ГЛАВА 4 Эйлер и теория чисел

Эйлер, имевший серьезные проблемы со зрением, в России мог бы удалиться от дел и спокойно почивать на лаврах. Но он работал до самой смерти: глубоко исследовал теорию чисел, добился превосходных результатов в области простых чисел, чисел Мерсенна и чисел Бернулли, а также диофантовых уравнений и разбиения множеств. Он также успел уделить время игровой математике и даже написал несколько научно-популярных книг.

Причиной возвращения Эйлера в Россию в 1766 году стало желание императрицы Екатерины II вернуть Академии былую славу. Ученый никогда не терял связи с Россией, даже живя в Берлине. Хорошо известно, что он посылал в Санкт- Петербург множество статей, которые были логическим продолжением работ, впервые опубликованных именно в России. Ученый также постоянно получал вознаграждение от Российской империи за решение определенных задач, например военного характера, и оказывал протекцию молодым русским, приезжавшим учиться в Европу. За научный вклад в работу Петербургской академии Эйлеру в 1742 году, когда он еще был в Берлине, была назначена пенсия. Один любопытный исторический факт дает представление не только о подробностях второго путешествия Эйлера в Россию, но и о том, насколько не сложились его отношения с предыдущим покровителем. В одном из своих писем Фридрих сожалел об утере целого ряда личных записок ученого во время кораблекрушения, произошедшего по пути в Санкт-Петербург: "Какая жалость, ведь из этих записок могло бы получиться шесть томов трактатов, полных цифр от начала и до конца, а теперь, видимо, Европа лишилась такого приятного чтения".

По приезду ученого ему было назначено весьма щедрое жалованье в 3000 рублей. Императрица даже отдала ему повара из своего дворца. Руководила Академией, по назначению Екатерины, княгиня Дашкова. Существует знаменитый и документально подтвержденный анекдот, который показывает, как высоко княгиня ценила Эйлера. Однажды она провожала ученого в зал собраний. Один напыщенный профессор захотел сесть на почетное место рядом с председательницей, она же насколько можно любезно обратилась к Эйлеру: "Располагайтесь, где хотите, господин Эйлер, хотя все мы знаем, что вы выберете самое почетное место, первое из всех".

Но не все было так прекрасно. Первой трагедией этого периода стала слепота. Эйлеру провели операцию по удалению катаракты со здорового глаза, и хотя в начале все было хорошо, позже началось воспаление, которое не заметили вовремя и из-за которого ученый в конце концов потерял зрение. В 1771 году он был почти слеп на оба глаза. Несмотря на это Эйлер не замедлил свой рабочий ритм. Напротив, можно утверждать, что его продуктивность в этот второй русский период была самой высокой за всю его жизнь. Но он не справился бы в одиночку: история сохранила имена некоторых его помощников, многие из которых были превосходными математиками. Это Георг Вольфганг Крафт, Михаил Евсеевич Головин, Степан Румовский, Семен Котельников и Петр Иноходцев, а также старший сын Эйлера Иоганн Альбрехт, его приемный внук Николай Фусс, математик и астроном шведского происхождения Андрей Лексель.

Старший сын Эйлера, Иоганн Альбрехт (1734-1800), был математиком и членом Берлинской академии с 1754 года, а также профессором Петербургской академии с 1765 года. Его научные таланты подтверждают семь призов, полученных им от разных академий в течение жизни.

Правой рукой Эйлера был Николай Фусс (1755-1826), математик, из ассистента ставший его личным секретарем, затем профессором в кадетском корпусе и постоянным секретарем Петербургской академии. В 1784 году он женился на внучке Эйлера и находился рядом со своим гениальным учителем до самой смерти.


