Даревский, 1995) полагает, что партеногенетические виды ящериц возникали в истории их рода многократно путем скрещивания одних и тех же родительских пар. Некоторые однополые виды представляют собой отдельные клоны или совокупность немногих клонов, берущих начало от одной или нескольких самок-прародительниц. Существование парте ноге нети ческих форм дает виду биологическое преимущество: благодаря тому, что потомство оставляют все особи популяции, темп размножения вида удваивается, и это способствует поддержанию его численности на высоком уровне. Плодовитые гибриды, встречающиеся в природе среди млекопитающих, были изучены, в частности, Н. Н. Воронцовым. В последней книге (Воронцов, 1999) он привел случаи скрещивания между малым (Spermophilus pygmaeus) и крапчатым (Sp. suslicus), между большим (Sp. major) и краснощеким (Sp. erythrogenys) сусликами. Еще три десятилетия назад Э. Майр специально отмечал, что гибридогенное видообразование хотя и часто постулировалось, но ни разу не было доказано. Сейчас можно с уверенностью заявить, что оно точно доказано всей совокупностью цитогенетических, биохимических, иммунологических и морфологических методов. Рис. 12. Схема ретикулярной эволюции (из: Dobzhansky, 1951). Из всего сказанного в этом разделе следует, что рассмотренные факты гибридогенного формообразования демонстрируют принципиально недарвиновский механизм видообразования: во всех описанных случаях происходит не разделение (дивергенция) филетических линий, а их схождение. Схематически этот процесс можно отобразить в виде сетки, совершенно аналогичной той, которая возникает при построении полной генеалогии любого человеческого рода. Отсюда второе название гибридогенного формообразования — сетчатое, а в английском звучании — ретикулярное видообразование (или эволюция) (рис. 12). Этот термин ввел в биологию Ф. Г. Добжанский (1937)[25].
Кроме гибридогенеза в природе существует и такой способ объединения разнородных организмов с образованием новых, при котором слияния геномов исходных форм не происходит. В результате образуются организмы-кентавры, классическим примером которых могут служить лишайники.
Впервые мысль о двойственной природе этих растений была высказана швейцарским ботаником С. Швенденером (Schwendener, 1869). В начале 1880-х годов она получила полное подтверждение. Было доказано, что лишайники представляют собой продукты эволюционного объединения гриба и водоросли, т. е. получилось, что целый отдел царства растений возник не путем дивергенции, а с помощью обратного процесса — слияния ранее совершенно самостоятельных организмов.
Однако, как показала Л. Н. Хахина (1973, 1975, 1979), заслуга в изучении этого удивительного феномена, поразившего многих современников, в гораздо большей степени принадлежит русским ботаникам, которые в ряде моментов даже чуть опередили своего швейцарского коллегу.
В 1867 г. А. С. Фаминцын и О. В. Баранеикий опубликовали на немецком языке (Famintsin, Baranetsky) сообщение об опытах, в которых им удалось отделить гон иди и (одноклеточные зеленые водоросли) лишайника от его бесцветного слоевища. Гонмдии оказались способными к самостоятельному существованию в культуре, подобно своим свободноживущим собратьям, образовывали споры и по строению весьма походили на таковых рода Cystococcus. Из соображений научной щепетильности авторы еще не заявили о двухкомпонентной природе лишайника, они воздержались от принятия этой идеи и тогда, когда ее высказал Швенденер, но сделанное ими открытие фактически уже означало положительное решение этого вопроса.
Через 40 лет А. С. Фаминцын обратился к проблеме роли симбиоза[26] в эволюции и в серии статей (1907а, 19076, 1912а, 19126 и позднее) попытался представить симбиоз как важный формообразующий фактор, дополняющий работу дивергентного видообразования. Интересно, что теперь Фаминцын (1907) задался идеей показать, что принцип, породивший лишайники, можно распространить и на растительную клетку как структурную единицу.
Чуть раньше с аналогичной гипотезой — независимо от Фаминцына — выступил ботаник Казанского университета К. С. Мережковский (Mereschkovsky, 1905), брат поэта Д. С. Мережковского. Так родилось учение о симбиотическом происхождении клетки зеленых растений, которое после введения Мережковским в 1909 г. ныне общепринятого термина «симбиогенезис» (симбиогенез) стало называться учением о симбиогенезе. В переводе с греческого это слово означает «возникновение на основе совместной жизни».
По мнению обоих авторов этой фантастической гипотезы, и ядро, и хлоропласты (хроматофоры) с заключенным в них хлорофиллом, и центросомы — короче, все известные тогда органеллы растительной клетки — ведут свое происхождение от бактерий и водорослей, которые проникли некогда в бесцветный амебоподобный (или флагеллятоподобный) животный организм извне и стали его постоянными симбионтами. При этом особое значение для подтверждения гипотезы имели хлоропласты с их большой автономией и, как были убеждены авторы, непрерывностью этих пластид в ряду клеточных поколений; важным представлялось их сходство с современными свободноживущими одноклеточными водорослями.
Фаминцын полагал, что хлоропласты ведут свое начало от таких форм, как хлореллы и ксантеллы. Мережковский вел их генеалогию от примитивных сине-зеленых (цианей). При этом оба категорически отвергали традиционные представления об их образовании всякий раз заново путем дифференциации клеточной плазмы.
Надо сказать, что Мережковский шел в своих рассуждениях дальше Фаминцына. Он был убежден (Мережковский, 1909), что в основе всего живого лежат две глубоко различные плазмы — микоидная, из которой состоят бактерии, сине-зеленые водоросли и большая часть грибов, и амебоидная, которая слагает ткани животных и растений, Организмы, составленные из микоидной плазмы (Мережковский называл их микоидами), принадлежат к самому древнему царству на Земле, В результате симбиоза простейших безъядерных амебоидных существ (монер) с первичными микоидами — бактериями биококками — возникли первичные одноклеточные организмы — амебы и флагелляты.
Бактерии образовали ядро клетки.
Андрей Сергеевич Фаминцын (1835-1918).
Затем благодаря симбиогенезу совершился новый «творческий акт»: в первичные амебы и флагелляты внедрились сине-зеленые водоросли и превратились в хлоропласты. Так, путем двойного симбиоза возникли клетки всех высших растений.
К концу 1930-х гг. интерес к проблеме симбиогенеза, столь активно обсуждавшейся до сих пор как в отечественной, так и в зарубежной науке, резко падает, а вскоре о ней и вовсе забывают. Это объясняется в основном двумя причинами. С исчерпанием возможностей светового микроскопа в исследовании микроструктур клетки дальнейшие дискуссии становились бесплодными, а все попытки (в том числе Фаминцына) культивирования в искусственных средах зерен хлорофилла, извлеченных из растительной клетки, оказались тщетными.
Но из теоретических построений Мережковского по крайней мере одна идея — о двух плазмах — оказалась пророческой. Начиная с 60-х годов в сознании цитологов и микробиологов все более крепло представление о глубокой пропасти, которая разделяет безъядерные (точнее было бы сказать — доядерные) организмы, каковыми являются бактерии, и ядросодержащие, к которым относятся все остальные. Коренные различия между ними, как выяснилось, распространялись и на ультраструктуры, в том числе формы укладки ДНК (Кернс, 1967), В итоге оказалось, что различия между ядерными и безъядерными глубже и фундаментальнее, чем между традиционными царствами животных и растений, и что вполне обоснованно делить все живое на два надцарства — прокариот и эукариот (Тахтаджян, 1973), Замечательно, что границы этих надцарств (за исключением грибов) совпали с распределением организмов между двумя типами плазмы у Мережковского.
Успехи в изучении ультраструктур клетки 1960-х гг., ставшие возможными благодаря новым методам исследования (электронная микроскопия, центрифугирование, усовершенствование биохимических, цитофизиологических и других методов), создали основу для возрождения гипотезы Фаминцына — Мережковского на новом уровне. С обновленной гипотезой о симбиогенетическом происхождении эукариотической клетки выступила молодой биолог из Бостонского университета Линн Саган-Маргулис (Sagan, 1967; Margulis, 1970 и позднее). Не упомянув своих русских предшественников, она развила ряд положений, очень близких представлениям Мережковского.
Л. Маргулис опиралась теперь на целый ряд гораздо более достоверных фактов, свидетельствовавших об автономии клеточных органелл, их сходстве друг с другом, а также с цианеями и бактериям. Было установлено, что как пластиды, так и митохондрии способны к авторепродукции, причем не всегда синхронизированной с митотическим циклом клетки. Они содержат собственный генетический аппарат, в значительной мере автономный от ядерной ДНК, причем на долю внеядерной ДНК приходится от 5 до 40 % всей ДНК клетки. Обнаружилось также, что ДНК органелл всех до сих пор изученных эукариотических организмов сложена в виде колец, как это наблюдается у всех бактерий и одноклеточных сине-зеленых водорослей, тогда как ядерная ДНК эукариот образует хромосомы, располагающиеся линейно (Кернс, 1967). Сообразно генетическим различиям пластиды и митохондрии обладают и своим высокоавтономным белоксинтезирующим аппаратом (Филиппович, Светайло, Алиев, 1970).
Лини Маргулис (род. 1938).
Зато по тем же и целому ряду других характеристик хлоропласты оказались сходными с синезелеными водорослями (Taylor, 1970; Пахомова, 1972, 1974), а митохондрии — с бактериями (Nass, 1969; Рудин и Уилки, Лини Маргулис (род. 1938) 1970).
Опираясь на эти данные, Маргулис (Margulis, 1970) предложила следующую модель симбиотического возникновения эукариотической клетки (рис. 13). Родоначальником всех форм жизни, от которого не менее чем 3,3 млрд лет назад началась органическая эволюция на Земле, был небольшой гетеротрофный амебоидный прокариотный организм, еще не способный дышать кислородом. Эти гипотетические допотопные организмы поглотили, не убивая, более мелкие аэробные бактерии, которые в теле своих хозяев превратились в митохондрии (первый этап симбиогенеэа). Образовавшиеся в результате более крупные микоплазмолодобные организмы приобрели высокоподвижные спирохетоподобные бактерии и стали жгутиконосными формами. Спирохетоподобные бактерии способствовали образованию настоящего ядра, жгутикового и митотического аппаратов — возникли простейшие эукариотические организмы, давшие начало царствам животных и грибов (второй этап симбиогенеэа). Наконец, последним этапом эволюции эукариотической клетки стало объединение с фотосинтетиками типа примитивных цианей, которые превратились в фотосинтезирующие пластиды и открыли своим хозяевам путь к приобретению автотрофного типа питания (третий этап симбиогенеза). Этот последний этап дал начало всему стволу растений. Таким образом, все эукариоты, по Маргулис, являются по меньшей мере двухгеномными организмами.
Симбиогенетическая гипотеза возникновения эукариот получила широкую поддержку и распространение как на Западе (Raven Р. Н.; Schnepf Е., Brown R. M.; см. сводку: Cavalier-Smith, 1995), так и в России (Тахтаджян А. Л.; Генкель П. А.; Яблоков А. В. и Юсуфов А. Г.; см. обзор: Кусакин, Дроздов, 1994). В своей последней книге по эволюции Н. Н. Воронцов заявил, что он принимает «гипотезу симбиогенеза как наиболее вероятную» (Воронцов, 1999. С. 496). При этом он справедливо добавляет, что последовательность этапов симбиогенеза могла быть и другой, но в любом случае эволюционное развитие не могло быть монофилетическим. Впрочем, есть исследователи, не согласные с Маргулис. Они считают, что митохондрии и хлоропласты не произошли от бактерий, а всего лишь получили от них ряд генов (Gogarten, 1995).
Рис. 13. Схема симбиотического возникновения эукариотической клетки по Маргулис (из: Тахтаджян, 1973).
Таким образом, как и в случае гибридогенеза и полиплоидии, когда образование новых форм происходит благодаря слиянию и дупликации геномов, возникновение новых таксонов путем симбиогенеза связано с пространственной интеграцией двух или более геномов в рамках одного организма (его клеток), т. е. осуществляется путем синтезогенеза, прямо противоположным дивергенции. Здесь нет места для каких бы то ни было процессов микроэволюции. Это чисто макроэволюционный (точнее, мегаэволюционный) процесс.
Обсуждение проблемы симбиогенеза и всех новейших открытий молекулярной биологии, на которые она опирается, побудило многих исследоввателей к перестройке общей филогенетической системы органического мира, а именно ее самых верхних этажей, составляющих предмет мегасистематики. Характерной тенденцией последнего времени стало увеличение числа ее высших подразделений — надцарств, царств, подцарств и типов (отделов). Так, в генеральной системе А. Л. Тахтаджяна (1973), пользующейся широким признанием, два надцарства, четыре царства и девять подцарств. О. Г. Кусакин и A. Л. Дроздов (1994) предложили систему, состоящую из 22 царств и 132 типов. Интерес к соотношению объемов высших таксонов сохраняется по сей день.
Этот термин (от греч. «nomos» — закон) впервые вошел в биологию благодаря изданию Л. C. Бергом одноименной книги с полным названием «Номогенез, или эволюция на основе закономерностей» (1922). С тех пор им стали обозначать прогрессионистские эволюционные гипотезы, авторы которых рассматривают эволюцию как запрограмированный процесс реализации внутренних, имманентных живому организму закономерностей. В своей исходной форме номогенез противопоставлялся теории Дарвина как основанной исключительно на случайной изменчивости и потому названной тихогенезом.
Руководствуясь априорными суждениями в духе кантианского агностицизма, Берг провозгласил основным законом эволюции «автономический ортогенез» — имманентное свойство живой природы производить независимо от внешней среды все более совершенные формы. Постулируя наличие у организмов такого целенаправленного внутреннего процесса, или силы, Берг указывает, что нечто аналогичное уже было высказано в России К. Бэром, Н. Я. Данилевским и Н. Н. Страховым, а на Западе — К. Негели и Э. Копом.
Концентрируя свое внимание главным образом на прогрессивной эволюции и случаях «истинного новообразования», Берг честно признает, что о причинах прогресса ему ничего не известно. Зато о способах его осуществления он пишет с полной определенностью. Согласно его номогенетической концепции, автономические факторы изменяют «существенные признаки, определяющие самый план строения данной группы» (там же, с. 182), и ведут ее по пути прогресса. В итоге возникают новые органы и образуются систематические группы от уровня вида до класса, причем Берг специально подчеркивает, что соответствующие признаки часто «образуются в определенном направлении <…> независимо от пользы… а иногда — даже во вред организму» (там же, с. 179).
По мнению Берга, запрограммированность эволюционного развития филогенетических линий органически включает в себя явление преадаптации. Наряду с автономическим ортогенезом ученый обосновывает его ссылками на преобладание в эволюции параллелизмов и конвергенций и иллюстрирует их искусно подобранными примерами.
Источник прогрессивных преобразований Берг усматривает в стереохимических свойствах белков, т. е. в изменениях их пространственной структуры, побуждающей формы изменяться только в определенном и всегда целесообразном направлении.
Как же представлял себе Берг механизм возникновения новых признаков, а вместе с ними — новых видов и более высоких таксонов?
Во всех случаях это процесс, одновременно охватывающий всех особей данного вида и сразу на громадной территории. При его описании Берг пользуется такими эпитетами, как эпидемический, массовый, стихийный, и многократно возвращается к этому вопросу.
Тезис о массовом характере преобразования населения вида Берг настойчиво противопоставляет положению Дарвина о действии естественного отбора на индивидуальную изменчивость и преимущественное сохранение первоначально небольшого числа изменившихся индивидов. Изменчивость, лежащая в основе образования новых признаков, никогда не бывает случайной. Она всегда возникает закономерно, т. е. в нужное время, и направлена в сторону, полезную для ее обладателей. В этом, по Бергу, «и заключается вся соль вопроса об эволюции: получается ли полезное случайно или закономерно?» (там же, с. 180). К этому следует добавить, что в полном отрицании случайности и, напротив, в утверждении строгой закономерности преобразования как раз и состоит идейное ядро теории номогенеза. Но коль скоро изменчивость закономерна и направленна, нужда в естественном отборе как факторе эволюции полностью отпадает.
Массовые преобразования форм, связанные с возникновением новых признаков, могут осуществляться не только под действием автономических процессов, но и под влиянием географического ландшафта, т. е. причин хорономических. В этом случае новые формы возникают в результате географической изоляции части популяции вида, испытывающей «принудительное» превращение.
Влияние географического ландшафта по сравнению с действием автономических причин намного скромнее по результатам, так как оно способно приводить лишь к образованию подвидов, в лучшем случае — викариирующих видов. Соответственно, Берг уделяет этому фактору гораздо меньше внимания.
Отдавая приоритет причинам автономическим, Берг разъясняет, что их действие проявляется в так называемых мутациях Ваагена[27] — морфологических изменениях, происходящих во времени» которое разделяет соседние геологические горизонты. При этом новые виды образуются путем замещения (субституции) старых, материнских на основе «массового преобразования» громадного количества особей, а не путем дивергенции, как это мыслится Дарвином. Более того, массовое тиражирование нового признака только и есть гарантия его прохождения сквозь бдительные сети отбора и его наследственного закрепления. Сами же мутации совершаются исключительно скачками, почему между истинными таксонами никогда не бывает переходных форм. Берг отмечает также, что «массовое преобразование есть явление геологического порядка: оно связано с изменением фауны данного горизонта и происходит в известные промежутки времени, чтобы затем опять на долгое время прекратиться.
Это и есть путь прогрессивной эволюции» (курсив мой. — В. Н.) (там же, с. 317).
Лев Семенович Берг (1876-1950).
Что касается масштаба возникающих новообразований, то он бывает самым различным, но главное, что это часто «резкий и заметный шаг… в морфологическом отношении: это может быть образование плаценты, конечности типа пятипалой, конечности типа летающей, появление гетеростилии, семени, двуполого цветка и т. п.» (там же, с. 329), Таким путем возникают, по Бергу, новые роды, отряды и даже классы. Способ образования высших таксономических единиц такой же, как и низших. При этом прогрессивные изменения совершаются впервые в молодом возрасте или в эмбриональном состоянии.
В противоположность мутациям Ваагена, т. е. филетическим преобразованиям, мутации де Фриза, по мнению Берга, никакого видообразовательного и вообще эволюционного значения не имеют, ибо они появляются у единичных индивидов, а их носители — мутанты — обычно образуются путем утраты генов. На подобных мутациях основывать прогрессивную эволюцию невозможно.
Преобразования одних форм в другие происходят периодически, скачками. Есть эпохи, пишет Берг, когда творческая сила природы дает калейдоскоп органических форм, а есть времена, когда эта сила как бы дремлет. Внешнее выражение такого хода эволюции мы видим в самом делении геологической истории на эры, периоды и эпохи. Если проследить последовательность родственных родов и видов, замещавших друг друга исторически, то, как бы ни были полны палеонтологические данные, история всегда оказывается прерванной. Берг склонен считать скачкообразность законом прогрессивной эволюции и меняет смысл известного афоризма Лейбница на противоположный: «Природа делает скачки».
Представления Берга о судьбе внутривидовых подразделений прямо противоположны дарвиновским. Предваряя идеи многих современных макрогенетиков, он полагал, что эти низшие внутривидовые единицы никогда не в состоянии «дорасти» до вида в результате дивергенции, а, наоборот, виды, возникнув сразу, скачком, разделяются на подвиды и более мелкие единицы. В современную нам эпоху, отмечал Берг, вполне можно наблюдать разложение сборного (линнеевского) вида на его составные элементы, но никто еще не видел обратного процесса — превращения расы в вид путем подбора, и нельзя допустить, чтобы такой процесс мог происходить. Следовательно, по Бергу, сначала образуется вид, а уже затем происходит его расщепление на соответствующие внутренние составные части. В обратную сторону процесс не идет.
В соответствии с представлением о первичном разнообразии форм жизни и их параллельном эволюционном развитии Берг отстаивает идею крайней полифилии и противопоставляет ее дарвиновскому принципу дивергенции. Соответственно, филогенетические отношения между систематическими группами представлялись ему не в форме ветвистого дерева, а в виде ржаного поля. Интересно, что, подобно голландскому генетику Я. Лотси — представителю совершенно иного эволюционного направления, — Берг допускал возможность политопного и повторного образования видов и высших таксонов и верил в частичную обратимость эволюции.
Но вернемся к стержневой идее «Номогенеза…». Берг сам ясно определил ее выбором одного из эпиграфов к главе об определенном направлении, или — закономерности, эволюции. «В области органической природы, — говорится в нем, — точно так же, как и в области неорганической природы, случайность отсутствует, и полезность многих деталей тела возникает по законам, а не в результате случайностей или случайных событий» (Osborn, 1909. Р. 225).
Благодаря единым законам развития «эволюция идет в определенном направлении», по конкретному руслу, подобно электрическому току, распространяющемуся вдоль проволоки (сравнение Берга). Она складывается из направленного (а отнюдь не хаотического) изменения признаков организмов. Варьировать же в определенном направлении организмы побуждают главным образом внутренние, автономические причины.
Направленность эволюции всего нагляднее проявляется в явлениях конвергенции (параллелизма), при которых у двух или более рядов форм развиваются сходные признаки, поскольку эти явления вызываются «наследственной склонностью варьировать в одинаковом направлении».
Берг особо отмечает, что конвергенция — не исключительное явление, как думал Дарвин, а «основной закон эволюции органического мира» (там же, с. 228). В силу этого закона сходство между организмами может быть не только результатом кровного родства, но следствием более общего принципа — развития живого по одинаковым законам. Поэтому Берг не делает принципиального различия между гомологией и конвергенцией.
Книга Берга насыщена примерами конвергенции как родственных, так и далеких друг от друга групп организмов, относящихся и к животному, и к растительному миру. Фактически вся сравнительная анатомия могла бы, по его мнению, служить в этом отношении иллюстрацией. Среди позвоночных параллельное развитие демонстрируют эволюция зубов у рептилий и млекопитающих, постепенное окостенение позвоночника у высших рыб, уменьшение числа костей в черепе, превращение сердца из двухкамерного в трех- и четырехкамерное (последнее развилось совершенно независимо у крокодилов, птиц и млекопитающих). По целому ряду внешних и внутренних признаков обнаруживается сходство ихтиозавров с дельфинами, хищных птиц с совами. Совершенно удивительно одинаковое устройство органа зрения у кольчатых червей, членистоногих, головоногих моллюсков и позвоночных. Такой орган, как плацента, кроме соответствующего инфракласса млекопитающих имеется у ряда мшанок, у некоторых насекомых и скорпионов, у оболочников, у акулы Mustelus lаеvis, а также у некоторых сумчатых. Природа трижды сделала попытку создать формы с автостилическим черепом среди позвоночных, а именно у химер (рыбы), у двоякодышащих и, наконец, у четвероногих.