ЗНАМЕНИТЫЙ АНЕКДОТ

Вполне естественно, что с персонажем такой величины, как Эйлер, связано большое количество историй. Однако проблема таких анекдотов состоит в том, что чем интереснее герой, тем их больше, и чем больше времени отделяет нас от этих событий, тем сложнее их проверить. Анекдот, приведенный ниже, мы выбрали, во-первых, из-за хорошей репутации его рассказчика — Дьедонне Тьебо (1733-1807), историка, которому можно доверять. Тьебо утверждает, что историю ему пересказали прямые свидетели. А во-вторых, этот анекдот очень популярен. Главный герой истории — французский писатель и философ Дени Дидро, отец и редактор "Энциклопедии". Находясь проездом в России, Дидро получил приглашение поучаствовать в дискуссии о существовании Бога. Эйлер, как очень верующий человек, обладал неоспоримым доказательством. Дидро принял участие в собрании, и Эйлер изложил ему свой тезис:

"Господин, (a + bn)/n = х, следовательно, Бог существует. Отвечайте же!"

Философ, не слишком разбиравшийся в математике, промолчал. Придворные истолковали это молчание как невозможность отрицать неопровержимое доказательство. Они посмеялись над Дидро за его спиной, и сконфуженный француз вернулся на родину. Так гласит рассказ.

Портрет Дени Дидро, отца и главного редактора "Энциклопедии".


Другая сторона

Но эта история довольно быстро затрещала по швам, через которые стала просвечивать правда. Уравнение из рассказа не имеет никакого математического смысла. К тому же Дидро не был невеждой в этой дисциплине, а, напротив, обладал прекрасной математической подготовкой. Поэтому фраза, приписываемая Эйлеру, показалась бы ему тем, чем она была на самом деле, то есть бессмыслицей, и Дидро не преминул бы сказать об этом. Наконец, трудно представить себе серьезного и почтительного Эйлера, который придумал бы столь глупую шутку с таким образованным человеком, как Дидро. Единственное, что заслуживает доверия в этом рассказе,— сам факт возвращения Дидро во Францию.

Он написал для деда своей жены великолепную надгробную речь — длинный трогательный текст о его жизни и работе. Наконец, Андрей Лексель (1740-1784) работал с Эйлером в последний период его жизни и также находился в доме в момент смерти ученого. В то время Лексель вместе с Эйлером и Фуссом занимался изучением только что открытого Урана и с помощью вычислений предсказал существование Нептуна.

Еще одним несчастьем этого периода стал пожар, который случился в доме Эйлера в 1771 году и в котором ученый чуть не погиб. Его спасло только вмешательство слуги Петера Гримма (некоторые источники говорят просто о соотечественнике из Базеля), вынесшего Эйлера на своих плечах. Часть денег для перестройки дома в камне была выделена императрицей.


КРИВЫЕ И ПЕРЕДАЧИ

В 1754 году Эйлер опубликовал в Берлинской академии несколько записок о зубчатых колесах. В 1765 году, между берлинским периодом и возвращением в Россию, он вернулся к этой теме в Supplementum de figura dentium rotarum. В этом сочинении говорилось о форме зубьев вращающегося зубчатого колеса. На рисунке 1 изображено колесо с треугольными зубьями, но простых треугольников недостаточно. Профиль зубьев имеет важнейшее значение, и на рисунке 2, сделанном по работам Эйлера, мы видим идеальные зубья, образованные эвольвентой окружности. Она получается, если нарисовать траекторию конца веревки, обвязанной вокруг окружности, при ее разматывании. У зубьев общая касательная, и колесо не вибрирует, энергия не тратится на шум,

РИС. 1

РИС . 2

и затраты становятся минимальными. Эйлер был первым ученым, исследовавшим область эвольвентного зацепления, а его идеи привели к созданию уравнений Эйлера — Са- вари, которые используются в этой области и сегодня.

РИС.3

Рисунок зубьев пилы, созданный в соответствии с исследовании- ми Эйлера.


Зубья пилы

Помимо шестеренок, Эйлер также интересовался зубьями пилы (рисунок 3) и в 1756 году написал по этому вопросу статью на 25 страницах. В ней содержатся формулы, в которых учитывается количество зубьев, угол их наклона, степень входа зуба в дерево и так далее. Некоторые его выводы сегодня повергают в изумление: Эйлер рекомендовал использовать пилы длиной 1,2 метра и пилить целыми группами пильщиков.