Большое число параллельных рядов форм позволяет построить также палеонтологический материал. Они широко известны среди гониатитов, аммонитов, паплюдин, динозавров, теридонтов, лошадиных, между птерозаврами и птицами, крокодилами и птицами и т. д.
О закономерной направленности эволюции свидетельствуют также явления филогенетического ускорения или предварения признаков, а также закон гомологических рядов в наследственной изменчивости, установленный Н. И. Вавиловым (1920; Вавилов, 1968; Vavilov, 1922). Говоря о последнем, Берг замечает, что «Вавилов проводит идею номогенеза более успешно, чем это делаю я в настоящей работе» (там же, с. 224), а также многократно ссылается на его данные.
Николай Иванович Вавилов (1887-1943).
Сущность закона гомологических рядов совершенно ясна в той формулировке, которую ему дал сам автор:
«1. Виды и роды, генетически близкие, — писал Вавилов, — характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и линнеоны, тем полнее сходство в рядах их изменчивости.
2. Целые семейства растений, в общем, характеризуются определенным циклом изменчивости, проходящей через все роды и виды» (Вавилов, 1968. С. 32).
Данный закон основан на анализе громадного материала по изменчивости культурных растений и их диких сородичей и никогда никем не опровергался. Вавилов привел удивительно правильные параллельные ряды форм, как в пределах одного рода (у пшеницы, ячменя, овса, пырея), так и у разных родов (ржи и пшеницы, разных представителей бобовых и тыквенных).
Особенно нагляден пример поразительного сходства разных родов — культурной чечевицы (Ervum lens) и часто засоряющей ее посевы плоскосемянной вики (Vicia saliva). Оба растения одновременно цветут и созревают, а их семена по размеру и форме настолько похожи друг на друга, что сортировочные машины не в состоянии их разделить. Хотя роль искусственного отбора в данном случае несомненна, сами формы с одинаковыми семенами были обнаружены в природе, где они образовались в полном соответствии с законом изменчивости до и помимо всякого отбора.
В свете закона Вавилова особенно поблекла значимость явлений мимикрии как комплекса адаптивных внешних признаков, имитирующих внешность хорошо защищенных видов, и как приспособления, якобы возникшего под действием естественного отбора. Вавилов и Берг высказываются по этому поводу в унисон: первый видит в случаях мимикрии «повторение циклов изменчивости в различных семействах и родах», а второй утверждает, что «явления мимикрии… целиком могут быть подведены под понятие гомологических рядов» (Берг, 1977. С. 313). В цитируемой книге Берг собрал много примеров (главным образом среди бабочек) бесполезности мимикрии, когда имитаторы подражают сразу многим видам других семейств, когда имитатор и модель никогда не видели друг друга, так как обитают на разных континентах. Опираясь на закон Вавилова, полное развенчание дарвиновского толкования миметизма осуществил австрийский энтомолог Ф. Гейкертингер (Heikertinger, 1954).
Дарвинисты, всегда яростно критиковавшие Берга, в отношении закона Вавилова часто использовали тактику замалчивания и уж во всяком случае редко вспоминали, что, наряду со сходной изменчивостью видов, родов и семейств, Вавилов признавал существование у них специфических, до поры неизменных признаков — радикалов. К числу таких радикалов относятся, в частности, величина и кратность хромосомных наборов. У пшеницы, например, она обычно кратна семи (у однозернянок — 14, у твердых — 28, у мягких — 42). Понятно, что подобный радикал, как и вообще любой количественный признак, не может возникнуть постепенно, как — обычно принято считать — развиваются качественные признаки под действием отбора. Он мог образоваться только сразу, одномоментно, например в результате гибридизации или геномной мутации.
Закон Вавилова приобрел не только универсальное общебиологическое значение. Он оказался одним из самых практичных теоретических обобщений генетики. Подобно периодическому закону Менделеева, позволившему целенаправленно искать в природе еще не открытые химические элементы, он создал ориентиры для поисков доселе неизвестных видов и разновидностей, — могущих оказаться полезными в селекции тех или иных культур. В частности, широко известен пример обнаружения Вавиловым наперед им предсказанных форм ржи без лигулы у основания листовой пластинки и с опушенными колосьями, совершенно аналогичных соответствующим формам пшеницы. Им же было найдено так называемое голое просо. Многие другие формы растений и целые гомологические ряды были обнаружены сотрудниками, учениками и последователями Вавилова, способствуя тем самым популяризации его закона. Последний стал известен и западному научному сообществу благодаря публикации в 1922 г. статьи Вавилова в «Journal of Genetics» (Vavilov, 1922). Его с одобрением восприняли многие крупные генетики. Он послужил также толчком для разработки А. А. Заварзиным (1923; см. также: 1986) концепции параллелизма в филогенетическом развитии тканей.
Вавилов (как, впрочем, и многие интерпретаторы его закона) писал, что закон гомологических рядов «не противоречит дарвинизму, наоборот, развивает его» (Вавилов, 1939. С, 519). Одним из доводов в пользу такого толкования служило предположение о проявлении действия гомологичных генов, унаследованных от общего предка, аналогичного тому, которым для объяснения параллельной изменчивости пользовался Дарвин. Кроме того, Вавилов допускал возникновение фенотипических сходств в результате действия разных аллелей одного гена и даже разных генов, что было подтверждено уже через полвека данными молекулярной биологии при изучении так называемых неполных и ложных гомологий на уровне генотипа (см., например: Медников, 1980, 1981, 1983).
Сделаем маленькое отступление. Как Вавилов установил свой закон для фенотипических признаков, так и Дарвин, естественно, описывал случаи аналогичной изменчивости по видовым признакам, т. е. оба этих явления относятся к морфологическому уровню организации. Современная молекулярная генетика с еще большей убедительностью, чем классическая генетика времен Вавилова, показала самостоятельность, или глубокую автономию, процессов формообразования от генетических факторов. Во всяком случае, такое впечатление будет сохраняться до тех пор, пока фенетика не воссоздаст всю цепочку событий от гена (или генов) до интересующего нас морфологического признака. А поэтому не стоит полагать, что доказательство плейотропной или полигенной детерминации фенотипических сходств может снять противоречие между направленной изменчивостью у Вавилова и ненаправленной — у Дарвина. Это противоречие остается реальным фактом. Поэтому абсурдно одновременно принимать закон Вавилова и осуждать закон конвергенции Берга.
Впрочем, в условиях уже сложившегося в СССР в 1930-е гг. тоталитарного строя и жесткого идеологического контроля даже крупные биологи могли писать одно, а думать другое. Подгонять же под материалистическую диалектику и дарвинизм новые открытия считалось обязательным требованием лояльности. Тем более значимым для нас становится непредвзятое суждение А. А. Любишева, считавшего, что с открытием закона гомологических рядов Вавилов сделал «очень крупный шаг по пути проникновения в закономерности систематики и эволюции», который «не гармонировал <…> с общей системой дарвиновских взглядов на эволюцию…» (Любищев, 1982. С. 248, 252–253).
Эволюционной концепции Берга близки взгляды палеонтолога Д. Н. Соболева. Подобно Бергу, он признавал существование закона автономического ортогенеза, считая его выражением автономного и имманентного живому свойства изменяться во времени. Но в отличие от Берга, который его только постулировал, Соболев стремился найти ему прочное обоснование на ископаемом материале.
Развивая свою теорию биогенеза, Соболев (1924), как и Берг, считал, что филогенетические превращения, ведущие к возникновению высших таксонов, осуществляются преимущественно сальтационным путем. Порождаемую сальтациями прерывистость эволюции он даже провозгласил законом биогенеза. При этом, следуя заде Фризом и Бэтсоном, Соболев полагал, будто сальтации сводятся, как правило, к утрате наследственного фактора и поэтому направляют эволюцию в сторону регресса.
Дмитрий Николаевич Соболев (1872–1949).
Сближает Соболева с Бергом и представление, что случающиеся филогенетические превращения организмы испытывают уже при своем рождении. К этому Соболев добавляет, что «подобно индивидуумам, и высшие органические единицы, очевидно, также родятся, они возникают благодаря более или менее глубокому превращению или филогенетическому метаморфозу» (там же, с, 171). Соболев допускал и частичную обратимость эволюции, утверждая, что почву для сальтационистских превращений, «по-видимому, всегда готовило обратное развитие или омоложение» (там же, с. 164).
Однако нас больше интересует другая, более ранняя работа Соболева, посвященная исследованию закономерностей филогенетического развития девонских головоногих моллюсков — гониатитов (Соболев, 1913). Опубликованная девятью годами ранее «Номогенеза» Берга, эта работа в ряде моментов, относящихся к особенностям параллельной изменчивости, опережала Берга концептуально и предвосхищала разработки современных его последователей.
Коснемся прежде некоторых понятий, которыми оперирует Соболев. Согласно его представлениям, существуют три рода эволюционных изменений: изменения комбинационные, градационные и мутации де Фриза. Последние характеризуются внезапностью, но их формообразовательная роль ограниченна, и Соболев их не рассматривает.
В центре внимания ученого, безусловно, градационные изменения[28], которые представлены уже упоминавшимися нами мутациями Ваагена — морфологическими изменениями в разрезе геологического времени (современные исследователи чаще называют их хроноклинами). Несколько последовательных мутаций образуют ряд, или линию.
Вообще, ряд как таковой можно построить только по одному признаку. Но в палеонтологии, имеющей дело с биологическими объектами и, следовательно, с коррелятивной изменчивостью, возможны ряды по двум или нескольким признакам (как, например, в случае ряда копытных). Фактически все параллельные ряды форм, приводимые Бергом, построены по одному признаку.
Соболев сознательно анализирует сочетания или комбинации признаков. Он, очевидно, полагал, что если существует направленная и параллельная изменчивость, то в одной линии одновременно может быть несколько параллельных рядов — для каждого признака свой. Так, он пишет, что, взяв две пары признаков, мы получим четыре их возможных сочетания попарно и столько же больших групп гониатитов. Теперь можно проследить их градационные изменения. Сам Соболев проследил преобразования немногих признаков морфологии раковины и обнаружил, что изменения в различных линиях и группах линий происходят в одинаковом порядке — через те же градации и стадии, что и в других. При таком параллельном развитии целый ряд «видов» какого-либо «рода» может претерпеть подобные и одинаково направленные изменения и, таким образом, приобрести признаки другого «рода» (там же, с. 10).
Параллельно развивающиеся линии не обособлены друг от друга. Время от времени они скрещиваются, и тогда комбинации признаков соседних рядов (линий) соединяются промежуточными комбинациями, состоящими из признаков обеих линий. При многократном соединении (анастомозах) перекрещивающиеся линии образуют сложную сеть родственных связей, которую Соболев называет сетью скрещивания. Таким образом, пишет Соболев, мы приходим к представлению о «сетчатом строении органического мира», поскольку последний «состоит из комбинаций» (там же, с. 85).
Соболев обнаружил также, что один и тот же признак у форм, живущих одновременно, может быть представлен в нескольких вариациях. Носителей таких вариаций Соболев назвал изомерами. Примером может служить такой важный систематический признак, как характер сутурной (лопастной) линии. Ее видоизменения при одинаковом числе лопастей связаны с их разной локализацией. В ходе эволюции получаются изомерные стадии сутуры. Соболев установил четыре независимых параллельных ряда по этому признаку. Наконец, Соболев пришел и к идее отображения эволюционного многообразия параллельных рядов в виде таблицы, как это предлагают современные номогенетики. Вот как он говорит об этом сам: «Если комбинации с одинаковыми формулами [признаков] расположить в вертикальные ряды по стадиям сутуры и притом таким образом, чтобы одинаковые стадии расположились горизонтальными рядами, тогда место пересечения вертикального ряда с горизонтальным точно определяет положение комбинации (или группы комбинаций)». Он добавляет, что так мы получаем «более точную и естественную систему». В приводимых таблицах гониатитов и климений Соболев располагает комбинации каждой линии по градациям и стадиям сутуры.
Исследования параллельной изменчивости после открытия закона Вавилова, столь многочисленные в 1920-е годы, к началу 1940-х годов полностью прекратились. Об этом законе и номогенезе Берга забыли на целых два десятилетия. К проблеме вернулись только в начале 1960-х годов, причем в западных публикациях имена Вавилова и Берга чаше всего уже не упоминались[29].
Особняком стоит французский зоолог-биоспелеолог Альбер Вандель, уже знакомый нам как типичный представитель финализма. Можно сказать, что по всем ключевым характеристикам развиваемой им эволюционной концепции (Vandel, 1948, 1949, 1963, 1968) он солидарен с Бергом. Это касается и идеи авторегуляции, родственной автономическому ортогенезу Берга, и филогенетического преформизма, и представлений о единстве законов онто- и филогенеза, о массовом и приспособительном характере изменчивости, делающей излишним вмешательство отбора, об исключительно сальтационном формообразовании и о том, что эволюция начинается с преобразования типов организации (подробнее см.: Назаров, 1984).
Интерес к закономерностям эволюции определялся у разных авторов разными причинами, но наиболее общими, по-видимому, были затруднения в истолковании параллелизмов, направленности и телеономичности эволюции с позиции теории отбора (СТЭ), выявление эволюционной значимости активности организмов, способности живого к самоорганизации, склонность искать объяснения сложных вопросов упорядоченности эволюции в рамках определенных философских и научных традиций (например, приверженность многих французских эволюционистов гипотезе антислучайности, разработанной в 30-е годы Л. Кено).
Заслуживают упоминания (а некоторые и более подробного рассмотрения) четыре концепции. Причины канализованности и телеономичности эволюции в них связывают с увеличением количества ДНК (С. Оно), со структурой белков (Ж. Моно), с процессами трасформаиии, заложенными в организации вещества и энергии (А. Лима-де-Фария), с законами системной общности всех объектов природы (С. В. Мейен, Ю. А. Урманцев).
Американский молекулярный биолог Сусуму Оно попытался связать грандиозные макроэволюционные события с многократной дупликацией генов и увеличением на этой основе количества. ядерной ДНК (Ohno, 1969; Оно, 1973). Путем дупликации избыточных (нефункционирующих копйй) генов возникают новые — как структурные, так и регуляторные — гены, ответственные за крупные морфологические преобразования. Это так называемые тандемные дупликации, которые влекут за собой также пропорциональное увеличение размеров клеток тела и делают невозможной дальнейшую функциональную дивергенцию вновь возникающих копий. Поэтому для обеспечения нормального хода макроэволюции тандемные дупликации должны были чередоваться с полиплоидией — дупликацией всего генома.
По мнению Оно, по достижении предками амниот уровня организации рептилий с высокоспециализированным механизмом определения пола «великий эксперимент природы с дупликациями генов» должен был прекратиться, о чем свидетельствует относительная стабилизация размеров генома (у змей и ящериц он колеблется в пределах от 60 до 67 %, а у птиц — от 44 до 59 % размера генома плацентарных млекопитающих). Адаптивная радиация млекопитающих происходила уже без заметного числа дупликаций — только за счет ранее накопленных копий генов. Избыточные копии, не используемые в настоящее время, могут оказаться полезными в будущем при новых обстоятельствах.
С момента публикации работ Оно был установлен ряд фактов, нарушающих постулированную закономерность. Помимо того что у некоторых рыб и земноводных обнаружилось количество ДНК, в 25 раз превышающее ее содержание у любого из видов млекопитающих (Уотсон, 1978. С. 507), фактически в пределах любого крупного таксона этот показатель обнаруживает большой разброс. Даже в пределах одного семейства, а также рода количество ДНК разнится в несколько раз: у разных видов дрозофил — в 2,5 раза, у близких видов злаков — в 3 раза, а у лютиков — в 5 раз (Голубовский, 2000. С. 81). Кроме того, выяснилось, что в состав ДНК входят фракции из многократно повторяющихся последовательностей, не кодирующих никаких полипептидных цепей, на долю которых приходится до 80–90 % генома. Поэтому находится немало специалистов, которые вообще отрицают какую бы то ни было корреляцию между прогрессивной эволюцией и величиной генома (Корочкин, 1985).
Французский биохимик Ж. Моно (Monod, 1970) наделил телеономическими свойствами белки и свел к их принципам организации все характеристики сложного многоклеточного организма, почти буквально повторив Берга. Подобные свойства белков зависят, по Моно, от их способности вступать в стереоспецифические взаимодействия нековалентного характера с другими соединениями. Отсюда он сделал вывод, что структурная самосборка организма в онтогенезе и изменения в ней, переходящие в филогенез, представляют собой суммарный итог самопроизвольной организации белков, информация о которой заключена в их структуре. К идее направленности и неслучайности эволюции приходят и многие другие зарубежные биологи разных специальностей (Whyte, 1965; Riedl, 1978; Taylor, 1983).
Среди современных номогенетических толкований эволюции выделяется своим радикализмом концепция автоэволюции шведского цитогенетика испанского происхождения Антонио Лима-де-Фариа (1991). Она в равной мере отражает идеи западного структурализма и глобального эволюционизма. По последовательности проведения принципов последнего она стоит в одном ряду с построениями Берга, Тейяра де Шардена и Янча.
В понимании А. Лима-де-Фариа биологическая эволюция — всего лишь продолжение эволюции физико-химической, которая началась с рождением Вселенной. В этой предбиологической эволюции он выделяет три последовательных автономных уровня — эволюции элементарных частиц, химических элементов и минералов. Присущие последним законы и правила задают все особенности биологической эволюции и прежде всего налагают на нее все новые ограничения, пока не останется всего один или несколько возможных путей ее реализации. Эта стержневая идея Лима-де-Фариа проходит лейтмотивом через всю его книгу.
Согласно общепринятой точке зрения канализация эволюционного развития есть следствие ограничений, накопленных организацией биологических объектов в ходе предшествовавшей эволюции. Новизна концепции Лима-де-Фариа заключается в том, что ограничения, по его мнению, возникают на трех низших уровнях организации и биологическая эволюция их только отражает. Это положение он пытается продемонстрировать на примерах бесчисленных сходств.
Нельзя не согласиться с тем, что высшие формы движения материи, включая в себя низшие, не затушевывают и не отменяют действующих в них закономерностей. Так, если белки при нагревании свыше 45–50°C испытывают денатурацию, то и организмы, тела которых построены из белков, погибают при тех же температурах. Ток, вырабатываемый электрической батарейкой, представляет собой поток ионов, возникающий в электролите в результате окислительно-восстановительной реакции. Электрические потенциалы, образующиеся на биологических мембранах, в клетках и специальных электрических органах у ряда рыб, имеют ионную природу.
Рис. 14. Листовидные структуры. А. Минерал: чистый висмут в самородной форме (Medenbach, Sussieck-Fornefeld, 1983). Б. Растение: лист сумаха (Feirvnger, 1956). В. Беспозвоночное: бабочка-листовидка (Kallima) со сложенными крыльями, так что видна нижняя поверхность обоих крыльев (Cott, 1951). Г. Беспозвоночное: листовидка Chitonisctis feedjeanus; видоизменения передних крыльев, в том числе средней и боковых жилок, делающие ее похожей на лист (Cott, 1951). По Лима-де-Фариа.
Однако Лима-де-Фариа заявляет о себе как о крайнем редукционисте, Он серьезно полагает, что «биологическая эволюция полностью обусловлена упорядоченностью трех предшествовавших эволюций» и что все биологические явления можно и нужно свести к законам физики и химии (там же, с. 22, 365). Закономерности и канализация органической эволюции задаются уже на уровне элементарных частиц, а последующие уровни их только еще больше упорядочивают.
Следствием такого жестко канализованного развития оказывается, по Лима-де-Фариа, гомологичность изоморфизмов, наблюдаемых в живой и неживой природе. На страницах его книги мы видим многочисленные и зачастую поразительные примеры морфологического сходства кристаллических структур минералов со структурами животных и растений (рис. 14–18). Но при этом мы не обнаруживаем у него ни малейшего стремления к отысканию какого-либо критерия для отделения сходств, имеющих общую причину, от чисто внешних, ничего не говорящих аналогий. В результате в одном ряду с примерами, заслуживающими изучения, помещены и подобные следующему: сеть жилок листа Arum, капиллярная сеть лапки лягушки и фрагмент растрескавшегося от засухи песчаника (!). Но самое слабое место развиваемой концепции состоит в том, что ее автор подбирает только желательные примеры, но не может доказать единства лежащего в их основе механизма, ибо, как он сам признает, физика элементарных частиц и особенно процесса кристаллизации еще остается недостаточно изученной.
Рис. 15. Изогнутые выросты. А. Минерал, самородки серебра обычно имеют изогнутую форму (Ehrhardt, 1939). Б. Растение: плод Martynia lutea (сем. Martyniaceae) (Heywood, 1978). В. Позвоночное: скелет мамонта, вымершего хоботного, обитавшего не севере Европы и е Азии (Pierantoni, 1944). По Лима-де-Фариа.
Лима-де-Фариа убежден, что причину биологической эволюции надо искать в том, откуда берут свое начало форма и функция. А они, безусловно, имеют своих предшественников в мире минералов, химических элементов и элементарных частиц. В этом мире еще не было и в помине ДНК и генов, а закрепление во времени характерных структур (паттернов) уже имело место. Так проявлялось свойство атомов, молекул и минералов. «Спиральная форма, характерная для раковин моллюсков, — пишет Лима-де-Фариа, — уже существовала в галактиках, а гексагональные структуры глаза насекомого — в снежинках» (там же, с. 330).
Рис. 16. Растущие кристаллы и органы. А. Молекулы: кристаллы льда, образовавшиеся из конденсирующихся паров воды (Cabrera, 1937). Б. Растение: молодые побеги папоротника Pteridium aquilinum (Cabrera, 1936). В. Беспозвоночные: личиночная стадия стеблевой морской лилии (Pierantoni, 1944) По Лима-де-Фариа.
Рис. 17. Слоистые кольцевые структуры. А. Молекулярный процесс: кольца Лизеганга в смеси азотнокислого серебра и двухромовокислого калия в желатине (Rinne, 1928). Б. Растение: поперечный разрез стебля Mucuna altissima (сем. Papilionaceae) (Strasburger, 1943). 8. Минерал: агат; растворенные минералы осаждаются слоями в тонкозернистом кварце (Desautets, 1968). Г. Позвоночное: поперечный разрез основания волоса в кожечеловека (Nachtigall, Kage, 1980). По Лима-де-Фариа.
Становится понятно, почему Лима-де-Фариа назвал свою концепцию автоэволюцией. Действительно, развертывание биологических программ, согласно этой концепции уже предусмотрено процессом трансформации, заложенным в первичной материи и энергии. Одним из наглядных проявлений высокой степени независимости развития от внешних причин выступают явления самосборки и самоорганизации, проявляющиеся на всех уровнях — от первозданной материи до человеческих сообществ. К спонтанной упорядоченной ассоциации способны как элементарные частицы, атомы и молекулы, так и клетки, органы, организмы и сообщества.
Очевидно, что с концепцией автоэволюции совершенно несовместимы случайность и отбор, и Лима-де-Фариа возражает против них особенно резко, призывая на помощь все свое красноречие. Он называет отбор «абстрактной концепцией», которая должна быть изгнана из биологии. Что касается случайности, то это тоже вымышленная категория, которую постоянно эксплуатируют «неодарвинисты» для прикрытия собственного невежества. В биологических явлениях нет места случайности, и даже мутационный процесс благодаря молекулярным ограничениям носит направленный характер.
Рис. 18. Структуры, напоминающие цветок. А. Минерал: арагонит — карбонат кальция с большей плотностью, нем кальцит (Ehrhardt, 1939). Б. Беспозвоночное: актиния с ее «жалящими» щупальцами (Wheeler, 1940). В. Растение: продольный разрез цветка Cycadeoidea ingens (Strasburger, 1943). Г. Беспозвоночное: голотурия Cucumaria plane (Pierantoni, 1944). По Лима-де-Фариа.
В представлении Лима-де-Фариа законы и механизмы эволюции еще предстоит открыть, а гены и хромосомы играют в ней лишь второстепенную роль.
Между автоэволюцией и преформизмом можно вполне поставить знак равенства. Лима-де-Фариа считает, что даже самые крупные макроэволюционные события, ознаменовавшие становление планов организации, не означают появления чего-то истинно нового. Уровень эволюции, воспринимаемый как новый, возникает в результате перекомбинирования уже существовавших компонентов. И так во всем, будь то какая-то особая клетка, форма, структура или функция.
Одним из первых, кто воспринял в Советском Союзе концепцию Берга после, казалось, ее полного забвения, был известный палеонтолог Б. Л. Личков (1965), горячий сторонник Ж. Кювье и автор одной из сопряженных с геологическими циклами гипотезы эволюции. По его убеждению, все прогрессивное развитие органического мира совершалось не на основе случайностей, а в силу строгих закономерностей. Однако уточнять эти закономерности, а тем более раскрывать их природу Личков не стал.
Эту миссию взяли на себя талантливый палеоботаник и теоретик-эволюционист, рано ушедший из жизни, С. В. Мейен и тесно сотрудничавший с ним Ю. В. Чайковский. Можно сказать, что они стали главными продолжателями Берга и некоторым образом Любищева в силу своей естественной склонности искать закон и порядок там, где его особенно трудно обнаружить. Мейен и Чайковский вообще стремились к «номотетизации» биологии, но, в отличие от господствовавшей тенденции к осуществлению этого намерения с помощью редукционистской методологии, они решали эту задачу путем познания биологического разнообразия.
Как известно, порядок в разнообразии, изучаемом типологией (у Чайковского — диатропикой), создает систематика (таксономия), которая опирается на данные о строении организмов, или, точнее, об их признаках. Эту науку о признаках Мейен (1977) предложил называть мерономией. В отличие от Таксономии, распределяющий формы организмов по группам, в случае мерономии мы делим организм на части — по морфологическим, физиологическим или экологическим признакам, а классифицируя эти последние, получаем мероны («классы частей»). Примерами меронов могут служить любые части целого (органы, ткани, определенный тип клетки, физиологическая функция и т. п.), общие для данного таксона. В сумме они составляют его архетип, или план строения. Мерономия обеспечивает таксономию «признаковым пространством и данными о соотношении признаков у разных объектов» (Мейен, 1978. С. 496).
Теперь, сравнивая ряды параллельных таксонов, Мейен констатировал, что у них наблюдается сходный, а иногда и идентичный набор меронов. Чем ближе друг другу таксоны, тем больше число одинаковых меронов. У видов одного рода они почти все совладают. Эту повторяющуюся последовательность меронов в паралельных таксонах Мейен назвал рефреном (там же, с. 501).
По аналогии с периодическим законом в химии он считал полезным графическое отображение рефренов в виде таблицы, где по горизонтали представлены изменения мерона в рядах сравниваемых таксонов. Вертикальные столбцы означают тогда одинаковые состояния выбранного мерона в этих таксонах (аналог одинаковой валентности в таблице Менделеева). Фактически это те же гомологические ряды Вавилова, только сведенные в таблицу. Мейен считал, что подобная форма записи ценна не столько для систематики, сколько для понимания процесса эволюции.
Рис. 19. Рефрен мерона «парные конечности» (из: Чайковский, 1990).
Так, при подобной записи мерона «парные конечности» (рис. 19) для всех классов позвоночных выявляется общий рефрен: от полного отсутствия обеих пар до образования органа полета — крыла. Таблица наглядно демонстрирует возникающее в силу закона параллелизмов признаковое пространство, позволяющее предсказывать, что может и чего не может быть в эволюции. В природе, правда, вовсе не обязательно должно существовать такое число разных форм, какое способно занять все клетки таблицы. Так, возвращаясь к мерону «парные конечности», надо отметить, что в истории никогда не было крылатых амфибий и птиц без задних конечностей. Мейен справедливо замечает, что без выявления всего мыслимого разнообразия нельзя установить и существования многих запретов.
Рис. 20. Типы расчленений листовой пластинки (из: Мейен, 1973).
Один из самых наглядных примеров рефрена на ботаническом материале — типы расчленения листовой пластинки (рис. 20). Хотя в типологии обычен поиск закономерности в повторяемости признаков внутри таксонов, самая суть рефренов, по мнению Мейена, в выявлении закономерностей в изменчивости признаков между таксонами. Данные о них фрагментарны. Но без знания рефренов заполнить по отдельности все разновидности переходов между меронами — столь же невыполнимая задача, как заполнить все склонения каждого существительного, если не знать правил склонения.
Нам представляется весьма важной также еще одна закономерность формообразования в эволюции, выделенная Мейеном и названная им транзитивным полиморфизмом (Мейен, 1978). Она состоит в том, что новый таксон рождается с тем же набором составляющих его таксономических единиц или форм, существовавших у предкового таксона, которые повторяют и соответствующие признаки (рефрен). Причем даже небольшое число уцелевших особей способны восстановить все внутренее разнообразие истребленного таксона. Иными словами, разнообразие порождает разнообразие, на каком бы уровне мы его ни рассматривали, и только что сказанное — его следствие. Существование подобной закономерности в сочетании с происходящей при смене поколений свободной комбинаторикой признаков чрезвычайно усложняет обнаружение таксонов-предков и восстановление филогении, а то и вовсе делает это занятие бессмысленным. Эволюция идет и сразу «заметает» за собой следы.
Надо полагать, что, исследуя эту закономерность, Мейен знал, что идея об эволюционном переходе внутривидовой структуры от вида к виду уже существовала (Алтухов, Рычков, 1972). Мейен только расширил ее рамки.
Ученый обратил внимание на то, что в формулировке закона Вавилова речь идет только о повторности признаков от таксона к таксону, но в ней ничего не говорится о повторности в правилах их преобразования. С точки же зрения выявления типологических закономерностей это имело бы особое значение, Гораздо важнее самих морфологических параллелизмов тот факт, что, например, в разных семействах цветковых наблюдаются одинаковые тенденции в преобразовании морфологических особенностей. Именно общность тенденции, наличие одного правила преобразования позволяют предсказывать и целенаправленно искать недостающие члены параллельных рядов.
Сергей Викторович Мейен (1935–1987).
Мейен не ограничился только упорядочением закономерностей в рядах изменчивости, установленных своими предшественниками; он идет дальше, расширяя рамки самого закона Вавилова. Он убедился, что полнота проявлений параллелизма не всегда связана с генетической общностью. Сплошь и рядом она, напротив, обратно пропорциональна систематической близости таксонов. Так, параллелизм между головоногими моллюсками и фораминиферами по спиралям раковины гораздо полнее, чем между головоногими и брюхоногими по тому же признаку; параллелизм жизненных форм кактусов и молочаев полнее, чем между кактусами и более близкими к ним Caryophyllaceae. Немало примеров параллелизма в строении цветков и соцветий, листьев и филлодиев, в биохимических и генетических характеристиках далеких форм. Еще более удивительны параллелизмы между живыми и неживыми объектами, где уже не приходится говорить о конвергенции ввиду сходных условий существования. Примеры таких параллелизмов собрал еще д’Арси Томпсон (1942), а ближе к нашему времени — Ю. А. Урманцев (1970, 1988) и А. Лима-де-Фариа (1991). Урманцев, в частности, подтвердил сходства гомологических рядов в развитии животных и растений с таковыми спиртов и углеводородов, установленные, соответственно, Э. Копом и Н. И. Вавиловым; обнаружил сходство между 9 изомерами венчика барбариса и 9 изомерами инозита, сходство генома с языком (речью), эволюционной генетики со сравнительным языкознанием и многие другие. Объяснение существованию подобного рода параллелизмов Мейен, вслед за Урманцевым, усматривает в системной природе объектов (Мейен, 1975).
Названные случаи изоморфического сходства, не сводимые ни к генетической общности, ни к подобию условий существования, привели Мейена к выводу о существовании чисто морфологических (типологических) и нестатистических законов, являющихся наиболее общими и пока еще очень слабо изученными. В свете такого взгляда закон гомологических рядов Вавилова, очевидно, становится его частным проявлением.
Следует отметить еще один новый момент в трактовке все того же закона. Обычно не учитывается, замечает Мейен, что признаки радикала тоже иногда испытывают изменчивость, которая в силу своей редкости считается тератологической. Эта изменчивость тоже следует закону Вавилова, причем часто признак, расцениваемый как уродство в одном таксоне, становится нормой в другом. Этот частный случай, описанный Н. П. Кренке (1933-1935), Мейен предложил называть правилом Кренке.
Среди ученых — экспериментаторов и теоретиков — безусловно существуют в относительно чистом виде две категории: «примирителе», склонные к компромиссу и объединению кажущихся противоположностей в высшем синтезе, и «непримиримые», производящие выбор среди противоположностей и стремящиеся подавить бракуемую. Любищев принадлежал ко второй, а Мейен — к первой. Но на путях к синтезу Мейена постигла явная неудача.
Развивая стержневую идею номогенеза, он, в отличие от Берга, не создал целостной концепции. Берга интересовали и закономерности эволюции, и ее движущие силы. Собственно, с постулата, что автономический ортогенез — главная побудительная сила всякого прогрессивного развития, и начинается изложение его концепции о направленности эволюции. Во времена оные за это Берга наградили нелестными эпитетами — считали идеалистом, автогенетиком, преформистом, виталистом… Можно ли было в конце XX в. как-то развить, усовершенствовать это ядро номогенеза? Это нелегко. Для этого нужно предложить свое видение проблемы, так как в первую очередь всех интересуют именно факторы эволюции.
Мейен принял в качестве факторов эволюции мутации и отбор в том виде, как они еще существуют в СТЭ. Более того, он считал своей главной стратегической задачей поиски путей снятия противоречий между тихогенезом (селекционизмом) и номогенезом (Мейен, 1974, 1978, 1984а) и полагал, будто она достигнута с созданием общей теории систем, в рамках которой дивергенция и параллелизм стали дополнительными понятиями.
А между тем фундаментальное и в наши дни исключительно актуальное обобщение Мейена о тропиках как «колыбели» и «музее» растительного багатства планеты (Мейен, 19846, 1986) находится в разительном противоречии с теорией селектогенеза. На огромном ископаемом материале ему удалось показать, что почти все наиболее крупные таксоны, включая семейства, возникли в фитохориях, лежащих в экваториальном поясе. И это стало возможно, констатирует Мейен, только благодаря тому, что естественный отбор здесь сильно «заторможен» и потому допускает всевозможные эксперименты природы. .
Можно только гадать, как такой высокоэрудированный специалист с острым и проницательным умом мог закрывать глаза на очевидную несовместимость СТЭ и номогенеза.
Другой убежденный последователь номогенеза — Ю. В. Чайковский, принимая и высоко оценивая вклад Мейена, избежал его непоследовательности. Обладая строго системным мышлением комби нативного типа, он не мог не воспринять экосистем ной теории эволюции, новой генетики и новых принципов индивидуального развития. Именно его труды лучше всего показывают, что старая эволюционная парадигма заслуживает не улучшения, а замены.
К познанию законов и механизмов эволюции Ю. В. Чайковский подходит как методолог и системолог (самому ему больше импонирует считать себя натурфилософом!), стремящийся вовлечь в познавательный процесс весь исторический багаж биологических знаний и достижения всех остальных естественных и многих гуманитарных наук (вплоть до лингвистики и мифологии), способных послужить нуждам эволюционной теории. Отсюда глубокое убеждение Чайковского, что данная теория может развиваться и дальше только как междисциплинарная отрасль знания (Чайковский, 1994). Значение этого методологического принципа он убедительно продемонстрировал в своей монографии об эволюционной диатропике (Чайковский, 1990).
Одной из самых продуктивных для эволюционной теории дисциплин Чайковский считает современную термодинамику неравновесных процессов с ее ключевой идеей самоорганизации и самосборки. Как известно, она была разработана в трудах И. Пригожина с соавторами (Николис, Пригожин, 1979; Пригожин, Стенгерс, 1986) и Е. Янча (Jantsch, 1980). По его мнению, именно данный раздел термодинамики демонстрирует неизбежность саморазвития таких сложных и далеких от равновесия систем, какими являются живые организмы. Термодинамика побудила к отказу от взгляда на эволюцию как последовательную цепь реакций биологических объектов на внешние воздействия и представила ее как совокупность актов самоорганизации. Междисциплинарный характер строящейся теории самоорганизации делает, по мнению Чайковского, излишним создание обособленной теории происхождения видов.
Чайковский совершенно справедливо считает логически неуязвимым современный взгляд на эволюцию как процесс преобразования систем и, следовательно, целостностей. Вслед за В. И. Вернадским, Дж. Берналом и Г. А. Заварзиным (1979, 1984) он полагает, что первичная жизнь на Земле возникла в форме экосистем, а не в виде отдельных и немногочисленных протоорганизмов, и потому единственно адекватным отображением ее первых эволюционных шагов может быть только системное описание. «Эта жизнь умеет существовать только целиком, и мы не в силах всерьез представить себе, как мог бы существовать один-единственный вид, а не то что единственная особь» (Чайковский, 1990. С. 183).
Фактор целостности выступает как направляющая сила, он един и для индивидуального развития, и для филогенеза. Некоторые философы (Мещерякова, 2001) склонны допустить идеальную природу целостности и тем воскрешают в памяти небезызвестную концепцию холизма первой половины XX в.
Наконец, как номогенетик Чайковский видит в учении о биологической эволюции часть или раздел современного глобального эволюционизма и мыслит его дальнейший прогресс в рамках их тесного взаимодействия.
Выше уже упоминалось о загадочных топологических законах развития параллелизмов, не сводимых к известным причинам. В 1970-е годы именно этот аспект существования и преобразования всего живого привлек пристальное внимание философа-системолога Ю. А. Урманцева. Изучение поли- и изоморфизмов, описанных Бергом, Копом, Медниковым и другими, а также подмеченных им лично на большом числе объектов живой природы, послужило для Урманцева отправным моментом к разработке оригинального универсального варианта общей теории систем (ОТС) (Урманцев, 1971, 1974). Эта теория должна была прежде всего дать объяснение тем случаям изоморфического сходства, которые не могут быть сведены к традиционным общепринятым причинам — родству, одинаковым условиям существования, отправлению одинаковых функций. В конечном счете ОТС была призвана дать в руки исследователей четкое указание: «что должно быть», «что может быть» и «чего быть не может» в существовании и развитии любых объектов-систем, как материальных, так и идеальных (Урманцев, 1974. С. 51). Она также должна была обладать предельно широкими возможностями в части обобщений, предсказаний, постановки новых вопросов, связей с научными теориями и принципами.
В свете ОТС интересующее нас тонкое изоморфическое сходство есть следствие системной природы самих объектов-систем. Названное Урманцевым (1988. С. 64) системной общностью, оно являет собой, по его мнению, третий основный тип подобия, не сводимого ни к одному из типов сходства, известных в естествознании.
Не вдаваясь в технические тонкости, отметим, что, согласно Урманцеву (19886, 1999), существует математический закон системных преобразований, по которому любой объект-система (или их совокупность) может переходить в другой только посредством 7 неэволюционных преобразований (количества, качества, отношений и их комбинаций) и 7 эволюционных преобразований — всего 255 способами, а в пределе — бесконечным числом способов (при неоднократном использовании их). С точки зрения этого закона все созданные до этого момента доктрины и теории (диалектика, СТЭ, номогенез, морфогенез, эволюция «эволюции» и пр.) обладают существенной «неполнотой», и их необходимо достроить «на 6/8 и 7/8» (Урманцев, 1999. С. 50). ОТС побудила Урманцева к разработке в качестве ее раздела «общей теории развития систем природы, общества, мышления» — эволюционики (19886). Наряду с уже приведенными законами системных преобразований в нем рассмотрены также изменения в самой биологической эволюции.
Позволяя выявлять сотни и тысячи новых классов изоморфизма, ОТС и эволюционика хранят, однако, полное молчание по поводу запретов, неуклонно нарастающих при переходе от нижележащих уровней организации биологических объектов к вышележащим. Совершенно очевидно, что эти запреты «работают» против полиморфизации и тем самым ограничивают полноту параллелизмов.
Если ОТС предполагает возможность прогноза и способна предсказать, «что должно… и может быть», то биологи хотели бы, скажем, знать, почему до сих пор на Земле не было крылатых амфибий и безногих птиц.
Нам думается, что, создавая ОТС и увлекшись возможностями, которые она открывает для упорядочения многообразия материальных и идеальных объектов, Урманцев в неменьшей степени, чем Лима-де-Фариа, проигнорировал специфику живого, его способность порождать единичное, уникальное и неповторимое. Поэтому мы склонны полагать, что в деле постижения номогенетических аспектов органической эволюции объем задач, стоящих перед «чистыми» биологами, вовсе не стал меньше.
Поскольку стержневой идеей номогенеза является закономерный и направленный характер изменчивости и эволюционного процесса, это течение имеет много общего с финализмом. С последним его сближают также убежденность в единстве законов индивидуального и исторического развития, допущение преформированности филогенеза и, как правило, решительное неприятие концепции естественного отбора.
Стержневая идея номогенеза роднит его и с неоламаркизмом, а представления о скачкообразности формообразования и преобладании конвергентного пути эволюции создают для него точки соприкосновения с симгенезом и сальтационизмом.
Есть еще одна — необычная — форма симгенеза, которая заслуживает отдельного рассмотрения. Это тоже своего рода гибридизация, но реализуется она не на организменном уровне, а на уровне ДНК.
В 1972 г. в Стэнфордском университете (США) в лаборатории П. Берга была получена первая рекомбинантная (гибридная) ДНК, сочетавшая в себе фрагменты ДНК фага лямбда и кишечной палочки с кольцевой ДНК обезьяньего вируса 40. Этот эксперимент положил начало генетической, или генной, инженерии и созданию с ее помощью новых полезных видов микроорганизмов, сортов растений и пород животных. Основу ее метода составили клонирование нужных генов и их встраивание в геном организмов преобразуемого вида.
Уже сразу после появления генетической инженерии перед учеными встал вопрос: существует ли аналог этого метода в природе? А между тем в разных областях биологии накапливались факты и делались открытия, которые невозможно было объясненить в рамках традиционных представлений о наследственной изменчивости. Открытия в начале 1950-х гг. трансдукции и лизогенной конверсии, а несколько ранее трансформации показали, что, по крайней мере, у бактерий наследственные свойства могут изменяться под влиянием интеграции фрагментов чужеродного генетического материала, переносимых умеренными бактериофагами. Осознав возможное эволюционное значение этих открытий, К. Х. Уоддингтон одним из первых высказал догадку о вероятности существования подобного пути ассимиляции генетической информации и у эукариот.
Ряд специалистов, изучавших мир эндосимбионтов высших организмов (П. Бухнер, Т. Соннеборн, Дж. Прир, В. Трэйгер), отмечали два важных момента: во-первых, существование генетического обмена между симбионтами и их хозяевами и, во-вторых, факты экзогенного заражения хозяев симбионтами, и всякий раз заново. Это относится к водорослям, бактериям, дрожжам, актиномицетам, микоплазмам и т. п. Появлялось все больше данных, подтверждавших представления, что симбионты часто просто необходимы для поддержания нормальной жизнедеятельности их хозяев, имеющих более сложную организацию.
Особой всепроникающей способностью обладают, как выяснилось, вирусы. Первоначально их расценивали исключительно как болезнетворное начало. Еще в 1940-е годы, до создания теории лизогении, Л. И. Зильбер (1968) высказал предположение, что превращение нормальных клеток организма в раковые происходит под действием генетического материала, вносимого в их геном вирусами. Впоследствии, когда были открыты онковирусы, вирусно-генетическая гипотеза рака была подтверждена. Оказалось, что эти вирусы интегрируют в состав своей ДНК ген хозяина, регулирующий клеточное деление, и таким образом начинают управлять злокачественным ростом.
Французские исследователи Ф, Жакоб и Э. Вольман пришли к выводу, что инфекция, в том числе с участием вирусов, часто оказывается первым звеном (следующее — переход к эндосимбиозу) в процессе преобразования наследственности организмов, который периодически совершается в природе (Жакоб, Вольман, 1962). К 1970-м годам было твердо установлено, что разные формы гриппа связаны с определенными группами РНК-содержаших вирусов, которых впоследствии нашли у китов, планктонных организмов и перелетных водоплавающих птиц. Вирус полиомиелита обнаружился в сточных водах (Жданов, 1990). В результате представление о присутствии вирусов в организмах практически любой систематической принадлежности во всех средах и повсюду в биосфере получило полное и окончательное подтверждение.
При этом выяснилось, что к собственной ДНК вирусы способны присоединять практически любые фрагменты чужеродной ДНК и переносить их между любыми организмами. Внутри клетки организма-хозяина вирусы могут быть как встроены в хромосому, так и находиться в свободном состоянии в цитоплазме. Вирусные последовательности были обнаружены в геномах птиц, млекопитающих и человека. Пути же и способы их миграций весьма разнообразны.