Третьим и самым важным событием, оказавшим влияние на Эйлера в этот период, стала смерть его жены Катерины в 1773 году, после почти 40 лет брака. Ученый женился повторно — на своей свояченице Абигайл. Несмотря на все жизненные удары, он продолжал публиковать новые работы в прежнем ритме. Хотя в прошлом он уже внес значимый вклад в теорию чисел своими работами о математических константах или о числах Ферма, историки единогласно утверждают, что большая часть открытий была сделана Эйлером именно в последние годы жизни. Нельзя не подчеркнуть также, что только этих его достижений в данной области — не очень популярной в то время — хватило бы, чтобы оставить в веках имя любого математика.


ЭЙЛЕР И ДИОФАНТОВЫ УРАВНЕНИЯ

Эйлер уже в 1735 году внес большой вклад в изучение диофан- товых уравнений, являющихся центральной частью теории чисел. Диофантово уравнение — это уравнение с целыми коэффициентами, для которого возможны только целые решения. Такое название происходит от имени древнегреческого математика Диофанта Александрийского, который первым занялся их изучением.

Эйлер также попал под их очарование; большая часть его работ по теории чисел состоит в решении задач, оставшихся в наследство от Ферма, а того необычайно привлекал Диофант и область его научных занятий. Но время сбора урожая еще не пришло: Эйлеру не хватало многих мощных инструментов, чтобы начать систематическое изучение диофантовых уравнений, таких как алгебраическая геометрия и эллиптические интегралы, которые только начали появляться. И хотя Эйлер измерил границы царства Диофанта, он не смог его завоевать. Самым знаменитым доказательством в этой области, наверное, может считаться частичное доказательство теоремы Ферма, которое получил Эйлер. Согласно ей, невозможно было решить диофантово уравнение хn + уn - zn при n ≥ 3. Эйлер доказал, что это так при n = 3. Считается, что в доказательстве, которое он нашел уже в 1735 году, была ошибка, но впоследствии Эйлер сам ее исправил. Также при изучении другой категории чисел он подтвердил рассуждения для п - 4, уже выведенные Ферма. Универсальное решение для любого значения п появилось только в конце XX века благодаря Эндрю Уайлсу.

Эйлер также заинтересовался уравнением Пелля — дио- фантовым уравнением вида

у2 = Ах2 + 1,

где А — определенное число, а не неизвестная. Это уравнение решил Лагранж, который развил и расширил метод непрерывных дробей, проанализированный Эйлером. Современное название уравнения происходит от ошибки самого Эйлера, который перепутал Джона Пелля (1611-1685) с математиком


ДИОФАНТОВЫ УРАВНЕНИЯ

Диофант Александрийский (ок. 200 — ок. 284) известен как создатель диофантовых уравнений. Сегодня так называют уравнения с одной или более неизвестными, в которых все коэффициенты являются целыми числами и в качестве решений допускаются целые числа, хотя Диофант допускал и рациональные. Предполагается, что Диофант прожил 84 года, поскольку имеется эпитафия, в которой упоминается его возраст.

Прах Диофанта гробница покоит; дивись ей, и камень

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребенком

И половину шестой встретил с пушком на щеках.

Только минула седьмая, с подругой он обручился.

С нею, пять лет проведя, сына дождался мудрец;

Только полжизни отцовской возлюбленный сын его прожил.

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе,

Тут и увидел предел жизни печальной своей*.

* Перевод С. Н. Боброва.

Если мы размотаем этот клубок ребусов и запишем диофантово уравнение, скрывающееся в этом тексте, то получим

x/6 + x/12 + x/7 + 5 + x/2 + 4 = x, и решение ч = 84

Диофант и Ферма

Еще одной причиной известности Диофанта стала история создания теоремы Ферма. Вкратце она выглядит так: во времена Ферма были опубликованы почти все труды Диофанта из тех немногих, что дошли до наших дней. Читая книги, Ферма обычно писал свои комментарии на полях. Одно из предложений Диофанта, приведенных в тексте, натолкнуло Ферма на размышления и вдохновило его на создание теоремы, позже названной Великой теоремой Ферма. Она абсолютно безобидна с виду и кажется довольно простой. Ферма утверждал, что нашел для нее превосходное доказательство, которое не смог записать, поскольку на полях книги не хватило места; по крайней мере, такую версию распространил сын ученого. Тем не менее найти доказательство никому не удавалось до конца XX века (это сделал Эндрю Уайлс в 1995 году). Диофант написал 11 книг по арифметике, из которых до наших дней дошло только шесть (есть еще четыре, авторство которых не установлено). В них содержится более 100 задач, приводящих к диофантовым уравнениям, но в их решениях нет и следа математического метода, а только лишь проявление необыкновенного гения ученого.