Не менее важное событие — открытие мутагенного действия вирусов. Уже в учебнике генетики И. Гершковича (1968) приводятся данные о семи вирусах, способных вызывать хромосомные перестройки. Н. Н. Воронцов полагал, что этот процесс может совершаться в природе и порождать новые виды (Воронцов, Ляпунова, 1984; Ляпунова, Ахвердян, Воронцов, 1988).
С конца 1960-х годов киевский генетик С. М. Гершензон, широко известный как первооткрыватель мутагенных свойств чужеродной ДНК, приступил к исследованию аналогичных свойств у вирусов. Подтвердив положительные свидетельства С. И. Алиханяна и ряда зарубежных авторов, Гершензон на некоторых РНК-и ДНК-содержащих вирусах показал, что вирусные взвеси, инъецированные в гемоцель молодых самцов дрозофилы, вызывали 1000-кратное увеличение частоты летальных мутаций во 2-й хромосоме и затрагивали только немногие и строго определенные локусы (Гершензон, 1992). Им было высказано предположение, что эти высокоспецифические мутации имеют инсерционную природу и связаны с активацией мобильных генетических элементов (МГЭ) генома дрозофилы. В пользу указанных механизмов в дальнейшем были получены многочисленные данные (М. Д. Голубовский, Е. С. Беляева, К. Г. Газарян с соавт. и др.).
Другой обширный класс автономных генетических элементов составляют плазмиды. Так были названы Д. Ледербергом (1952) вне-хромосомные кольцевые ДНК, способные также интегрироваться в геном клетки и часто трудноотделимые от вирусов. К плазмидам относят, в частности, вирус сигма дрозофилы, каппа-частицы парамеций, умеренные бактериофаги. Помимо известной способности придавать бактериям устойчивость к лекарственным препаратам плазмиды обладают мультифункциональностью и контролируют множество различных процессов.
Плазмиды способны нести любую генетическую информацию и осуществлять самые разнообразные преобразования генома, с которым вступают во взаимодействие. Они быстро размножаются и распространяются в популяциях. При этом поскольку, в отличие от вирусов, они не вызывают поражений и болезней, то способны в короткий срок индуцировать массовые изменения в популяциях, подобные эпидемии, но без негативных проявлений. По некоторым данным, количество плазмидной ДНК в растущей популяции может достигать в расчете на клетку 30 % от ее совокупного генетического материала.
Огромная роль плазмид в осуществлении потока генов между самыми различными организмами выяснилась в связи с исследованием механизма развития резистентности к антибиотикам и инсектицидам.
Кроме вирусов и плазмид носителями блуждающей генетической информации выступают транспозоны, инсерционные элементы и другие мобильные генетические элементы. Большинство этих векторных частиц способно к взаимным переходам и превращениям. В итоге благодаря им генетическая информация может переходить от хромосомы в вирус, от вируса на плазмиду, от одной плазмиды на другую, от плазмиды и вирусов на хромосому, от хромосомы на транспозон и т. д.
Источником чужеродного генетического материала могут служить не только его живые носители. Давно известно, что нуклеиновые кислоты присутствуют в почве, в водах морей, океанов и рек, причем их содержание в этих средах как минимум на порядок выше количества ДНК. в клетках всех микроорганизмов планеты вместе взятых.
В 1976 г. киевский генетик В. А. Кордюм, обобщив новейшие данные о переносе генов между организмами в экспериментах и в природе, высказал идею о взаимном обмене генетической информацией — без таксономических ограничений! — всего живого на Земле как важнейшем факторе эволюции. Он указал также порядка двух десятков каналов, по которым чужеродная генетическая информация достигает генома клетки. Однако эта статья, опубликованная в журнале «Успехи современной биологии», не обратила на себя особого внимания.
Зато выпущенная им несколькими годами позже книга (Кордюм, 1982), написанная эмоционально-образным языком, задела приверженцев синтетической теории за живое и вызвала с их стороны остронегативную реакцию. Они усмотрели в ней реальную угрозу главному устою дарвинизма — догмату о творческой роли естественного отбора. Показательно, что с резкой критикой новой концепции выступили три академика — Д. К. Беляев, М. С. Гиляров и Л. П. Татаринов (1985), опубликовав совместную, как раньше говорили, «установочную» рецензию в наиболее читаемом академическом журнале «Природа».
Констатируя субъективный характер настроения критиков по отношению к нетрадиционным способам переноса генетической информации, Н. Н. Воронцов справедливо заметил, что «эволюционисты до недавнего времени предпочитали не знать (выделено мной. — В. Н.) или не пытались оценить революционизирующее значение этих фактов для эволюционной теории» (1999. С, 518), В собственной рецензии Воронцов назвал книгу Кордюма яркой, а изложенную в ней концепцию — «в высшей степени интересной и стимулирующей как дальнейшее накопление экспериментального материала, так и дискуссии» (1984. С. 856). Всецело разделяя эту оценку, хотим добавить, что перед нами на редкость целостная, непротиворечивая и всеобъемлющая концепция биологической эволюции, опирающаяся на строго достоверный фактический материал. Нам неизвестна другая подобная книга ни в странах Советского Союза, ни на Западе.
В начале книги подробно описаны информационные каналы биосферы и существующие переносчики экзогенной (чужеродной) генетической информации. Сам способ такого распространения информации между организмами одного поколения независимо от их систематической принадлежности получил название горизонтального переноса — в отличие от вертикального, осуществляющегося между поколениями. Кордюм рисует картину настоящего информационного шквала, обрушивающегося на все живое, и одновременно описывает мощную «фортификационную» систему защиты от него, которой окружает себя организм на всех уровнях организации. Но эта система не дает абсолютной неуязвимости. При определенных условиях, о которых речь пойдет далее, она хотя бы частично становится проницаемой для экзогенной информации, что может в дальнейшем обернуться благом для ее реципиентов.
Развивая этот положительный аспект вторжения чужеродных генов, М. Д. Голубовский образно пишет: «Если бы существовала “Декларация прав клетки”, то один из главных ее пунктов мог бы звучать так: “Клетка каждого вида в биосфере Земли имеет право искать, получать и распространять наследственную информацию между любыми структурными компонентами генома как своего вида, так и вне его границ”». И тут же добавляет, что, «в отличие от жесткого информационно-видового барьера, что свойственно концепции селектогенеза, современная теория эволюции должна быть основана на демократических принципах “Декларации прав клетки”» (Голубовский, 2000. С. 188–189).
Коль скоро экзогенная информация все же проникает в организмы, то, по мнению Кордюма, в каждом из них, вероятно, имеется постоянно поддерживаемое депо этой информации, представленное ДНК многочисленных комменсалов и симбиотов. Все сказанное дает основание Кордюму взглянуть на эволюцию с информационных позиций и ввести понятие информационного фактора эволюции, в которое входят «вся система создания новой информации, ее преобразование и обмен между организациями биосферы» (Кордюм, 1982. С. 105). Важность такого подхода нашла отражение в самом названии предложенной теории как информационной концепции эволюции.
Отвлекаясь от содержания книги, стоит вспомнить, что попытка перевести эволюционный процесс на язык теории информации уже была ранее предпринята И. И. Шмальгаузеном (1961). Он впервые показал, что для эволюции и биологии вообще существенно не количество информации, а ее качество и ценность. В дальнейшем М. В. Волькенштейн (1975, 1976) выяснил, что ценность информации может определяться лишь последствиями се рецепции некоторой системой и зависит от уровня этой рецепции. Вместе с тем элементы информационного сообщения облазают тем большей ценностью, чем меньше его избыточность и, следовательно, больше незаменимость (Волькенштейн, 1980). Несмотря на то что Шмальгаузен оперировал классическими представлениями о наследственности, его работа продемонстрировала высокую эвристическую значимость введения информационного подхода в интерпретацию биологических явлений и процессов (см., напр.: Колчинский, 1990).
Развивая идею об информационных основах эволюции, Кордюм по аналогии с понятием о мутационном давлении вводит представление об информационном давлении, под которым подразумевает непрекращающийся поток генов, слагающийся из рассмотренных выше информационных каналов. Легко или после упорного сопротивления, рано или поздно живые организмы уступают этому давлению. Таким образом, они быстро получают ценную информацию, на приобретение которой, по традиционной схеме современных дарвинистов, ушли бы миллионы лет. Отсюда следует, что при всей своей генетической замкнутости виды — информационно открытые системы, способные к обмену со всем генофондом биосферы; они и сами в конечном счете являются его продуктом. Это и многие другие положения концепции Кордюма перекликаются с выводами Р. Б. Хесина, содержащимися в его капитальной сводке «Непостоянство генома» (1984). Посвятив последние годы жизни изучению мобильных генетических элементов, Хесин пришел к представлению о едином генофонде всех живых обитателей биосферы.
Тезис об информационном обмене в планетарном масштабе приводит Кордюма к заключению, что «следует говорить не об эволюции видов как сумме информационно замкнутых групп, а об эволюции биосферы в виде единого целого, в котором каждое конкретное проявление эволюции передает все всем и черпает все от всех…» (Кордюм, 1982. С. 202). В другом месте он называет единицей эволюции ценоз. Очевидно, выбор той или иной биологической системы в качестве единицы эволюции в условиях тотального генетического обмена зависит’от уровня рассмотрения, и данный постулат Кордюма вовсе не противоречит анализу эволюции на уровне видов как качественных отдельностей. Зато он находится в полном соответствии с номогенетическим представлением об эволюции как преобразовании систем разнообразия.
Что происходит с привносимой извне информацией в низших и высших организмах? В обоих случаях она проходит «доработку на соответствие» как новому молекулярному окружению, так и внешним условиям. Новое появляется только в результате взаимодействия привнесенного со старым. У прокариот и гаплоидных низших эукариот, генетический аппарат которых практически не несет повторов и дупликаций генов, изменения, вызванные экзогенной информацией, сразу становятся наследственными и получают фенотипическое выражение. У высших эукариотных организмов поступившая извне информация какое-то время хранится в молчащем состоянии в составе неэкспрессируемой части генома, и у организма никаких фенотипических изменений не происходит. Наблюдаются как бы разрыв, несоответствие между генетической основой и внешней морфологией. Чтобы оно исчезло, нужно, чтобы произошло “включение” новой информации.
Кордюм полагает, что управление экспрессией молчащего генетического материала экзогенного происхождения может осуществляться весьма различными путями. К нему могут быть причастны транспозоны, «бродячие» промоторы, а скорее всего — нуклеотидные последовательности, которые несет сама экзогенная информация. Если последнее предположение справедливо, то новые признаки могут появляться внезапно и в массовом масштабе, Тогда новые таксоны возникают сразу в виде готовой популяции, а не единичных особей. Это тот случай, когда изменчивость приобретает эпидемический характер: «вирусная эпидемия» влечет за собой «генетическую эпидемию» (Голубовский, 1977. С. 859). Толчком для запуска механизма экспрессии служат необычные экзогенные факторы кризисных периодов, порождающие стрессовое состояние во всей биоте.
В свете новых представлений об изменчивости интересное объяснение получает феномен молчащей генетической информации, составляющий неразрешимую проблему в рамках СТЭ. А ведь у ряда таксонов высших организмов количество нефункционирующей ДНК доходит до 90 % размера их геномов! На репликацию такого объема ДНК затрачивается много энергии, и для вида это является безусловным расточительством. Но высшие организмы отчасти потому и высшие, что в состоянии «учитывать» будущее. Сменятся условия, разразится очередная геологическая катастрофа — и долго молчавшая информация понадобится, будет включена и востребована, чтобы на ее основе могла возникнуть иная, спасительная в новых условиях генетическая организация.
А что же низшие организмы? Благоденствуя в условиях длительно стабильной среды, они стабилизировались в наиболее рациональных формах: перекрыли каналы поступления новой информации, освободились от избыточной ДНК и законсервировались в своем развитии (по словам Кордюма, все это осуществляется через отбор). Но случился кризис — и за экономию им придется платить вымиранием!
Требуют ли системы переноса информации какой-то особой организации генома и что обеспечивает сравнительную легкость управления ею? По мнению Кордюма, этому требованию должен отвечать Принцип блочности (хотя бы частичной) в организации генома. Если в хромосомах определенные участки ДНК представлены отдельными блоками, то поступление и элиминация генетического материала сводятся к замене таких блоков, а включение и выключение экзогенной информации — к их экспрессии и ингибированию. Получила распространение гипотеза, что и нуклеотидные последовательности плазмид, МГЭ, фагов и бактерий организованы в информационные модули или кластеры, которыми они обмениваются. Такое представление находит подтверждение в новейших данных по архитектонике генома (Корочкин, 1985, 1999, 2001).
В рамках концепции Кордюма простое и убедительное объяснение получает неразрешимый для СТЭ вопрос о причинах прогрессивного эволюционного развития. Эволюция просто вынуждена идти по пути усложнения организации в силу существующего механизма измеичивости, имеющего дело с поступлением большего массива экзогенной генетической информации. Кроме того, по свидетельству многих авторитетных специалистов (Бердников, 1981, 1990; Бирштейн, 1987; Голубовский, 2000, и др.), усложнение организации детерминируется автогенетическими свойствами самого генетического материала наращивать длину ДНК и увеличивать размер генома. Эти имманентные генетической системе особенности продолжают оставаться объектом пристального внимания молекулярных биологов.
При таких условиях не приходится удивляться появлению на свет организмов — носителей самых причудливых признаков, И что уж совсем шокирует приверженцев СТЭ, согласно информационной теории, новые виды с такими признаками будут вынуждены приспосабливаться не столько к среде обитания, сколько к своим новым признакам!
Селективные процессы занимают в концепции Кордюма подчиненное место, и это, пожалуй, единственный аспект эволюции, который трактуется противоречиво. Новые типы организации, по этой концепции, создаются в два этапа: сначала переносится и реализуется массив нового генетического материала, а затем, когда он получает фенотипическое проявление, новая информация дорабатывается на соответствие окружающим условиям. Доработка как раз и осуществляется естественным отбором, и, как отмечает Кордюм, это процесс длительный. Второй этап эволюции у Кордюма в известной мере совпадает с фазой типостаза О. Шиндевольфа, которой допускал на этой фазе некоторое участие в видообразовании естественного отбора и писал, что последний «пришлифовывает» новые виды к окружающим условиям.
С другой стороны, говоря о бессилии современных дарвинистов объяснить с помощью отбора мелких изменений появление несуразных и вредных структур таких монстров, как стегозавр, диплокаулюс или птеранодон (рис, 21), Кордюм нацело отвергает всякую роль отбора. Они всецело плод привнесенной чужеродной информации, при экспрессии большой порции которой «о степени совершенства кодируемых ею признаков говорить не приходится». Тогда почему же эти монстры оказались жизнеспособными, а не вымерли в первом же поколении? Почему же отбор, дорабатывающий менее несуразные формы, бездействовал в случаях этих кричащих физических неудобств организации? Слишком велика разница в пороговых величинах для начала действия отбора в том и другом случае).
Рис. 21. Скелеты Stegosaurus ungulatus Marsh (Lull, 1910) и Pleranodon ingens (колл. авторов) (внизу).
Судя по всему, Кордюм склонен видеть в естественном отборе всего лишь один и достаточно второстепенный механизм эволюции среди множества других и при случае не упускает возможности отметить его бездействие.
При этом он цитирует соответствующие фрагменты из трудов Берга и ссылается на свидетельство Дарвина (1939. С. 294, 336), зарегистрировавшего случай, когда вся масса особей вида изменялась «сходным образом» без всякого участия отбора. В свете сказанного выше необоснованной декларацией звучат следующие слова Кордюма: «…нельзя ставить вопрос так, будто существует только либо дарвинизм, либо антидарвинизм. Оба этих направления, конечно, существуют. Однако они ни в коей мере не охватывают всех эволюционных представлений. Развивается наддарвиновская эволюция, о которой можно сказать, что она включает и дарвинизм, и другие представления» (Кордюм, 1982. С. 232–233).
Эволюционным взглядам Кордюма глубоко созвучны номогенетические построения Берга и Вавилова. Последним отведена почти треть книги. Основание общности всего живого видится Кордюму в универсальности переносчиков информации — нуклеиновых кислот. Такая общность есть не только следствие, но и важнейший инструмент эволюции, благодаря которому информация может распространяться по всей биоте, В силу того что новый виток эволюции начинается с групп особей, полифилия оказывается правилом, а монофилия — исключением. В основе полифилии и параллелизма таксонов лежит одинаковая привнесенная извне информация. Кордюм сочувственно цитирует высказывания Берга о полифилии, отсутствии переходных форм, о том, что эволюция идет путем преобразования громадных масс особей в новые формы. Подобно некоторым современным номогенетикам (Мейен, 19846, 1986), Кордюм особо отмечает, что новая генетическая информация создастся во влажных тропических лесах. Таким образом, информационная концепция эволюции с участием механизма горизонтального переноса генов и номогенез взаимно дополняют друг друга.
В 1996 г. в Фоллен Лиф Лейк (США) состоялась специальная международная конференция по проблеме горизонтального переноса генов, организованная Калифорнийским университетом. В многочисленных докладах ее участников были представлены неопровержимые доказательства переноса генетической информации (в том числе многократного) разными векторами между различными группами про- и эукариот. Были обсуждены также близкие к этой теме вопросы о природе и функциях подвижных элементов генома эукариот, происхождении эукариот, об общих проблемах эволюционного параллелизма. Материалы конференции дали веские аргументы в поддержку гипотезы симбиогенеэа.
До недавнего времени эволюционисты разных направлений сходились во мнении, что даже формирование нового вида, не говоря уже о более высоких таксонах, не может быть воспроизведено в эксперименте (см.: Назаров, 1991. С. 47–48). Главной причиной такого положения считали медленность протекания эволюционных преобразований, требующих для своего осуществления такого количества времени, которое совершенно несоизмеримо с продолжительностью человеческой жизни. Некоторые биологи интуитивно сознавали также, что искусственные мутации, получаемые в лаборатории, имеют мало общего с той изменчивостью, на которой основана эволюция в природе. Кстати, эта догадка теперь полностью подтвердилась. Возникновение генетической инженерии, открытие и установление факта работы аналогичного механизма в природе обнаружили принципиальную возможность экспериментального моделирования начального этапа эволюционного процесса, связанного с экспрессией чужеродного генетического материала.
Это важнейшее завоевание молекулярной генетики внесло кардинальное изменение в методологию познания эволюционного процесса и создало реальные предпосылки для предсказания его направленности. Последнее обстоятельство представляется особенно значимым в условиях современного мира, охваченного глобальным экологическим кризисом. Было в известной мере устранено главное препятствие, стоявшее на пути опытного моделирования эволюции — необходимость необычайно длительных наблюдений. «Экспериментальная эволюция» не требует миллионов лет. Для ее осуществления на каком-либо опытном объекте достаточно располагать набором генов, методикой их введения в, геном и соответствующей технологией. О том, что это широко практикуется во многих лабораториях мира и приносит определенные плоды, мы узнаем теперь едва ли не каждый день из средств массовой информации и можем в любое время справиться об этом в Интернете.
В главе по номогенезу мы видели, как далекие друг от друга организмы, жившие в разные геологические эпохи, нередко обнаруживали склонность к повторению сходных эволюционных новообразований. Тот же закон правит и в области идей. История эволюционных теорий дает тому немало примеров. Если бы Р. Гольдшмидт не назвал своих предшественников, мы, вероятно, ничего не узнали бы об английском ботанике Джоне Уиллисе, посвятившем долгие годы изучению флоры Индии и острова Цейлон.
Уиллис (Willis, 1923) пришел к заключению, что как видовые, так и родовые признаки образуются не в результате постепенной аккумуляции мелких изменений под действием отбора, а одномоментно или несколькими шагами путем крупной мутации. При этом амплитуда мутации сразу соответствует признакам видового или родового уровня. Гольдшмидт с удовлетворением цитирует абзац из работы Уиллиса, где эта идея выражена особенно четко. Менделисты, писал Уиллис, «как будто склонны думать, что если они сами не видели “большой” мутации, то она невозможна. Но такая мутация всего лишь чрезвычайно редка для того, чтобы дать миру все те виды, которые он когда-то содержал. Как я уже отмечал… одной большой и жизнеспособной мутации, встречающейся на участке поверхности Земли в несколько квадратных ярдов и, возможно, один раз в пятьдесят лет, по-видимому, будет достаточно. Шансов заметить такую мутацию практически нет…» (цит. no: Goldschmidt, 1940. Р. 211).
Но труды Уиллиса нас интересуют сейчас в другом отношении. Изучая флору покрытосеменных Цейлона и Южной Индии, Уиллис провел статистическую оценку всего их видового разнообразия, встречаемости видов и их распределения по родам и семействам.
М. Д. Голубовский (2000), подробно ознакомившийся с содержанием книги Уиллиса (Willis, 1922)’, приводит из нее следующие данные. Из 2809 видов и 1027 родов покрытосеменных, произрастающих на Цейлоне, 809 видов и 23 рода — его эндемики. При этом 17 родов содержали по одному виду, 4 рода — по 2–3 вида и только два рода — более чем 10. Изучение встречаемости видов позволило Уиллису вывести общие закономерности: виды, широко распространенные на Цейлоне и принадлежащие к обширным родам, часто встречаются и на материке, в Индии; виды, редко встречающиеся на Цейлоне, по большей части относятся к его эндемикам. Отсюда Уиллис сделал вывод, что шансов на широкое распространение гораздо больше у старых видов, раньше попавших с материка на остров, и что эндемики Цейлона представлены наиболее молодыми видами. Установленные закономерности приложимы к любому роду, содержащему более 10 видов и тем самым допускающему количественный анализ.
Общий итог, к которому пришел Уиллис (1922), гласил: «Ареал, занимаемый на данное время в данной стране какой-либо группой из родственных видов числом не менее 10, если условия относительно постоянны, зависит в основном от возраста видов этой группы в этой стране: общая картина может существенно меняться под воздействием природных барьеров: морей, рек, гор, изменений климата, влияния разных экологических факторов, включая человека, и других причин» (цит. по: Голубовский, 2000. С. 62). Его дополняло заключение Г. де Фриза (Vries, 1923), тесно сотрудничавшего с Уиллисом, согласно которому скорость распространения новых видов у всех одинакова и не зависит от особенностей их организации. Виды-эндемики в большинстве своем возникли вовсе не путем адаптации к местным условиям, они «выбирают» эти условия. Де Фриз указывал также, что систематические признаки видов не обнаруживают зависимости своего происхождения от борьбы за существование и, следовательно, опровергают теорию естественного отбора. Иными словами, признаки образующихся видов селективно нейтральны. О том, что Уиллис мыслил эволюционный механизм без участия естественного отбора, свидетельствует и подзаголовок его второй книги — «Ход эволюции. Через дифференциацию или дивергентную мутацию нежели через отбор» (Willis, 1940).
Джон Кристофер Уиллис (1868–1958).
О селективной нейтральности видовых признаков свидетельствует и закономерность, установленная Уиллисом совместно с математиком Г. Юлом. Дело касалось распределения у всей массы известных цветковых растений числа видов в роде и числа родов в семействе. Отложив по оси абсцисс логарифмы числа видов в роде, а по оси ординат — логарифмы числа соответствующих родов и построив соответствующие графики, исследователи обнаружили, что все точки оказались на правильной гиперболе (Yule, 1924). Такого же рода гиперболу дало и распределение родов в семействе. Полагая, что сделанное открытие является всеобщим законом, Уиллис проверил распределение родов в семействах низших растений, а также некоторых животных и получил тот же результат (см. подробнее: Чайковский, 1990. С. 84–87). Таким образом, система организмов оказалась именно системой, а не случайным собранием таксономических единиц.
Закон распределения, открытий Уиллисом и Юлом, явно не соответствовал теории Дарвина, по которой каждый новый вид рождается сообразно его условиям существования на основе накопления селективно полезных признаков. Он шел вразрез с этой теорией и еще по двум обстоятельствам. Предпосылкой установления закона было допущение, что новые виды образуются путем деления старого на два новых в результате видовой мутации, а роды — точно так же, но на основе родовых мутаций. Кроме того, предполагалось, что темпы возникновения новых видов независимы от их численности, а следовательно, и от частоты мутаций.
Стоит отметить, что труды Уиллиса, предвосхищая будущую теорию нейтральности, представляют собой в равной мере вклад в номогенетическое понимание эволюции. Интересно также, что они создавались в те же годы, что и закон Вавилова и «Номогенез» Берга, который в английском издании своей книги 1926 г. уже ссылался на Уиллиса. Но если труд Берга вызвал резкую реакцию отторжения, то открытие Уиллиса — Юла просто считали лишенным интереса для науки.
Через четыре года после первой книги Уиллиса появилась знаменитая работа С. С. Четверикова (1926), положившая начало популяционной генетике в Советском Союзе. В ней совершенно независимо от Уиллиса он отвечал непосредственно на интересующий нас вопрос. «Но возможны ли вообще в природе не адаптивные эволюционные процессы? — писал Четвериков. — Вот вопрос, который до сих пор остается открытым и спорным.
Систематика знает тысячи примеров, где виды различаются не адаптивными, а безразличными (в биологическом смысле) признаками, и стараться подыскать им всем адаптивное значение — работа столь же малопроизводительная, сколь и неблагодарная, где подчас не знаешь, чему больше удивляться — бесконечному ли остроумию самих авторов или их вере в неограниченную наивность читателей.
Таким образом, для защитников исключительно адаптивной эволюции остается последнее прибежище — соотносительная изменчивость, и к ней приходится прибегать каждый раз, когда пытаются строить весь процесс эволюции исключительно на основе борьбы за существование и на естественном отборе. В том, что соотносительная изменчивость существует, не может быть сомнения… Но все же объяснять все бесчисленные случаи безразличных, неадаптивных видовых отличий такого рода изменчивости, значит ничего не объяснять, а удовлетворяться каждый раз просто недоказуемой гипотезой» (там же, с. 161).
Свое положительное отношение к идее нейтрализма Четвериков повторил и в выводах:
«17. У нас нет основания отрицать возможность неадаптивной эволюции. Напротив, во многих случаях можно предполагать, что существующие адаптивные различия между близкими формами были не причиной расхождения последних, а напротив, специфический характер этих адаптивных признаков является следствием уже ранее наступившего обособления форм. Чем древнее наступившее расхождение, тем больше адаптивных черт будет отличать одни формы от других» (там же, с. 168).
Весьма любопытны представления Четверикова о соотносительной роли отбора и изоляции в эволюции, дающие ему основание высказаться об адаптивном процессе более категорично: «Адаптивная эволюция вне условий изоляции… никогда не может повести к распадению вида на два, к видообразованию… Истинным источником видообразования, истинной причиной происхождения видов является не отбор, а изоляция» (там же, с. 162). Интересно также соображение Четверикова о том, что если бы действие отбора вдруг прекратилось, то вид стал бы полиморфным и что распадение вида на разновидности — это признак его старости. Иными словами, эволюция под действием естественного отбора идет и даже приводит к образованию новых видов, но лишь путем превращения старых (возникают хроновиды, или, по Четверикову, мутации Ваагена) без их расщепления. Лишь вмешательство факторов изоляции приводит к дроблению видов и умножению их числа. Эти мысли Четверикова, существенно расходящиеся с положениями теории Дарвина, редко приводятся в работах приверженцев синтетической теории. Аналогичные представления о неадаптивном характере эволюции и нейтральности признаков даже высоких систематических групп позже развили на Западе генетик и зоолог А. Шелл (Shull, 1936) и А. Вандель (Vandel, 1963).
К примеру, А. Вандель был уверен в селективной нейтральности небольших морфологических различий между рядом полиморфных родов и семейств. Особенно показательным в этом отношении он считал строение копулятивных органов жужелиц фауны Франции, изученных Р. Жаннелем (Jeannel, 1941–1942). Как показал этот энтомолог, строение этих важнейших органов у сотен видов чаще всего варьирует в ничтожных деталях при одинаково успешном выполнении ими своего назначения. Но на земном шаре насчитываются десятки тысяч видов жужелиц, и трудно представить себе, пишет Вандаль, чтобы каждый из бесчисленных морфологических типов копулятивных органов был наделен «особой пользой», поскольку все они продолжают существовать и не элиминируются отбором.
Четвериков не изменил взглядов вплоть до конца своих дней. Здесь опять-таки стоит привести некоторые выдержки из его письма к A. Л. Тахтаджяну от 1956 г. Четвериков писал: «Пожалуй, самая большая ошибка Дарвина, которую я знаю, — это заглавие его книги: “О происхождении видов путем естественного отбора”. Ведь замечательная работа Дарвина фактически трактует не о происхождении видовых признаков и отличий, а о целесообразных приспособлениях организмов к окружающим их условиям существования, но ведь это вещи совершенно не равнозначные… Нет… эволюционный процесс не един, а многозначен, и наряду с адаптивным эволюционным процессом… существует и неадаптивная эволюция, тоже строго статистического характера и ведущая к внутривидовой дифференциации и многообразию живых форм и их видовых признаков, не имеющих селекционного значения. Тут должны сыграть большую роль так называемые генетико-автоматические (Дубинин, Ромашов) или, лучше, генетико-стохастические процессы, как я их называю. И это, конечно, далеко не все. Несомненно, известную роль в процессе видообразования играют и такие генетические явления, как отдаленная гибридизация… чисто цитологические процессы, как внутривидовая полиплоидия, и, конечно, еще ряд эволюционных явлений, очень далеких от отбора…» (Тахтаджян, 1991. С. 501; подчеркнуто мной. — В. И.).
Прежде чем перейти к современному этапу в развитии нейтралистских идей, приведших к якобы недарвиновской концепции эволюции, напомним, что ни стохастические популяционные процессы, ни внутривидовой полиморфизм всех уровней, с нашей точки зрения, прямого отношения к эволюции не имеют. Мы рассмотрим их лишь ради реконструкции логики познавательного пути, приведшего к тому, что синтетической теории пришлось поделиться частью своей «власти». Для настоящей же нейтралистской концепции было бы важно, если бы в ней рассматривались превращения комплекса видовых признаков как селективно нейтрального. В существующей теории этого нет, но ее ключевая идея вполне пригодна для понимания того, что происходит на уровне видов.
Можно сказать, что уже первые шаги генетики популяций как в СССР, так и на Западе были совершены под непосредственным влиянием идей Четверикова о существовании двух форм эволюции — адаптивной и неадаптивной (нейтральной). В результате, с одной стороны, генетические закономерности распределения генов в популяции были объединены с теорией естественного отбора, а с другой стороны, была обоснована возможность видообразования без отбора при неадаптивных, селективно нейтральных признаках родительских форм.
Это второе направление привело к разработке механизма изменения генных частот в популяции под действием случайных (стохастических) факторов, которую на Западе осуществили Р. Фишер (Fischer, 1930), С. Райт (1931) и Дж. Холдейн (Haldane, 1931, 1932), а в СССР независимо от них — Д. Д. Ромашов (1931) и Н. П. Дубинин (1931; Дубинин, Ромашов, 1932). Первые назвали новый механизм дрейфом генов, а вторые — генетико-автоматическими процессами.
В мировой литературе утвердился термин генетический дрейф, или дрейф генов. Под ним понимаются случайные колебания генных частот в популяции, вызванные случайной выборкой гамет в процессе воспроизведения популяции. Эффективность этого процесса, знаменующаяся наступлением момента, когда мутантный ген или определенная комбинация генов захватывают всю популяцию (фиксация генов), зависит от размера последней. В больших популяциях он протекает очень медленно, поскольку при большом числе скрещиваний условия для фиксации определенных аллелей неблагоприятны. Серьезных сдвигов генных частот в таких популяциях можно ожидать лишь по прошествии десятков миллионов поколений. В малых популяциях момент фиксации мутаций наступает во много раз быстрее. В первом случае согласно математической теории отбора эволюция всецело адаптивна, во втором — инадаптивна. Райт (Wright, 1932. Р. 364) полагал, что новые виды возникают именно в силу неадаптивного механизма.
Размер популяции, как известно, не является постоянной величиной и зависит от сезонных и более длительных периодических колебаний численности, а также от миграций, эпизоотий и других факторов. Естественно, что в своей основополагающей статье Ромашов (1931) связывает результаты генетико-автоматических процессов с «волнами жизни» С. С. Четверикова. По мнению Ромашова, решающее эволюционное значение может приобрести такой случай, когда в период максимальной депрессии в популяции появится какая-то редкая мутация, а затем, когда численность популяции снова вырастет, размножится в ней и достигнет высокой концентрации. Ф. Добжанский (Dobzhansky, 1970) и В. В. Бабков (1985) справедливо усматривают в этом предельном варианте случайного дрейфа явление, названное Э. Майром «принципом основателя», а также «эффект бутылочного горлышка».
В 1930-е годы стало известно, что адаптивность признаков может меняться в зависимости от внешних условий. Признак, имеющий явно приспособительное значение и обладающий селективным преимуществом при одних условиях, может становиться неадаптивным (нейтральным) и выходить из-под контроля отбора, а то и становиться вредным и подвергаться элиминации при других условиях. Во втором случае аллели, определяющие развитие неадаптивных признаков, будут распространяться в популяции или исчезать из нее под действием генетического дрейфа. Так, Н. В. Тимофеев-Ресовский экспериментально показал, что мутация eversae у Drosophila funebris становится нейтральной при температурах приблизительно 20 и 26–27°C, тогда как внутри этого температурного интервала ее жизнеспособность выше, а вне его — ниже, чем у мух дикого типа (Тимофеев-Ресовский, Воронцов, Яблоков, 1969. С. 407).
Плодотворным шагом в развитии концепции стохастического дрейфа явилось соединение Ромашовым эволюционно-генетических представлений С. С. Четверикова с математическими разработками Маркова-Колмогорова, вошедшими в науку под названием марковских цепей. Эта теория случайных процессов описывала такие системы, которые меняют свое состояние не непрерывно, а только в известные периоды. В биологии одним из примеров такой системы как раз является популяция. Ромашов, изучавший инадаптивные популяционные процессы, увидел, что идея Четверикова о возможном разделении видов по нейтральным, неадаптивным признакам хорошо согласуется с марковскими.
Плодотворным шагом в развитии концепции стохастического дрейфа явилось соединение Ромашовым эволюционно-генетических представлений С. С. Четверикова с математическими разработками Маркова-Колмогорова, вошедшими в науку под названием марковских цепей. Эта теория случайных процессов описывала такие системы, которые меняют свое состояние не непрерывно, а только в известные периоды. В биологии одним из примеров такой системы как раз является популяция. Ромашов, изучавший инадаптивные популяционные процессы, увидел, что идея Четверикова о возможном разделении видов по нейтральным, неадаптивным признакам хорошо согласуется с марковскими процессами. Таким образом, обе идеи — чисто математическая и конкретно-биологическая, — взаимно подтвердив реальность наблюдаемого феномена, способствовали укреплению представления о существовании неадаптивной эволюции.
В дальнейшем, однако, возобладала генетическая теория естественного отбора, согласно которой каждый признак формируется в процессе адаптивной эволюции. Считалось, что среди мутантов практически нет селективно нейтральных. Э. Майр (Мауг, 1963; рус. пер. — 1968) указывал на крайне малую вероятность того, чтобы какой-то ген вообще оставался адаптивно нейтральным сколько-нибудь продолжительное время, а Е. Форд утверждал, что нейтральные гены не только очень редки, но и не могут достигать значительных частот, поскольку их нейтральность утрачивается с изменением окружающей среды и генетической конституции организма. Панселекционистские представления, охватившие большую часть эволюционистов в СССР и на Западе, вытеснили теорию дрейфа генов на обочину СТЭ.
Становление современной нейтралистской концепции приходится на рубеж 1960—1970-х годов и непосредственно связано с успехами молекулярной биологии.
Японский специалист по теоретической популяционной генетике Мотоо Кимура, изучая скорости аминокислотных замещений у белков, обратил внимание на несоответствие данных, полученных им и ранее Дж. Холдейном (Haldane, 1957). У Кимуры скорость замен на геном на поколение для млекопитающих в несколько сот раз превышала известную оценку Холдейна. Получалось, что для поддержания постоянной численности популяции при одновременном сохранении отбором мутантных замен, появляющихся с такой высокой скоростью, каждый родитель должен был бы оставлять непомерно большое число потомков, с тем чтобы один из них выжил и стал размножаться.
С момента разработки метода электрофореза (Lewontin, Hubby, 1966) был обнаружен высокий полиморфизм белков. По данным ученых, для 18 случайно выбранных локусов Drosophila pseudoobscura средняя гетерозиготность, приходящаяся на локус, составила около 12 %, а доля полиморфных локусов — 30 %. В дальнейшем средний уровень полиморфизма у растений и животных пришлось увеличить до 50 % и более.
Известно, что для объяснения популяционного полиморфизма Р. Фишером была разработана модель балансирующего отбора, основанная на селективном преимуществе гетерозигот. В то же время уровень гетерозиготности большинства организмов оиенивался в среднем в 7—15 %. В популяциях же тысячи аллелей, производящих полиморфные белки. Нелепо было бы думать, что все эти аллели обладают адаптивной ценностью и сортируются отбором. Вспомним также дилемму Холдейна.
Оба эти соображения и натолкнули Кимуру на мысль, что большинство нуклеотидных замен должно быть селективно нейтрально и фиксироваться генетическим дрейфом. Соответствующие полиморфные аллели поддерживаются в популяции балансом между мутационным давлением и случайной (неизбирательной) элиминацией. Все сказанное Кимура и изложил в своей первой публикации по нейтральной эволюции (Kimura, 1968а).
Мотоо Кимура (род. в 1924).
В дальнейшем появилась целая серия статей Кимуры, в том числе в соавторстве (Kimura, 1968b, 1969, 1970 и др.; Kimura, Ohta, 1969, 1971), а также обобщающая монография (Kimura, 1983; рус. пер. — 1985). В этих трудах экспериментальные данные молекулярной биологии сочетались со строгими математическими расчетами, осуществленными самим автором на основе разработанного им математического аппарата. В книге, наряду с рассмотрением доводов в пользу новой теории, Кимура останавливается и на возможных возражениях и критике в ее адрес.
Одним из главных аргументов, свидетельствующих о справедливости теории нейтральности, является существование так называемых синонимных мутаций — изменений в составе триплетов оснований ДНК, не приводящих к изменениям в белках. Такие мутации существуют благодаря вырожденности генетического кода, проявляющейся в способности нескольких триплетов кодировать одну и ту же аминокислоту. Так, каждая из 9 аминокислот (лизин, тирозин, цистеин и др.) кодируется двумя различными триплетами, изолейцин — тремя, треонин, валин, аланин, пролин и глицин — четырьмя, а серин, лейцин и аргинин — даже шестью. Мутации ДНК, превращающие один триплет в другой в пределах одной кодовой группы, естественно, ничего не изменят в соответствующей белковой молекуле. Такие мутации должны быть нейтральными. Количество синонимных мутаций, по Кимуре, составляет примерно 24 % от общего числа возможных точковых мутаций.
Другой аргумент — относительное постоянство скорости эволюции каждого данного белка во всех филумах, определяемой числом замещений аминокислот в год. Такое постоянство трудно объяснить с позиций селекционизма хотя бы уже потому, что оно наблюдается в разных отрядах млекопитающих, условия жизни которых совершенно различны и которые, естественно, подвергаются различному давлению отбора. Согласно данным Кимуры, скорости эволюции белков определяются исключительно структурой и функциями их молекул, но отнюдь не условиями среды.
Кимура предложил способы количественного расчета скоростей эволюции белков в случаях нейтральных и полезных мутаций. В первом случае, когда мутантный аллель строго нейтрален, т. е. не изменяет адаптивную ценность особи, вероятность его фиксации и определяется по формуле:
u = 1/2Ne, (1)
где Ne — эффективная численность популяции, соответствующая ее размножающейся части.
Определим теперь скорость эволюции белка к, выраженную числом мутационных замен. Обозначим через v скорость мутирования на гамету на поколение. Поскольку в популяции из N диплоидных особей существует 2N хромосомных наборов, то в каждом поколении в популяции появляется 2Nv новых мутаций. Если процесс фиксации мутантных аллелей растягивается на длительное время, то скорость накопления мутационных замен в популяции в расчете на поколение будет равна произведению числа новых мутаций на вероятность их фиксации:
k = 2Nvu (2)
Подставив вероятность фиксации u из формулы (1) в формулу (2), получаем, что k=v. Это означает, что скорость эволюции белка не зависит от размера популяции и равна скорости мутирования в расчете на гамету (Kimura, 1968а; Кимура, 1985). Этот вывод в значительной мере справедлив и для «почти нейтральных мутаций», т. е. таких, коэффициент отбора которых намного меньше единицы, или
s < 1/2Ne (Kimura, 1968b).
В случае если мутантный аллель обладает явным селективным преимуществом, т. е. при этом
4Nes > 1,
мы имеем:
и = 2sNe/N. (3)
Подставив это выражение в формулу (2), получаем:
k = 4Nesv.
Это означает, что скорость эволюции белка зависит от эффективного размера популяции Ne, селективного преимущества мутантного аллеля s, а также от скорости v, с которой в каждом поколении возникают благоприятные мутантные гены. В таком случае скорость эволюции должна сильно зависеть от окружающей среды, будучи высокой для видов, осваивающих новые экологические условия, и низкой для видов, обитающих в стабильной среде.
В науке вовсе не редка ситуация, когда назревшую объективную потребность в прорыве к новому знанию осуществляют одновременно двое или более ученых, каждый из которых идет к нему своим путем, не подозревая о существовании «конкурента». В 1969 г., всего год спустя, после того как Кимура обнародовал свою версию теории нейтральности, в американском журнале «Science» появилась статья молекулярных биологов Дж. Кинга и Т. Джукса (King, Jukes, 1969) «Недарвиновская эволюция», в которой эти авторы независимо от Кимуры пришли к той же гипотезе. В качестве своих предшественников Кимура указывает также на Дж. Кроу и А. Робертсона (Crow, 1968; Robertson, 1967).
Вскоре Кимура в сотрудничестве с Т. Отой разработал более обоснованную теорию (Kimura, Ohta, 1971), где доказывал, что эволюционные замены аминокислот и полиморфизм — не независимые феномены, а два аспекта одного и того же явления, вызванного случайным дрейфом нейтральных или почти нейтральных аллелей в небольших популяциях. А если говорить точнее, полиморфизм белков — это одна из фаз молекулярной эволюции.
В поддержку теории свидетельствовали полученные позже данные о том, что самыми распространенными эволюционными изменениями на молекулярном уровне являются синонимические замены, а также нуклеотидные замены в некодирующих участках ДНК (Kimura, 1977; Jukes, 1978).
Все эти публикации породили на Западе острую дискуссию на страницах научных журналов и на различных форумах, в которую вступили многие крупные селекционисты. В СССР реакция на новую теорию была более сдержанной. На стороне селекционистов с объективной критикой нейтрализма выступил генетик B. C. Кирпичников (1972), а на стороне нейтралистов — биофизик М. В. Волькенштейн (1981).
Но вернемся к содержанию самой теории и коснемся двух факторов, снижающих уровень селективно нейтральных процессов.
Если скорость эволюции одного и того же белка в каких бы то ни было систематических группах примерно одинакова, то скорости эволюции разных белков сильно отличаются друг от друга. Различия связаны со структурой и функцией молекул соответствующего белка, которые налагают на темпы мутационных замен определенные функциональные ограничения. Согласно теории нейтральности вероятность того, что мутация будет селективно нейтральной (невредной), тем больше, чем в меньшей степени она сказывается на структуре и функции молекулы. Иными словами, молекулы, подверженные относительно слабым функциональным ограничениям, эволюционируют быстрее молекул, характеризующихся большими ограничениями.
К числу белков, отличающихся скоростью эволюционных замен, близкой к скорости мутирования, принадлежат, например, фибринопептиды. У фибринопептидов практически любая мутационная замена аминокислоты, которая не препятствует их отщеплению, приемлема для вида. У гемоглобинов скорость эволюции ниже, поскольку, осуществляя перенос кислорода, они выполняют определенную и весьма важную функцию. Еще ниже скорость эволюции у цитохрома с, так как при своем функционировании он взаимодействует с гораздо более крупными молекулами ферментов.
Скорость эволюции может быть неодинаковой не только для разных молекул, но и для разных участков одной и той же молекулы. Ключевую роль в функционировании гемоглобина играет та внутренняя часть молекулы, которая примыкает к гему, и происходящие здесь замены аминокислот обычно приводят к аномальным изменениям свойств этого белка. В отличие от этой части аминокислоты, располагающиеся на поверхности молекулы, обычно не играют особой функциональной роли, и их замена мутантными часто не влечет за собой клинических последствий. Скорость эволюции этих наружных участков молекулы, по данным Кимуры, в 10 раз выше, чем внутренних.