Уильямом Браункером (1620-1684), признанным отцом этого знаменитого уравнения. Джулия Робинсон (1919-1985) с его помощью смогла решить десятую проблему Гильберта, одну из самых сложных в современной математике. Она состояла в том, чтобы проверить, существует ли алгоритм, способный определить, имеет ли произвольное диофантово уравнение целое решение. Окончательный ответ — нет.


ПРОБЛЕМА ЭЙЛЕРА И ДИОФАНТОВЫ УРАВНЕНИЯ

Знаменитая проблема Эйлера, сформулированная в 1769 году, связана с диофантовым уравнением вида

х4 + у4 + z4 = u4.


ГИПОТЕЗА О СУММЕ СТЕПЕНЕЙ

Французский математик Огюстен Луи Коши (1789-1857) вошел в историю благодаря своему таланту, сделанным открытиям, сформулированным теоремам и понятиям, а также противоречивому характеру. Его чрезмерная набожность и нежелание признавать заслуги коллег составляли темную сторону сложной натуры ученого. Однако с ним связан один анекдот, который показывает его более приятное лицо и его неподражаемое французское чувство юмора. Согласно этой истории, а точнее легенде, однажды Коши, который получал множество рукописей на проверку, в одной из них нашел доказательство, в стиле Ферма, несуществования целых чисел х, у, z, которые удовлетворяли бы диофантову уравнению:

x3 + y3 + z3 = u3.

В тот день Коши пребывал в хорошем расположении духа и, даже не прочитав всего доказательства, написал ответ, занимавший одну строку. Его кратким вердиктом было:

З3 + 43 + 53 = 63.

Действительно, 27 + 64 + 125 = 216, в чем может убедиться любой ученик средней школы.


Упрощая, мы можем сказать, что она постулирует невозможность существования целых х, у, г и и, при которых равенство было бы верным. Долгое время это предположение считалось справедливым, пока американский математик Ноам Элкис (1966) не опроверг его, опубликовав в 1988 году такой пример:

26824404 + 153656394 +187967604 - 206156734.

И это не все: Элкис доказал, что у этого уравнения — бесконечное число решений абсолютно разной величины, но самое маленькое состоит примерно из 70 цифр. Это показывает нам, что ни одно предположение нельзя принимать на веру, каким бы очевидным оно ни казалось и какой бы ни совершался прогресс в его доказательстве. Сегодня существует даже отдельный русский веб-сайт, на котором собраны контрпримеры к ошибочной гипотезе Эйлера.


РАЗБИЕНИЕ

В течение всей своей жизни Эйлер посвятил много сил работе над разбиением. Хотя базовое понятие разбиения не представляет собой ничего сложного, чтобы изучить его подробно, требуется сложная математика. Детальное объяснение займет больше страниц, чем вся эта книга, поэтому мы рассмотрим понятие очень поверхностно. Возьмем произвольное положительное число, достаточно маленькое, чтобы с ним было удобно работать, например 7. Сколькими способами его можно разложить на слагаемые? Разумеется, разложения, отличающиеся только по порядку слагаемых, такие как 7 = 5+1+1 и 7 = 1+5+1, являются эквивалентными и засчитываются только один раз. Для числа 7 мы имеем:

7 = 7

7 = 6 + 1

7 = 5 + 2

7 = 5+ 1 + 1

7 = 4 + 3

7 = 4 + 2 + 1

7 = 4 + 1 + 1 + 1

7 = 3+3+1

7 = 3 + 2 + 2

7 = 3 + 2 + 1 + 1

7 = 3 + 1 + 1 + 1 + 1

7 = 2 + 2 + 2 + 1

7 = 2 + 2 + 1 + 1 + 1

7 = 2 + 1 + 1 + 1 + 1 + 1

7 = 1 + 1 + 1 + 1 + 1 + 1 + 1.

Итого 15. Запишем: р(7) - 15. Этот простой пример показывает, что разложить число — трудная задача, а результат может быть непредсказуемым. Если мы подсчитаем первые значения р(х), то получим:

Р(1) = 1

Р(2) = 2

P(3) = 3

Р(4) = 5

Р(5) = 7

P(6) = 11

Р(7) = 15

Р(8) = 22

P(9) = 30

P(10) = 42.

Никаких странностей не наблюдается, мы видим только, что p возрастает. Можно доказать, что

р(100) = 190569292.


СРИНИВАСА РАМАНУДЖАН АЙЕНГОР

Этот индийский математик родом из далекой страны, с непростой судьбой и необыкновенным талантом, привнес нотку экзотики в научный мир своего времени. Он родился в Эроде, в штате Тамил-Наду, и был типичным представителем своего общества, очень религиозным и строго соблюдавшим вегетарианство. Рамануджан был гением-самоучкой. По совету друзей он отправил несколько писем в Лондон, в которых рассказывал о своих результатах. Одно из них попало в руки к Годфри Харолду Харди (1877-1947). Вместе со своим другом и коллегой Джоном Литлвудом (1885- 1977) Харди проанализировал содержание писем, в которых говорилось обо всем сразу: об открытиях, уже сделанных, в том числе и самим Харди, и о новых формулах, свидетельствовавших о необыкновенных математических способностях. По приглашению Харди Рамануджан приехал в Англию и впоследствии был избран членом кембриджского Тринити-колледжа и Королевского общества. Многие его разработки еще не до конца изучены, но все единодушно отмечают их красоту, глубину, изобретательность и новизну. Рамануджан углубил работы Эйлера по разбиению, и это принесло свои плоды: многое из того, что сегодня об этом известно. — плод его исследований. Благодаря гению Рамануджана, мы располагаем "простым" инструментом, с помощью которого можем узнать примерное количество разбиений любого числа:


Его можно получить с помощью калькулятора. При желании мы можем получить точные цифры, а не приблизительные, но процесс будет немного сложнее.



Ученые получили необыкновенно длинные результаты, выявили малейшие различия между разбиением четных и нечетных чисел (состоящих только из четных или нечетных чисел), изобрели сложнейшие арифметические инструменты. Большая часть удивительных работ Эйлера основана на методах, развитых Абрахамом де Муавром, которые заключаются в игре со степенными рядами. Так он получал то, что в то время называлось производящими функциями последовательности, то есть хитроумные алгебраические трюки, с помощью которых ученые пытались сымитировать реальность. Уже в 1742 году Эйлеру пришла в голову идея найти производящую функцию разбиений, и после долгих лет работы он пришел к ней: оттолкнувшись от ряда

1/(1 - х) = 1 + х + х2 + х3 + ...,


он вывел формулу


Развивая бесконечное произведение справа, можно доказать, что различные разбиения числа n появляются в скрытой форме в группах степеней меньших n, которые в сумме дают n. Например, возьмем n = 4 и посмотрим, сколько х4 мы получим:

(1 + х + х2 + x3 + ...) (1 + х2 + х4 + х6 +...)(1 + х3 + x6 + х9+...)...

В результате мы получим 5х4. и следовательно, р(4) = 5. Отсюда Эйлер вывел метод для вычисления р(n), но, к сожалению, это рекурсивный метод, который позволяет вычислить р(n), только если мы знаем предшествующие значения:

р(n) = р(n - 1) +р(n - 2) - р(n - 5) - р(n - 7) + р(n - 12) + р(n - 15) - р(n - 22) - ...