Наиболее сильными функциональными ограничениями отличаются субстратспецифические ферменты, участвующие в энергетическом обмене, и структурные белки (такие, как актин или тубулин), в частности входящие в состав мембран. На структурные белки налагаются жесткие стерические ограничения, определяющиеся их тесным взаимодействием с другими молекулами. Поэтому белки этого типа в высшей степени консервативны (инвариантны) и отличаются крайне низкими скоростями эволюции.
Скорость молекулярной эволюции хорошо коррелирует со степенью полиморфизма, в равной мере зависящего от функциональных ограничений. Зато полиморфизм почти не зависит от условий среды, в которой обитает данный вид. Этот постулат нейтрализма в корне противоречит утверждениям селекционистов, которые видят в полиморфизме главную адаптивную стратегию видов, направленную на освоение разнообразных условий существования.
Кроме функциональных ограничений частоту нейтральных мутаций, скорость молкулярной эволюции и степень полиморфизма сдерживает отрицательный отбор — та форма естественного отбора, которая устраняет менее приспособленные фенотипы. По мнению Кимуры и его единомышленников, нейтральной эволюции на молекулярном уровне сопутствует стабилизирующий (консервативный) отбор на фенотипическом уровне, активный большую часть времени существования вида в неизменной форме. Стабилизирующий отбор как раз и устраняет фенотипы, уклоняющиеся от нормы, т. е. проявляет себя как отбор отрицательный. Стало быть, эта форма отбора действует всегда, но в случае малых популяций она достаточно слаба и перекрывается генетическим дрейфом. Кимура подчеркивает, что существование отрицательного отбора не противоречит нейтралистской теории, он только уменьшает долю селективно нейтральных мутаций в их общем пуле. Напротив, селективные ограничения, налагаемые отрицательным отбором, являются очень важной частью нейтралистской трактовки некоторых особенностей молекулярной эволюции.
В заключение нашего обзора приведем самые общие соображения Кимуры, касающиеся нейтралистской теории. Кимура, безусловно, прав, утверждая, что эта теория не противоречит дарвинизму, не подменяет его, а, напротив, его дополняет. Такого же мнения придерживается Н. Н, Воронцов (1999. С. 536). С нашей точки зрения, нейтрализм, возникший в недрах селекционизма и, безусловно, отражающий реально протекающие процессы в популяциях, сузил сферу дарвинизма, но не в такой мере, как полагают его авторы. По оценке того же Н. Н. Воронцова (там же), не контролируется отбором не более 1/3 замещений нуклеотидов.
Принципиально важно признание Кимурой отсутствия какого бы то ни было соответствия между процессами, описываемыми теорией нейтральности и фенотипической (морфологической) эволюцией. Мы будем специально говорить о соотношении эволюции с преобразованиями генетической конституции организмов в главе, посвященной новой генетике. Кимура специально уточняет, что на уровне фенотипов преобладает дарвиновский естественный отбор, тогда как на молекулярном уровне происходит закрепление нейтральных или почти нейтральных аллелей с помощью чисто стохастических процессов дрейфа генов. Скорость молекулярной эволюции благодаря этому постоянна, а скорости фенотипической эволюции весьма неравномерны. Но и этим не исчерпываются все различия. Кимура считает необходимым подчеркнуть, «что законы, управляющие молекулярной эволюцией, совершенно отличаются от законов, управляющих эволюцией фенотипической» (Кимура, 1985. С. 362). Короче, он признает справедливость своей теории исключительно на молекулярном уровне.
После интенсивных обсуждений и многочисленных исследований, порожденных нейтралистской концепцией, интерес к ней в 1990-е гг. заметно упал. Это произошло не потому, что в рамках этой концепции не было создано ничего принципиально нового или она была полностью опровергнута. Скорее молекулярные биологи ее молчаливо приняли, но при этом также осознали, что сколько-нибудь значительный успех биологической эволюции по нейтралистскому сценарию потребовал бы огромных промежутков времени и непомерно больших количеств ДНК.
Здесь уместно было бы еще раз напомнить о том, что говорилось перед описанием теории. Из наших соображений следует, что современный нейтрализм является недарвиновской концепцией лишь в рамках СТЭ, но на статус самостоятельной теории биологической эволюции претендовать не может. Мы подробно рассмотрели ее только для того, чтобы развеять иллюзии, возможно порожденные ее синонимичным громким названием.
Другое дело — концепции Уиллиса и отчасти Четверикова, являющиеся более давними, но все еще обращенные в будущее.
По общему признанию, начало закату ламаркизма положил Август Вейсман. Его теория зародышевой плазмы убедила научный мир, что наследование приобретенных признаков (НПП) невозможно с логико-теоретической точки зрения. Но доводы доводами, а эксперимент они не заменят. И чтобы доказать отсутствие наследования по Ламарку, Вейсман рубил мышам хвосты и констатировал, что они снова отрастали у потомков. Но хотя Вейсман и был в числе тех, кто ориентировал биологию на опытную проверку научного знания, он отнюдь не считал, что спор с ламаркизмом можно решить одними лабораторными экспериментами. Подобная позиция была особенно близка французским биологам, многие из которых придерживались убеждения, что мутации, получаемые в лаборатории, не имеют ничего общего с наследственной изменчивостью в природе.
Однако биологи XX в., увлеченные успехами экспериментальной науки, все меньше верили теории и все больше полагались на экспериментальные доказательства. Среди многочисленных экспериментов, осуществленных противниками ламаркизма, решающее значение приобрели опыты американских генетиков А. Лурии и М. Дельбрюка (Luria, Delbruk, 1943; Delbruk, 1946; и позднее) на культурах кишечной палочки, подвергнутых воздействию бактериофагов. Особую весомость этим опытам придавало то обстоятельство, что данные об адаптации микроорганизмов долгое время трактовались в духе ламаркизма.
В опытах с вирулентным фагом лямбда большая часть культуры бактерии погибала, но несколько клеток кишечной палочки выжили и образовали колонию, оказавшуюся устойчивой к фагу. Авторы установили, что колония возникла путем мутаций, происходивших со скоростью 2 × 10-8 на поколение. Расположение резистентных к фагу колоний было одинаковым как в чашках с фагом, так и без него. Из этого следовало, что в обоих случаях мутации устойчивости возникают спонтанно, независимо от присутствия фага и что последний лишь после появления таких мутаций выступает в качестве селективного фактора, разрушая все немутантные клетки.
Эти опыты, казалось, наглядно продемонстрировали отсутствие направленности мутаций и существования процесса физиологической адаптации у бактерий. Было высказано предположение, что и у высокоорганизованных организмов отбор также не влечет за собой появление адаптивных наследственных изменений, но лишь осуществляет их селекцию.
Вскоре после этих знаменитых опытов стала зарождаться молекулярная биология, а вместе с ней получил широкое признание ее главный теоретический постулат, вошедший в науку под названием центральной догмы молекулярной биологии. Его общепринятая формулировка, принадлежащая Ф. Крику, сводится к утверждению, что генетическая информация может передаваться только в одном направлении — от нуклеиновой кислоты к белку. Передача информации в обратном направлении невозможна. Этот принцип выражают схемой:
ДНК → РНК → белок,
транскрипция трансляция
По существу, он формулирует на молекулярном языке тезис об отсутствии НПП и невозможности направленного воздействия на генетическую информацию, содержащуюся в ДНК. Поскольку ДНК признается единственной носительницей наследственной информации, эволюция возможна лишь на основе спонтанных изменений этой молекулы.
В 1971 г. известный эмбриолог и историк биологии Л. Я. Бляхер опубликовал универсальную сводку, специально посвященную проблеме НПП (Бляхер, 1971). В этой сводке на огромном историческом материале, касающемся дискуссий и соответствующих опытных данных, Бляхер показал отсутствие прямого (и функционального) приспособления и НПП. В 1982 г, его книга была издана в США в английском переводе (Blacher, 1982).
Казалось, после такого развития событий судьба ламаркизма была окончательно решена. Труды П. Вентребера воспринимались не иначе как запоздавший рецидив ламаркизма со стороны одного из его фанатиков. Впрочем, теперь, когда главным центром экспериментальных исследований на молекулярном уровне стали США, на французскую биологию в целом стали смотреть примерно так, как столичный житель смотрит на провинциала. Но жизнь распорядилась иначе. Как это ни парадоксально, первые сигналы к реабилитации ламаркизма стали поступать от его злейшего врага — молекулярной генетики. Поначалу они были связаны с поэтапным разрушением центральной догмы.
В 1970 г. американский биохимик и вирусолог Дэвид Балтимор и независимо от него американские генетики Говард Темин и Сатоши Мизутани сообщили об открытии у РНК-содержащих онкогенных вирусов фермента РНК-зависимая ДНК-полимераза, способного комплементарно синтезировать ДНК на матрице РНК. Оказалось, что эти вирусы встраивают в геном клетки-хозяина не РНК, а образованную на ней комплементарную двухспиральную ДНК. Вскоре новый фермент был выделен и с его помощью были синтезированы первые гены, кодирующие гемоглобин животных и человека. Фермент получил более простое и выразительное название — обратная транскриптаза, или ревертаза (Baltimore, Temin, Mizutani, 1970).
Открытие имело принципиальное значение: оно показало, что между ДНК и РНК возможна двухстороняя передача информации и тем самым была нарушена стройность центральной догмы. Сам процесс передачи информации от РНК к ДНК стали называть обратной транскрипцией, а осуществляющих его вирусов — ретровирусами. В дальнейшем, с обнаружением обратной транскрипции у самых различных животных, ее перестали считать исключительным явлением и стали рассматривать в качестве нормы.
В 1982 г. тому же Дэвиду Балтимору и биохимику Фредерику Альту было суждено стать авторами еще более сенсационного открытия. Как показала Е. А. Аронова (1997), его фактически следует отнести к иммунологии, но оно совершило революцию во всей молекулярной биологии, а через нее в значительной мере и в эволюционной теории.
Альт и Балтимор (Alt, Baltimore, 1982) заинтересовались причинами огромного разнообразия иммуноглобулинов у одного и того же организма при ограниченном числе кодирующих их генов. Им удалось установить, что на одном из этапов «подгонки» иммуноглобулина под определенный антиген в молекулу его ДНК встраивается короткий (из 8—12 пар оснований) нуклеотидный фрагмент, никакой матрицей не кодируемый. Этот процесс обеспечивала не какая-то другая ДНК, а уже известный науке фермент — так называемая терминальная дезоксинуклеотидилтрансфераза. Благодаря производимой им операции к комбинативной изменчивости исходного набора генов присоединяется новый генетический компонент с произвольной последовательностью. Он и обеспечивает то большое разнообразие антител, которое способно дать быстрый и адекватный ответ на атаку любого внешнего агента. Как мы видим, в данном случае исследователи пошли по тому же пути, по которому раньше прошел Вентребер.
В только что описанном исследовании был открыт нематричный синтез ДНК, иными словами, доказана возможность перехода информации от белка к ДНК. Как и в случае с обратной транскрипциией, процесс «белок → ДНК» вскоре обнаружили у самых разных организмов (Clark, 1988). Тем самым центральная догма молекулярной биологии оказалась ограниченной.
В 1996 г. в познании способов передачи наследственной информации была открыта новая страница. В ходе изучения так называемого коровьего бешенства у млекопитающих были обнаружены возбудители этого инфекционного заболевания (Prusiner, 19 %). Ими оказались белки-прионы (от англ. protein infections particles), отличающиеся от своих нормальных неинфекционных гомологов только вторичной и третичной структурой молекулы. Прионы либо попадают в организм извне при заражении, либо возникают в нем спонтанно. Во втором случае, многое в котором еще совершенно неясно, прионы образуются de novo на своеобразных «пространственных» матрицах нормальных белков-гомологов (!), причины трансформации которых остаются загадкой. В обоих случаях прионы навязывают свою болезненную конформацию нормальным белкам-аналогам.
Обнаруженный способ трансформации, передаваемый от белка к белку, в очередной раз нарушил центральную догму, в соответствии с которой носители трансмиссивных болезней должны содержать ДНК или РНК. Теперь в нее надо внести новую коррективу: возможность модификации, копирования и горизонтальной передачи наследуемой конформации белков.
Подводя общий итог сказанному, необходимо иметь в виду, что центральная догма не прекратила своего существования. Она продолжает отражать один из главных потоков информации, но утратила значение абсолютного правила. В ней становится все больше ограничений и поправок.
В 1988 г. американский генетик Джон Кэйрнс (Caims, 1988) повторил опыты Дури и и Дельбрюка и пришел к заключению, что условия, при которых они проводились, не давали основания для тех выводов, которые были сделаны. В них использовались слишком большие дозы вирулентного штамма вируса, который сразу убивал все бактерии, не обладавшие к нему устойчивостью, и, таким образом лишал их возможности выработать эту устойчивость. Если бы Лурия и Дельбрюк воспользовались умеренным фагом лямбда, они пришли бы к заключению, что бактерии приобретают устойчивость к фагу именно после вступления с ним в контакт. Когда Кейрнс снизил дозу вирусов до стрессовой, то доминирующими среди мутантов стали бактерии, которые обладали резистентностью и свидетельствовали о направленном приспособительном процессе. Представлению о неадаптивном, не совпадающем с направлением отбора характере мутаций был нанесен сильнейший удар. В конце статьи Кэйрнс высказал допущение, что каждая клетка может обладать механизмом для осуществления НПП.
Другая серия опытов проводилась Кэйрнсом с соавторами (Cairns, 1988; Cairns, Overbaugh, Miller, 1988) на той же кишечной палочке, но брались бактерии с мутацией в гене lacZ лактозного оперона, не способные расщеплять лактозу. Их помещали на 1–2 дня в среду с глюкозой, где клетки могли нормально делиться. Затем из общего числа бактерий удаляли всех мутантов lac* и переносили колонию в селективную среду только с одной лактозой. Первые дни мутанты отмирали, но уже спустя неделю рост колонии возобновлялся за счет вспышки реверсий именно в гене lacZ. Возникала адаптация к лактозе путем перестройки генома.
Опыты однозначно свидетельствовали о возможности отбор-зависимого направленного мутирования определенного гена под воздействием внешнего фактора. Как писали эти авторы, если клетка установила обратную связь от белка к тРНК, то «она может производить выбор, какие мутации производить» (Cairns, Overbaugh, Miller, 1988. P. 145). Подобный механизм был назван генетическим поиском (Чайковский, 1976).
Сходные результаты, но уже с использованием мутантов по генам, использования триптофана и сахара-салицина получил другой американский генетик — Барри Холл (Hall, 1988, 1990, 1992). Он же открыл адаптивные мутации у дрожжей, т. е. уже у эукариотных организмов. Ему удалось выяснить также, что массовые адаптивные мутации являются следствием транспозиции (перемещения) мобильных генетических элементов (Hall, 1988) и что в случае мутаций двух генов («двойных мутаций») их частота по сравнению с одиночными возрастает в 108 раз (Hall, 1982). Понятно, сколь важное значение имеют эти данные для новой теории эволюции.
Число подобных публикаций множилось, стали появляться первые обзорные работы (Foster, 1993; Lenski, Mittler, 1993).
Следующий важный этап в познании адаптивных реакций организмов, как указывает М. Д. Голубовский- (2000), связан с теоретическим обоснованием направленных мутаций и раскрытием механизма их возникновения ведущим американским специалистом по новой генетике Джеймсом Шапиро. По мнению Голубовского, Шапиро (Shapiro, 1995а) считает достаточным для объяснения феномена адаптивных мутаций наличие двух механизмов. Во-первых, в живой клетке содержатся биохимические комплексы или «системы естественной генетической инженерии», способные реконструировать геном. Активность этих комплексов может резко меняться в зависимости от физиологического состояния клетки. Примером может служить ответ ее генетической системы на тепловой шок, когда происходит прямое увеличение клеточной толерантности и начинают синтезироваться белки теплового шока (стрессовые белки). Во-вторых, рост мутабельности происходит не в одной какой-то клетке, а в целой клеточной популяции, где возможен межклеточный горизонтальный перенос информации с помощью вирусов, плазмид и тому подобных агентов. В ключевые моменты или во время стресса ведущую роль в увеличении частоты мутирования и перестройке генома играют, по-видимому, мобильные генетические элементы. Используя метафору одного из современных дарвинистов, Шапиро резюмирует, что было обнаружено в клетке: вместо «слепого часовщика» (образ-аналог естественного отбора, — В. Н.) «мы нашли там генетического инженера с впечатляющим набором замысловатых молекулярных инструментов для реорганизации ДНК-молекулы» (op. cit.). В другой работе он же пишет, что за последние десятилетия на уровне клетки была открыта такая «непредвиденная сфера сложности и координации, которая более совместна с компьютерной технологией, нежели с механизированным подходом, доминировавшим во время создания неодарвиновского современного синтеза» (Shapiro, 1997; обе цитаты из: Голубовский, 2000. С. 163, 164). Познание работы всей этой сферы — дело будущего.
Современная молекулярная генетика начинает реабилитировать и другую составляющую ламаркизма — тезис о наследовании приобретенных признаков. Наблюдения и эксперименты в поддержку этого тезиса, накапливавшиеся на протяжении трех последних веков, столь многочисленны, что еще в начале XX в. составляли основу эволюционных представлений доброй половины ученых-биологов. Но даже если исключить из их числа тех, которые с точки зрения классической генетики были неверно поставлены и превратно истолкованы, наберется немало и таких, в которых стойкое наследование новых особенностей организации или новых свойств, приобретенных в индивидуальной жизни, трудно было отрицать. К числу таких экспериментов и наблюдений относились, например, опыты французского генетика (!) Ф. Л’Еритье с наследованием чувствительности дрозофилы к углекислому газу (L’Heritier, 1937), опыты Г. Х. Шапошникова (1961, 1965) на тлях и П. Г. Светлова (1965) — на мышах и дрозофиле, многочисленные примеры длительных модификаций, становящихся наследственными, разнообразные случаи цитоплазматической наследственности, особенно у простейших и растений. Еще 15–20 лет назад они не привлекали внимания исследователей, не говоря уже о том, чтобы рассматривать их в руководствах по генетике и теории эволюции. Широкое обсуждение и успех открытия феномена направленных мутаций автоматически сделал актуальной и проблему НПП.
В 1991 г. вышел очередной том авторитетного ежегодника по генетике — «Annual Review of Genetics». Он открывался большой обзорной статьей Отто Ландмана, озаглавленной «Наследование приобретенных признаков» (Landman, 1991) и посвященной памяти Т. Соннеборна — выдающегося исследователя генетики свободноживущих и симбиотических простейших, обнаружившего ряд неканонических типов наследования. В статье собрано большое число фактов ламаркистского наследования, относящихся к последнему 40-летию. Порядка 10 экспериментов, подтвердивших факт такого наследования при соблюдении всех необходимых требований к проведению эксперимента, были подвергнуты детальному анализу, и для их объяснения автором публикации был указан конкретный молекулярно-генетический механизм.
Мы не будем сейчас касаться этих механизмов, поскольку их можно понять только на основе знания новой (неклассической) генетики, которой в этой книге мы посвящаем специальную главу. Там будет уместно вернуться к этим механизмам. Здесь же приведем резюме, к которому пришел Ландман в указанной выше статье: наследование приобретенных признаков вполне совместимо с современной концепцией молекулярной генетики, и менделевская, и ламаркистская наследственность могут мирно сосуществовать в лоне молекулярной биологии.
Десять лет, прошедшие после публикации этих строк, еще больше расширили зону компетенции ламаркизма, одновременно наполнив ее строго генетическим содержанием.
Рубеж 1960-1970-х годов — это переломный момент в развитии эволюционного учения. Начиная с этого момента оно все больше приобретает черты, характерные для наших дней. Прежде всего надо отметить, что синтетическая теория окончательно превращается в догму и ее постулаты все решительнее подвергаются острой критике. В разных биологических дисциплинах, и в первую очередь в молекулярной и биохимической генетике, возникает ряд альтернативных гипотез видообразования и макроэволюции, отвергающих постепенный кумулятивный характер формирования эволюционных гипотез, порывающих с творческой формообразующей ролью естественного отбора и адаптивным характером видообразовательного процесса. В этих гипотезах утверждается, что большую часть времени биологические виды и весь органический мир благодаря действию нормализующего отбора остаются стабильными, а наблюдающийся в редких случаях переход в качественно новое состояние осуществляется скачком. Иными словами, живая природа живет в ритме прерывистого равновесия.
В связи с возникновением новых концепций в эволюционной теории разворачивается широкая дискуссия по кардинальным проблемам, касающимся континуальности или прерывистости эволюции, природы эволюционной изменчивости, эволюционной роли организации генетического материала, характера и темпов эволюционного процесса, соотношения моно- и полифилии, дивергенции и параллелизмов, зависимости морфологической эволюции от генетических факторов и др.
Пожалуй, самая парадоксальная черта рассматриваемого момента заключается в том, что он наглядно воспроизводит спираль диалектического развития: новые эволюционные концепции строятся на идеях, еще недавно считавшихся окончательно отвергнутыми, а их творцы — раскритикованными, высмеянными и забытыми. Теперь мы снова встретимся со старыми знакомыми из предыдущих глав, но они предстают уже не «блудными сынами» науки, а ее настоящими героями-ясновидцами.
Среди недавно возникших гипотез теория прерывистого равновесия — наиболее целостная, всеобъемлющая и серьезная. К тому же, по крайней мере формально, она не полностью порывает с синтетической теорией и дарвинизмом. Во всяком случае, так хотят представить дело ее авторы.
В самом начале 1970-х годов, изучив эволюцию девонского рода трилобитов штата Нью-Йорк, американские палеонтологи Н. Элдридж и С. Гулд обнаружили отсутствие постепенности в переходах между последовательно сменявшими друг друга формами. Вид, существовавший в течение миллионов лет без каких-либо существенных изменений, в вышележащих слоях внезапно исчезал и заменялся новым с совершенно иной количественной характеристикой главного морфологического признака. Аналогичную закономерность установил Гулд на одном из подвидов наземной улитки из плейстоцена Бермудских островов, только для более короткого отрезка геологического времени. В совместной публикации (Eldredge, Gould, 1972) описанный процесс чередования стабильного состояния (стазиса) вида и его быстрой замены новым был назван прерывистым равновесием. Согласно этой новой модели эволюция происходит редкими и быстрыми толчками, она как бы пульсирует, а сами толчки составляют по времени доли процента от стазиса. Авторы отмечали, что картина «прерывистого равновесия находится в большем соответствии с процессом видообразования, как он понимается современными эволюционистами» (ibid., р. 99). Новый вид развивается не в той области, где жили его предки, а приходит со стороны.
Нильс Элдридж (род. в 1940).
Стефан Джей Гулд (1941-2002).