ЧИСЛА БЕРНУЛЛИ

Эти числа были названы в честь Якоба Бернулли, который впервые рассмотрел их в 1713 году в своем сочинении Ars conjectandi ("Искусство предположений"). Эти числа встречаются при вычислении сумм степеней целых положительных чисел:

1 + 22 + З2 + 42 + ... + k2

1 + 23 + З3 + 43 + ... + k3

1 + 24 + З4 + 44 + ... + k4

1 + 25 + З5 + 45 + ... + k5,

или, говоря языком Эйлера, вычислении сумм


Мы имеем


где Вi — числа Бернулли. Чтобы пояснить предыдущую формулу, приведем простой пример — сумму квадратов простых чисел. Применив формулу при р - 2, получим

12+22 + ... + n2 = 1/3(B0n3 + 3B1n2 + 3B2n1) = 1/3(n3 + 1/2n2 + 1/2n).

Эйлер вычислил первые 30 чисел Бернулли. Это грандиозная задача, учитывая, что 30-е число выглядит так:

8615841276005/14322.

Наконец, числа Бернулли появляются в выражении, которое Эйлер вывел для ζ(2n) в ходе дальнейших исследований после решения Базельской задачи. Оно выглядит так:

ζ(2n) = (-1)n+1(2π)2nB2n/2(2n)!.

Числа Бернулли используются в современной записи формулы суммирования Эйлера — Маклорена, хотя сам Эйлер их не заметил, когда применил формулу, чтобы приблизительно сосчитать значение


и найти первые шесть его цифр.


ЭЙЛЕР И ПРОСТЫЕ ЧИСЛА

Эйлеру не удалось разгадать все тайны простых чисел, тем не менее он выполнил много исследований на эту тему, а также на другие, тесно с ней связанные, такие как функция Эйлера φ, числа Мерсенна или квадратичный закон взаимности.


До сих пор математики напрасно пытались открыть порядок в последовательности простых чисел, и мы имеем все основания предполагать, что речь о идет о тайне, которую человеческий разум никогда не раскроет.

Эйлер


В работе Variae observationes circa series infinites ("Различные замечания о бесконечных рядах"), опубликованной в 1744 году, Эйлер применил формулу, ставшую одной из самых известных в области простых чисел, — произведение Эйлера, которое мы подробно рассмотрим в приложении 3.


При s = 1 слева возникает гармонический ряд, стремящийся к бесконечности. Следовательно, к ней должен стремиться и результат справа. Но если это так, то произведение не может быть конечным. Следовательно, оно бесконечно, и поскольку в каждом множителе есть простые числа, то, следовательно, их существует бесконечно много. Так Эйлер нашел еще одно доказательство бесконечности простых чисел. Однако ученый хотел заглянуть еще глубже и найти плотность простых чисел. Мы знаем, что они бесконечны, но насколько плотно они расположены? Эйлер доказал, что ряд, ограниченный только простыми членами,


то есть аналог гармонического ряда


также расходится. Кроме того, несмотря на то что гармонический ряд расходится приблизительно как логарифм л, ряд обратных простых чисел расходится еще медленнее, как логарифм логарифма n.

Идеи Эйлера, считающегося изобретателем методов анализа в теории чисел, были развиты вначале Лежандром, а затем Гауссом, отцами теоремы о распределении простых чисел, которая гласит:

π(x = x/Inx

где π(x) — число простых чисел, меньших х. Эта теорема была доказана независимо друг от друга математиками Шарлем Жаном де ла Валле Пуссеном (1866-1962) и Жаком Адамаром (1865-1963) в 1896 году. Бернхард Риман расширил идеи Эйлера до области комплексных чисел С, применив к ней дзета- функцию (мы говорили о ней в главе 2), которую сам Эйлер рассматривал только в области вещественных чисел R. Затем был совершен переход к так называемой аналитической теории чисел, а позже — к оставшейся недоказанной гипотезе Римана.


ФУНКЦИЯ φ

В арифметике существует понятие не только простого числа, но и взаимно простых чисел. Целые положительные числа р и q являются взаимно простыми, если у них нет общих делителей, кроме 1. Например, 14 и 15 — взаимно простые, поскольку, даже если ни одно из них не является простым само по себе, у них нет общего делителя, кроме 1:

14-2-7

15-3-5.