Новая концепция разрабатывалась всего тремя палеонтологами — Гулдом, Элдриджем и Стэнли — на протяжении 10 лет, и в ее основу легли кроме уже упомянутой пять основных публикаций (Gould, Eldredg, 1977; Stanley, 1975, 1979; Gould, 1980, 1982b). Поначалу скептически встреченная даже палеонтологами, она получила признание только ближе к концу 70-х годов, когда фактически сомкнулась с идеями молекулярных генетиков Карсона, Буша, Вилсона, цитогенетика Уайта.
Мысль о длительности стазиса и краткости скачка к новому виду, как мы могли убедиться, отнюдь не нова. Она не была чужда даже Дарвину, в первоначальной эволюционной модели которого признавалось исключительно внезапное появление новых видов посредством сальтаций (Галл, 1987). Впоследствии Дарвин перешел на позиции градуализма и в «Происхождении видов» многократно подчеркивал постепенность эволюционного процесса. При этом, однако, он счел целесообразным во всех изданиях этого труда, начиная с третьего, сохранить следующую фразу: «Периоды, в продолжение которых каждый вид подвергался изменениям, многочисленные и продолжительные, если измерять их годами, были, вероятно, непродолжительны по сравнению с теми периодами, в течение которых каждый вид оставался в неизменном состоянии» (Дарвин, 1939. С. 560). Известно, что Т. Гекели, будучи горячим приверженцем дарвинизма, упрекал Дарвина за отрицание скачков (Huxley, 1901. Р. 189).
Мы видим, однако, заслугу пунктуалистов в том, что они показали контраст между продолжительностью времени, приходящегося на стазис и видообразование, и впервые поставили вопрос о структуре эволюционного процесса. Принципиально важно установление самого факта существования стазиса, противостоящего ложной идее о непрерывной эволюционной текучести форм жизни. Пожалуй, впервые было осознано, что история любой группы организмов, по выражению геолога Д. Эйгера, подобно жизни солдата, «состоит из долгих периодов скуки и коротких периодов страха» (цит. по: Уэбб, 1986. С. 413). Существенно, что под стазисом авторы пунктуализма понимают не пассивную стабильность, отвечающую постоянству среды, а генетически активное состояние вида.
По признанию самих создателей теории прерывистого равновесия (Stanley, 1979; Гулд, 1986), отправным моментом послужили для них непосредственно работы Майра, Гольдшмидта, Симпсона, Гранта и отчасти Райта. У Майра они заимствовали аллопатическую модель географического видообразования, идущего на основе быстрого преобразования малых периферических изолятов, концепцию генетической революции и принцип основателя. Особо ценным источником послужила работа Майра (Мауг, 1954) об изменении генетической среды, где фактически была выдвинута идея прерывистости эволюции на основе быстрой реконструкции генофонда изолированной популяции и дано рациональное объяснение многочисленных пробелов в палеонтологической летописи. Однако если у Майра это был частный и редкий модус видообразования, в целом не получивший тогда признания, то пунктуалисты превратили его в универсальный и заслуживающий доверия.
Термин «генетическая революция» был понят достаточно прямолинейно — как быстрое преобразование отпочковавшейся субпопуляции на основе единичных мутаций с крупным фенотипическим эффектом (макромутаций). Такое преобразование стали чаше всего описывать как квантовое видообразование, которое и вошло в «прерывистую» модель в качестве ее важнейшей составной части.
Другим источником модели послужили практически полностью реабилитированные идеи Гольдшмидта о возникновении нового таксона от «обнадеживающих уродов» и о полном разрыве микро- и макроэволюции. Так, считая первую идею вполне приемлемой, Г. Буш (Bush, 1975а) и С. Гулд (Gould, 1977b) допускают, что основателем высшего таксона могла явиться даже одна уродливая особь. Отсюда недалеко до известного примера Шиндевольфа о первой птице, вылупившейся из яйца рептилии. По мнению Стэнли (Stanley, 1979. Р. 145), в предельном случае квантовый скачок к новому виду может совершить в течение одного или немногих поколений популяция всего из десяти особей.
Корни пунктуализма уходят и в доктрину де Фриза о кратких периодах мутаций, когда, подобно взрыву, рождается множество новых видов, чтобы затем немногие из них, выдержавшие испытание на жизнеспособность, надолго остановились в своем развитии.
Через несколько лет Гулд и Элдридж (Gould, Eldredge, 1977) опубликовали новый, существенно видоизмененный вариант гипотезы. Если в первой публикации они ограничились описанием характера процесса видообразования, то теперь расширили рамки своей концепции, включив в нее гипотезу отбора видов Стэнли (Stanley, 1975), и заявили, что в этом новом виде их концепция должна стать основой целостной теории макроэволюции.
Как неоднократно отмечали Гулд и Элдридж, внутрипопуляционные дифференцировки, описываемые классической популяционной генетикой, имеют к видообразованию и макроэволюции очень малое отношение. Глубина и быстрота морфологических преобразований, связанных с последними, зависят главным образом от изменений регуляторных систем генома. Этим положением перечеркивалась идея Симпсона о необходимости синтеза данных палеонтологии с генетикой популяций и возрождался путь к альянсу с биохимической генетикой, провозглашенный Шиндевольфом.
В статье приводился новый палеонтологический материал, относящийся к радиоляриям, аммонитам, трилобитам и отчасти гоминидам, и подчеркивалась важность изучения эволюционного стазиса, темпов эволюции, а также сопоставления данных палеонтологии с выводами наук о ныне живущих организмах.
Идея прерывистого равновесия возникла как альтернатива градуалистической модели эволюции, идеально воплощенной в теории Дарвина. В XX в, оплотом градуализма традиционно оставались классическая популяционная генетика и, соответственно, синтетическая теория. На позициях градуализма до сравнительно недавнего времени стояли и молодые палеонтологи.
Градуализм органически связан с представлением об эволюции как филетическом процессе. На первый взгляд может показаться, что подобное представление противоречит дарвиновской схеме дивергентного формообразования. Вспомним, однако, что у Дарвина промежуточные формы вымирают, а крайние сохраняются, продолжая эволюционировать в направлении однажды начавшейся изменчивости. В работах Райта 1930-х годов доказывалось математически, что наиболее благоприятные условия для успешной работы естественного отбора создаются в больших сложных популяциях, а это равнозначно утверждению, что филетическая эволюция является наиболее быстрой[30]. Надо сказать, что важной опорой градуализма была трактовка эволюции исключительно как процесса прогрессирующего адаптациогенеза: если первичные полезные изменения очень малы, значит, весь процесс видообразования складывается из последовательной аккумуляции огромного их числа.
Против этих особенностей градуалистической концепции как раз и выступили создатели «прерывистой» модели. Весь пафос их критики сосредоточился на доказательстве того, что, если бы эволюция шла исключительно путем филетического градуализма, органический мир современной эпохи, вероятно, не поднялся бы в своем развитии выше уровня палеозойских организмов. Имеющийся фактический материал свидетельствует, что филетическая эволюция реально существует, но происходит крайне медленно. Прямые наблюдения (Ehrlich, Raven, 1969; Endler, 1973, 1977; Stanley, 1979 и др.) подтверждают факт весьма слабого обмена между внутривидовыми популяциями многих ныне живущих видов и, соответственно, очень медленное распространение в них удачной комбинации генов, что и препятствует быстрой филетической эволюции. А без обмена генами объяснить такую эволюцию можно было бы только с помощью допущения, что параллельные (однонаправленные) и быстрые генетические изменения претерпевают все субпопуляции вида. Ныне показано, что в кризисные для экосистем моменты истории дело обстоит именно так, но в 70-е годы до такого понимания эволюционного преобразования наука еще не доходила.
Пунктуалисты противопоставляют филетическому градуализму модель прерывистого квантового видообразования, утверждая, что видообразовательный, или кладистический, процесс составляет большую часть содержания эволюции. Самое оригинальное в этой модели — всегда множественное видообразование, дающее целую гамму разных видов, из которых только один выживает и будет существовать в неизменном состоянии в течение миллионов лет — до нового видообразовательного события. Схематично прерывистое видообразование изображается в виде линий, ветвящихся под прямыми углами, почему гипотезу прерывистого равновесия называют еще «прямоугольной (rectangular) эволюцией» (рис. 22).
Рис. 22. Графическое изображение моделей прерывистого равновесия и градуалистического видообразования (Майр, 1982).
Полемика между сторонниками модели «экстраполяционного адаптивного филстического градуализма» и приверженцами пунктуализма (Gould, 1982а. Р. 137) в течение 10–15 лет заполняла страницы многих периодических изданий, неизменно возникала на международных научных форумах и пока еще не привела к окончательному результату. Градуализм или нунктуализм? Этот вопрос все еще дискутируется в современном эволюционном учении (Колчинский, 2002).
Для того чтобы дать более полное представление об обеих моделях, мы приводим их основные положения (табл. 2).
Следует, конечно, иметь в виду, что вопрос о соотношении прерывистой (быстрой) и постепенной (медленной) эволюции прежде всего эмпирический, и попытки его решения с помощью косвенных соображений и теоретических спекуляций вряд ли можно признать правомерными. Приоритетное значение должен иметь поэтому скрупулезный анализ палеонтологического материала. Для доказательства того, что эволюция той или иной группы была прерывистой, необходимо располагать непрерывными палеонтологическими сериями за длительный отрезок геологического времени, которые позволили бы зафиксировать периоды как стазиса, так и быстрой видообразовательной эволюции. Нужно также иметь возможность точно датировать (обязательно по абсолютной шкале) короткие интервалы в пределах данной последовательности.
Все эти условия были соблюдены в подробном исследовании кайнозойских брюхоногих и двустворчатых моллюсков из мошной толщи пресноводных отложений озера Туркана (Кения), осуществленном П. Уильямсоном (Williamson, 1981). Приблизительно из ста слоев осадочных пород, прослоенных вулканическими туфами точно установленного возраста, им был добыт и биометрически изучен массовый материал (около 3700 раковин), относящийся к 13 филумам. Благодаря этому Уильямсон имел возможность достоверно документировать все переходы в изменении морфологических признаков.
В итоге оказалось, что после периода стазиса, длящегося в течение 2–3 млн лет, новые виды возникают в интервале сгг 5 до 50 тыс. лет. Для медленно эволюционирующих моллюсков это достаточно короткий срок. Уильямсон констатировал, что ни в одной из изученных линий не было отмечено постепенных переходов, В моменты стрессовых ситуаций, создававшихся периодическими пересыханиями озер, у моллюсков наблюдалась сильная морфологическая изменчивость, на базе которой быстро формировались новые виды.
Работа Уильямсона, показавшая наличие в эволюции моллюсков всех признаков пунктуализма, вошла в арсенал наиболее веских доказательств справедливости модели прерывистого равновесия. Однако интерпретация, данная Уильямсоном описанным фактам, тут же подверглась критике. В том же номере журнала, наряду с исследованием Уильямсона, была опубликована полемическая статья генетика Дж. Джонса (Jones, 1981), стремившегося показать, что видообразование у данных групп моллюсков может быть истолковано и в духе градуализма. Судя по продолжительности генерации ныне живущих родичей этих моллюсков, для зарегистрированных морфологических изменений раковин ископаемых форм потребовалось 20 тыс. поколений. По Джонсу, это эквивалентно тысячелетнему эксперименту на дрозофиле, 6000-летней селекционной работе на мышах или выведению пород домашних животных в течение 40 тыс. лет. В обычной же селекции резкие морфологические изменения достигаются иногда всего за 20–50 поколений. Иными словами, в истории с моллюсками, описанной Уильямсоном, Джонс не склонен видеть сальтационистских превращений.
К аналогичному заключению после ревизии данных Уильямсона пришел Татаринов (1983, 19856, 1987), показавший, что в ряде случаев старые и новые виды соединены полной серией переходных форм.
В числе наиболее убедительных примеров, демонстрирующих прерывистую эволюцию и квантовое видообразование, Стэнли (Stanley, 1979) упоминает цихловых рыб из геологически молодых озер Центральной Африки, возникновение видов позднетретичных млекопитающих, в том числе белого носорога (Ceratotherium) (рис. 23), полярного (белого) медведя (Ursus maritimus) и большой панды (Ailuropoda melanoeeuca) из Китая (рис. 24). Согласно пионерской работе Д. Дэвиса (Davis, 1964), эта аберрантная форма медведя, известная только с плейстоцена, возникла благодаря единичному видообразовательному акту в силу плейотропной эволюции неадаптивных признаков и заслуживает статуса отдельного подсемейства.
Рис. 23. Белый носорог (Ceratotherium simum).
Одновременно росло число публикаций, в которых обосновывалась градуалистическая модель эволюции. Здесь следует прежде всего назвать исследования американских палеонтологов: Дж. Гингерича (Gingerich, 1974, 1975, 1980, 1983) на млекопитающих эоцена, Г. Скотта (Scott, 1976) на фораминиферах, Дж. Джонсона (Johnson, 1982) и К. Эмильяни (Emiliani, 1982, 1984) — на планктонных микроорганизмах шельфа, а также француза Ж. Шалина (Chaline, 1984) — на грызунах неогена и четвертичного периода. Вновь укрепилась идея постепенности в эволюции гоминид (Cronin et at., 1981; Wolpoff, 1982; Allen, 1982).
Рис. 24. Большая панда (Ailuropoda melanoleuca).
Дискуссия между защитниками пунктуализма и сторонниками градуализма особенно обострилась после специальной конференции по проблемам макроэволюции, собравшейся в Чикаго в 1980 г., и впоследствии продолжала идти с переменным успехом для обеих сторон. На чикагской конференции тон задавали пунктуалисты, и практически все выступавшие высказались за особые механизмы макроэволюции[31].
В 1983 г. в Париже прошла конференция, посвященная проблемам прерывистого равновесия, организованная Французским национальным центром научных исследований (CNRS). Большинство участников этой конференции либо поддержали представление о преобладании в природе градуалистического видообразования, либо высказались в пользу типа эволюционных преобразований, промежуточных между градуализмом и пунктуализмом.
Надо сказать, что уже вскоре после создания «прерывистой» модели многие эволюционисты выступали против ее противопоставления градуализму. Так, X. Харпер (Harper, 1975) полагает, что оба способа эволюции представляют собой два крайних случая целого спектра возможностей. Появились компромиссные промежуточные концепции, названия которых — «полифазная эволюция» (Chaline, 1984) или «прерывистый градуализм» (Beiggren, Lohmann, Malgren, 1984) — говорят сами за себя. Добавим, что непосредственно творцы пунктуализма отнюдь не являются «экстремистами».
Какого рода данные вообще нужны для решения спора между градуализмом и пунктуализмом? Стэнли (Stanley, 1979) считает, что здесь требуется, с одной стороны, определение продолжительности существования хроновидов и степени систематического различия между крайними формами ряда, с другой — сопоставление темпов макроэволюции в группах со слабой и сильной радиацией. Подобный выбор, по нашему мнению, вполне оправдан.
Данные первой категории по большей части свидетельствуют в пользу пунктуализма. Данные второй призваны подтвердить ожидание, что скорость макроэволюции (т. е. скорость возникновения семейств и отрядов, отражающих крупные морфологические изменения) должна быть согласно градуалистической модели пропорциональна времени или числу поколений, необходимых для достижения видового разнообразия, а согласно модели прерывистого равновесия — пропорциональна степени ветвления (видообразования). Стэнли сопоставляет по этим показателям млекопитающих и двустворчатых моллюсков. Первые осуществили радиацию с образованием приблизительно 100 семейств в течение 30 млн лет, вторые дали равное число семейств в течение более чем 400 млн лет, т. е. эволюционировали в 13 раз медленнее. Отсюда Стэнли делает вывод, что темп макроэволюции непосредственно зависит от темпа видообразовательных событий. Другое подтверждение этого правила — существование живых ископаемых (шесть видов двоякодышащих рыб, два вида аллигаторов и один вид трубкозуба), незначительные эволюционные изменения которых на протяжении длительного геологического времени хорошо коррелируют со слабым видообразованием.
Подобного рода факты подтверждают модель прерывистой эволюции, но их все же нельзя считать решающими, ибо и на их достоверности сказываются субъективность подходов систематиков к разделению ископаемых таксонов и общие пределы разрешающей способности палеонтологических методов. Это означает, что характер добываемых фактических данных не позволяет рассчитывать на окончание дискуссии в ближайшее время. Не исключено также, что макроэволюция одних групп протекала в большей мере в соответствии с одной моделью, других — с другой.
Но вернемся к существу пунктуализма. Эта концепция сделала видообразование центральным событием в структуре эволюции и основным звеном в макроэволюции. Видообразование имеет всегда квантовый характер и происходит скачком: «…мы должны отвергнуть градуализм как ограничительную догму. Пунктуационное изменение с резкими скачками между стабильными состояниями характерно для большей части нашего мира», — заявляет Гулд (1986. С. 39). Его мнение разделяют большинство крупнейших генетиков: «…эпизоды видообразования включают в себя… значительные генетические скачки, так что формирование новых видов осуществляется в серии катастрофических, стохастических генетических событий» (Carson, 1975, Р. 87–88).
Продолжительность скачка может быть самой разной — от превращения вида в одном поколении до ступенчатых преобразований, растягивающихся на несколько десятков тысяч лет. Вероятно, для пунктуализма в большей мере характерно признание первичности, исходности репродуктивной изоляции, которая рассматривается не как продукт адаптации, а как стохастическое явление. В этой связи Гулд (Gould, 1980), например, считает, что традиционные понятия алло- и симпатрического видообразования утратили свое значение. Если демы оказываются разобщенными, новые виды могут возникать в любой точке ареала предкового вида. Вместе с тем очевидно, что само видообразование становится неадаптивным стохастическим процессом, практически совершающимся независимо от естественного отбора.
Масштабы видообразовательных актов и способы их реализации, допускаемые «прерывистой» концепцией, достаточно разнообразны. Внезапно возникающие новые формы могут не выходить за рамки видового статуса, и тогда, согласно Гулду, анагенез оказывается просто «аккумулированным кладогенезом» (Gould, 1982а. Р. 139). Но Стэнли (Stanley, 1979) допускает и даже считает правилом, возникновение родов и более высоких таксонов «главным образом благодаря квантовому видообразованию», и притом в течение нескольких поколений. Так, он пишет: «Чтобы возникли новые роды, подсемейства и семейства, достаточно единственного акта видообразования или краткой последовательности событий» (ibid., р. 141). Однако главный механизм макроэволюции, по Стэнли, иной, и о нем будет сказано отдельно.
Карсон (Carson, 1975, 1978) разработал оригинальную теорию («founder-flush-theory») чрезвычайно быстрого видообразования, опираясь на принцип основателя и генетический дрейф. По этой теории видовые популяции последовательно переживают состояния взрыва («flush»), когда внезапно возникает много особей, и крушения («crash»), когда большинство их гибнет. Единичные выжившие демы в предельном случае могут состоять из одного индивида-основателя, претерпевшего вынужденную генетическую реорганизацию. Это так называемый диахронный эффект бутылочного горлышка. По Карсону, он составляет сущность процесса видообразования (Carson, 1975. Р. 88) (рис. 25). Стэнли трактует этот способ как «потенциальный механизм ускорения филетической эволюции», родственный действию катастрофического отбора, и на этом основании (ввиду «чрезвычайной редкости») фактически его отвергает (Stanley, 1979. Р. 98). Действительно, при данном способе увеличения числа видов не происходит, а факты длительного существования хроновидов заставляют признать его весьма ограниченную роль в макроэволюции. Стэнли отстаивает ключевую роль в макроэволюции очень малых популяций, оказавшихся просто изолированными от нормальных популяций предшествующих видов, что и следует считать типичным для гипотезы прерывистого равновесия. Вместе с тем он положительно относится к идее возникновения нового вида (например, у брюхоногих моллюсков) от единственной гермафродитной самки, испытавшей зародышевую мутацию.
Пунктуализм полностью восстановил в правах идею Гольдшмидта о макроэволюционной роли «обнадеживающих уродов» и фактически дал ей новую жизнь (Steenis, 1969; Frazzetta, 1970; Bush, 1975; Gould, 1977в; Stanley, 1979). Теоретики пунктуализма Гулд и Стэнли лишь формально делают оговорки о «крайности» и «фантастичности» этой идеи, но принимают ее по существу. Констатируя возвращение гипотезы Гольдшмидта об «уродах», Буш резюмировал, что она «больше не является полностью неприемлемой» (Bush, 1975. Р. 357). Главное затруднение, с которым гипотеза встречалась еще в 60-х — начале 70-х годов, — проблематичность нахождения уродом пары для производства плодовитого потомства — ныне полностью преодолено. Уже тогда было установлено, например, что резко аберрантная форма способна закрепиться, если она происходит через зародышевую мутацию самки, как это было показано в упоминавшихся работах Карсона о видообразовании у дрозофил на Гавайских островах.
Рис. 25. Схема видообразования по Карсону (1975).
Пунктуализм принял и другое положение Гольдшмидта — о полном разобщении микро- и макроэволюции, которое теперь именуется разрывом Гольдшмидта (Gould, 1982а. Р. 137), или главным положением теории прерывистого равновесия (Maynard Smith, 1982. P. 126). Считается, что Гольдшмидт предугадал прерывистое видообразование и его кладистический характер.
Действительно, принцип разобщенности микро- и макроэволюции в начальном варианте «прерывистой» концепции — основной, определяющий ее структуру и само содержание. Обосновывается он, как и в свое время Гольдшмидтом, приведением в действие в случаях микро- и макроэволюции различных типов изменчивости и механизмов ее осуществления. Макроэволюционное значение внутривидовой изменчивости и полиморфизма, как правило, отрицается[32]. К природе изменчивости и генетике видообразования вообще проявляется особый интерес. Но одним фактором изменчивости дело не ограничивается. При объяснении макроэволюции не менее важен отбор, только он перенесен на другие уровни организации.
Один из веских доводов за разобщенность микро- и макроэволюции — зависимость их темпов от разных причин, подмеченная многими специалистами. Вспомним основополагающую работу Симпсона (1948). В ней ясно показано, что ни одна из причин, обычно определяющих темп микроэволюции, на скоростях макроэволюции не сказывается. Можно привести показательный пример. Род дрозофилы, появившийся в эоцене, хотя и представленный многочисленными видами (с вымершими — более двух тысяч), несмотря на быструю смену генераций и высокую насыщенность популяций мутациями, так и не дал нового рода, тогда как у хоботных, размножающихся на несколько порядков медленнее и едва ли столь насыщенных мутациями, за то же геологическое время сменилось несколько родов. Следовательно, макроэволюция у хоботных проходила в несколько раз быстрее, чем у дрозофил.
Как свидетельствуют данные палеонтологии, темпы макроэволюций зависят от таких показателей, как размер популяции, частота видообразования, изменение общей биоценотической обстановки. Отсюда закономерен вывод, что различие причин, от которых зависят темпы микро- и макроэволюции, говорит об отличии на этих уровнях движущих сил эволюции.
Основной вклад в разработку механизмов возникновения высших таксонов и макроэволюционных направлений (trends) внес Стэнли. Его эволюционная концепция, первоначально сжато изложенная в книге (Stanley, 1979), органично вошла в модель прерывистого равновесия Гулда—Элдриджа.
По мнению Стэнли, имеются три источника макроэволюции: 1) филогенетический дрейф; 2) направленное видообразование; 3) отбор видов. Филогенетический дрейф — случайный процесс, аналогичный генетическому дрейфу в популяциях. Его содержание составляют стохастические флуктуации. При нем направление видообразования также случайно. Как было показано на моделях, проверенных на компьютерах (Raup, Gould, 1974), этот тип эволюции способен создавать филогенетическую направленность только в маленьких кладах, подобно тому как генетический дрейф проявляет свою эффективность в малых популяциях..
Направленное видообразование, как и процесс мутационного давления в популяциях, — тенденция ряда последовательных событий квантового видообразования направлять эволюцию филума в одном адаптивном направлении. Одним из авторов данной макроэволюционной концепции и ее горячим приверженцем является Грант (Grant, 1963). При этом типе макроэволюции также доминирует случайность.
Но самым главным способом осуществления макроэволюции, ответственным за формирование устойчивых направлений филогенеза, Стэнли провозглашает отбор видов. Это простая, стройная и очень широкая концепция, логично достраивающая теорию Дарвина на надвидовом уровне.
Стержневая идея концепции: направления макроэволюции возникают, но не в результате филетической эволюции под действием длительно не меняющегося вектора естественного отбора, как обычно полагают, а благодаря отбору среди генеалогических линий. Они оказываются продуктом дифференциального выживания части видов из их общего числа, возникшего в краткие периоды видообразования. Сами виды выступают как сырой материал макроэволюции, и лишь отбор определяет, кому из них суждено внести лепту в непрерываюшуюся нить жизни филума. Одобряя эту концепцию, Гулд пишет, что макроэволюция «есть аккумулированный кладогенез, профильтрованный через направляющую силу отбора видов — райтовский высокого уровня аналог естественного отбора» (Gould, 1982а. Р. 139).
Воспроизведем данные, иллюстрирующие механизмы, создающие макроэволюционные направления в «прерывистой» модели и аналогичные механизмы, порождающие микроэволюционные явления (Stanley, 1979).
Макроэволюция | Микроэволюция
Филогенетический дрейф | Генетический дрейф
Направленное видообразование | Мутационное давление
Отбор видов | Естественный отбор
По Стэнли, при описании и объяснении макроэволюции можно провести полную аналогию с популяционными процессами. Механизм макроэволюции станет понятным, если особи заменить видами, события рождения и смерти — соответственно видообразованием и вымиранием, индивидуальную изменчивость (мутации и рекомбинации) — видообразованием, а естественный отбор — отбором видов. Агентами отбора видов выступают обычные ограничивающие экологические факторы — конкуренция, хищничество, изменения среды и случайные флуктуации в размерах популяций. Направляющими (неслучайными) компонентами отбора видов выступают дифференциальные темпы видообразования среди имеющихся линий, по-разному скоррелированные между собой. Сказанное Стэнли наглядно отображает следующая таблица.
Отбор видов, связанный с дифференциальными темпами видообразования и вымирания, является «доминирующим источником длительных филогенетических направлений в больших кладах» (Stanley, 1979. Р. 211).
При разработке своей концепции Стэнли опирался на известное «правило Райта» (Wright, 1967) о случайном (ненаправленном) характере морфологических особенностей вида по отношению к господствующему направлению эволюции филума. Райт утверждал, что здесь наблюдается полная аналогия со случайностью мутационной изменчивости по отношению к направлению естественного отбора. Стэнли убежден, кроме того, что Гольдшмидт со своей идеей «уродов» был предтечей и в этом вопросе. В представлении Стэнли, в понятии «уродов» «молчаливо утверждается как случайность направления видообразования, так и суровая форма межвидового отбора. Схема Гольдшмидта, — продолжает Стэнли, — доходила до ясной посылки, что вид представляет собой единицу макроэволюции и что макроэволюция отграничена от микроэволюции. Все это иллюстрирует историческое разъединение отбора на уровне видов и отбора на уровне особей» (Stanley, 1979. Р. 193–194).
В статье, посвященной 20-летию теории, Гулд и Элдридж (Gould, Eldredge, 1993) отметили, что за прошедшее время пунктуализм завоевал признание большинства эволюционистов США как «ценное прибавление к теории эволюции». В немалой степени это явилось следствием энергичной пропаганды и рекламирования этой теории ее создателями во всех средствах массовой информации. Возможно, ради ее упрочения в биологическом научном сообществе Гулд и Элдридж и пошли на те компромиссы со СТЭ, которые противоречат существу пунктуализма. Вот и в данной статье указано, что разделение микро- и макроэволюции в трудах Стэнли не означает, что микроэволюционный механизм неверен; оно только констатирует, что экстраполяция на макроэволюцию дарвиновского механизма не способна дать полного объяснения этого процесса. И это пишется после того, как 12 годами раньше Гулд (Gould, 1981) уже прокламировал смерть СТЭ!
Авторы сочли также нужным напомнить, что, несмотря на постулируемое скачкообразное видообразование, пунктуализм никогда не был сальтационной теорией, ибо согласно этой концепции новые таксоны в 90 % случаев возникают не путем филетической трансформации, а через видообразовательный процесс.
Книга Стивена Стэнли «Макроэволюция. Структура и процесс» (Stanley, 1979) — одна из последних фундаментальных сводок по проблемам структуры, движущих сил и механизмов макроэволюции. Особое внимание уделено в ней способам видообразования, темпам видообразования и вымирания и факторам, контролирующим поддержание органического разнообразия.
Как уже говорилось, в этой книге изложена собственная концепция макроэволюции Стэнли, принятая Гулдом и Элдриджем. Но она включена здесь в общий контекст гипотезы прерывистого равновесия, изложению теоретических основ которой, собственно, и посвящена книга.
Не только тема, всесторонность анализа, обоснования и широта охвата предмета, но и многие теоретические положения, развиваемые автором, заставляют компетентного читателя этой монографии вспомнить старую книгу Симпсона «Темпы и формы эволюции». Стэнли широко пользуется идеями и методами Симпсона, в особенности при оценке скоростей макроэволюции. Он подробно развивает его модель квантового видообразования. По этим и многим другим чертам Стэнли выступает в этом труде достойным преемником Симпсона.
Стивен Митчелл Стенли (род. в 1941).
Но в то же время концептуальная стратегия Стэнли совсем иная. Этому и не приходится удивляться. Ведь с момента выхода работы Симпсона прошло 35 лет! За это время возник пунктуализм, родилась новая эволюционная молекулярная генетика. Опираясь на их данные, Стэнли делает нечто прямо противоположное Симпсону: он отделяет палеонтологию от популярной генетики, пользуясь последней лишь в качестве аналога, и отделяет макро- от микроэволюции. Наиболее подходящую основу для эволюции через прерывистое равновесие Стэнли ищет в иных формах изменчивости. Можно сказать, что он возрождает традицию синтеза, осуществленного Шиндевольфом.
Стэнли утверждает новую модель макроэволюции в полемике с градуализмом. Эта полемика становится, пожалуй, лейтмотивом книги, который неизменно звучит при анализе самых различных аспектов эволюции. Всестороннему обоснованию пунктуализма, собственно, посвящены четыре из десяти глав монографии. В числе доказательств хотелось бы выделить факт несоответствия длительности существования хроновидов (1,2 млн лет для плейстоценовых млекопитающих) степени радиации класса млекопитающих по отрядам и родам. Взрывоподобность такой радиации не может быть объяснена на основе филетического фадуализма. Единственная возможность совместить высокие скорости возникновения таксонов и их длительное выживание — это допустить кладогенез, при котором виды возникают прерывисто.
Сам автор определяет цель своей книги как попытку показать значение данных палеонтологии для эволюционной теории. Ему хотелось бы убедить своих читателей, что палеонтологическая летопись вовсе не столь неполна, как об этом привыкли думать, и что ее пробелы соответствуют реальным разрывам в эволюционной иерархии.
Еще одна не менее важная цель Стэнли — привлечь внимание эволюционистов к видообразованию как главному событию в макроэволюции и на этой основе добиться объединения усилий палеонтологов и неонтологов в разработке механизмов его осуществления. При этом он отмечает, что количество ископаемого материала и качество его анализа позволяют в настоящее время вести филогенетические исследования на видовом уровне. Изымая видообразование из сферы микроэволюции и делая его основным звеном макроэволюции, Стэнли четко проводит новую границу между этими уровнями эволюционного процесса.
Ключевым вопросом в изучении видообразования автор книги, подобно своим многочисленным единомышленникам, считает исследование его генетической базы. Обосновывая быстрое, скачкообразное возникновение новых видов и более высоких таксонов, он проявляет особую благосклонность к мысли о решающей роли в этих событиях крупных хромосомных перестроек и мутаций регуляторных генов. По Стэнли, ускоренному видообразованию способствует и половой процесс, рассмотрению которого под этим углом зрения посвящена специальная глава.
Стэнли трансформировал традиционное представление о роли отбора в эволюции, сделав отбор главным механизмом макроэволюции. Практически он устранил отбор от участия в формировании видов и объявил его подлинной ареной надвидовой уровень. Виды возникают по воле случая и формируют высшие таксоны и эволюционные направления благодаря дифференциальным темпам рождения и вымирания.
Справедливости ради надо сказать, что, проводя свою линию, Стэнли соблюдает достаточную объективность. В его книге можно встретить немало фактов и суждений, противоречащих доктрине пунктуализма. В ряде мест Стэнли, в частности, указывает, что «прерывистая» модель эволюции не предполагает особых факторов или механизмов, которых нет в синтетической теории, но лишь по-иному расставляет на них акценты. Он допускает даже, что полиморфизм может служить первым шагом к видообразованию (ibid., р. 171–172). И тем не менее именно эти суждения оказываются слабо подкрепленными фактическим материалом и воспринимаются как простая декларация. Они, вероятно, мало у кого могут вызвать уверенность в искренности автора.
В заключение разбора гипотезы прерывистого равновесия целесообразно несколько дополнить ту оценку, которую мы уже давали ей раньше.
Оригинальность гипотезы видится нам в утверждениях множественного видообразования с выживанием единственного вида, образования высших таксонов путем отбора видов, непопуляционной генетики видообразования.
Интересно, что Симпсон (Simpson, 1976), заставший возникновение пунктуализма, не увидел в нем ничего такого, что шло бы вразрез с принципами синтетической теории. На точке зрения совместимости пунктуализма с дарвинизмом стоят Грант, Стеббинс, Айала, Мейнард Смит, Паавер, Татаринов и многие другие исследователи.
Однако целый ряд специалистов (Løvtrup, 1977; Blanc, 1982; Ruse, 1985; Корочкин, 1984) полагают, что теория прерывистого равновесия создает самую серьезную альтернативу дарвинизму. Выступая на междунароном симпозиуме в Пльзене (ЧССР, 1984), Рьюз говорил, что эта теория «наносит удар прямо в сердце дарвиновскому механизму эволюции… Отрицая постепенность… Гулд и его единомышленники… делают дарвинизм одним из частных механизмов эволюции» (Ruse, 1985. Р. 148). В гл. 3 уже отмечалось, что подобная оценка имеет веские основания. Не обращать внимания на утверждения о первичности и неадаптивности репродуктивной изоляции, о том, что внутривидовая изменчивость не ведет к видообразованию и что микро- и макроэволюция не связаны друг с другом, означает не признавать очевидное. Тут уже несогласованность оценок нельзя объяснить слабой разработанностью в синтетической теории проблем структуры и динамики эволюционного процесса, как пытался представить дело Паавер (1983).
Однако выносить окончательное суждение о том, являются ли пунктуализм и синтетическая теория альтернативами, было бы преждевременным. На наш взгляд, решение этого вопроса будет всецело зависеть от установления типа изменчивости, лежащей в основе видообразования и его распространенности в природе.
С начала 70-х годов ведущее место в разработке молекулярногенетических основ видообразования и макроэволюции заняли исследователи СССР. Наиболее радикальный вклад в познание механизмов видовой и надвидовой эволюции внесли, как нам представляется, Ю. П. Алтухов и Ю. Г. Рычков (1972; Алтухов, 1974, 1983 и позднее).
Эти авторы полностью разделяли общий взгляд о двойственности в структурно-функциональной организации генома у высших организмов, но при этом распространяли принцип двойственности и на уровень структурных генов. По данным их исследований, в каждой популяции обследованных видов, наряду с полиморфными белками-маркерами соответствующих генов, всегда обнаруживаются и мономорфные, инвариантные белки. При всей необозримости наследственного полиморфизма в популяциях на долю полиморфной части генома приходится примерно одна треть всех изученных локусов. Остальные две трети не обнаруживают изменчивости, не позволяют судить о генетической дивергенции популяций и по этой причине не рассматриваются в рамках традиционных методов популяционно-генетических исследований. Эта мономорфная часть генома ответственна за видоспецифические признаки, отличающиеся высокой степенью константности.
Алтухов и Рычков (1972. С. 288) определяют генетический мономорфизм как «отсутствие изменчивости заведомо наследуемого признака на всем видовом ареале или наличие в нем качественно отличающихся вариантов с частотой, не превышающей вероятность повторного мутирования». В противоположность этому генетический полиморфизм такой специфичностью не обладает, и одни и те же аллели представлены у разных, нередко далеких видов. Таким образом, мономорфная часть генома кодирует сугубо видоспецифические белки, ответственные за развитие видовых признаков.
Благодаря мономорфизму виды по веем признакам столь же дискретны и уникальны, сколь и генотипы разных особей. Поскольку каждая особь обладает всеми инвариантными свойствами вида, виды адекватны не популяциям, а отдельным особям, причем проблема идентификации видов решается одинаково применительно к бисексуальным и однополым формам. Авторы отмечают также, что видовые признаки ведут себя как целостные генетические единицы. Когда удается сопоставить редкие межвидовые гибриды или виды гибридного происхождения с родительскими видами, то видовые признаки гибридов обнаруживают простое суммирование родительских типов либо даже отношение дом и на нтности — рецесси вности.
Исследования Алтухова и Рычкова свидетельствуют об универсальности генетического мономорфизма в природе. В этом авторы имели возможность убедиться, изучая массовый материал по многим видам рыб и просматривая многочисленные литературные данные, относящиеся к моллюскам, насекомым, амфибиям, рептилиям, птицам и млекопитающим.
Из факта двойственности в организации генома, подтвержденного в более поздних публикациях Алтухова (1983, 1985, 2000; Алтухов, Корочкин, Рычков, 1996), логично выводится и механизм видообразования. Согласно гипотезе этих авторов (Алтухов, Рычков, 1972; Алтухов, 1974), в основе происхождения видов лежат преобразования мономорфных признаков. Совершаются же эти преобразования не постепенно и не на популяционном уровне, а резким скачком в результате качественной и крупномасштабной реорганизации генома, непосредственно сопряженной с репродуктивной изоляцией.
Недавно Алтухов получил полное подтверждение своего главного вывода, сделанною с помощью электрофореза белков, и на уровне исследования самой ДНК (Алтухов, Абрамова, 2001). Он подчеркнул при этом качественное отличие собственно процесса видообразования от адаптивной внутривидовой дивергенции, лишь поддерживающей устойчивость и целостность вида в условиях нормально колеблющейся среды.
Фактически инициирующим генетическим событием выступает системная мутация, затрагивающая одновременно большое число генов и связанная с тандемными дупликациями, полиплоидией и другими изменениями. Предположение об участии в реорганизации большого числа генов находит подтверждение в том, что мономорфные белки как жизненно особо важные кодируются множественными генами. Важнейший биологический смысл резких генетических перестроек авторы видят в том, что они скачком переводят все или значительную часть генов генома в константно-гетерозиготное состояние и, следовательно, обеспечивают особям преимущество качественно иного адаптационного уровня, избавляя популяцию будущего вида от груза менее приспособленных генотипов.
В силу указанных особенностей видообразование может быть представлено лишь как единичное событие, сопряженное с репродуктивной изоляцией отдельных особей, испытывающих превращение. С этой точки зрения только так можно допустить, что пути возникновения видов, как утверждают авторы, оказываются «однозначными безотносительно к системе размножения как для растений, так и для животных» (Алтухов, Рычков, 1972. С. 297). Вместе с тем совершенно ясно, что сами генетические механизмы преобразования мономорфных признаков, лежащие в основе видообразования и макроэволюции, в разных систематических группах различны. Они вообще отличаются большим разнообразием, чего наши авторы, по-видимому, вовсе не собираются отрицать.
Важно отметить, что помимо трактовки видообразовательного акта как резкого скачка Алтухов и Рычков сближаются с пунктуализмом и в понимании характера самого эволюционного развития. От идеи двойственности в организации генетического материала они переходят к представлению о неоднородности эволюционного процесса, в котором периоды «видовой трансформации через системные реорганизации генома» чередуются с «периодами длительной стабильности видов» (там же, с. 297).
С аналогичной гипотезой видообразования, но только позднее выступил Карсон (Carson, 1975). По его взглядам, геномы организмов бисексуальных видов состоят из двух чередующихся генетических систем. Одна из них — «открытая» — построена из свободно расщепляющихся аллелей, способных заменяться под действием отбора. Эта система обеспечивает различные формы внутривидовой изменчивости и существенно не влияет на жизнеспособность особей. Другая — «закрытая» — представлена коадаптированными блоками генов (супергенами), не чувствительных к естественному отбору. Супергены[33] чрезвычайно консервативны, они не разделяются при кроссинговере и сохраняют свою целостность благодаря сильным эпистатическим взаимодействиям. От системы супергенов в столь огромной степени зависит приспособленность, что отбор не допускает ни малейшей их перестройки. Карсон считает, что процесс замены аллелей не способен затронуть закрытую систему и она может перейти к новой закрытой системе только вследствие ряда радикальных и катастрофических по масштабу генетических событий. При этом происходит «неожиданная вынужденная реорганизация эпистатических супергенов закрытой системы изменчивости» (ibid., р. 88). Ее запускает в ход демографический цикл, включающий быструю экспансию и последующее резкое сокращение популяции. «Я предполагаю, — заключает Карсон, — что этот цикл дезорганизации и реорганизации следует рассматривать как сущность процесса видообразования» (ibid.). В целом Карсон считает, как мы видели, что начало новому виду дают немногие или даже одна особь-основательница.
Гипотеза двойственности в организации генома и теория прерывистого равновесия оказались в русле тех тенденций познания в этих областях исследований, которые увенчались созданием экосистемной теории эволюции.
Прежде чем говорить о новой модели биологической эволюции, как она видится в свете новейших достижений комплекса наук о живом, кратко суммируем те неординарные идеи и гипотезы, которые родились в недрах только что рассмотренных недарвиновских течений. Эго поможет нам наглядно убедиться, что они не только не противоречат друг другу, но исключительно органично входят в качестве ключевых характеристик в новую модель эволюции и получают прочное обоснование в открытиях последних десятилетий. Благодаря этому факту нам придется также согласиться, что, наряду с экспериментом, дедукцией и умозрением, делящими между собой права на создание теории, по-прежнему остается плодотворной и научная интуиция.
Финализм прочно ассоциируется с представлением о причинах исторического развития, лежащих внутри живого, и о том, что филогенез есть развертывание предсуществующих (преформированных) программ. Многие считают, что эти программы записаны в генетической памяти, в частности в сателлитной ДНК. В основе онто- и филогенеза лежат общие закономерности, и эволюция представляет собой циклический процесс рождения, расцвета и вымирания филогенетических линий.
Эти стержневые положения финализма всецело разделяют номогенетики, которые усматривают в закономерной направленной эволюции отражение массовой и «направленной» изменчивости. Преобладание параллелизмов над дивергенцией, повторное образование в филогенезе одних и тех же или близких друг другу структур свидетельствуют о существовании внутреннего закона развития организмов. Организация крупных таксонов формируется как бы сложением структур, возникших в разных филогенетических ветвях, и часто напоминает мифических кентавров.
Заслугой сальтационизма стал широко распространившийся постулат, утверждающий, что и новые виды, и новые типы организации возникают скачкообразно, а не путем постепенной аккумуляции мелких изменений, причем скачок сразу порождает гармонично скоординированную форму. Этот постулат получил естественное подтверждение в симгенетическом модусе эволюции, в открытии горизонтального переноса генетического материала и был воспринят как номогенетиками, так и сторонниками финализма. С принятием скачка связано признание прерывистого характера эволюции.
Подтверждение идеи о существовании в организации организмов огромного числа адаптивно нейтральных признаков (к ним в первую очередь относятся признаки организационные), произошедшее под влиянием открытий в молекулярной биологии, полностью реабилитировало старое представление о кардинальном различии процессов адаптаииогенеза и эволюции.
В связи с раскрытием новых движущих сил эволюции для всех указанных течений естественный отбор как конструктивный фактор оказывается излишним.
Гипотезы этапности и сопряженной мегаэволюции, выдвинув идею периодичности крупных преобразований в геологических оболочках Земли и неизбежности их воздействия на биоту, предвосхитили современную концепцию биотических кризисов и выделение качественно неравнозначных этапов органической эволюции.
Открытие мобильных генетических элементов и возможности одномоментного переноса генетической информации вопреки таксономическим барьерам стало подлинной революцией в развитии эволюционной теории. Обнаружение реальной возможности молниеносных трансформаций в обход традиционных путей медленного преобразования состава популяций под действием естественного отбора спутало все карты селекционистов. Одновременно наборный (мозаичный) характер эволюции и приуроченность эволюционных событий к периодам биотических кризисов получили естественное и логичное объяснение.
Наконец, настойчивый поиск генетиками, биохимиками, иммунологами реального канала передачи информации от сомы в геном у все большего числа биологических объектов частично реабилитирует ламаркизм и подводит эмпирическую базу под современное представление об инициирующем эволюционном значении изменений физиологии и поведения.
Все большее понимание находит и мысль, что общепринятые генетические мутации — это фактор изменчивости в эксперименте, но не в дикой природе.