То же самое можно выразить более современным способом, используя понятие наибольшего общего делителя (НОД). Сказать, что p и q являются взаимно простыми, — равноценно тому, что их НОД - 1.Функция, которую Эйлер называл φ(n), определяется как количество взаимно простых чисел, меньших п и взаимно простых с ним. Возьмем для примера числа от 1 до 10:

φ(1) = 1

φ(2) = 1

φ(3) = 2

φ(4) = 2

φ(5) = 4

φ(6) = 2

φ(7) = 6

φ(8) = 4

φ(9) = 6

φ(10) = 4.

Функция φ(n) называется индикаторной функцией; это не просто довольно интересная арифметическая игрушка, а инструмент, который можно широко использовать; она встречается в одной из самых важных теорем теории чисел — так называемой малой теореме Ферма. Как ни странно, вопреки тому, что Эйлер обычно сам вводил математические обозначения в своих работах, знак функции <р принадлежит не ему. Он доказал, что если р ид взаимно простые, то

φ(pq) = φ(p)φ(q)·

К тому же, если р — простое число, то φ(р) = р-1. Эйлеру же принадлежит следующий результат (хотя к нему подошли и раньше): если p и q — взаимно простые числа, то верна так называемая малая теорема Ферма:

pφ(q) ≡ 1 mod q,

где mod q — модуль q и означает, что pφ(q) и 1 имеют одинаковый остаток при делении на q. Эта теорема была доказана Эйлером в 1736 году, в Theorematum Quorundam ad Numéros Primos Spectantium Demonstratio ("Доказательство некоторых теорем о простых числах"), и в прошлом имела сжатую форму, которую придал ей сам Ферма. Если мы предположим, что q простое число, то φ(q) = q - 1. и мы получим оригинальную запись Ферма:

pq-1 ≡ 1 mod q,

где q — простое число, а р и q — взаимно простые. Эйлер нашел еще по меньшей мере три доказательства этой теоремы, хотя можно почти с полной уверенностью утверждать, что он не знал, кто являлся автором оригинальной теоремы.

Эта теорема лежит в основе самого известного в мире криптографического современного алгоритма с открытым ключом RSA, о чем рассказывается в приложении 6.




МАРЕН МЕРСЕНН

Марен Мерсенн (1588-1648) был священником, музыкантом, математиком, философом и теологом, хотя его настоящим призванием была музыка, которой он посвятил большую часть своих сил. Не случайно во многих источниках его называют отцом акустики. Мерсенн установил основные законы вибрации струн, занимался вопросами гармонии и инструментальной музыки. Существует мнение, что во второй сюите Отторино Респиги "Старинные танцы и арии для лютни· есть фрагмент, написанный Мерсенном. Он также серьезно изучал телескопы и зеркала, став авторитетом в этой области. Мерсенн вел обширнейшую переписку и был в центре научных новостей в эпоху, когда они еще очень редко публиковались для широкой публики. Благодаря своим разносторонним интересам он познакомился со многими интеллектуалами своего времени, с которыми поддерживал отношения и завел дружбу, в частности с Декартом. Обладая рассудительным и рациональным умом, Мерсенн активно боролся с иррациональными верованиями — каббалой и магией. Он увлекался математикой и опубликовал различные работы древнегреческих авторов, таких как Архимед и Евклид, а также занимался числами. По мнению ученых, именно в этой области он сделал свой основной вклад, поэтому числа, которые он изучал, вида

МР ≡ 2Р - 1,

были названы числами Мерсенна. Сегодня существует генератор псевдослучайных чисел, связанных с простыми числами Мерсенна, который носит имя ученого, — вихрь Мерсенна.


ЧИСЛА МЕРСЕННА

Эйлер хотел найти простые числа больших размеров. Многие математики до него ошибочно предполагали, что все числа Мр вида Мр = 2р - 1, где Р — простое число, простые. Пьетро Катальди (1548-1626) в 1588 году доказал, что M17 и М19 простые, при помощи немного устаревшего, но стандартного для того времени метода, состоявшего в том, чтобы попытаться разделить их на простые числа, меньшие их квадратного корня. Впоследствии Марен Мерсенн, в честь которого эти числа обозначаются буквой М, составил целый список предполагавмых простых чисел, оказавшийся неточным, так как М67 и М257 повторялись два раза, а M61, M89 и M107 в нем не было. Сегодня самым большим числом является M43112609, в котором 12978189 цифр, в полном виде оно займет 50 таких книг, как эта.

В 1772 году Эйлер доказал, что число M31 простое. Любопытно, что прошло более 100 лет, прежде чем было найдено следующее простое число — M127. Сделал это французский математик Эдуард Люка (1842-1891) в 1876 году. Также простыми являются M61 и M89, но они были открыты позже. Таким образом, на протяжении 104 лет Эйлеру принадлежал рекорд по открытию самого большого простого числа.


КВАДРАТИЧНЫЙ ЗАКОН ВЗАИМНОСТИ

Квадратичный закон взаимности, превосходно сформулированный Гауссом в его Disquisitiones arithmeticae ("Арифметические исследования"), появился у Лежандра и Эйлера, который рассказал о нем Гольдбаху в письме 1742 года. Для начала определим, что такое символы Лежандра (p/q).

Предположим, что p и q — разные простые нечетные числа и

(p/q) =

0, если р ≡ 0 (mod q)

1, если х2 ≡ р (mod q) разрешимое уравнение

-1, если х2 ≡ p (mod q) неразрешимое уравнение.

Таким образом, Гауссу, а не Эйлеру, удалось доказать, что

(p/q) =

(q/p), если q ≡ 1 (mod 4)

(-q/p), если q ≡ 3 (mod 4)

Это можно выразить, хотя это и непросто, в одной формуле. Гаусс сделал это открытие в 19 лет и так гордился им, что назвал его aurum theorema — "золотой теоремой".


ДРУЖЕСТВЕННЫЕ И СОВЕРШЕННЫЕ ЧИСЛА

Делитель d произвольного числа n называется собственным делителем n, если 1 ≤ d < n. Число n — несобственный делитель n. Первое серьезное исследование Эйлера в области дружественных чисел относится к 1747 году. Два числа считаются дружественными, если сумма собственных делителей одного равна другому и наоборот. Это арифметическое понятие "дружбы" можно проиллюстрировать следующим примером. Возьмем числа 220 и 284. Собственными делителями 220 будут 1, 2, 4, 10,11,20,22,44,55 и 110; а 284 -1,2,4,71 и 142. Получаем, что

220 =1 + 2 + 4 + 10+11+20 + 22 + 44 + 55 + 110 = 284

284 = 1 +2 + 4 + 71 + 142 = 220.


АДРИЕН МАРИ ЛЕЖАНДР

Научная жизнь Лежандра (1752- 1833) началась под счастливой звездой. Он обладал выдающимися интеллектуальными способностями и достаточным состоянием, чтобы посвятить себя работе, ни на что не отвлекаясь. Успехов в математике Лежандр добился не сразу. Вместе с Лапласом он сделал важные разработки в области астрономии, открыв многочлены, позже названные многочленами Лежандра, зашел на малоизвестную территорию эллиптических функций и теории чисел, в рамках которой ему удалось, как он считал, решить старую задачу о квадратичном законе взаимности. Но в его исследовании были ошибки, как впоследствии установил Карл Фридрих Гаусс. За свои астрономические работы Лежандр был принят в члены Лондонского королевского общества. Он также участвовал в работе комиссии по созданию десятичной метрической системы, входившей в программу всеобщей рационализации, начатой после Французской революции. Хотя Лежандр и разделял многие революционные идеи, в эпоху Террора он был вынужден скрываться и потерял свое состояние. После этого он переписал и издал "Начала" Евклида с точки зрения того времени и современным языком, получив оглушительный и долгий успех у читателей. Придя к власти, Наполеон сразу же взял Лежандра под свою протекцию. Ученый, бывший к тому времени уже известным академиком, занялся изучением движения комет, разработал метод наименьших квадратов для вычисления траекторий, опередив на сей раз Гаусса. К этому же периоду относятся его исследования по распределению простых чисел, которое, как он предположил, подчинялось асимптотическому закону:

Это значение, очень близкое к современному, впоследствии совпало с фундаментальной теоремой о распределении простых чисел. Гаусс здесь оказался первым, но он так и не опубликовал свои результаты.

Загрузка...